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Abstract

We analyze multidimensional BSDEs in a filtration that supports a Brownian motion
and a Poisson random measure. Under a monotonicity assumption on the driver, the
paper extends several results from the literature. We establish existence and uniqueness
of solutions in LP provided that the generator and the terminal condition satisfy appro-
priate integrability conditions. The analysis is first carried out under a deterministic
time horizon, and then generalized to random time horizons given by a stopping time
with respect to the underlying filtration. Moreover, we provide a comparison principle
in dimension one.

Introduction

The notion of nonlinear backward stochastic differential equations (BSDEs for short) was
introduced by Pardoux and Peng [33]. A solution of this equation, associated with a terminal
value & and a generator or driver f(t,w,y, z), is a couple of stochastic processes (Y, Zt)i<r
such that

T T
Yt=5+/t f(s,Ys,Zs>ds—/t Z,dW., (1)

a.s. for all ¢ < T, where W is a Brownian motion and the processes (Y;, Z;);<r are adapted
to the natural filtration of W.

In their seminal work [33|, Pardoux and Peng proved existence and uniqueness of a
solution under suitable assumptions, mainly square integrability of £ and of the process
(f(t,w,0,0))i<7, on the one hand, and, the Lipschitz property w.r.t. (y, z) of the generator
f, on the other hand. Since this first result, BSDEs have proved to be a powerful tool
for formulating and solving a lot of mathematical problems arising for example in finance
(see e.g. [2, 13, 36]), stochastic control and differential games (see e.g. [15, 16]), or partial
differential equations (see e.g. [31, 32]).
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Main results

The aim of this paper is to establish existence and uniqueness of solutions to BSDE in a
general filtration that supports a Brownian motion W and an independent Poisson random

measure m. We consider the following multi-dimensional BSDE:

Y=+ / (5, Yo, Zosiby)ds / ' /u by (u)F(du, ds) — / " Zaw, - / Can. @

The solution is given by the usual triple (Y, Z, 1) and also an orthogonal local martingale M
which can not be reconstructed by the integrals w.r.t. to the Brownian and Poisson noise.
We assume that the generator f is monotonic (one-sided Lipschitz continuous) w.r.t. the
y-variable and Lipschitz continuous w.r.t. to z and . Under the condition that the data &
and f(¢,0,0,0) are in LP, p > 1, we provide existence and uniqueness results in LP spaces
(the precise defintion will be given in Section 1).

Further contributions are a comparison result in dimension one and existence and unique-
ness when the terminal time is a non necessarily bounded stopping time.

Related literature

There are already a lot of works which provide existence and uniqueness results under weaker
assumptions than the ones of Pardoux and Peng [33] or El Karoui et al [12]. A huge part
of the literature focuses on weakening the Lipschitz property of the coefficient f w.r.t. the
y-variable. For example, Briand and Carmona [4] and Pardoux [31] consider the case of a
monotonic generator w.r.t. y with different growth conditions. There have been relatively
few papers which deal with the problem of existence and uniqueness of solutions in the case
where the coefficients are not square integrable. El Karoui et al. [13] and Briand et al. [5]
have proved existence and uniqueness of a solution for the standard BSDE (1) in the case
where the data belong only to LP for some p > 1.

Another strand of research in the theory of BSDEs concerns the underlying filtration.
In [33] the filtration is generated by the Brownian motion W. Since the work of Tang and
Li [39], a lot of papers (see e.g. [1, 3, 26, 29, 37| or the books of Situ [38] or recently of
Delong [9]) treat the case where the filtration is generated by the Brownian motion W and
a Poisson random measure 7 independent of W. In most of these papers, the generator f
is supposed to be Lipschitz in y, even if the monotonic case is mentioned (see [37]) and all
coefficients are square integrable. Yao [41] studies the LP case, p > 1, and gives existence
and uniqueness result in the case where the generator is monotone but with at most linear
growth w.r.t. y. Li and Wei [24] give existence und uniqueness results for a fully coupled
forward backward SDE under some monotonicity condition and LP coefficients, p > 2. Note
that this monotonicity condition involves the coefficients of the forward diffusion and is
not the same as the assumption imposed on the generator in this paper. An extension to
BSDEs driven by a continuous local martingale X and an integer-valued random measure
7 has been studied by Xia [40]. Xia supposes that the filtration satisfies the representation
property with respect to X and 7 and that the driver is Lipschitz continuous and square
integrable.



For more general filtrations, the representation property of a local martingale is no more
true (see Section III.4 in [17]) and an additional (orthogonal) martingale term has to be
introduced in the definition of a solution. This approach was developed in the seminal work
of El Karoui and Huang [11] and by Carbone et al. [6] for cadlag martingales. The filtration
IF is supposed to be complete, right continuous and quasi-left continuous. For a given square
integrable martingale X ({X) denotes the predictable projection of the quadratic variation),
the BSDE (1) becomes

T T
Vi e+ /t F(8, Yo Z,)d(X)s — /t Z.dX, — My + M. 3)

The solution is now the triple (Y, Z, M) where M is a square integrable martingale orthogo-
nal to X. Oksendal and Zhang [28] analyse BSDE of the form (3) where f does not depend
on z, and apply to insider finance (see also Ceci et al. [7]). Liang et al. [25] also obtain
results for a particular class of BSDE (3) on an arbitrary filtered probability space. In these
papers, existence and uniqueness of the solution of (3) is proved for a Lipschitz continuous
function f and under square integrability condition (in [28] the monotone case is treated
but f does not depend on z). The Hilbertian structure of L?(Q, Fr,P) is used in Cohen and
Elliott [8] (see also [19]). If L?(Q2, Fr,P) is a separable Hilbert space, then an orthogonal
basis of martingales can be introduced instead of X and there is no orthogonal additional
term M in (3). Z becomes a sequence of predictable processes. The special case of a Lévy
noise is treated before by Nualart and Schoutens [27]: the orthogonal basis of martingales
is explicitely given by the Teugels martingales.

In very recent papers, Klimsiak has developed the results concerning BSDEs in this
general framework in two directions. First for reflected BSDE ([18, 19]), and secondly for
parabolic equations (|20, 21]) with measure data.

Main contributions

Let us outline the main contributions of our paper compared to the existing literature.

First of all our paper generalizes many results from the works [1, 3, 26, 29, 37, 39| dealing
with a filtration generated by the Brownian motion and the Poisson random measure since
we allow for a more general filtration.

Moreover we provide existence and uniqueness of solutions in LP-spaces, p > 1. In
the case where the generator depends on the stochastic integrand w.r.t. a Poisson random
measure, the case when p < 2 has to be handled carefully and can not be treated as in [5].
Indeed in this case Burkholder-Davis-Gundy inequality with p/2 < 1 does not apply and
the LP/2-norm of the predictable projection cannot be controlled by the LP/2-norm of the
quadratic variation (see Inequality (25) and [23]). Yao [41] obtains similar results but for a
generator with at most linear growth w.r.t. y (and for a filtration generated by W and ).
Klimsiak [19] considers L solutions of BSDE, with p # 2, in a general filtration but where
the driver only depends on y.

Compared to [6] or [40], our assumptions are in some sense more restrictive as we assume
that the continuous part of the given martingale X of BSDE (3) is a Brownian motion W
and the random measure associated to the jumps of X is a Poisson random measure 7.



However we weaken the assumptions on the driver and on the terminal condition: the
generator is only supposed to be monotone and the terminal condition is allowed to be only
LP-integrable. To the best of our knowledge, there is no existence and uniquenesss result
for multi-dimensional BSDE with LP coefficients in a general filtration. The generalization
of our results for BSDE of the form (3) requires some sophisticated integrability conditions
to take account of the predictable projection (X) of the quadratic variation of X. Therefore
it is left for future research.

Moreover we provide a comparison principle and existence and uniqueness in the case
with random terminal time for BSDE of type (2). The proof of the comparison principle
generalizes the arguments of [35] to the situation where the filtration is not only generated
by Brownian and Poisson noise.

Finally our setting is important for the control problem we study in the paper [22] (see
also [14]). The control problem arises in mathematical finance and models the optimal
liquidation of a financial position in an illiquid market. In [14] the authors consider the case
when the filtration is generated by a Brownian motion and a independent Poisson measure.
In [22] we do not impose any condition on the filtration generated by the market (except
right-continuity, completeness and quasi-left continuity) and the Poisson random measure
represents the limit orders of the trading strategy. The optimal strategy is determined by
a solution of a BSDE of the form (2) where the generator depends on the Poisson random

measure.

Decomposition of the paper

The paper is decomposed as follows. In the first section, we give the mathematical setting
and the main results of this paper. In the second part, we consider square integrable
coefficients and we prove existence and uniqueness of the solution. To prove it we mainly
follow the scheme of [31] with suitable modifications. In the next part, we extend the result
to LP coeffcients for any p > 1. For p > 2, the existence is derived from the existence in
the L? case with the right a priori estimate. For 1 < p < 2, an extra computation has to
be made since the function x — |z|P is not smooth in this case. We have to extend Lemma
2.2 in [5] or Proposition 2.1 in [18] to our framework. In the last two sections, we add two
extensions: the comparison result in dimension one, and existence and uniqueness when
the terminal time is a stopping time. Note that the comparison principle requires an extra
condition when the generator depends on the jump part (see the counterexample in [1]).
But instead of using Girsanov’s theorem to obtain the comparison between two solutions,
we generalize the argument of [35], which is less restrictive. This point will be crucial in
[22].

1 Settings and main results

Let us consider a filtered probability space (€2, F,P,F = (F;);>0). The filtration is assumed
to be complete, right continuous and quasi-left continuous, which means that for every
sequence (7,) of F stopping times such that 7, ~ 7 for some stopping time 7 we have
Vpen Frn = Fz.. Without loss of generality we suppose that all semimartingales have right
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continuous paths with left limits. We assume that (Q,F,P,F = (F;)i>0) supports a k-
dimensional Brownian motion W and a Poisson random measure 7 with intensity p(du)dt
on the space U C R™ \ {0}. The measure u is o-finite on U such that

/(1 A Ju)?)p(du) < +oo.
u

The compensated Poisson random measure 7(du, dt) = 7(du, dt) — p(du)dt is a martingale
w.r.t. the filtration F.
In this paper for a given T" > 0, we denote:

e P: the predictable o-field on Q x [0,7] and
P=PoBU)
where B(U) is the Borelian o-field on Y.

e On = 0x [0,T] x U, a function that is ﬁ—measurable, is called predictable. Gj,.(7)
is the set of P-mesurables functions ¢ on {2 such that for any ¢t > 0 a.s.

| [ 06@P At hntan) < +oc.
0 Ju

e D (resp. D(0,T)): the set of all predictable processes on R, (resp. on [0,7]). L?

loc

(W)
is the subspace of D such that for any ¢ > 0 a.s.

t
/ | Z,|?ds < +o0.
0

o M,.: the set of cadlag local martingales orthogonal to W and 7. If M € M, then
MW, =0,1<i<k [M7(A.)];=0

for all A € B(U). In other words, E(AM % x|P) = 0, where the product * denotes
the integral process (see I1.1.5 in [17]). Roughly speaking, the jumps of M and 7 are
independent.

e M is the subspace of M, of martingales.

We refer to [17] (see also [3]) for details on random measures and stochastic integrals. As
explained above, the filtration F supports the Brownian motion W and the Poisson random
measure 7.

Lemma 1 (Lemma I11.4.24 in [17]) Every local martingale has a decomposition

/' stWer/'/q,z)s(u)%(du,dsHM
0 0 JUu
where M € Mioe, Z € L2 (W), ¥ € Goe(pt).

loc

Now to define the solution of our BSDE, let us introduce the following spaces for p > 1.



e DP(0,T) is the space of all adapted cadlag processes X such that

E| sup |XiP | < +o0.
t€[0,T)

For simplicity, X, = sup;e(o,7] | X¢].

e HP(0,T) is the subspace of all processes X € D(0,T') such that

T p/2
([ )
0

e MP(0,T) is the subspace of M of all martingales such that

E < 4o00.

E |([M]r)""?] < +oo.

o LE(0,T) =1LER(Q2 x (0,T) x U): the set of processes 1) € Gioe(11) such that

(/ ' / \ws<u>12u<du>ds)p/z

o L, =LP(U,p;RY): the set of measurable functions v : U — RY such that

E < 400.

1, = | P u(dn) < +oc.
e 7 : the set of all finite stopping times and 77 the set of all stopping times with values
in [0, 7.
e £P(0,T) =DP(0,T) x HP(0,T) x LE(0,T) x MP(0,T).

We consider the following BSDE (2):

Y=+ / C (5. Yo Zoy s — / ' /M by (u)F(du, ds) - / " Zaw, - / ",

Here, the random variable ¢ is Fp-measurable with values in R? (d > 1) and the generator
f:Qx[0,T] x RE x RF x Li — R? is a random function, measurable with respect to
Prog x B(RY) x B(R¥k) x B(L2) where Prog denotes the sigma-field of progressive subsets
of Q x [0, T7.

The unknowns are (Y, Z, 1, M) such that

e Y is progressively measurable and cadlag with values in R?;

o Z € L} (W), with values in R*F;

o ) € Gloe(p) with values in R

e M € M, with values in R?.



On R, |.| denotes the Euclidean norm and R%** is identified with the space of real matrices
with d rows and k columns. If z € R¥* we have |z|> = Trace(zz*). If M is a R%-valued

martingale in M, the bracket process [M]; is

d

[M]y = [M];,

i=1

where M? is the i-th component of the vector M.
Throughout the paper, the following assumptions on the generator f are denoted by

(Hex).

(H1) For every t € [0,T], z € R* and every v € Li the mapping y € R? — f(t,y, z,v) is
continuous. Moreover there exists a constant « such that

<f(taya Za¢) - f(tayl’ Z’w)ay - y/> S Oé|y - y/|2'

(H2) For every r > 0 the mapping (w,?) = supy, <, [f(t,y,0,0) — f(¢,0,0,0)| belongs to
LY(Q x [0,T],P ®@m).

(H3) f is Lipschitz continuous w.r.t. z and 1: there exists a constant K such that for any
t and y, for any z,2’ € R and v, in L2(u)

[f(ty2,0) = fty, 2 )] < K]z = 2|+ Y = 4']|e2).

We can suppose w.l.o.g. that « = 0. Indeed if (Y, Z,79, M) is a solution of (2) then
(Y, Z,4, M) with

Y/;f = eath, Zt = eatZt, 1;25 = eat¢ta th = eatht
satisfies an analogous BSDE with terminal condition ¢ = e®”¢ and generator

f(t7 Y, z, 1/}) - eatf(t7 eiaty7 eiatza eiatw) —ay.

f satisfies assumptions (Hex) with o = 0. Hence in the rest of this paper, we will suppose
that a = 0.

Our main results can be summarized as follows. Under Assumptions (Hex) and if for
some p > 1

T
E (|£|p - If(t,O,O,O)Ipdt> < +o0,

there exists a unique solution (Y, Z,v, M) in EP(0,T) to the BSDE (2). The comparison
principle holds for this BSDE. Moreover with a suitable conditions (see (H5") and (H6)) the
terminal time 7" can be replaced by a stopping time 7.



2 L2 solutions

Let us begin with the following definition:

Definition 1 (L?-solution) We say that (Y, Z,, M) is a L*-solution of the BSDE (€, f)
on [0,T] if

o (Y, Z,4,M) € £(0,T);
e and Equation (2) is satisfied P ® dt-a.s.

In the rest of this section, a solution (Y, Z,v, M) will be supposed to be in £2(0,T). Now
we want to prove existence of the solution of the BSDE with data (&, f). For this purpose,
we will add the integrability conditions:

T
(1) B() B [ 17(6.0.0.0)Pdt < +oc.

Some a priori estimates are needed. Note that the following results are modifications of the
results obtained in [29].

Lemma 2 Let (Y, Z,9, M) € £2(0,T) be a solution of BSDE (2). Then

T T T
2 2 2 2
E(/O 1Z,ds + /0 /M o u(du)dsﬂM]T) < CE (éié%]‘yt‘ 4 /0 £(£,0,0,0) dt)

for some constant C' depending only on K? and T.

Proof. Let 7 € T and by Ito’s formula on |Y;|%:
Vol 4 [ (ziPas+ [ ] o) Put@ds + ) - (Mo
\Y!2+2/ Y f(s,Ys, Zg, s ds—2/ Y,- ZsdW,
—2/ Y, dM, — / / Y- + ¥(w)]? — |Y,- %) 7(du, ds). (4)
TN
But from (H1) and (H3):

yf(ty,z0) < Iyl (K2l + Kl +1£(2,0.0,0)))

Hence with ¢ = 0 and Young’s inequality:

/|Z|ds+ //ws V2 pu(du)ds + [M]s

T T
< (AK*4+1)T +1) sup |V;|? +/ 1£(5,0,0,0)>ds — 2/ Y, ZsdW,
t€[0,T] TAL

—2/ Y,-dM, — // Yoo + 0s(u)]? = [Ye-[?) T(du, ds).



Moreover from the assumptions on Y, Z, ¢ and M, the stochastic integral terms w.r.t. W,
M and 7 are martingales. Now take 7 = T and we can take the expectation on both parts:

w3 [ 12l g [ [ wtPuaas + g

T
< (K2 £ 2)TE ( sup i) 4B [ [7(5.0,0.0)Pds
t€[0,7) 0

which achieves the proof. O

Lemma 3 Let (Y, Z,1, M) be a solution of BSDE (&, f) with the same conditions as in

Lemma 2. Then
T
B s ) < cm (i [ Irw0.0.0Pa)
0

t€[0,T]
for some constant C depending only on K and T.
Proof. For 0 <t < T, let us apply Ito formula (4) to e”*|Y;|? where 8 will be chosen later.
We have:

T
SNV = TV 42 / Y, f (5, Yy, Zo, 1)) ds
t

T T
= [sepas— [ [ el Putdnds
t t u
T T
— / eﬁsd[M]s—/ P3| Z,|2ds
t t

T T
) / PV, _dM, — 2 / P ZdW,
t

t
T
— B | (1Y, 2 Y-} 7(du,d
e u(\ = T s (W) = [Y-|*) T(du, ds).
t
From the assumptions on f, we have for any ¢ > 0

st(SaY:szﬂ/fs) }{S(f(‘%}/;a Z87¢8) - f(8707 Zsﬂ/’s)) + Yts(f(&oa Zsﬂ/’s) - f(8707071/18))
+ Yi(f(s,0,0,95) = f(5,0,0,0)) + Y5 £(s,0,0,0)
< [Y6llF(s,0,0,0)[ + K[Yllohs 2 + K Y Zs]

(1+2K?)
2e

We take ¢ = 1/2 and we obtain:

2 1 T 2 1 T 2 1 T
Py +—/ P\ Z| ds+—/ eﬁussHLgds—i——/ B d[ M),

IN

9
Y5l + §(|f(8,0,0,0)|2 + stz + 1Za1)- (5)

1 T
<M g [ s 0.0.0Rds
t
T
—/ (B —2(1 +2K?)) e|Y;|*ds + Ty 1
t

9



where I'; is a local martingale starting at zero at time ¢. Fix 8 = 2(1 + 2K?) and we have:

1 /T 1 (T
g [ s+ [ e,
t " 2 J
1 T
§66T|YT|2+§/ eﬁs|f(s,0,0,0)|2ds+Ft7T. (6)
t

Since all local martingales are true martingales, we deduce that

T
sup E[Yi[>+E / ZPds + E [ buliyds + EDM)r
te[0,T] 0 "

<CE <|5|2 + /OT |f(t,0,0,0)|2dt> . (7)

Now with 3 = 2(1 + 2K?2) we write the It6 formula in a different way:

T
SV = PTIYr[? 12 / Y, [ (5, Yy, Zos 1) ds

_ /ﬁeﬁﬂyms_/ / B 4py (1) P (du, ds)
_/t P d[M], — /t ™| Z,*ds

T T
- 2/ Y, dM, —2/ P, Z,dW,

- / /Y% #(du, ds)

which gives with (5):

e 1
eﬁt|Yt|2§€6T|YT|2‘|‘§/ eﬁslf(s,o,o,0)|2d5+4/ ¢ |ls | ds
t

T T
—2 / P Y,—dM, — 2 / ePY,- Z,dW, — 2 / / Y, s (u)7 (du,ds) (8)
t t

Next we apply the Burkholder-Davis-Gundy inequality to obtain

t T 1/2
B swp | [ o | < e ( / e%rm?d[ms)
t€[0,77 |J/0 0
1 Bty (2 S
< -E [ sup e’*|Yy* | +2¢°E e”*d[M]s. 9)
8 \iepo,7] 0

By the same arguments we have

t
| e
0

<

E sup
t€[0,T]

T 1/2
| ( [ e pizias)
0

T
E ( sup eﬁtthP) +202E/ | Z,|?ds. (10)
0

t€[0,T]

ool

10



Finally the same result holds for the martingale

/O' /u (Ye-s(u)) 7(du, ds),

with
t T 1/2
B s | [ [ 0o atanas) < e ([ @ P [ oPri)
tefo,1]1Jo u 0 u
1 T
< =E | sup ¢*y;? +202E/ P9 ||as |22 ds. (11)
8 \icpo,1) 0 Z

Now coming back to (8), and using estimates (9), (10), (11) and (7), we deduce that there
exists C' depending on K and T such that

T
E<sup \Yt!?) < CE<15\2+ / rf<t,o,o,0>12dt)-
t€[0,T] 0

This achieves the proof. ]
The next result is an extension of the Proposition 2.1 in [4]. For convenience let us give
the result and the proof.

Lemma 4 Let (Y, Z,v, M) € £2(0,T) be a solution of BSDE (2) with bounded terminal
condition & and generator |f(t,0,0,0)|: there exists a constant r such that a.s.

sup [f(t,0,0,0)[ +[¢] < k. (12)
te[0,7)

Then Y is also almost surely bounded: there exists a constant B = 2(1 + 2K?) such that
almost surely and for any t € [0, T

Y;[? < K20 (1 + %) :

Proof. We use Inequality (6) and since the involved local martingale I" is a martingale,

taking the conditional expectation w.r.t. F; leads to: a.s. for every ¢ € [0, 7]

1 T
Vi <E [eff(“)!sw? +5 / e?C0|£(5,0,0,0) Pds ft} :
t

Hence Y € D*>(0,T). O

Now we prove a stability result.

Lemma 5 Let now (&, f) and (&', f') be two sets of data each satisfying the above assump-
tions (Hex) and (H4). Let (Y, Z,b, M) (resp. (Y',Z',2)', M")) denote a L?-solution of the
BSDE (2) with data (&, f) (resp. (¢, f')). Define

~

(}/}727{/}\7]/\-4-\7%\7.]0):(Y_Y/7Z_Z/7¢_w,7M_M/7§_§,7f_f,)'

11



Then there exists a constant C' depending on K? and T, such that

T T
E<sup Gip [zpass [ |ws<u>|2u<du>ds+[M]T)
te[0,7) 0 o Ju
o~ T o~
<cn (g [ 1feZar).
0

As a consequence of this lemma, we obtain uniqueness of the solution (Y, Z, 1, M) for the

BSDE (2) in the set £2(0,T) (see also Corollary 2 in dimension d = 1).
Proof. Let 7 € T and by Ito’s formula on |Y;|?:

—

A / 1B+ / ) / () 2pa(du)ds + [, — (Mo

= 7,2 12 / Vo (5, Yo Zontbs) — ['(s,Y!, Z0,0))ds — 2 / V. Z.dw,

—2/ Y.—dM, — /TM/ Y- + 0u(u)? —!27\2>%(du,ds).

From the monotonicity assumption on the generator and Young’s inequality, we have:

o~

N 1 /7 - 1 /7 - _
Tl b5 [ 1ZPds+ 5 [ [ 10 Putduds + (32}, ~ [
TNt TAt JU

i
< Y, |2+ (4K? +1)/

TNt

_2/ V. ddl, - /m/ Ve + Du(w)? = Vo ) 7(du, ds). (13)

With 7 = T and Gronwall’s lemma, we have for any ¢ € [0, T

Vibds+ [ (fs YLz 0P =2 [ Vo Zaw,
TNt

T
E|n|2s0E(|£|2+ | iRz ;>|2ds>.
0

Then using (13) with t = 0 and 7 = T and the previous inequality we obtain

T R T . _ N T
E(/O Zpas+ [ ] |¢s<u>|2u<du>ds+[M]T)sCE<|s|2+ | iz ;>|2ds).

Finally take the conditional expectation w.r.t. F; in (13), the supremum over ¢t € [0,T]
on both sides and applying Doob’s inequality to the supremum of the (Fra, ¢ € [0,T])
martingale on the right-hand side, we have:

T
B ( sup W) < (18 + [ 1 ¥ 20 0t)Pas )
t€[0,7) 0
This completes the proof. O
Let us modify a little the growth assumption (H2):
(H2) For every (t,y) € [0,T) x R, [ £(t,,0,0)] < |(£,0,0,0)] + #(|y]) where 0 : R, — R,

is a deterministic continuous increasing function.

12



Now we can prove the following result.

Proposition 1 Under assumptions (H1)-(H2’)-(H3) and (Hj), there ervists a unique L?-
solution (Y, Z,v, M) for the BSDE (2).

Proof. The proof follows closely the arguments in [20] and [29] (see also 6] or [40] for the
Lipschitz case). Therefore we only sketch it.

e Step 1: we assume that f is Lipschitz with w.r.t. y: there exists a constant K’ such
that for all (¢,y,y', 1)

|f(t’y, Zﬂ/)) - f(t,y',z,i/))| < K/|y - yl| (14)

Moreover & and f(t,0,0,0) satisfy the condition (12).

Under these assumptions, for (U, V, ¢, N) in £2(0,T), we define the following processes
(Y, Z,4, M) as follows:

[5+/ J(5.Us, Vi, 6,)ds| F

} / F(5,Uss Vi 60)ds

./T"t:| — YO

t t
]-}} -Yy = / ZsdWy +/ Ys(u)m(du, ds) + My
0 0

and the local martingale

T
E [54‘/0 f(s,Us, Vs, ds)ds

can be decomposed in three parts (see Lemma 1):

T
E [54‘/0 f(s,Us, Vs, ds)ds

where Z € Lloc(W) a.s., 1 € Gioe(m) and M € Myye. From the conditions imposed
on f and &, it is straightforward to prove that (Y, Z,v, M) € £2(0,T). Moreover
(Y, Z,1p, M) is the unique solution of the BSDE

Y, = §+/fsUS,V;,qﬁs)ds—/t ZodW, — //1/1 F(du, ds) — /tTdMs.

Therefore we may define the mapping Z : £2(0,T) — £2(0,7) by putting

E((U7 V7 ¢7N)) = (Y7 ZJ/%M)-

By standard arguments (see e.g. the proof of Theorem 55.1 in [29]) we can prove that
E is contractive on the Banach space (£2(0,T), |.||5) where

T
(Y, Z,, M)||g = E{ sup eﬁtw%/ EVARE
0<t<T

0
T /0 "o /u o) ()t + [ /0 | eﬁthtL} 7

with suitable constant > 0. Consequently, = has a fixed point (Y, Z,v¢, M) €
£%(0,T). Therefore, (Y, Z,v, M) is the unique solution of the BSDE (2).

13



e Step 2: We now show how to dispense with the assumptions (14) and (12). The main
result is the following.

Lemma 6 Under assumptions (Hex) and (H{), given (V,¢) € H2(0,T) x L2(0,T)
there exists a unique process (Y, Z,2p, M) in £2(0,T) such that

Yt:fs+/tTf<s7Ys,m,¢s>ds—/tTstWs—/f“(uﬁ(dmds)—/tTdMs. (15)

The process f(s,y, Vs, ¢s) will be denoted by f(s,y).

First we keep the boundness condition (12) and we construct of smooth approximations
(fn, n € N) of f (see proof of Proposition 2.4 in [30]). For any n, f, is smooth and
monotone in y, and thus locally Lipschitz in y. We cannot directly apply the Step 1
since f, is not necessarily globally Lipschitz. But we just add a truncation function
gp in fp:
fap(ty) = fn(tap(v),  ap(y) = py/(lyl V p).

From the first step there exists a solution (Y™ Z™P )"™P M™P) to BSDE (15) with
generator f,,. Moreover from Lemma 4, the sequence Y™P is bounded since as-
sumption (12) holds and the upper bound on Y™P does not depend on p. Thus
for p large enough, Y™P does not depend on p, and is denoted Y™ with the same
on (Z™P pmP M™P) = (Z™ ™ M™). Now the sequence f, satisfies the assump-
tions of the lemmas 2 and 3 with constant independent of n. Thus the sequence

(Ym um, Z™ 4™, M™) is bounded:

E /T YnZ n|2 n|2 n 2 n
suple | | Y7+ UL+ 12817 + u!%(ﬂ)\ p(du) | ds +[M"|p| <C

neN

where Uj* = f,(t,Y}"). Therefore there exists a subsequence which converges weakly
to (Y,U, Z,4, M). We still denote by (Y™, U™, Z" 1™, M™) this subsequence. The
Brownian martingale | T Z"dW; converges weakly in L*(Q x [0,T7]) to [ T Z,aw, (see
[30]). The same trick can be applied on the Poisson martingale [ ’ J V2 (w)w (du, ds)
and the orthogonal martingale M™. Finally we identify U; and f(¢,Y;) in the same
way as in [30].

Finally we remove the condition (12) by a truncation procedure. Once again we obtain
a sequence (Y™, Z™ 1™ M™) which converges in £2(0,T) to the solution (Y, Z, 1, M)
using Lemma 5 (see also proof of Proposition 2).

e Step 3: Using the previous lemma, then we have a mapping = : £2(0,T) — £2(0,T)
which to (U,V,¢,N) € £2(0,T) associates the solution (Y, Z,¢, M) € £2(0,T) of
BSDE (15), and once again it is a contractive mapping with the norm |.||s with
suitable § (same computations as in the proof of Theorem 2.2 in [31]). Hence it has
a fixed point (Y, Z, ¢, M), solution of the BSDE (2).

Now we are able to give the main result of this part.

14



Theorem 1 Under assumptions (Hex) and (H4), there exists a unique L?-solution (Y, Z,), M)
for the BSDE (2).

Proof. In Proposition 1 the condition (H2) was replaced by (H2’). To obtain the above
result we follow the arguments of the proof of Theorem 4.2 in [5] where f is approximated
by a sequence of functions f, satisfying (H2’) (and the other conditions). Indeed we first
assume that & and f(¢,0,0,0) are bounded. We can construct two sequences f, and h,
satisfying (Hex) as in [5]. To be more precise, let

e 0, be a smooth function such that 0 < 0, <1, 0,(y) = 1if |[y| <r and 0,(y) =0 as
soon as |y| > r+1;

e pr(t) = SupPjy|<r |f(t,y,0,0) — f(£,0,0,0)];

e for each n € N* ¢, (2) = zn/(|z| V n).

Then
fn(t’y, Zﬂ/)) = [f(t’y,Qn(Z)’Qn(w)) - f(t’oa 0’0)] m + f(t’ 0,0, 0),
hn(t7y7 Z7¢) - Hr(y) [f(t,y, Qn(z)7Qn(¢)) - f(t707 070)] m + f(tv 0707 0)'

Note that we also truncate the part on ¢ in f,, and h,, truncates f, for |y| > r + 1.

For fixed r and n, h,, satisfies the conditions of Proposition 1. Hence there exists a
unique solution (Y™, Z", 4", M™) in £2(0,T) with generator h, and from Lemma 4, Y"
satisfies the inequality ||Y"||co < 7. Lemma 2 shows that

T T
B[ 1zepas+ [ [ oruods « bl ) < (16)
0 0 Ju
Therefore if we have chosen r large enough, (Y™, Z™ 4™, M™) is solution of the BSDE (2)
with generator f, satisfying (Hex). By Ito’s formula on U = Y™+ —y" V = znti — zn,
gb — wn—l—i _ ¢n’ N = Mn+i — M™:
4Kt 2, 1 4 4K?s 2 1T 4K?s 2 4 4K?s
e |U| —i——/ e |Vl ds+—/ /e |ps(u)] ,u(du)ds—l—/ e d[N]s
2 )i 2J)e Ju t
T 2 T 2
<2 [ MU (s YL 20 — Fuls VI 22N —2 [ R v,
t t
T 2 T 2
—2/ MU _dN, —/ e / (|Us- + ¢s(w)|* = |Uy-|?) 7 (du, ds)
t t u
T 2 T 2
< [ (YL 200 — (YL 280 =2 [ T,
t t

T T
—2/ 64K23U5st—/ 64K28/M(|U8 + 65 (u)? — Uy~ ?) 7 (du, ds)
t t

15



since ||U||ooc < 2r. Using the Burkholder-Davis-Gundy (BDG) inequality we get for some
constant depending on K and 7"

T T
E<sup o+ [ wpas+ [ ] |¢s<u>|2u<du>ds+[N]T>

t€[0,T]
T
< CrE [ |funis, Y Z20) = Fuls Y2 22,02 s,
0
Since ||Y"||oo < 7, from the definition of f,, we have

|fn+i(5,yt9n’ Z?”A?) - fn(S,Ytsn’ Zga¢?)|
< 2K|Z{ |1 zp)5n + 2K (|95 | L2L)jyn ) >0 + 2K[Z1
+2KH¢?HL2 1p7‘+1(5)>n + 2pv"—i-l(3)1pr+1(s)>n-

pre1(s)>n

Since py11 € LY(Q x [0,7],P @ m) (Assumption (H2)), and (Z", ") € H(0,T) x Lﬁ uni-
formly w.r.t. n (Inequality (16)), this implies that (Y™, Z™ ™ M™) is a Cauchy sequence
in £2(0,7).

The general case will be obtained by a truncation procedure on ¢ and f(¢,0,0,0) and
the inequality of Lemma 5. U

3 Existence in [P

The following proposition was proved in the Lipschitz case without jumps in [13], Section
5, or in [5] for the Brownian filtration, for any p > 1.

Proposition 2 (LP-estimates, p > 2) We assume that f satisfies (Hex). For p > 2, if
we have

T
E <|£|p +/0 |f(t,0,0,0)|pdt> < +o0, (H5)

then the solution (Y, Z 1, M) belongs to EP(0,T). Moreover there exists a constant C' de-
pending only on K2, p and T such that

T p/2 T p/2
p 2 2 p/2
E[t%mr +(/0 Z| ds) +(/0 /u s ()| u(du)d8> +[M]T]

<CE <]§\p + /T ]f(s,0,0,0)]pds> : (17)
0

Proof. Under this condition (H5) on & and f(¢,0,0,0), we know that there exists a
unique solution (Y, Z,v, M) which belongs to £2(0,T). We want to show that (Y, Z,, M)
in fact belongs to EP(0,T).

From the proof of Theorem 1 (or Proposition 1), the solution (Y, Z,v, M) is obtained as
the limit of a sequence (Y™, Z™, 4™, M™), solution of BSDE (2) but with bounded coefficients
¢" and f™(¢,0,0,0). We prove that convergence also holds in EP(0,7") by proving the
counterpart of Lemma 5 in EP. For any (m,n) € N? we denote

~

(?72712}\7]/\4\7%\7]0) = (Ym_Yn7Zm_Zn7wm_¢n7Mm_Mn7§m_§n7fm_fn)
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Step 1: we prove that the sequence Y™ converges in DP(0,7") to Y. Since p > 2 we can
apply Ito formula with the C?-function 6(y) = |y[P to the process Y. Note that

020

a6
— may. |0 P2 _ p=25. . — N lyP2
(y) = pysly|P~=, .0y, (y) = plylP~=6;; + p(p — 2)yiy;ly|

yi

where ¢; ; is the Kronecker delta. Therefore for every 0 < ¢ < T we have:

T

VP = € + pi\mp—2<fm<s,1@m,zgn,w;”>—f"(s,n",zs,w;‘»ds

T~

~

T
/ Y- |Y,- |P2dM, — / Y, |Y,- P2 ZdW,
t

/ / o [V [P0 (u )) %(du,ds)—% /t " Trace (D29<2>2f:) ds

T o~
] (¥l = ¥ = e [T 20 00) (.
T

020~ o~ .
5[ X o (Tadir i
to1<ij<d Oyi0y;
= 3 (W + AMP = |V P = p¥ |V, P2ADL) (18)
t<s<T

The notation [M]¢ denotes the continuous part of the bracket process [M]. First remark

that for a non negative symmetric matrix I' € R4*¢

Y D*0(y)i Ty = plylP*Trace(T') + p(p — 2)[y~*(y*)Ty > ply[**Trace(I),
1<i,5<d

and thus
Trace(D2(y)22") > plyl* 22

Moreover using Taylor formula (and Lemma A .4 in [41] for the last inequality) we have
1
0z +y) - 0(z) — VO(z)y = / yD*0(x + ry)y(1 — r)dr
0
1 1
= plyl” / (1 =)z +ry["=2dr +p(p - 2) / (y(@ + 1)) + ryP (1 = r)dr
0 0

1
> plyl? / (1= )+ rylP~2dr > p(p — 1)3"P|y Pl
0

Therefore we deduce that

e 0% o~ — _ L S
S T 5 ([ 4 ATLP - [ P Te P 2ATE)
toadigea WY o

T T
p o~ _ — _ o~ _ — o~ _ —
> b [P - 03 S B ARLE 2w [ TP 2,
t t<s<T t
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where x, = min(p/2,p(p — 1)3'7P) > 0. Now the Poisson part in (18) can be written as
follows:

T
o [ ] (T B P20 R s
t U
T N R N N . o~
[ ] (¥ Bl = ¥ = o B 20 00) (s
t
T . N R N N o~
—— [ [ (B + @l = [P = T T 7720 0)) (s
t u
T o~ —~ o~
[ ] (W dutal? = ¥ ) )
t
T . R T . N .
<—plp =03 [Ty [ [ (T + D - T p) Fduas).
t t
Then (18) becomes
N T N N T N P T N R
Ty [ TP AL sty [T POy [T ds
t t t
T
SIEP -+ [ TR Y 2 ) Y 20 s
T . T N
[T —p [V T2,
t t
T —~ o~ —~
[ [ (1% + B =17, ) Fduas).
t u
From the assumptions on f™, we still have (5) and we choose ¢ = %”. We obtain
N o (T N o (T e o (T N
e A e A A AT R A A T
= p? 2 TS K TS 21 7 2
<P+ g 1) [ (Trds+ 2 [T s v 20 0 s
P t t
TA . P T/\ N .
b [ VTR p [V (VP 2w,
t t
T —~ —~ —~
[ ] (Wt = 9o ) 7 ),
t
Using Young’s inequality, we finally have
v fp [T 27 2 I R o [T15 2y 2
R A T () N 3 B X A
t t t
N 2 _9 T T
<@+ | Zent sy + 20D [ mpas 2 [z eias

t P Jt

-/ : [ (¥ + (= ¥ ) 7 ). (19)



Note that the three local martingales in the previous inequality are true martingales. Indeed
since Y™ and Y™ are in D°°(0,T') and M™ and M™ are in M?(0,T), the local martingale

[ T2,
0

is a true martingale and we can apply the Burkholder-Davis-Gundy inequality to obtain

t . T _ o\ 1/2
B sup | [ 9,7, P2l < o < / rYs-Pp—Qd[M]s)
tefo,7] 1o 0
1 - T —
< B | sup [T ) +pE [ (7,2, (20)
4p  \sejo,1] 0

By the same arguments we have

t R T _ N 1/2
B sup | [T 5, 2w <on ([ 5, iz
tefo,1]1J0 0
1 > I
< —E| sup VP | +pc,E | [Ys[P™7|Zs| ds. (21)
4p - \tefo,1] 0

Finally the same result holds for the martingale

/0. /u (Ver [¥e 17200 (w) ) F(du, ds),

with
t A R T _ R 1/2
B swp | [ [ (T e p20uw) fduds)| < i ([ 52 [ 0.wPr(auas)
tefo,7] 1Jo Ju 0 u
1 % 2 s =217 112
< B s [T ) +p3E [ ViR s (22
4p  \ tefo,1] 0 g

Now we come to the conclusion. Using (19) we can take expectations and obtain for
every 0 <t <T:

> 2 [ e i@ =2 [T 19 o 117
E|T;P < EIEP + [—<2K 4 —} B[ Tlrds+ 228 [ 1 vz unps
2“}) 2p t p t

hence by Gronwall’s lemma
o~ —~ T ~
BT < CE (I + 8 [ 17222 0pds)
0

for some constant C' depending on K, p and 7. From this and (19) again we also deduce
that

T T T T
B[ Wpds+B [ [DPZLds+E [T, B [ 8P ds
0 0 0 0
o~ T/\
<ce (P +2 [ Iz onpds).
0
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Let us come back to (18) and use the convexity of the function 6 and Estimate (5) with
€ = Kp/p, to deduce that:

~ ~ 2 Kp(p — 2 T K T .

v <@ | 2er e+ D) [ igpas s [\ v 2z eppas
2/€p 2p t P Ji

L

T 217 |2 k[T o 2017112
2 [ ITpzLas 2 [T PR s
t

T T
) / V|V, P2d3, — p / (P 22w,
t

b [ [ (FrlTeep200) ),

Now using estimates (20), (21) and (22), we get:

te[0,7)

T
E( sup rw) < CE (rs\ma / rf<s,1fs",zs,w’;>\pds>-
0

Therefore the limit process Y belongs to DP(0, 7).
Step 2: We adopt the arguments of the proof of Lemma 2 (see also Lemma 3.1 in [5]) to

E [(/OT|25|2ds>p/2+ (/OTL|$S(u)|2u(du)ds>p/2+ []\7]1;/2]

T
sup [T + / If(s,Y;",Z?,¢?)Ipds] . (23)
0

te[0,7)

prove that:

< CE

This estimate gives the convergence of (Z™,4™, M™) in the desired integrability space. In-
deed let 73, € Tr defined by:

Tk—lnf{te OT/|Z|dr+//|¢s )27 (du, ds) + [M]; > k}

By Ito’s formula on |Y;|2:

- Tk Tk ~ o~
Vol? + /0 2, 2ds + /0 /M () P (s, ds) + [V,

~ Tk _
— PPt 2 /0 T, (7 (s, YO, 2 ) — (s, Y 20 ) d

’Tk/\ e ’Tk/\ o
—2/ YS_ZSdWS—Q/ Ys_dMS—Q/ /Y s (w7 (du, ds).

Once again with a straightforward modification of estimate (5)

3|12 [T ] e, ds) + (1),

1+1/e)K%+1 1 [T
R / s+ 5 [ 17 vz 0P
0

5 [ [ 1oPutns

Tk ~ ~ Tk ~ o
—2 Y;_stWs—2/ Y;_dMS—Q/ /Y Uy (w)7 (du, ds)
0 0

< |Vi? +
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where Y, = SUPyeo,7] |Y;|. Tt follows that

Tk p/2
52 A71p/2
(/0 \Z,| ds> +</ /\ws (du ds)> + M
/2 p/2
<1 + ((1 + 1/6)2K2 + 1)T>p ’}/}*’p + </OT ’f(s’}/;mZg’w?)’st) ]
/2 ™o
L ( / / 1B ()2 du)d ) e /0 /u ¥,y (u)(du, ds)

p/2 Tk __ - p/2
/ Y. Z,dw, / Y. M, |. (24)
0 0

Since p/2 > 1, we can apply the Burkholder-Davis-Gundy inequality to obtain
Tk o p/4 d2 ~ 1 —
< 12 < P P ZIAP/2
: _dpE[</O 7, P, ]_ 2 (17.p) + 01202
Tk . p/4
< am| ([ Fpizp)
0
Tk p/2
( [ izeas) .
0
Tk R p/4
<a |([192 [ B.00Pnuas)
0 u

|2
e . p/2
(/0 15213 e ) ]

Hence coming back to (24) and taking the expectation

1 Y1z o E TS
SE (/0 ’Zs’2d8> + E </ / |05 (u) 27 (du ds)> + §E[M]%2
p/2
(/0 ’f(373§n72?,¢?)\2ds>
/2 Tk -~ ) p/2
P
+CpeE </0 /Z/{W}s(u)\ M(du)ds) )

Finally we use that for some constant e, > 0

E( [ [ 10uw)Pu(duds p/QSGpE ) Pr(du, ds) p/27 (25)
0 u 0 u

(see [23, 10]) and thus we can choose € sufficiently small and depending only on p such that:

E(/j\i\%) +E</ /\ws )2 u(du)d > 2+EU\7]’$,{2
(/0 s, Y7 2000 ds>p/2]_ 26)

21

<Cy

p/2

+C, +

CE’E (|Y |P) +1iE

/Y D ()7 (du, ds)

< CZ’E (17:1) + 3 g

< Cp,K7T78 E‘?*’ + CpE

< Cpire BV + GE




We can let k£ go to +o0 in order to have estimate (23).

Step 3: The inequality (17) can be deduced from the previous steps: we just replace

(Ym zm om M™ f™) by (Y, Z,, M, f) and (Y™, Z" "™, M", f) by (0,0,0,0,0). O
Now we consider the case where p € [1,2). The main difference is that we cannot

directly apply the Itd formula to 6(y) = |y|P. The next result is an extension of the Meyer-

It6 formula and as mentioned in [5], it is likely that this result already appeared somewhere.

A version of this result is given in Lemma 2.2 in [5] without jumps or in Proposition 2.1 in

[18] in dimension one. We denote by & = |z| 121, .

Lemma 7 We consider the R*-valued semimartingale (Xt)te[o,T] defined by

¢ ¢ ¢
X: = Xo —i—/ Kyds + / ZsdWs + / / Vs (u)T(du, ds) + My,
0 0 0 Ju

such that t — Ky belongs to L}, (0,+00) a.s., Z € L} (W), ¢ € Gioe(m) and M € Mq.

loc

Then for any p > 1, we have
1 t § t 3§
Xl = X0l + SL L+ p [ XX Kods +p [ XX 2,
0 0
t t
+p / | X P X —dM, +p / | X,|P X, / Vs (u)7(du, ds)
0 0 u

t ~
+ / / X, + Ga ()P — | Xy P — p| Xy [P~ Ko sy (w)] (du, ds)
0o Ju

+ ) [1Xe + AMP — [ X [P = pl X [P X - AM]
0<s<t

t
P - e e
B [0 (@) (122 - (%) 225X + (0= DIZ P ds

5 /0 | X7 1x, 20 { (2 = p) [A[M]S = (X)"d[M, MISX] + (p — 1)d[M]} .(27)

The process (L(t), t € [0;T]) is continuous, nondecreasing with Lo = 0 and increases only
on the boundary of the random set {t € [0;T]; X,- = X; = 0}.

Proof. Since in the case p € [1,2) the function 6 is not smooth enough to apply Itd’s formula
we use an approximation. Let ¢ > 0 and let us consider the function u.(y) = (|y|> + €2)'/2.
It is a smooth function and we have

2. D
o O%ug 4

ou? _ _
=(y) = pyiuc ()P 2, 2—=—(y) = puc(y)P 26;; + p(p — 2yiyjuc(y)’ .
8%8%

yi
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We apply It6’s formula to X:

t t
ue (X p:ua(XO)p—i—/ puE(XS)p_QXSKSds—i—p/ U (X )P 2 X ZodW,
0

t)

—i—p/tue(Xs P 2X —dM, —{—p/t X)X, - /1/15 7 (du, ds)
1 r

+5 /Trace (Dz(up)(X )ZsZ7) ds

// e (X + 0y ()P — e (X, )P = pX e (X, )P~ 2 () m(du, ds)

2 . .
0 1< ]<d y,@yj
+ Z Ue Xs— + AMS)p - uE(Xs_ )p _st—ue(Xs— )p_zAMS) . (28)
0<s<t

Now we have to pass to the limit when ¢ goes to 0. As in [5] for the terms involving the
first derivatives of u. we have

t t
/ U (X )P 2 X Kyds — / | X, [P X K ds
0 0

t t
/ U (X )P 2 X ZodW, — / | X [P X ZydW,

/t PQX/sz 7(du,ds) — /]X\p 1X/¢8 7(du, ds)

/ (X, 2K, dM, / X, [P X, dM,.
0 0

Moreover by the same arguments (convexity of u. and Fatou’s lemma) the two following
terms

/ / Ue(X e+ Uy — e (X )P = X yt1a (X )~ 204(w)] (dus, ds)

> ue(Xo= + AML)P — ue (X, )P — pXy-ue (X, )P >AM,]
0<s<t
converge, at least in probability, to

/0 /u [1Xom + u)l? — |X oo [P — pl Xy P X tpu(w)] (s, ds)

> X + AMP — | Xo-|P — p| X, P X - AM,] .
0<s<t

Now for a non negative symmetric matrix I' € R4*?

> D*0(y)i Tij = puc(y)’ *Trace(T") + p(p — 2)uc ()"~ *(y")Ty

1<i,j<d
4-—p
=z p) () 2 racel®) = ()T 1y
4—p
+p(p—1) (Jj;) ly|P~*Trace(T') 1,40 + peu-(y)P *Trace(T").  (29)

23



We have the following properties:
e Trace(T') > (9)*I'y,
° #(:L)/lly;éo as € \ 0.

For I's = Z;Z7, by monotone convergence we obtain that

t |Xs| o p— >\ * * v
/0 (Us(Xs)> | Xs] ? {(2 -p) [|Zs|2 — (Xy) ZSZSXS] +(p— 1)|Zs|2} 1x, z0ds

converges P-a.s. for all 0 <t < T to
t
/ 1 XsP2 {2 = p) [|1 2P = (X6)* Z: 23 Xs] + (p — 1)1 Zs*} 1x 0ds.
0

And for the integral w.r.t. the matrix [M, M]¢ = ([M? M7])§, 1 < 4,7 < d) we have the
same result and the convergence to

t
R0 {2 = ) [d[M)g — (X.)dIM. MIER.] + (0 = DM},
0
where [M]¢ = Z?Zl[Mi, M?]¢. There is one remaining term in (28):
t
CP(t) :p52/ ue (X )P~ | Zs?ds + d[M]<] .
0

It follows from (28) and the considerations above that this term converges to a process
LP(t). By the same arguments as in [5|, we can prove that LP(t) = 0 if p > 1. Indeed if
p >4, us(Xs)P~* converges in L1(Q x (0,7)) and if 1 < p < 4, using Hélder inequality with
0=(4-p)/3€(0,1):

cr <o | uu(X,)79 (|24 + d[M];J)G (/ 2|z Pds + d[M]§]>1€.

Since the first term in the right-hand side converges to L'(t), CE(t) tends to zero.

Let us denote by L(t) the process L!(t) and we proceed almost as in Chapter IV.7 (see
Theorem 69) in [34]. By letting e tend to zero in (28) we obtain that L satisfies (27).
By identifying the jumps on both sides of the equation it follows that L is continuous.
Moreover, L is non decreasing in time. Now let us set A = {t € [0;T]; X;- = X; = 0}. If
t is in the interior of A, then there exists § > 0 such that X = 0 whenever |t — s| < ¢ and
the quadratic variation of X is constant on the interval [t — d;¢ + 0] and then Z; = 0 and
[M]s = 0 almost everywhere on this interval. Hence L does not increase in the interior of
A. Now assume that ¢ is in the interior of the complement of A. Since L is continuous, the
associated measure dL is diffusive and does not charge any countable set. In particular, as
X is cadlag , dL does not charge the points where X jumps. Hence, we can assume that
Xt = X¢—. Then there exists some § > 0 such that Xs # 0 for |t — s| < §. Consequently,
L(s) = L(t) for |t — s| < J, which completes the proof. O

As a byproduct to the proof we obtain the following lemma.
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Lemma 8 Forp € (1,2), for anyt >0
t
/ ]-XSZO UZS\st + d[M]g] = 0.
0
Proof. Indeed C? can be written as follows:
t
cr(e) = pe [ w12, Pds + d(M]
0
t
_ e / (X2 + €27 2 1 o [|Z6[2ds + dIM)']
0
t
—|—pep2/ 1x,—0 [|Zs]?ds + d[M]] .
0

Hence C? can converge to zero if and only if the last term is zero. O

Corollary 1 If (Y, Z,v, M) is a solution of BSDE (2), p € [1,2), c¢(p) = p(p2—1) and
0<t<r<T, then:

™ ™
VP < VP 4 p / YalP~ 1Y, (5, Yo, Zo, ths)ds — p / YLP1Y, Z,dw,
t t
' '
—p / Y- [P7Y-dM, —p / Y [P~1Y, / Vs (u) 7 (du, ds)
t t U

- / /M (¥ + (@)l — Yo P = plYie [P~V oo (w)] (s, ds)

= > Y- + AMLP = [Yy- P = p| V- [PV~ AM]
0<t<r

r T
) [ APy, s = clo) [ VP pod M
t t

Moreover if p € (1,2), then fot ly,—o [|Zs|*ds + d[M]5] = 0.
Proof. A direct consequence of Lemmas 7 and 8. O

Lemma 9 For p € [1,2), the non-decreasing process involving the jumps of Y controls the
quadratic variation as follows:

> ([Yem + AMP — Yo |P — p|Y,- [PV~ AM,]

0<s<t

2—1
>e(p) Y IAMP (1Y, PV IYe + AMD 1y v a0
0<s<t

The same holds for the jumps due to the Poisson random measure.
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Proof. We proceed as in the proof of Proposition 2 and we use the approximation of Lemma
7. Using Taylor expansion we obtain

D [ue(Yor + AM)P = ue(Ye )P = pYeue (Yo )P 2 AM]
0<s<t

Z/ (1 — @) AM,D*(u (Y +aAM,)P)AM,da

0<s<t

—pZ/ (1 — a)|AM,|Pu.(Y,- 4+ aAM,)P"%da
0<s<t

+p(p —2) Z/ (1 —a)(AM,,Y,- + aAM,)*u. (Y, + aAM,)P"*da

0<s<t

p—1) > |AM, \2/ (1 — a)ue (Ys- 4+ aAM,)P~2da.

0<s<t
Since Y- + aAM| = |(1 — a)Y,- + a(Yy- + AM;)| < |Y,-| V |Y,- + AM;|, we obtain:

Z [us(}/;—+AMs)p_u€(Y ) —pY uz—:( )p QAM]
0<s<t
> P02 S AR (V- PV Y+ AM P 2)

a 0<s<t
Passing to the limit as € goes to zero, we obtain:
D [Wem + AMP — Ve [P = plY- [PV, AM,]
0<s<t

p(p—1) 2-1
> B S IAMLR (1Yo PV [¥er + AMP) T Ly iy, an, o

0<s<t

This achieves the proof ot the lemma. O

Remark 1 Ifp > 2, then the conclusions of Corollary 1 and of Lemma 9 hold with c¢(p) =
p/2.

From now on, we assume that p € (1,2). The proof of the existence of a unique solution
of BSDE (2) in the space EP(0,T") is based on the following technical result. This estimates
are also proved in [19], Proposition 5.3, but in dimension 1. Moreover this estimate looks
very similar to Inequality (17). The main difference is that for p < 2, or p/2 < 1, the
compensator of a martingale does not control the predictable projection (see [23] and the
counterexample therein). We say that the condition (C) holds if P-a.s.

(@, f(t,y, 2,9)) < fo+alyl + Klz[ + K[yl z,

with K > 0 and f; is a non-negative progressively measurable process. Let us denote

F= [l far.
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Proposition 3 Let the assumption (C) hold and let be (Y, Z, 1, M) be a solution of BSDE
(2) and assume moreover that FP is integrable and Y € DP(0,T). Then (Z,4, M) belongs
to HP(0,T) x LE(0,T) x MP(0,T) and there exists a constant C depending on p, K and T

such that
T p/2 p/2
sup \th’+</ \Zt]2dt> + ([M]7)?? + (/ /\zps 7(du ds)>
t€[0,7] 0

+ : |5 () * p(du)ds " €[P + frdr ’ .
0 u 0

Once again let us emphasize that the dependence of f w.r.t. ¥ implies that we have to control

E

<CE

the two expectations containing the term . A crucial point in the proof of Proposition
2 was Inequality (25). Now in the case p < 2 we can not control (see [23], Section 4) the
expectation of the predictable projection:

o([[ foopmanas)”

with the expectation of the quadratic variation:

B( [ ) | stwPatan ds>)p/

Proof. For some a € R, let us define }7} = ey, Zg = e, Q,Zt = ey and d]\/Zt =
edMy. (Y,Z,1p, M) satisfies an analogous BSDE with terminal condition ¢ = e*T¢ and

generator

2

f(t7 y? z? w) = ea/tf(t7 e_aty7 e_atz7 e_a/t,l/}) - ay'

f satisfies assumptions (Hex) and (C) with K = K and @ = a — a. We choose a large
enough such that
a+2K%/(p—1) <0,

Since we are working on a compact time interval, the integrability conditions are equivalent
with or without the superscript ~. We omit the superscript ~ for notational convenience.
Step 1: We prove first that if o + 2K2/(p — 1) < 0, there exists a constant &, such that

E(YF) < wpE (X)),
where

T
Y.= sup [¥il, and X =& +p / YaP fds.
t€[0,7] 0
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We apply Corollary 1 for 7 € Tp:

Yinel? + () / Vo721 2, PLy, sods + c(p) / Yy P21y, 2od M
tAT

tAT

A / Yol Yol (s, Yo, Zoythy)ds — p / YL YLZad W,
tAT

tAT
o [ W YedM = [ [ R ds)
AT tAT
/ [ e 00 = Ve P = pIY, Yo 0)] (s )
t/\T

([Ys- + AM,P — Yo [P = p|Ve- P7HY- AM,]

t/\7'<s<7'

With the assumption on f this becomes

Yinel? + () / Vo721 2, PLy, 2ods + c(p) / VP21, 2od M
tAT

tAT

<YL+ / (VP fo+ alValP) ds+ pK [ |VaP)|Zlds
tAT tAT

oK [ VP lads — p / YL [P-1Y, Z,dW,

tAT tAT
]
—p/ |V, [P~Y,—dM, —p / [V, |P~ 1Y/¢8 7(du, ds)
tAT tAT
[T el = o = Y Yo )] e d)
tAT
— > Ve +AMP — |V P = p|Y,- PV, AM]
IANT<s<T

Moreover
_ pK2 c(p _
K|V 2,| < p—rmuﬁw 22,1y, 40

PRIVl < 21l + S 2l 1,

and from the previous lemma
[ [ 10+ il = 1Yo = plYs P ] w(a ds)
tAT JU
4 2-1
2 olp) /m /MW’S(“)‘Z (Ve 2V [Yem +2s@)P)" 7 Uy gy, uuyiom(du, ds).

and

> Ve + AMP — Y- [P — p|Y,- [PV, AM,]

IANT<s<T

2—1
>ep) S JAME (Y- V Ve + AMSAP T Ly v vanizo

IANT<s<T
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Therefore we deduce the following inequality:

c T _ i -
Yinel+ S8 [ W12, Py ods +eo) [ VP21 podIM
tAT

tAT

2—1
+c(p) Z (\YS—IQV\YS—JrAMSIQ)p/ Ly, iy, +an| 20l AM|?
tAT<s<T

2—1
re@) [ WP (¥ PV Y+ 0 @P) Uy, opon(d, ds)

C
) / Yo7 s 35 1y, pods
tAT

2
< |Y7|p+p/ (Y71 fs 4+ alYa ) ds + p
AT AT
—p/ Y, [P~1Y, (Z dWy + dM; +/ Vs(u (du,ds)). (30)
tAT

At the very beginning of this proof we suppose that « + % < 0. Thus the term (a +

2K 2 ft Ar |Ys|Pds disappears. Let us define 7 as a fundamental sequence of stopping times

for the local martingale
/O' Y, [P~1Y, <stWs + dM, + /ui,l)s(u)%(du,ds)> .
Let
I {t “o. /Ot /u s () ([Ye PV ‘}/—8’2)1)/2—1 Ly _v|y.jom(du, ds) > k} AT
We take 7 = 7, A 7. Now we have:
B[] (Ve P Yo R) ™ iy, o d)
=B [ ] W (Ve P YR (i)
=B [ [ W) Py (s (31)

the last equality coming from the localization due to 74 and since the set {s > 0, Y # Y-}

is countable. Taking the expectation in (30), we get

c T _ T _
B(Yin, ) + S22 [ VP22 Py pods + B [ IVIP Ly sad 0

2—1
+e@E S (Ve P VIYer + AMA” 1y oy an ol AM 2

0<s<T

2—1
+4Pg [ s (e Py e @) 1y, ds)

gE(|YT|p+p / IYslplfsd8>- (32)
0
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We also obtain:

C T B T B
W [ [ WP 2 santads <& (1vp +p [ 100 s).
0 0
Recall that X is the quantity
T
X= P+ [V fads,
0

Then we can pass to the limit on & in (32), and we obtain the same estimate for 7 = 7" and
E(X) on the right-hand side. Let us split the local martingale of (30) into three terms:

t
o= [ WPz,
0
t . t .
0, = /ymp—lydes, Et:/ ]Y;]p_lY;/z/Js(u)%(du,ds).
0 0 u
Then using (30) and BDG inequality
1/2 1/2 —11/2
E(Y?) < E(X)+kE ([T + [0 + =)

The bracket [F]lT/ ? can be handled as in [5]:

1 3k2 T B
b () < B0+ 8 ([ W12 Ly g0 )

For the other terms we have

wE (E17?)

IN

T 1/2
kpE (Yf/2 (/ |Ys|p_2|¢)s|21ys¢o77(du,d5)> )
0

1 3/%% T -2 2
~“E(YF)+ —E / Vs [P |s |72 Lyaz0ds |
6 2 0 H

IN

and for [©] since p > 1

r T 1/2
1
kpE <[9]1T/2> < kE </0 (Y- 2V Yy + AM%)” 1YSV|YS+AMS|7£Od[M]s> ]

1/2
kpE ( sup (|Y.$7|2 VY- + AMS|2)p/2>

<
s€[0,7T7
) T 21 1/2
(/0 (Y- 2V Yy + AM?)” 1YSV|YS+AMS;£Od[M]s> ]
1 3k2
S —

T
G202+ 28 ([ dihr:

2—1
+ 3 (1Y PV Y + AMP) 1y v g an ol AMP
0<s<T
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We deduce that there exists a constant depending only on p such that
E(Y?) < wE(X).

Step 2: Let us derive now a priori estimates for the martingale part of the BSDE. We use

Corollary 1:
T p/2 T p/
E (/ \25\2d3> =E (/ 1ys750128]2ds>
0 0

T p/2
=5 ([ 0 el s
0

T p/2
(v 2 ( | oo 1ys¢owzs\2ds) ]
0

2

<E

T p/2
< (B[} {E | 1ys¢o|zs|2ds}

2—p

< = PE((v.y] +LE /Tm)p—?ly#orzsr?ds (33)

2 Jo

where we have used Hélder’s and Young’s inequality with 2%” + £ = 1. With Inequality
(32) we deduce:

T P2y —p D T
B[ 12Pas) < 25EEQ) + BE [ VP 1yl Pl < RBX)
0 0

The same argument can be used to control [M]¢. For the pure-jump part of [M] we have
using the function wu. defined in the proof of Lemma 7:

p/2

E( Y |AM,

0<s<T

p/2

=E| S (ue(lVa |V Ve + AM))? P (uel|Ys- | V [V + AM[)P~2 |AM|?

0<s<T
p/2

<E | (ue(Y)PE P2 ST (ue(|Yee | V [Yem + AM|)P 2 |AM,?
0<s<T

p/2
xSE| S (Yo | VYe + AM)P 2 [AM,P
0<s<T
PEL ST (ue(lVa | VIYe + AM|)P 2 |ADMLJ

0<s<T
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Let € go to zero. We use a convergence result, which is a direct consequence of the proof of

Lemma 9:
p/2
e Y jamp

0<s<T

<2 PRy p) 1 LE Yo | V|Yie + AM,)P21 AM,|?
< (1Y4] )+2 Z (|Ys-| VY- + s|) Y |VIY,_ +AM, |20 AM|

0<s<T
< %E(X).

The same argument shows that

E( /OT / |ws<u>|2w<du,ds>)p/2 < RBE(X).

B ( [ ' / |¢s(U)I2u(dU)d8>p/2

we follow the same scheme with a localization argument and Equality (31) to obtain that

For the estimate of

T T
: P=2 b ()2 1u(dw)ds — _|p=2 u) > (du)ds.
tim [ [ (e )7 s =2 [ [ 1V ol

e—0

Step 3: Now we prove the wanted estimate. Recall that we have found a constant &, such
that

T p/2
E ]Y*]p+< / ngs> + (M
0

([ [ )+ ([ ] ws(u)pw(du,ds))m] < AE(X)

T
X = e +p / YalP fds.
0

where

But Young’s inequality leads to

T T 1 T p
iy [ s < iV [ pds < vy, ([ ras)
0 0 0

Therefore we have proved that for a such that a + (?)% < a, then

T p/2 T p/2
EKsup eaf|n|p>+< [ zas) ([ ] e opaas)
te[0,T] 0 o Ju
T p/2 T p
([ ) e ([ 1)
0 0

where C just depends on p. This gives the desired estimate. O

<CE
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Theorem 2 Under Assumptions (Hex) and (H5), there exists a unique solution (Y, Z, v, M)
in EP(0,T') to the BSDE (2). Moreover for some constant C = Cp,

o S </0T |Zt|2dt>p/2 + (/OT/M ¢s(U)|2w(du,d5)>p/2 n ([M]T)m]

IEP + </OT|f(r,O,0,O)|dr>p] .

Proof. As for Theorem 1, we follow the proof of the second step of Theorem 4.2 in [5]. We
truncate & and f(¢,0,0,0) to obtain &, and f, with ||£,]c < n and |f,(¢,0,0,0)| < n:
é-n = qn(é‘)? fn(t, y? Z? ’llz)) = f(t’ y’ Z’ ¢) - f(t? O’ 0? O) + qn(f(t’ 0? O’ 0))?
with ¢, (z) = zn/(|x|Vn). Thanks to Theorem 1, we have a unique solution (Y™, Z", ™, M™)
in £2, and thus in EP for any p > 1. Now for any m and n:
S (&Y 20 00) = a6V 20, 00) = F(6 Y 20 40") — F(6 Y 27 40r)
_i_f(t’Y;n’Zzn’w;n) - f(t7y;€n7ztn7wz1€n) +f(t7Y;£n7Ztn7wz1€n) - f(tv}/;nazfaw?)

E

<CE

Hence

(thm — Y;fn) m rm o m noon o n
W]'an—ytnimfm(t,y; aZt ,Tzz)t ) - fn(t,y;f ,Zt ,T,Z)t )>

< lgm(f(t,0,0,0)) = gn(f(£,0,0,0))| + K[Z" — Z'| + KI[¢{" — ¢’ [l 2

{

This inequality is Assumption (C) in Proposition 3 with v = 0. This proposition shows
that

T p/2
B | sup - vpe ([ 1zm - zmpas) - by
te[0,7) 0
T p/2 T p/2
#([ [ e - sapsnan) ([0 ] wr - vepa@os) ]
0o Ju o Ju
T P
< CE 16— &7+ [ 1an(70:0.0,0) = (£ 0.0.0))ar ) ] .
Thus (Y™, Z™ ™, M™) is a Cauchy sequence in EP and the conclusion follows. O

4 Comparison Principle

In this section we give some results which are derived from the previous sections. In the
first part we assume that d = 1 and aim at comparing two solutions Y and Y? of the
BSDE (2) with coefficients (¢!, f1) and (€2, f2). As in the papers of Barles et al. [1], Royer
[37], Situ [38] or Quenez & Sulem [35]|, we have to restrict the dependence of f w.r.t. .
Some monotonicity w.r.t. ¥ is necessary. The following set of conditions will be denoted by
(Heomp)- The three conditions (H1) to (H3) hold but assumption (H3) is replaced by:
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(H3") f is Lipschitz continuous w.r.t. z with constant K and for each (y, 2,1, ¢) € R x RF x
(LZ)Q, there exists a predictable process k = k¥ : Q) x [0,7] x U — R such that:

Flty 2,0) = f(ty,2,6) < / () — ¢(u))s?*Y® (u) (du)

u
with P ® m ® p-a.e. for any (y, z,v,v"),

° ’ﬂ?,z,w,qﬁ(u)’ < Y(u) where 9 € Li.

Note that (Heomp) implies (Hex). Indeed if (H3’) is true we also have:

Ftoy,2,0) — f(t.y, 2, 0) > / (W(u) — d(u))sf> Y (u) u(du)

u
by changing the role of ¥ and ¢ in k and thus

|f(tayaza¢) - f(t,y’ 2, ¢)| < ||19HL%L||7:Z) - ngLi

We follow the line of argument of [35]. In particular we consider the Doléans-Dade
exponential local martingale: Let «, [ be predictable processes integrable w.r.t. dt and
dW,, respectively. Let v be a predictable process defined on [0,7] x € x R integrable w.r.t.
7(du,ds). For any 0 <t < s < T let E be the solution of

dELS = Et,s_ |:53de + / ’ys(u)%(du, dS):| s Et,t = 17
u
and let I" be the solution of
drt,s = Ft,s* |:O‘sd5 + 5des + / r)/s(u)%(du’ds)] ) Ft,t =1 (34)
u

Of course I'; s = exp (fts ardr) E; s and

t t

t<r<s
with X = f(f Jyy um(du, ds).

Lemma 10 Assume that the processes || and H7||Li are bounded and that o is bounded
from above. Let (Y, Z,4, M) be the solution of the following linear BSDE:

T
i = &+ /t |:fs +asYs + BsZs + /u’)’s(u)ws(u)u(du)} ds

— /tT/uzps(u)Tr(du,ds) — /tT ZsdWg — /tT dMs. (35)

Then T' is g-integrable for any q > 2, and the solution (Y, Z,4, M) belongs to EP(0,T) if
T
B (I + [ 15pds) < +oc.
0

T
Y, =E |:Ft,T£ + / Ft,sfsds
t

Moreover

7.
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Proof. The integrability of I';  is given in [35], Proposition A.1 and by Doob’s inequality:

E sup [Tys]? < Cq sup E[y |7 < CUE[Tyr|? < 4o0.
selt,T] s€t,T)

We follow the arguments of the proof of Theorem 3.4 in [35]. Let (Y, Z,4, M) be a solution.
For 0 <t <s<T set

S
by = Yo + / Ty fodr.
t

Then by integration by parts we obtain
dps = Tp-dYs+Y-dlys+d[l'y, Y]s + Ty s fods
= Ty, <_fs —asYs — BsZs — /U’Ys(uws(u),u(du)> ds
+Iy - /uqbs(u)%(du, ds) + Ty - ZsdWs + Ty o~ dMs.
+ YTy (asds + BsdWs + /M’ys(u)%(du, ds)>
+ Tys-BsZsds + T - /uws(u)’ys(u)w(du, ds) + Ty s fsds

- T, /M (1) + Yy ys () + s (w)ys () (du, d)
+ Tys—(Zs + Y s)dWs + Ty - d M.

From the assumptions made on the coeflicients, we obtain that ¢ is a martingale and thus

T
=Y =E [¢T -7:t:| =E |:YTFt,T +/ Ly frdr
t

7.

O
The next proposition is a modification of Theorem 4.2 in [35] (see also Theorem 252 in
[38]).

Proposition 4 We consider a generator fi satisfying (Hex) and we ask fa to verify (Heomp)-
Let €' and €2 be two terminal conditions for BSDEs (2) driven respectively by fi and fa.

Denote by (Y'Y, Z1 ' MY) and (Y2, 22,42, M?) the respective solutions in some space

EP(0,T) with p > 1. If €' < €2 and f1(t,Y,', Z},0}) < fo(t,Y,E, Z} b)), then a.s. for

any t € [0,T], Y} < Y2

Proof. As usual we set
Y=Y?-VY!, Z=2*-2" $=u>—0', M=M>—M"

Then (?, 2, {Z)\, ]\/4\) satisfies:
. N T T . T . T P
Y; zf—i—/ hsds—/ /¢s(u)%(du, ds) —/ ZsdW —/ dMsy,
¢ t Ju t t

hs = f2(Yt927Z§71/}§) - fl(}/t9172517¢;)

where
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Now we define

fs = f2(Y:91’Z51’¢;) - fl(Y;*l’Z;’¢;)
(Y3, Z5,03) — (Y4, 25, y)

Qs = v 15,20
s
B, = f2(5/}272527¢§)—fz(YfaZslﬂ/fi)lA
s Z 7540
s

then
_ % 7 2 72 2 2 72 1
hs = fs"’asyvs‘i'ﬁszs_{'f?(yvs’Zsa¢s)_f2(}/;’zsa¢s)
> fs + asi/\ts + 5828 + / 5352’237w§’w§7;8(u)u(du)
u

since fy satisfies (Heomp). Moreover since f3 is Lipschitz continuous w.r.t. z, |3| is bounded
by K, whereas from Assumption (H1), « is bounded from above. Moreover, the process

Y527Z§7w§7w§ 3 2 . .
Ks is controlled by ¥ € L;;. Therefore the process I' defined by (34) is g-integrable
for any ¢ > 2 and

T
Y, > E |:Ft,T£ +/ Ft,sfsds
t

}"t] |
To conclude recall that since —1 < f@%’z’w’d)(u), I't s > 0 a.s. and by assumptions, EZ 0 and
fs = 0. Therefore Y; > 0 and the conclusion follows. O

Note that the conditions (Heyx) are just imposed on f! to ensure existence of a solution

(Y1, Zt o', M), This proposition gives again uniqueness of the solution.

Corollary 2 Assume (Heomp) and (H4) (resp. (H5)). Then there exists at most one
solution (Y, Z,, M) of BSDE (&, f) in £2(0,T) (resp. EP(0,T)).

5 Random terminal times

We come back to the general multidimensional case but we assume that 7 is a stopping
time for the filtration F, which need not be bounded. Assumptions (Hex) still hold with a
monotonicity constant o and a Lipschitz constant K. (H2) is replaced by:
vr >0, VneN, sup(|f(ty,0,0) — f(,0,0,0)]) € L'(2 x (0,n)). (H2”)
ly|<r
We assume that 1 < p and condition (H4) (or (H4")) is replaced by the following one: for
some p € R such that

K2
p>Vv=auo+ m7
we have -
E [epmﬂp + /0 PP £ (2,0, 0,0>|pdt} < +o0. (H5’)

The constant « appears in (H1) and K in (H3). We will need the following additional

assumption

¢ is F; — measurable and E [/ eppt|f(t,§t,77t,%)|pdt] < 00, (H6)
0
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where & = E(¢|F;) and (n,~, N) are given by the martingale representation:

§=E(§)+/OOO ndes—l-/Ooo/u’ys(u)%(du, ds) + N,

( | s [T ] pewPatands + [N]T)W

Definition 2 A process (Y, Z, ¢, M) = (Yz, Zs, ¢, My)i>0, such that'Y is progressively mea-
surable and cadlag and (Z,1, M) € D(0,T) x P x Myoe, with values in R? x R>F x RY x R?
is a solution to the BSDE (2) with random terminal time T with data (&; f) if on the set
{t>7}yYi=¢and Zy =y = My = 0, P-a.s., t = f(t,Ys, Zs,0b) L belongs to L} (0, 00)

with

E < 400.

loc
for any T >0, Z belongs to L2, (W), ¥ belongs to Gioe() and, P-a.s., for all0 <t < T,
TNAT TAT
Y;f/\ﬂ' = YT/\T +/ f(S,Y:?a Zsa¢8)d5 - / ZSdWS
tAT tAT
TAT TNAT
- / Ys(u)m(du, ds) — / dM. (36)
tAT u tAT

Proposition 5 Under conditions (H1), (H2”), (H3), (H5’) and (H6), the BSDE (36) has
at most one solution satisfying

TNAT TAT
E [epf’(“”mmp + / ePPS|Y,|Pds + / eppsmyp—z\zsyhys#ods]
0 0

TNAT

TAT
v | [ e ol ds [ vty diar
0 0

2—1
FE| S @AM (Y, PV Y + AMPP T Ly annio
0<s<TAT
< +o0. (37)

Proof. Assume that there exist two solutions (Y, Z, ¢, M) and (Y', Z',4', M") satisfying
(37) and let

Y, =Y, =Y/, Zi=Z—Z, ;=1 —,, M;=M; — M.
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Let us denote c(p) = 5((p —1) A1). From Corollary 1, Lemma 9 and Remark 1 we have for
0<t<T

TNAT TNAT
ST g, s +eo) [ IRy

tAT

d[M]¢

ePP(tAT) |§/\2M|P + ¢(p) / 9,40

tAT

~ ~ —— \DP/2— —
+c(p) Z ePrs (|Ys—|2 V(Y- + AM5|2> 1\?S—|V\?s—+AJ/\/[\s#O|AMS|2

INT<s<TAT

T pps (1 |2 v i 2 p/2=1 i 2
[ (W PV W+ Bu@P ) N s ol ()P (s d)

< epp(TAT ’YT/\T P

TAT <
i [ e (1T (5, Yo Za ) = £ Y2 Z0) = pITaP) s
t

AT

TAT R PR TAT . = _
—p / PPV |PYY (ZydW, — p / PPy, [PTY - d M,
t t

AT AT
TAT

—p / E A / Vs (w) (du, ds). (38)
tAT

From the assumption on f and Young’s inequality we deduce that

1% . K*? .
TP Y(f (5,9, 2,0) = f(s,9/, 2, 0)) = plglP < (a rEYS p> gl
P-—DAT 2, (p=DAT ~
o 0 g0 B + S [0 g0l e
(p—1nt 3+ (P-—1A1

<
- 2 2

9171500 917152010l 2.

Note that from the integrability conditions on the solution every local martingale involved

in (38) is a uniformly integrable martingale. Moreover using a localization argument (see
Equation (31)), the two terms:

TAT ops (1512 R R ) p/2—1 R ,
/ /6 (|Y:97| V |}/t9* +¢s(u)| ) 1‘?5—‘V|?S—+1Zs(u)‘750|ws(u)| W(du, dS)

TAT 5
| [ e g bl ntds
A
have the same expectation. Hence taking the expectation in (38) we obtain:
R ePP(EAT) ’ffmT P < EePr(TAT) D/}T/\T’p-

If we replace p by p’ with a + DA < p < p we obtain the same result, and thus we get

forany 0 <t <T

p— 1)/\1
EeP? AT |V, [P < PP =P TR ePP(TAT) Y|P

We let T go to infinity to obtain ?t = 0.

Therefore (Y, Z,4, M) and (Y',Z’ )/, M') satisty BSDE (3 ) and Y = Y’. Thus we
have the same martingale parts and by orthogonality, Z = ¢ = M = 0. Uniqueness of the
solution is proved. O
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Proposition 6 Under conditions (H1), (H2”), (H3), (H5’) and (H6), the BSDE (36) has
a solution satisfying
TAT TNAT
E [epp(t/\f)|nm|p +/ PP Y, |Pds +/ 6pp8|Y;|p_2|Zs|21Ys¢odS]
0 0

TNAT

TNT
v | [ e ol ds [ ey Ry, diar
0 0

2—1
+E| > eppS\AMs\z(’Ys—\z\/\Ys—+AMS\2)p/ Ly, |V|Y,_ +AM,[#£0

0<s<TAT

< CE [ep“\sru / eWﬂf(s,o,o,onpds] (39)

0
Moreover
T p/2 T p/2 T p/2
E(/ e2ps|Zs|2d8> + (/ 62”3/ |1/)s(u)|2,u(du)d5> —|—IE</ ersd[M]s>

0 0 u 0

< CE {epf”rsm / epﬂswf<s,o,o,o>\pds]. (40)
0

The constant C' depends only on p, K and «.

Proof. We follow the proof of Theorem 4.1 in [31]. For each n € N we construct a solution
{(Y™, Z" o™ M™), t > 0} as follows. By Theorem 2, on the interval [0, n|:

Y? = E(€F) + / 10,0 (5) (5, Y, 20, s — / Zraw,
t t

_ /tn[4¢?(u)%(du,ds)—/tndM§-

And for t > n (Assumption (H6)):
}/tn = §t7 Ztn = MNt, T/J;L(U) = ’Yt(u)a Mtn = Nt-
e Step 1: the sequence {(Y"™, Z™ "™, M™), t > 0} satisfies Inequality (39).

Using Corollary 1, Lemma 9 and Remark 1 we have for 0 <t <T <n

TAT
PPV P2 ZY P Ly n 2ods + c(p) / PP Y P Ly od[ M)

tAT

TAT

PP |YR P 4 ofp) /

tAT

2—1
tep) S EPIAMIE (YR VIYE + AMIEY T Lyn v sanpigo

tINT<s<TNAT
T 2 2 2\p/2-1
"‘C(p)/t /MGPPSWQ(U)\ (VP V Y + 98 (u)]) Liyn jviye 4y ()07 (du, ds)
AT
TNAT .
<IN [ (VIR (5, Y 230 = V) d
AT
TNAT 5 TNAT .
S R e A R R AT
tAT tAT

TNT
o [ ey [ (. ds).
t u

AT
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Now with Young’s inequality and for some ¢ > 0 sufficiently small

2
ylP 9 f (8 y, 2,9) < (a o+ ((p— 1)KA 1— 25)> o
— 1Al 1 ° o
+ (M — 5> |y|p721y7£0|z|2 + 2_9|f(ta 0,0,0)/” ((p—pm>
o (PEDAL ) (4”

We choose § > 0 such that a4 20 + m < p and we obtain:

TNAT
Y Pds 495 [ VP2 Py ods
tAT

TAT

Y46 [

tAT

TNAT 5
e(p) / PP YT P21y o d[ M)
AT
2—1
tep) Y EPIAMIP (VP VY + AMIR T Lyn v sanpiso

tANT<s<TAT

TAT
S n n n n 2-1
/t [ e s (VP Y+ 02 Uy e anoron(du )

) A 1 Thr ppSs n|p—2 n
—p f 5 LY P Ly 0|95 || L2ds
t

AT
TNAT

1-p
pps p po
50,000 ()

< PPN Y, P+ / (p—1)
p [e—

tAT

TAT
[ erpyrpvrzaw,
t

AT

TAT . TAT
—p/ PPy [PTIY ™ dMT —p/ ePPe|Y P~ 1Y"/ P2 (u)7(du, ds).
t

AT tAT

Taking the expectation we get

TNAT
E {epmmmw T ps /0 epwm"rpds]

TAT

TAT
+poE [/ PPyl s+ [ 2 o]

TAT
/ PP (Y P21y Lo d[ M7

[e=]

/2—1

[ PP IAME P (JYLP VY + AMEP)"™ Ly juive +anpizo
<s<TNT

TAT
o [ [
tA
2-1 1 _
[(|Y:—|2 VIYE + T/JQ(U)P)M Liyn jviye yr ()07 (du, ds) — §|st|p Lynsop(du)ds

p(s 1-p ,TAT
§ E epp(T/\T)‘Y{“L/\T’p + <ﬁ> A eppS’f(S,O,O,O)’pdS . (42)

_1)
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Using an argument based on Burkholder-Davis-Gundy inequality (see Step 1 in the proof of
Proposition 2 (p > 2) or Proposition 3 (p < 2)) we can moreover include a sup;c[g, inside

the expectation on the left-hand side.
e Step 2: the sequence (Y™) converges.
Take m > n and define
Yo=Y =Y Zi=Z]' -2 de=op o, M= M- M

For n <t <m,

- mAT MAT mAT -
o= [ revmzramds— [ Zawo- [ [ G
tAT tAT tAT u
— MmNt + Mt/\T-
Thus for n <t < m,
; - mAT - 25 19 mAT - 9 _
PGyl elp) [ TP RZ g s clp) [ TR A
PoSIA T 12 (v (2 v 712 p/2-1
telp) D0 @ IAMP (W PV IV + AME)T e e adiise
tAT<s<MAT ° °
mAT pps |7 2 (v |12 v - 2 p/2-1
+e(p) | el ([T PV Ve + 8a@P) g s (s )
tAT s s

mAT <
<p [ e (1P 2 ) - Tl ds
t

AT

MmAT . <
—p / PP Y, [PTYY (Zd W — p /
t

AT tAT

MAT

ePPs |V, [PV d M,

MAT « N
—p/ epp8|Ys|p_1Ys/¢s(u)%(du, ds)
t U

AT

MmAT
<p [ e (alTp 4 KT Z + KITP G e - lTap) ds
t

AT

MAT R X
+p/ epp8|ys|p_1YSf(5’£s’778’%)d‘s
t

AT

MAT R < MmAT R = o
—p PPSIY|PYY (ZydW, — p / ePPS|Y, - |P7YY —d M,
tAT tAT
MAT . = -
o[ e [ R ds),
tAT u
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By an argument already used to control the generator (see (41)) and to obtain Inequality
(42), we deduce that

N MmAT R MmAT R _
B sup T s [ Tpds e [ g di;
ten,m] nAT nAT °
mAT - 25 19 mAT - 9 9
v | [Tz s [ [ R Py, s
nAT nAT u
PosIANT 12 (1 12 v 1712 p/2-1
+E| Y Al (yysf\ vV [Y,- + AM,| ) 15
NATSSMAT
< CE/ PP (s, €55 ms57s) [P ds. (43)
nAT
By assumption the last term goes to zero as n goes to infinity. Next for t < n
. R MmAT MAT
o= Tak [0z - fe Y2 yds - [ 2w,
NnAT nAT

MAT - _ _
[ bt ds) = Sone + Mo
nAT u

It follows from the same argument as in the proof of Proposition 5 that

-
Ee”"(t/\T)Dﬁ/\T]p—i—E/ PPV, [Pds < RePPA|Y,|P
0

IN

CE/ PP f (s, &5, s, vs)[Pds

NT
and the convergence of the sequence Y. Moreover from the first step the limit satisfies the
a priori estimate (39).

e Step 3: convergence of the martingale part (Z™, ™, M™).

The proof is rather different for p > 2 and p < 2. In the first case, we follow the proof of
[31], Theorem 4.1 and Proposition 2. We apply It6’s formula to e2*%|Y,|? for n <t < m:

MAT - mAT R MAT o
/ %8| Zy|2ds + / / %% |9 (u)|*m(du, ds) + / %S dM,
t t u t

AT AT AT

mAT
=2 / Y, (f(s, Y 22000 = f(5,€0imes%) — pITaf?) ds
t

AT

MmAT R
+2/ 62/)8}/5]0(5,58’778578)(15
t

A\
n;r/\T PR MmAT R o mAT PN

—2/ erSYSstWs—Q/ e?PY,_dM, —2/ 62"5/ Y- ts(u)m(du, ds).
tAT tAT tAT u

With the same arguments used to obtain (26), the assumptions on f, Burkholder-Davis-
Gundy (p/2 > 1) and Young’s inequality lead to:

mAT . p/2 mAT . p/2 mAT o p/2
E (/ 62ps|Zs|2d8> +E (/ 62”3/ |1/)s(u)|2,u(du)d5> +E </ erdes>
nAT nAT u nAT

o~ o~ ~ 7—
< Coxr.E (sup eppsrmp) L G,E [ / ep”s\f(s,fsms,%)\”dS] .
n

n<t AT
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Then following the same scheme but with ¢ < n, we obtain:

nAT - P/2 nAT - P/2 nAT _ p/
E ( / ezps\ZS\zds> +E ( / e%rs / ]ws(u)\z,u(du)ds> +E ( / eQPSdMS>
0 0 u 0

< 5p,K,T,5 E (epp(n/\’r)’i}n/w‘p) .

Now assume that p € (1,2). From Inequality (43) and by the proof of uniqueness we
deduce that

MmAT . 9 . mAT - 25 12
¢ Uo PPy gd[MIS + /0 I 1?57&0‘“]

mAT -
w8 | [7 [ TP, gt
0 u #

T s D 2 (1512 (9 ~ L 9\P/2-1
+E /0 /u ) (92 Y T +5u@)” s (. ds)

— ~ ~ — /2—1
tE | S0 e AN (19 P V[T + ATLP)T 1

0<s<mAT

SCE/ ePP?| f (s, &y sy vs) [Pds.

AT

Y~ [V|Y,— +ADM;|#0

Then we can use again the argument (33) in order to have:

mAT 9ps1 5 12 p/2 mAT ) = p/2
E(/O VA ds) :E</O 1y 0|2y ds>

<22 PR s (e 17 | + 2B A TRRT A
="y ngI; s 9 0 s V.£014s
T

9 _ ~
< TPE [Sup (eppleJp)] + §CE/ eS| f (3,515, 75 ) [P ds.
n.

n<t AT

We can repeat this for 12 and M.

Therefore in both cases we proved that the sequence (Z™, 9™, M™) is a Cauchy sequence
for the norm:

T R p/2 T . p/2 T _ p/2
E </ 62pS|Zs|2d8> +E (/ 62"5/ |1/)s(u)|2,u(du)d5> +E (/ erSd[M]s>
0 0 u 0

Hence it converges to (Z,1, M) and from the two previous steps the limit (Y, Z,1, M) is a
solution of the BSDE (36) which satisfies (39) and (40). O

From the two previous propositions we deduce:

Theorem 3 Under conditions (H1), (H2”), (H3), (H5’) and (HG6), the BSDE (36) has a
unique solution satisfying (39) and (40).

Remark 2 As in Pardoux [31] (Ezercise 4.2), one can replace the condition p > v =

a+ (pKTQl) by the condition p > « if there exists a progressively measurable process g such
that for any z and ¥

’f(t707 Zﬂ/})’ S 9t

43
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and -
E/ PPt g |Pdt < oo.
0

In this case the conclusion of Theorem 3 also holds.

Indeed for p > 2 as in the proof of Proposition 2 we can obtain for every 0 < ¢ < T and

every p > «
TAT TAT
Y by [ PR Z s 4wy [ ey, PR,
tAT AT
TNAT : 9
by [Pl
tAT "
TAT
< PPN |Ypp P+ / pe?? (Y| Ys[P~2f (s, Y5, Zs, ) — plY5lP) ds
tAT

TNAT TNAT
S e o A Y R A I
t

AT tAT

TAT
e [ - v ) G,
t u

AT

where £, just depends on p. Now for any € > 0

_ _ 1/ pe \'?
P2 s ) = ol < (0= ol 4 P < ke - o+ (S5 ) o

Therefore for any p > « we choose € such that p > a + € and taking the expectation we
have

TNAT TNT
NPz s + B [ Y, P,

tAT

Eepp(t/\T)\Y},\T\p—i—Enp/

tAT

TAT
+Bry [ I s
t

AT

pe 1-p TNT
< EePP TN Y|P+ < > E/ ePP?|gs|Pds.
p—= 1 tAT

The same argument can be used in the case 1 < p < 2.

Remark 3 In dimension one, if & and f(t,0,0,0) are non negative, the LP-solution Y is
non negative and if f(s,0,z,¢) <0 for any z and 1, the conclusion of Theorem 3 holds.

Remark 4 [In dimension one, under the assumptions of Theorem 3 (or of the previous
remarks), and with condition (H3’), then the comparison result (Proposition 4) holds.

Indeed we can sketch the proof to obtain that for any 0 <t < T

TNAT
}/t/\T > E |:Ft/\T,T/\TYT/\T + / Pt/\T,sfst
tAT

-FtAT:|

with suitable integrability conditions. The conclusion follows by letting T" go to +oo.
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