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Modeling and computation of Bose-Einstein
condensates: stationary states, nucleation,
dynamics, stochasticity

Xavier ANTOINE and Romain DUBOSCQ

Abstract The aim of this chapter is first to give an introduction to the derivation of
the Gross-Pitaevskii Equations (GPEs) that arise in the modeling of Bose-Einstein
Condensates (BECs). In particular, we describe some physical problems related to
stationary states, dynamics, multi-components BECs and the possibility of handling
stochastic effects into the equation. Next, we explain how to compute the stationary
(and ground) states of the GPEs through the imaginary time method (also called
Conjugate Normalized Gradient Flow) and finite difference or pseudo-spectral dis-
cretization techniques. Examples are provided by using GPELab which is a Mat-
lab toolbox dedicated to the numerical solution of GPEs. Finally, we explain how
to discretize correctly the time-dependent GPE so that the schemes are physically
admissible. We again provide some examples by using GPELab. Furthermore, ex-
tensions of the discretization schemes to some classes of stochastic (in time) GPEs
are described and analyzed.

1 Modeling: Bose, Einstein, Gross & Pitaevskii

1.1 From the theory to the realization of Bose-Einstein condensates

The discovery of Bose-Einstein Condensates (BECs), from their theoretical predic-
tion by Bose & Einstein in 1925 to their first experimental realization in 1995 by
Cornell and Wiemann, results from extraordinary scientific achievements that led to

Xavier ANTOINE
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2 Modeling and computation of BECs

the birth of condensed matter physics. The origin of the theory of BECs comes from
an indian physicist, Satyendra Nath Bose, who proposed in 1924 a statistics for the
photons that is different from the classical Maxwell-Boltzmann statistics. This latter
allows to know the distribution of the particles velocity in an ideal gas with elastic
shocks, corresponding to a classical description of matter. However, such statistics
cannot be applied to microscopic particles where quantum effects must be included.
An example is the Heisenberg uncertainty principle which states that both the posi-
tion and velocity of a massive particle cannot be known simultaneously. Therefore,
the introduction of a new statistical distribution of the particles in the phase space
is required. In his works, Bose considers the photons which are particles that be-
long to the class of bosons (particles with an integer spin). Photons can occupy the
same quantum state, implying that two photons with the same energy and position
cannot be distinguished. Based on this property, Bose developed the foundations of
the theory of quantum statistical mechanics. He sent his paper to Albert Einstein
who submitted it for him to Zeitschrift für Physik [38] and who generalized this
result to atoms [58]. In this work, Einstein predicts the existence of a new state of
matter which is now better known as Bose-Einstein condensates. When a gas of di-
lute atoms is at a very low temperature (close to the absolute zero), there is a phase
transition where a part of the gas condensates, which means that a large fraction of
the atoms simultaneously occupy the lowest level quantum energy state, also called
fundamental state. The critical temperature to observe the condensation phenomena
is related to the property that the distance between the atoms is about one de Broglie
wavelength λde Broglie [52]

λde Broglie =
h

(2πmkBT )1/2 ,

where h is the Planck constant, m is the atomic mass, kB is the Boltzmann constant
and T is the temperature. When the characteristic distances of the system are about
the same, quantum phenomena arise in the gas. A dimensional analysis argument
[97] provides the formula

Tc = 3.3
h̄2n2/3

mkB

to determine the critical temperature Tc, where n is the number of particles per unit
volume in the gas and h̄ is the reduced Planck constant (h̄= h

2π
). At the time of these

first predictions, experimentalists where not able to maintain the atoms in a gaseous
state when cooling them, resulting in a transition to the solid state. In addition to
the fact that extremely low temperatures had to be obtained, well-chosen candidates
were required to experimentally observe the condensates.

In 1937, Kapitsa discovers the superfluidity phenomena that occurs in the helium
gas [78]. Helium 4He has the property to not solidify when it is cooled but to be in
the liquid state even at very low temperatures. Kapitsa shows that a transition phase
occurs in the helium fluid under 2.17K. Moreover, this new phase possesses amazing
properties. For instance, there is almost no viscosity in the fluid. In 1938, London
suggests that there is a connection between superfluidity in helium 4He and BECs
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[88], the difference being that, in the case of the helium superfluid, only a small part
of the atoms is at the fundamental state. The main reason is that strong interactions
exist in the helium which is in a fluid state while BECs creation arises in ideal gazes
with weak interactions. Nevertheless, the helium superfluid plays a key role in the
development of some physical concepts that have next been applied to BECs. In
1949, Onsager predicts the existence of quantum vortices in superfluids. His ideas
have been further developed by Feynman [61, 62] in 1955. Quantum vortices are
not an extension of classical vortices observed in a classical rotating fluid (like for
example in water). For a superfluid, the velocity is given by the gradient of the phase
function. Indeed, it is possible to describe a superfluid through a wavefunction

ψ(t,x) =
√

ρ(t,x)eiS(t,x),

where ρ(t,x) is the superfluid density and S := S(t,x) its phase, x := (x,y,z)∈R3 is
a spatial point in the system (O,ex,ey,ez) and t > 0 is the time variable. The velocity
of a superfluid is given by v(t,x) = ∇S(t,x). Hence, a direct calculation shows that
∇× v(t,x) = ∇×∇S(t,x) = 0, where S is smooth (a× b is the exterior product
of two complex-valued vectors/operators a and b). We can then deduce that the
superfluid is irrotational where there is no singularity point, e.g. when the superfluid
density is zero. These singularities create ”holes” in the condensate that are called
quantum vortices.

In 1959, Hecht suggests that the hydrogen atom with a polarized spin could be
a suitable candidate to observe a condensate in the framework of weak interactions
[72]. The interaction between two atoms of hydrogen with an aligned spin being
weak, a cooling of the gas would not create a molecule nor a liquefaction. Hecht’s
idea is validated in practice in 1976 by Stwalley & Nosanow [113] who confirmed
the hypothesis of the weak interaction of hydrogen and hence started the race to
the experimental realization of a hydrogen condensate. The first experiments used
a magnetic field to cool the atoms. However, this technique was not robust enough
since only a small part of the atoms was practically cooled. New cooling techniques
were therefore necessary for confining the atoms. In 1987, a physics group from the
Massachusetts Institute of Technology (MIT), supervised by Greytak & Kleppner,
published [74] a method where they first confined the hydrogen atoms by a magnetic
trap and next cooled the gas to about 10−3K by evaporation. Starting from a gas
made of trapped atoms, the evaporation process consists in progressively letting the
hottest atoms going out by diminishing the trap strength as illustrated on Figure 1.
We represent the trapping potential by a parabol and the atoms by small colored
disks according to their temperature. During the cooling of the gas, a significant
part of the atoms is lost. Therefore, it is necessary to start the process with a large
enough quantity of atoms.

The realization of a condensate made of hydrogen atoms has been obtained in
1998 [63]. Meanwhile, the advances in terms of cooling by a laser, in particular
for alkaline atoms, have finally led in 1995 the Boulder University group headed
by Cornell & Wieman to create the first Bose-Einstein condensate [9]. This BEC,
made of rubidium atoms 87Rb, has been directly followed by a second realization
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Fig. 1 Cooling of atoms by evaporation in a magnetic trap.

by Ketterle’s team at the MIT by using sodium atoms 23Na [51]. Cornell, Wieman
& Ketterle have been awarded the Nobel prize in Physics in 2001 for their contri-
butions on BECs. In parallel, a group from Rice University, supervised by Hulet,
created a BEC with lithium atoms 7Li [103]. Since the lithium atoms are character-
ized by strong interactions, the condensate collapsed but Hulet was able to stabilize
it through a quantum pressure technique. After these developments, other kinds of
atoms were used to produce new BECs.

1.2 Modeling Bose-Einstein condensates

Various mathematical models can be used to describe BECs [15, 83, 104]. In this
Section, we are most particularly interested in one of the most important models
found in the Physics literature: the Gross-Pitaevskii Equation (GPE).

1.2.1 From classical to quantum mechanics

In quantum mechanics, the state of a system is described by a fundamental time-
dependent equation: the Schrödinger equation. This equation plays the role of the
Euler-Lagrange or Hamilton equations used in classical mechanics. Let us assume
that we have a physical system driven by the classical mechanics rules, for example
a solid ball. The Lagrangian of a classical physical system [41] is given by

L = Tkin−V,

where Tkin is the kinetic energy and V is the potential energy of the system. For
an object with mass m which is assimilated to a point and subject to an exterior
conservative force F(x) =−∇V (x) (∇ is the usual gradient operator) at point x, the
kinetic and potential energies are respectively given by

Tkin =
1
2

m|ẋ(t)|2 and V =V (x(t)),
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where ẋ(t) is the object velocity obtained by deriving its position x(t) with respect
to the time variable t. Therefore, at a given time t, the Lagrangian depends on two
variables that describe the configuration of the physical system: the speed and the
position of the object. For a punctual object, one gets

L (x, ẋ, t) =
1
2

m|ẋ(t)|2−V (x(t)). (1)

The Euler-Lagrange equations characterize the dynamics of a classical system from
its Lagrangian. They can be written as

∂L

∂x
(x, ẋ, t)− d

dt
∂L

∂ ẋ
(x, ẋ, t) = 0.

By applying this equation to the previous Lagrangian, we derive the fundamental
equation of dynamics: mẍ(t)+∇V (x(t)) = 0, which provides the trajectory of the
object.

The Hamilton’s equations are a second approach to deduce the dynamics of a
classical system [14]. We have already seen that the Lagrangian of a punctual object
depends on both its position and velocity. It is possible to extend the expression of
the Lagrangian by considering some generalized coordinates q and the associated
generalized velocity q̇. The generalized coordinates must be chosen to uniquely
define the configuration of the physical system. The Hamiltonian of the system is
obtained by the following formula which corresponds to a Legendre transformation
of the Lagrangian

H (q,p, t) = p ·q−L (q, q̇, t), (2)

a ·b being the hermitian product between two complex-valued vector fields a and b,
the associated norm is |a| :=

√
a ·a. In the previous equation, p denotes the gener-

alized momentum such that

p =
∂L

∂ q̇
(q, q̇, t). (3)

The Hamilton’s equations are given by

q̇ =
∂H

∂p
(q,p, t), ṗ =−∂H

∂q
(q,p, t).

By considering a particle subject to an exterior conservative force, we have seen that
we obtain the Lagrangian (1). We determine the associated Hamiltonian by using the
relations (2) and (3). Relation (3) allows us to identify the generalized impulsion of
the particle: p = mq̇. By using (2), we obtain the Hamiltonian of the particle

H (q,p, t) =
1

2m
|p|2 +V (q) = Tkin +V,

where H is the sum of the kinetic energy Tkin and the potential energy V of the
particle. The total energy E of the particle is given via the Hamiltonian
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E := Tkin +V = H (q,p, t). (4)

This second approach is the one adopted to describe quantum particles. The main
difference is related to the way the massive particles are considered. Indeed, the
modeling of microscopic particles is realized through a wave function. The idea be-
hind the oscillating nature of matter comes from some physical experiments where
the duality wave-particles was observed [52, 73]. This duality is associated to the
probabilistic character of quantum mechanics: this is not possible to know in a de-
terministic way the state of a quantum system. Following this point of view, a wave
function ψ is associated to a particle and leads to the probability to determine a par-
ticle at a given point of the space. The probability to find a particle in a volume M
at time t is

P(particle ∈M) =
∫

M
|ψ(t,x)|2dx ∈ [0,1],

implying the so-called ”mass conservation” property

P(particle ∈ R3) =
∫
R3
|ψ(t,x)|2dx = 1. (5)

This description of the particles is given by the de Broglie’s relations [52] p̂ = h̄k
and Ê = h̄ω , where p̂ is the impulsion of a particle and k its wave number. The
total energy Ê of a particle is the sum of its kinetic and potential energies, and ω its
angular frequency. The relation expresses both the impulsion and the energy of the
particle (assimilated to a wave function) under an operator form. Considering that a
particle is given as the sum of monochromatic plane waves (by Fourier superposi-
tion)

ψ(t,x) =
1

(2π)4

∫
R×R3

ψ̂(ω,k)ei(x·k−ωt)dkdω,

the de Broglie’s relations formally lead to

−ih̄∇ψ(t,x) =
1

(2π)4

∫
R×R3

p̂ψ̂(ω,k)ei(x·k−ωt)dkdω,

ih̄∂tψ(t,x) =
1

(2π)4

∫
R×R3

Ê ψ̂(ω,k)ei(x·k−ωt)dkdω.

This makes a parallel between the momentum operator p̂ and the operator ∇: p̂ ∼
−ih̄∇, and between the energy operator Ê and the partial derivative ∂t : Ê ∼ ih̄∂t . By
using relation (4) and the previous ones, we deduce the following evolution equation
for the wave function with Hamiltonian H

ih̄∂tψ(t,x) = H (x,−ih̄∇, t)ψ(t,x).

Hence, H is now considered as an operator. This famous equation has been derived
by Schrödinger [106]. It provides the dynamics of the wave function associated to
the particles. In the case of a particle subject to an exterior potential V , we have the
following Hamiltonian
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H =
1

2m
|p̂|2 +V (x),

which leads to the Schrödinger equation

ih̄∂tψ(t,x) =− h̄2

2m
∆ψ(t,x)+V (x)ψ(t,x).

Let us now introduce a new energy E corresponding to the mean-value of the Hamil-
tonian

E (ψ)(t) :=
∫
R3

ψ(t,x)∗H (x,−ih̄∇, t)ψ(t,x)dx, (6)

where ψ∗ designates the complex conjugate function of ψ . We can also write this
energy as

E = 〈ψ(t,x),H (x,−ih̄∇, t)ψ(t,x)〉L2
x
,

where 〈., .〉L2
x

is the hermitian inner product

∀(ψ,φ) ∈ L2
x×L2

x,〈φ ,ψ〉L2
x

:=
∫
R3

φ(x)∗ψ(x)dx,

for square-integrable functions on R3

L2
x = L2(R3) :=

{
φ : R3→ C/

∫
R3
|φ(x)|2dx < ∞

}
.

The associated norm in L2
x is

∀φ ∈ L2
x,‖φ‖L2

x
:= 〈φ ,φ〉1/2

L2
x
.

When the Hamiltonian is self-adjoint, i.e.,

∀φ1,φ2 ∈ C ∞
0 (R3),〈H (x,−ih̄∇, t)φ1,φ2〉L2

x
= 〈φ1,H (x,−ih̄∇, t)φ2〉L2

x
,

and time homogeneous, i.e.

H (x,−ih̄∇, t) = H (x,−ih̄∇),

the energy E is conserved with respect to the time variable. Indeed, we have

∂tE (ψ) =
∫
R3
[∂tψ(t,x)]∗H (x,−ih̄∇)ψ(t,x)dx

+
∫
R3

ψ(t,x)∗H (x,−ih̄∇)[∂tψ(t,x)]dx.

Since ψ satisfies the Schrödinger equation associated with H , we deduce that
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∂tE (ψ) =
∫
R3

[
− i

h̄
H (x,−ih̄∇)ψ(t,x)

]∗
H (x,−ih̄∇)ψ(t,x)dx

+
∫
R3

ψ(t,x)∗H (x,−ih̄∇)

[
− i

h̄
H (x,−ih̄∇)ψ(t,x)

]
dx.

By using the property that the Schrödinger operator is self-adjoint, one gets

∂tE (ψ) =
i
h̄

∫
R3

[H (x,−ih̄∇)ψ(t,x)]∗H (x,−ih̄∇)ψ(t,x)dx

− i
h̄

∫
R3

[H (x,−ih̄∇)ψ(t,x)]∗H (x,−ih̄∇)ψ(t,x)dx = 0.

In addition, we remark that

H (x,−ih̄∇, t)ψ(t,x) = Dψ∗E (ψ)(t,x), (7)

where the derivative of the energy is defined as a functional derivative in L2
x equipped

with the hermitian inner product 〈., .〉L2
x
. More precisely, in equation (7), we differ-

entiate E (ψ) with respect to ψ∗ by considering that ψ and ψ∗ are independent: we
identify Dψ∗E (ψ) as satisfying∫

R3
φ
∗Dψ∗E (ψ)dx = lim

η→0

1
η

(∫
R3
(ψ +ηφ)∗H ψdx−

∫
R3

ψ
∗H ψdx

)
. (8)

This energy allows us to come back to the Schrödinger equation associated with a
system by an equation like (7).

The notion of wave function can be generalized to a system of Npart particles
by using the Hamiltonian: H = H (x1, ...,xNpart ,p1, ...,pNpart , t). For example, for
Npart noninteracting distinct particles under the action of an exterior potential V , the
Hamiltonian is

H =
Npart

∑
j=1
− h̄2

2m
∆x j +V (x j), (9)

where x j designates the position of the j-th particle, j = 1, ...,Npart. We can then de-
duce the wave function ψ = ψ(t,x1, ...,xNpart) for system (9) through a Schrödinger
equation. One then gets

P(particle 1 ∈M1, ...,particle Npart ∈MNpart) =∫
M1×...×MNpart

|ψ(t,x1, ...,xNpart)|2dx1...dxNpart ,

where M j is the j-th volume associated with the j-th particle, 1≤ j ≤ Npart.
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1.2.2 Application to Bose-Einstein condensates

We propose here a construction that can be found in [97]. For a BEC, the set of
condensed particles occupies the same quantum state, that is the ground state. The
condensate is considered as a system of indistinguishable particles with the same
wave function ψ . The condensate wave function writes down as

ψ̃(t,x1,x2, ...,xNpart) =
Npart

∏
j=1

ψ(t,x j). (10)

Furthermore, the condensate corresponds to a set of particles subject to an exterior
potential V and an interaction force Uint between the particles that depends on the
distance between two given particles. The Hamiltonian of the system is

H =
Npart

∑
j=1
− h̄2

2m
∆x j +V (x j)+ ∑

1≤k< j≤Npart

Uint(x j−xk).

We obtain the energy Esys of the system of particles at time t by using formulation
(10) and the mass conservation (5)

Esys :=
∫
(R3)

Npart
ψ̃
∗(t,x1, ...,xNpart)H ψ̃(t,x1, ...,xNpart)dx1...dxNpart

= Npart

∫
R3

[
h̄2

2m
|∇ψ(t,x)|2 +V (x)|ψ(t,x)|2

]
dx

+Npart
Npart−1

2

∫
R3

∫
R3

Uint(x′−x)|ψ(t,x′)|2dx′|ψ(t,x)|2dx.

Let us consider the variable change ψ → 1/
√

Npartψ and let us assume that the
number of atoms is sufficiently large so that (Npart− 1)/Npart ≈ 1. This yields the
normalized energy

E (ψ) =∫
R3

[
h̄2

2m
|∇ψ(t,x)|2 +(V (x)+

1
2

∫
R3

Uint(x′−x)|ψ(t,x′)|2dx′)|ψ(t,x)|2
]

dx.

To derive the Schrödinger equation that describes the evolution of the wave function
ψ , we compute the functional derivative of the energy∫

R3
φ
∗Dψ∗E (ψ)dx =

∫
R3

φ(x)∗
(
− h̄2

2m
∆ +V (x)

)
ψ(t,x)dx

+
1
2

∫
R3

φ(x)∗
(∫

R3
Uint(x′−x)|ψ(t,x′)|2dx′

)
ψ(t,x)dx

+
1
2

∫
R3

(∫
R3

Uint(x′−x)ψ(t,x′)φ(x′)∗dx′
)
|ψ(t,x)|2dx.
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From the Fubini theorem and by assuming that the interaction potential Uint is even
Uint(x′−x) =Uint(x−x′) for any points x and x′, we remark that∫

R3

(∫
R3

Uint(x′−x)ψ(t,x′)φ(x′)∗dx′
)
|ψ(t,x)|2dx =∫

R3

(∫
R3

Uint(x−x′)φ(x)∗ψ(t,x)dx
)
|ψ(t,x′)|2dx′.

Hence, one gets∫
R3

φ
∗Dψ∗E (ψ)dx =

∫
R3

φ(x)∗(− h̄2

2m
∆ +V (x))ψ(t,x)dx

+
∫
R3

φ(x)∗(
∫
R3

Uint(x′−x)|ψ(t,x′)|2dx′)ψ(t,x)dx.

This leads to the Schrödinger equation satisfied by ψ

ih̄∂tψ = Dψ∗E (ψ) = (− h̄2

2m
∆ +V (x)+

∫
R3

Uint(x′−x)|ψ(t,x′)|2dx′)ψ.

Let us remark that the parity assumption of Uint is not restrictive in practice because
the interatomic interactions are symmetrical. Furthermore, this type of potential can
describe a wide variety of interactions between the atoms. For instance, the Van der
Waals interaction created by a dipole-dipole electric interaction between the atoms
writes [97]

UvdW(|x−x′|) =− C6

|x−x′|6
.

From a mathematical point of view, we remark that the nonlocal interaction term is
given by an integral operator. To avoid the problem of evaluating this class of inter-
actions, physicists introduced the concept of effective interaction. By considering a
system of two interacting particles with low energy, the interaction between the par-
ticles can be quantified by a constant a that is usually called the ”scattering length”.
This simplification leads to the computation of an effective interaction Ueff between
two particles that formally satisfies

U0 :=
∫
Rd

Ueff(x0−x)dx =
4π h̄2a

m
,

where m is the mass of the particles, x0 is the reference particle position and x
corresponds to the position of the other particle. Therefore, if we assume that the
interatomic distance inside the condensate is sufficiently large compared to the scat-
tering length a, the interaction between the particles can be replaced by a localized
interaction which is proportional to U0, that is: U(x0− x) = U0δ0(x0− x). We de-
duce a Schrödinger equation for the wave function ψ as

ih̄∂tψ(t,x) = (− h̄2

2m
∆ +V (x)+

4π h̄2a
m
|ψ(t,x)|2)ψ(t,x). (11)
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This equation has been obtained independently by Gross [71] and Pitaevskii [98] in
1961 and is called the Gross-Pitaevskii Equation (GPE). More recently, the equation
was derived in more general frameworks [85, 86]. In the sequel, we consider this
equation for modeling a BEC.

1.3 Enrichment of the GPE: quantum vorticity, dipole-dipole
interaction, multi-components, stochasticity

1.3.1 Rotating Bose-Einstein condensates and quantum vortices

One of the most interesting characteristics of superfluids is their response to rotation.
In a superfluid, the velocity of the fluid is given by the gradient of its wave function.
As mentioned before, the fluid is irrotational everywhere except at the singularities
called quantum vortices. Furthermore, another feature of superfluids is that there
exists a characteristic velocity given by the spectrum of the excited states of the
quantum system. Above this critical velocity, the system is excited. For example, an
impurity moving in a superfluid will not cause any perturbation in the fluid unless
its speed is above the critical velocity.

Since Bose-Einstein condensates are supposed to behave like superfluids, a lot
of experiments were proposed to investigate properties like the existence of criti-
cal velocity or the nucleation of quantum vortices when a rotation is applied to the
condensate. Two teams, one from the ENS Paris led by Dalibard [91, 92, 93] and
a second one from the MIT and headed by Ketterle, have developed a method in-
volving anisotropic harmonic potentials to stir the condensate and rotate it. They
observed that there is no nucleation of vortices in the condensate under a certain ro-
tation speed. The process of nucleation only begins when a certain rotational speed
is obtained. In addition, the number of vortices is directly proportional to the rotation
speed (see Figure 2).

Fig. 2 Nucleation of vortices for an increasing rotation speed (from left to right). The experiments
were done by a group led by Jean Dalibard in 2001 at the Kastler Brossel laboratory (ENS Paris,
France).

For modeling a rotating BEC, we need to change from the reference frame of
the laboratory to the rotating frame of the condensate. If the rotation axis is the z-
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direction (i.e. Ω = (0,0,Ω), where Ω is the rotation speed), this change of frame
leads to the following transformation of variables{

x′ = cos(Ω t)x+ sin(Ω t)y,
y′ =−sin(Ω t)x+ cos(Ω t)y.

Therefore, to any vector x in the reference frame is associated a time dependent
vector x′(t) in the rotating frame. We remark that: ẋ(t) = ẋ′(t) + Ω × x′(t). We
now consider a particle in rotation and subject to a potential V . The Lagrangian
associated to this particle is

L (x, ẋ, t) =
1
2

mẋ(t)2−V (x(t)).

By using the change of variables, we deduce the Lagrangian in the rotating frame

L (x′, ẋ′, t) =
1
2

m(ẋ′(t)+Ω ×x′(t))2−V (x′(t))

and the generalized momentum operator

p′ =
∂L

∂ ẋ′
= m(ẋ′+Ω ×x′).

The Hamiltonian of a particle in the rotating frame is then

H (x′,p′, t) = p′ ·x′−L (ẋ′,x′, t) =
p′2

2m
− (Ω ×x′) · p′+V (x′).

Applying the same procedure for the Hamiltonian of a system of Npart interacting
particles under the action of a potential V , we obtain

H =
Npart

∑
j=1
− h̄2

2m
∆x j + ih̄(Ω ×x j) · ∇x j +V (x j)+ ∑

1≤k< j≤Npart

Uint(x j−xk).

Similarly, we deduce the GPE for a rotating BEC

ih̄∂tψ(t,x) = (− h̄2

2m
∆ − ih̄Ω · (x×∇)+V (x)+

4π h̄2a
m
|ψ(t,x)|2)ψ(t,x),

since (Ω ×x) · ∇ =−Ω · (x×∇).

1.3.2 BECs including dipolar interactions

BECs were first obtained for alkali and hydrogen atoms. Since these two families of
atoms have a weak magnetic moment, the magnetic dipole-dipole interaction can be
neglected in the associated GPE. Latter, BECs made of chromium atoms 52Cr were
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created, leading to a GPE where the dipole-dipole interactions must be included
[69, 70]. As a consequence, an additional interaction term modeling the magnetic
forces between the atoms has to be added to the Hamiltonian

H =
Npart

∑
j=1
− h̄2

2m
∆x j +V (x j)+ ∑

1≤k< j≤Npart

U0δ0(x j−xk)+Udipole(x j−xk). (12)

The notation Udipole corresponds to the magnetic dipole-dipole interaction given by

Udipole(x j−xk)=
µ0

4π

µmag, j(x j) ·µmag,k(xk)−3(µmag, j(x j) ·u j,k)(µmag,k(xk) ·u j,k)

|x j−xk|3
,

where µmag, j (respectively µmag,k) is the magnetic momentum of the j-th atom (re-
spectively k-th atom),

u j,k =
x j−xk

|x j−xk|
,

and µ0 is the permeability of vacuum. We now assume that all the atoms are polar-
ized by an external magnetic field in the z-direction, implying that µmag, j = µmag,k =
µmag ez, where µmag is the amplitude of the magnetic momentum of chromium
atoms. Thus, the magnetic dipole-dipole interaction is

Udipole(x j−xk) =
µ0µ2

mag

4π

1−3cos(angle(x j−xk,ez)

|x j−xk|3
,

where angle(x j−xk,ez) is the angle between x j−xk and ez. By using the Hamilto-
nian (12), we obtain the following GPE with a nonlocal interaction term

ih̄∂tψ(t,x) =

(− h̄2

2m
∆ +V (x)+ [

4π h̄2a
m
|ψ(t,x)|2 +

µ0µ2
mag

2π

∫
R3

U(x−x′)|ψ(t,x′)|2dx′])ψ(t,x),

where

U(x) =
1−3cos(angle(x,ez))

|x|3
.

1.3.3 Origin of stochastic effects in BECs

Some classes of GPEs include some random terms to describe the stochastic effects
that may arise in BECs. For example, let us cite the modeling of random fluctua-
tions in an optical trap [1, 2, 3, 67, 68, 105] or the consideration of the interactions
between a cloud of non condensed atoms and the BEC [65, 66, 39, 110, 111]. This
latter model involves a space and time stochastic process that describes the fluctua-
tions of the phase and density of the condensate. Here, we focus on the first model
and derive the associated stochastic GPE.
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In [105], the authors model randomness in the intensity of the optical trapping
device used to confine the BEC. In the case of a magneto-optical trap, the laser beam
used is slightly detuned to a frequency less than the resonant frequency of the atoms.
When the laser beam is coupled to a spatially varying magnetic field which changes
the resonant frequency of the atoms, a potential force is induced, then creating an
atomic trapping device [94]. Using multiple laser beams leads to the potential

V (t,x) =−1
4

α|E(t,x)|2,

where α is the atomic polarizability and E is the amplitude of the electric field
generated by the laser beam. For a small detuning effect of the laser (less than 10%),
the atomic polarizability is given by the approximation: α = − τ2

h̄∆ω
, where τ is the

transition dipole momentum and ∆ω = ω −ω0 is the detuning parameter between
the laser pulsation ω and the electronic transition pulsation ω0 of the atoms. For a
gaussian laser beam, the intensity of the electric field created by the laser is

|E(t,x)|2 = E0(t)2e−
|x|2

`2 ,

where ` is the gaussian beam radius. If the size of the condensate is small com-
pared to ` (|x| � `), a Taylor’s expansion gives the following approximation of the
potential

V (t,x) =−α

4
|E0(t)|2 +

α

4`2 |E0(t)|2|x|2.

By a gauge transformation

ψ(t,x)→ ψ(t,x)e
iα
4h̄
∫ t

0 |E0(s)|2ds,

we eliminate in the GPE (11) the constant term that appears in the previous potential
and obtain

ih̄∂tψ(t,x) = (− h̄2

2m
∆ +

α

4`2 |E0(t)|2|x|2 +
4π h̄2a

m
|ψ(t,x)|2)ψ(t,x).

Finally, the fluctuations in the laser intensity are modeled by a random process ξ̇

which determines the difference between the mean intensity |E0|2 and the intensity
|E0(t)|2 at time t. If we set

ξ̇ (t) =
|E0(t)|2−|E0|2

|E0|2
,

we deduce the following stochastic GPE

ih̄∂tψ(t,x) = (− h̄2

2m
∆ +

α

4`2 |E0|2(1+ ξ̇ (t))|x|2 + 4π h̄2a
m
|ψ(t,x)|2)ψ(t,x).
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A process which is widely used by physicists is the brownian motion (wt)t∈R+ .
The associated noise (e.g. the time derivative of the process) is the so-called white
noise (ẇt)t∈R+ , a real-valued centered gaussian process with covariance E[ẇt ẇs] =
δ (t− s).

1.3.4 Multi-components BECs

In the derivation of the Gross-Pitaevskii model for BECs, we omitted the effect of
the spin of the atoms. For each species of particles, there exists a principal quantum
spin number s that is either an half-integer for the fermions (s = 1/2,3/2, ...) or an
integer for the bosons (s = 0,1,2, ...). The quantum spin number S of a particle cor-
responds to a new degree of freedom S ∈ {−s,−(s−1), ...,(s−1),s}. For example,
a fermion with principal quantum spin number s = 1/2 can only have two possible
spin numbers: S = 1/2 or S =−1/2. Each value of S corresponds to a quantum state
of the particle. To describe the quantum system, we introduce a vector-valued wave
function, where each component is associated to a value of S. This requires the ex-
tension of the GPE to a system of GPEs when s 6= 0. This situation corresponds to
multi-components BECs.

Let us consider a mixture between two different species of atoms (denoted by
type 1 and type 2), the extension to more components being direct. We suppose
that each type of quantum system occupies the ground state. The first (respectively
second) gas has Npart,1 (respectively Npart,2) atoms. Each component is described by
a wave function, ψ1 or ψ2, according to the gas, that satisfies the mass conservation∫

R3
|ψ`(t,x)|2dx = Npart,`, for `= 1,2. (13)

The wave function of the BEC is

ψ̃(t,x1
1, ...,x

1
Npart,1

,x2
1, ...,x

2
Npart,2

) =

Npart,1

∏
j=1

ψ1(t,x1
j)

Npart,2

∏
k=1

ψ2(t,x2
k),

where x1
j is the position of the j-th atom of type 1 and x2

k is the position of the k-
th atom of species 2. If we assume that the `-th component is subject to an external
potential V`, has a mass m` and that the components interact, we obtain the following
Hamiltonian

H =

Npart,1

∑
j=1
− h̄2

2m1
∆x1

j
+V1(x1

j)+ ∑
1≤ j<l≤Npart,1

Uint,1(x1
j −x1

l )+

Npart,2

∑
k=1
− h̄2

2m2
∆x2

k

+V2(x2
j)+ ∑

1≤k<m≤Npart,2

Uint,2(x2
k−x2

m)+

Npart,1

∑
j=1

Npart,2

∑
k=1

Uint,1,2(x1
j −x2

k),

where Uint,` corresponds to the interactions between the atoms of the type `(= 1,2)
and Uint,1,2 describes the interatomic interaction. By symmetry, the interaction term
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Uint,1,2 is even. We deduce the energy Esys of the system by using (13)

Esys(ψ1,ψ2) = Npart,1

∫
R3

[
h̄2

2m1
|∇ψ1(t,x)|2 +V1(x)|ψ1(t,x)|2

]
dx

+Npart,1(Npart,1−1)/2
∫
R3

∫
R3

Uint,1(x−x′)|ψ1(t,x′)|2dx′|ψ1(t,x)|2dx

+Npart,2

∫
R3

[
h̄2

2m2
|∇ψ2(t,x)|2 +V2(x)|ψ2(t,x)|2

]
dx

+Npart,2(Npart,2−1)/2
∫
R3

∫
R3

Uint,2(x−x′)|ψ2(t,x′)|2dx′|ψ2(t,x)|2dx

+Npart,1Npart,2

∫
R3

∫
R3

Uint,1,2(x−x′)|ψ1(t,x′)|2|ψ2(t,x)|2dx′dx.

Let us consider the following changes of variables: ψ` → 1/
√

Npart,`ψ`, ` = 1,2.
Moreover, we assume that Npart,` is large enough to satisfy: (Npart,`−1)/Npart,` ≈ 1,
`= 1,2. This leads to the normalized energy of the system

E (ψ1,ψ2) =∫
R3

[
h̄2

2m1
|∇ψ1(t,x)|2 +(V1(x)+

1
2

∫
R3

Uint,1(x−x′)|ψ1(t,x′)|2dx′)|ψ1(t,x)|2
]

dx

+
∫
R3

[
h̄2

2m2
|∇ψ2(t,x)|2 +(V2(x)+

1
2

∫
R3

Uint,2(x−x′)|ψ2(t,x′)|2dx′)|ψ2(t,x)|2
]

dx

+
∫
R3

∫
R3

Uint,1,2(x−x′)|ψ1(t,x′)|2|ψ2(t,x)|2dx′dx.
(14)

We obtain the Schrödinger equations that govern the evolution of ψ`, ` = 1,2, by
using the derivative of the energy with respect to ψ1 and ψ2. We have

ih̄∂tψ`(t,x) = Dψ∗`
E (ψ1,ψ2),

for `= 1,2, which is equivalent to the following system of equations

ih̄∂tψ1(t,x) = (− h̄2

2m1
∆ +V1(x)+

∫
R3

Uint,1(x−x′)|ψ1(t,x′)|2dx′)ψ1(t,x)

+
∫
R3

Uint,1,2(x−x′)|ψ2(t,x′)|2dx′ψ1(t,x),

ih̄∂tψ2(t,x) = (− h̄2

2m2
∆ +V2(x)+

∫
R3

Uint,1(x−x′)|ψ2(t,x′)|2dx′)ψ2(t,x)

+
∫
R3

Uint,1,2(x−x′)|ψ1(t,x′)|2dx′ψ2(t,x).

Like for the one-component case, the interaction between the particles can be sim-
plified by introducing an effective interaction

Uint,`(x−x′) =
4π h̄2a`

m`
δ0(x−x′),
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where a` is the scattering length of the atoms of species `(= 1,2). The effective
interatomic interaction is given by

Uint,1,2(x−x′) =
4π h̄2a1,2

m1,2
δ0(x−x′),

where a1,2 is the scattering length between an atom of type 1 and an atom of type 2.
The quantity m1,2 is the reduced mass of a pair of atoms of types 1 and 2, i.e.

m1,2 =
m1m2

m1 +m2
.

Finally, the evolution of a two-components BEC is modeled by the following system
of GPEs

ih̄∂tψ1(t,x) = (− h̄2

2m1
∆ +V1(x)+

4π h̄2a1

m1
|ψ1(t,x)|2

+
4π h̄2a1,2

m1,2
|ψ2(t,x)|2)ψ1(t,x),

ih̄∂tψ2(t,x) = (− h̄2

2m2
∆ +V2(x)+

4π h̄2a2

m2
|ψ2(t,x)|2

+
4π h̄2a1,2

m1,2
|ψ1(t,x)|2)ψ2(t,x).

1.4 Stationary states

In quantum mechanics, an excited state of a quantum system is a quantum state
with an energy higher than the energy of the ground state (i.e. the quantum state
with the lowest energy). Furthermore, the stationary states of a quantum system
are the eigenfunctions of the Hamiltonian operator associated to the system. The
eigenvalues for each stationary state are quantified energies related to the spectrum
of the Hamiltonian operator. For a stationary state ψ , we have

i∂tψ = H ψ = µψ,

where µ is the eigenvalue linked to ψ . Therefore, the stationary state is searched
as: ψ(t,x) = φ(x)e−iµt , where φ is a time independent square-integrable function
such that: ‖φ‖2

L2
x
= 1. We directly compute an eigenvalue µ , also called the chemical

potential, by using the associated eigenfunction φ since

µ = µ

∫
Rd
|φ |2dx =

∫
Rd

φ
∗H φdx.
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1.4.1 Critical points of the energy functional E

Stationary states are critical points of the energy functional. To prove this statement,
we follow a proof similar to [97]. Let us consider a GPE for a rotating condensate

ih̄∂tψ(t,x) = (− h̄2

2m
∆ − ih̄Ω · (x×∇)+V (x)+(Npart−1)

4π h̄2a
m
|ψ(t,x)|2)ψ(t,x).

We have seen that the energy associated to a given system, defined by (6), can be
directly written through the Hamiltonian. For a nonlinear Hamiltonian, a corrective
term must be added to fulfill (7)

E (ψ) = 〈ψ(t,x),H (x,−ih̄∇)ψ(t,x)〉L2 −
∫
R3

1
2

4π h̄2a
m
|ψ(t,x)|4dx

=
∫
R3

[
h̄2

2m
|∇ψ(t,x)|2 +V (x)|ψ(t,x)|2−ψ(t,x)∗ih̄Ω · (x×∇)ψ(t,x)

]
dx

+
∫
R3

1
2

4π h̄2a
m
|ψ(t,x)|4dx.

(15)

Let us set

H0(x,−ih̄∇) =− h̄2

2m
∆ +V (x)− ih̄Ω · (x×∇).

We remark that the Hamiltonian operator H0 is an hermitian operator in L2
x. Let

us now compute the critical points of the energy functional (16) under the mass
conservation constraint. To this end, we introduce a Lagrange multiplier λ and solve

Dψ∗E (φ)+DψE (φ)−λ
[
Dψ∗ (‖ψ‖L2)(φ)+Dψ (‖ψ‖L2)(φ)

]
= 0. (16)

Since H0 is an hermitian operator, the functional derivatives are given by

Dψ∗E (φ) = DψE (φ) = H0φ +
4π h̄2a

m
|φ |2φ ,

Dψ∗ (‖ψ‖L2)(φ) = Dψ (‖ψ‖L2)(φ) = φ(x),

leading a more explicit formulation of (17)

H0ψ +
4π h̄2a

m
|ψ|2ψ−λψ = 0.

This finally means that the stationary states are the critical points of E .

1.4.2 Ansatz of the stationary states

For a magneto-optical trap, the potential is
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V (t,x) =−1
4

α|E(t,x)|2.

If we assume that the laser is gaussian, then it generates an electric field such that

|E(t,x)|2 = E2
0 e
− x2

`2x
− y2

`2y
− z2

`2z ,

where `x, `y and `z are the intensity radii of the beam in the x-, y-, and z-directions,
respectively. Hence, if the characteristic length of the condensate is small compared
to the lengths `x,y,z and if we use a gauge transformation, one gets the following
GPE with harmonic trap

ih̄∂tψ(t,x) = (− h̄2

2m
∆ +

α

4
|E0|2(

x2

`2
x
+

y2

`2
y
+

z2

`2
z
)+

4π h̄2a
m
|ψ(t,x)|2)ψ(t,x).

For a noninteracting BEC (e.g. a = 0), this system is a linear quantum harmonic
oscillator. The ground state is then [97]

φho(x) =
1

π3/4(axayaz)1/2 e
− x2

2a2x
− y2

2a2y
− z2

2a2z , (17)

where

a{x,y,z} =

√√
2h̄l{x,y,z}
|E0|
√

αm
,

with a{x,y,z} equal to ax, ay or az according to the subscript x, y or z, respectively.
The associated energy is

Eosc := E (φho) = h̄|E0|
√

α

2m
(

1
`x

+
1
`y

+
1
`z
).

If there are interactions inside the BEC (e.g. a 6= 0), we have

E (φho) = Eosc +
1

2(2π)3/2axayaz

4π h̄2a
m

.

The gaussian function can still be considered as a suitable approximation of the
exact ground state if the energy associated to the interaction term is small compared
to the energy associated to the quantum harmonic oscillator. Thus, if `x = `y = `z,
the approximation of the ground state by a gaussian function is correct when ax� a.

If the interaction energy is strong (e.g. a� ax), this approximation is no longer
valid. In this case, we consider the so-called Thomas-Fermi approximation [97, 99]
which consists in neglecting the kinetic energy and keeping the potential and inter-
action energies, e.g.
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E∆ (ψ) :=
∫
R3
|∇ψ|2dx� ETF(ψ) :=

∫
R3

[
V (x)|ψ(t,x)|2 + 1

2
4π h̄2a

m
|ψ(t,x)|4

]
dx.

The total energy is approximated by E (ψ) ≈ ETF(ψ). Let us set U0 = 4π h̄2a
m . The

minimizer of ETF under the mass conservation constraint is computed by introducing
a Lagrange multiplier µTF and by solving

(V +U0|φTF|2)φTF = µTFφTF.

Multiplying the previous equation by φ ∗TF leads to

∀x ∈ supp(φTF), |φTF(x)|2 =
µTF−V (x)

U0
.

Since |φTF|2 > 0, it follows that

φTF(x) =

{√
µTF−V (x)

U0
, for µTF−V (x)> 0,

0 , for µTF−V (x)≤ 0.

The mass conservation gives the chemical potential µTF. For example, for a quadratic
potential (with `x = `y = `z), we have

µTF =
152/5h̄2

2max
(

a
ax

)2/5.

1.5 The rotating GPE with a quadratic potential: dimensionless
form in 3d, 2d and 1d

Let us consider the 3d rotating GPE with a quadratic potential

ih̄∂tψ = (− h̄2

2m
∆ +

α

4
|E0|2(

x2

`2
x
+

y2

`2
y
+

z2

`2
z
)− ih̄Ω · (x×∇)+

4π h̄2a
m
|ψ|2)ψ,

where x = (x,y,z) ∈ R3.

1.5.1 Dimensionless form of the GPE

Let us set

ωx =

√
α

2m
|E0|
`x

, ωy =

√
α

2m
|E0|
`y

, ωz =

√
α

2m
|E0|
`z

, U0 =
4π h̄2a

m
.

By using these new variables, the GPE writes down
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ih̄∂tψ = (− h̄2

2m
∆ +

m
2
(
ω

2
x x2 +ω

2
y y2 +ω

2
z z2)− ih̄Ω · (x×∇)+U0|ψ|2)ψ.

Let us introduce the following changes of variables

t→ t
ωm

, ωm = min(ωx,ωy,ωz), x→ xa0,

a0 =

√
h̄

mωm
, ψ → ψ

a3/2
0

, Ω →Ωωm.
(18)

Then, we obtain the dimensionless GPE

i∂tψ = (−1
2

∆ +
1
2
(
γ

2
x x2 + γ

2
y y2 + γ

2
z z2)− iΩ · (x×∇)+β |ψ|2)ψ,

where γx = ωx/ωm, γy = ωy/ωm, γz = ωz/ωm and β = U0
a3

0h̄ωm
.

1.5.2 Dimension reductions

Let us consider the dimensionless GPE

i∂tψ(t,x) = (−1
2

∆ +V (x)− iΩ · (x×∇)+β |ψ(t,x)|2)ψ(t,x), (19)

where Ω = (0,0,Ω). We already know that a stationary state is a critical point of

E (φ) =
∫
R3
(

1
2
|∇φ(x)|2 +V (x)|φ(x)|2−φ

∗(x)ΩLzφ(t,x)+
β

2
|φ(x)|4)dx,

with Lz =−i(x∂y− y∂x). We assume that

V (x) =
1
2
(
γ

2
x x2 + γ

2
y y2 + γ

2
z z2) .

If γx ≈ γy and γz� γx, the condensate has a stationary state that expands in the x- and
y-directions but is confined along the z-axis (disc-shaped condensate). Indeed, the
energy associated to the potential operator in the z-direction is large compared to the
energies in the x- and y-directions. Most particularly, an excitation of the condensate
generates less dynamics in the z- than in the x- and y-directions [30]. Therefore, the
dynamical solution is written as [76, 84]: ψ(t,x) = ψ2(t,x,y)ψ3(z), where

ψ3(z) = (
∫
R2
|ψ0(x,y,z)|2dxdy)1/2,

setting ψ0 as the 3d stationary state. Since ψ0 is normalized, we have∫
R
|ψ3(z)|2dz = 1.
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Injecting ψ in (20), we obtain

iψ3(z)∂tψ2(t,x,y) =−
1
2

ψ3(z)∆ψ2(t,x,y)−
1
2

ψ2(t,x,y)∂ 2
z ψ3(z)

+
1
2
(
γ

2
x x2 + γ

2
y y2)

ψ2(t,x,y)ψ3(z)+
1
2

γ
2
z z2

ψ2(t,x,y)ψ3(z)

−ψ3(z)ΩLzψ2(t,x,y)+β |ψ2(t,x,y)|2|ψ3(z)|2ψ2(t,x,y)ψ3(z).

Multiplying by ψ∗3 and integrating on the whole space with respect to z leads to

i∂tψ2(t,x,y) = (−1
2

∆ +
1
2
(
γ

2
x x2 + γ

2
y y2)−ΩLz +

1
2

σ +κ2|ψ2(t,x,y)|2)ψ2(t,x,y),

where

σ =
∫
R

(
γ

2
z z2|ψ3(z)|2 + |∂zψ3(z)|2

)
dz, κ2 =

∫
R

β |ψ3(z)|4dz.

By using the gauge transformation ψ2(t,x,y)→ ψ(t,x,y)e−
iσ
2 t , one gets the two-

dimensional rotating GPE

i∂tψ(t,x,y) = (−1
2

∆ +
1
2
(γ2

x x2 + γ
2
y y2)−ΩLz +κ2|ψ(t,x,y)|2)ψ(t,x,y).

Let us now assume that the BEC is nonrotating and that γy,z� γx. Similar argu-
ments to the previous ones [30, 84, 76] show that ψ(t,x) = ψ1(t,x)ψ2,3(y,z), where

ψ2,3(y,z) = (
∫
R
|ψ0(x,y,z)|2dx)1/2.

Here, we assume that the condensate is cigar-shaped. Similarly to the 2d reduction,
we obtain the following one-dimensional GPE

i∂tψ(t,x) = (−1
2

∂
2
x +

1
2

γ
2
x x2 +κ1|ψ(t,x)|2)ψ(t,x),

where
κ1 =

∫
R2

β |ψ2,3(y,z)|4dydz.

Finally, a general form of the rotating GPE in dimension d (= 1,2,3) is

i∂tψ(t,x) = (−1
2

∆ +Vd(x)−ΩdLz +κd |ψ(t,x)|2)ψ(t,x),

where Ω2,3 = Ω , Ω1 = 0 (no rotation),
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κd =



∫
R2

β |ψ2,3(y,z)|4dydz, for d = 1,∫
R

β |ψ3(z)|4dz, for d = 2,

β , for d = 3,

and

Vd(x) =


1/2γ2

x x2, for d = 1,
1/2

(
γ2

x x2 + γ2
y y2
)
, for d = 2,

1/2
(
γ2

x x2 + γ2
y y2 + γ2

z z2
)
, for d = 3.

2 Computation: stationary states and nucleation

2.1 Stationary states formulation: solving a minimization problem
for the energy functional or a nonlinear eigenvalue problem
(under constraint)?

The critical points of the energy functional associated to a GPE-like system are in
fact the stationary states (see Section 1.4, page 17). An impressive number of pub-
lications has been devoted to this topic over the last years in the condensed matter
physics literature (see for example [42, 48, 82, 109]). Indeed, stationary states corre-
spond to (meta)stable states of the condensate. As seen in the first Section, the prac-
tical realization of a BEC requires a sophisticated experimental system that is only
owned by a few laboratories worldwide. More generally, reaching a temperature to
condensate the atomic gas is very challenging. In addition, imaging a condensate is
a difficult task due to its small size. A widely used technique consists in letting the
condensate expands during a short time scale and then imaging it when its size is
large enough [59]. Let us remark that imaging a condensate destroys it immediately.
As a consequence, some physical phenomenae are extremely difficult to observe in
a BEC on a larger time scale [40, 60, 100]. Therefore, numerical simulations are
helpful [33, 79, 108] to provide a complete visualization of a BEC and to compute
some of its features (e.g. phase structure) in some various and complex situations
(e.g. multi-components, different potentials, nonlinear long-range interactions). The
limitations are essentially due to the model that is chosen.

Let us consider the model problem of a GPE with a nonlinearity defined by a
function f and with a rotation term

i∂tψ(t,x) =−1
2

∆ψ(t,x)−ΩLzψ(t,x)+V (x)ψ(t,x)
+ f (|ψ|2)ψ(t,x), ∀t > 0, ∀x ∈ Rd ,

ψ(0,x) = ψ0(x) in L2
x.

(20)
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Function V which acts from Rd
x onto R+ corresponds to a (confining) poten-

tial. Function f can be a real-valued smooth function like for the standard case
f (|ψ|2) = β |ψ|2σ , with β ∈ R and σ > 0. In practice, many other situations ex-
ist. As seen before (Section 1.3.2, page 12), f is not necessarily a function but can
also be an integro-differential operator like for dipole-dipole magnetic interactions.
The parameter Ω ∈ R is the rotation speed. The rotation operator Lz is given by:
Lz =−i(x∂y− y∂x). To fix the ideas, let us remark that we may choose a transverse
rotation which is written via the operator Lz. For d = 1, there is no rotation (Ω = 0).

The computation of the stationary states can be done via the minimization of the
energy under constraint. For (21), the energy is given by

EΩ ,F(ψ) :=
∫
Rd
(

1
2
|∇ψ|2 +V (x)|ψ|2−Ωψ

∗Lzψ +F(|ψ|2))dx, (21)

where F is the primitive function of f

∀r ∈ [0,∞[, F(r) :=
∫ r

0
f (q)dq.

Hence, the minimization problem consists in computing a function φ ∈ L2
x such that

EΩ ,F(φ) = min
‖ψ‖L2x

=1
EΩ ,F(ψ). (22)

From a numerical point of view, this implies that a strategy based on numerical non-
linear optimization techniques under constraints can be used to obtain the stationary
states. A second approach is related to the property (see Section 1.4.1, page 18) that
the problem can also be formulated as the nonlinear eigenvalue problem: find an
eigenfunction φ ∈ L2

x and an eigenvalue µ ∈ R such that

µφ =−1
2

∆φ −ΩLzφ +V (x)φ + f (|φ |2)φ , (23)

under the L2
x-normalization constraint for φ . Concerning the nonlinear eigenvalue

solvers, we refer for example to [55] for an application in the framework of GPEs.
Here, we essentially develop a method that is embedded in the class of the mini-

mization methods. This approach is called Conjugate Normalized Gradient Flow
(CNGF) and corresponds to the well-known imaginary time method in physics
[4, 22, 34, 46, 47, 57, 64]. Let us however remark that other minimization meth-
ods can be used [30, 45, 50, 55]. The CNGF method consists in building a mini-
mizing sequence of the energy functional EΩ ,F given by (22). To this end, we con-
sider a time discretization (tn)n∈N, with t0 = 0, and we define the local time step:
δ tn = tn+1− tn, ∀n ∈ N. The CNGF method is given by the algorithm: compute the
sequence of iterates (φ(x, tn))n∈N defined by
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∂tφ(x, t) =−Dφ∗EΩ ,F(φ) =
1
2

∆φ(x, t)+ΩLzφ(x, t)−V (x)φ(x, t)
− f (|φ |2)φ(x, t), ∀t ∈ [tn, tn+1[, ∀x ∈ Rd ,

φ(x, tn+1) := φ(x, t+n+1) =
φ(x, t−n+1)

||φ(x, t−n+1)||L2
x

,

φ(x,0) = φ0(x) ∈ L2
x, with ||φ0||L2

x
= 1.

(24)

In the above equations, we designate by g(t+n+1) (respectively g(t−n+1)) the limit
from the right (respectively from the left) of a function g. The discrete times tn
parametrize the sequence. This explains why we use the ”inverse” notation φ(x, t)
instead of φ(t,x). Correctly choosing the initial data φ0 in the iterative algorithm is
important to ensure the convergence. In practice, as we will see later in Section 2.3
(page 37), a suitable choice consists in considering initial data built as Ansatz of the
underlying equation (GPE) with respect to a given asymptotic regime.

The CNGF method conserves the L2
x-norm of the solution [22]. Moreover, Bao

& Du [22] proved that the algorithm (25) produces a sequence that minimizes the
energy in the linear case (i.e. f (|φ |2) = 0) for a positive potential (i.e. V (x) ≥ 0).
Hence, under these assumptions, we prove that

lim
t→∞

φ(x, t) = φg(x), (25)

where φg is a stationary state. Practically, the long time computation (26) is fixed
according to a stopping criterion that we will precise later.

2.2 Time and space discretizations of system (25)

In this Section, we consider several time and space discretization schemes for the
system (25). The Partial Differential Equation that we want to solve is similar to a
heat equation (and not a Schrödinger equation) in imaginary time. At first glance,
one may think that using a standard method adapted to this class of equations would
lead to an admissible scheme. Nevertheless, an important point to keep in mind is
that a normalization constraint must be fulfilled and, more importantly, that we want
to build a minimizing sequence of the energy functional. Therefore, as precise be-
fore, the imaginary time parametrizes the optimization algorithm at the continuous
level. As a consequence, a suitable scheme must produce a minimizing sequence,
at least in some situations (e.g. for f := 0). In [22], Bao & Du analyze a few a pri-
ori standard schemes for (25). The conclusion is the following. The time splitting
scheme (see Section 4.2, page 54, for the real time-domain GPE) which is generally
an efficient and accurate method in computational dynamics must not be used here
since the time step required to get a decaying energy is too small. This property can
be observed even in simple situations, for example for the non rotating case (Ω = 0).
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Another solution consists in applying the unconditionally stable Crank-Nicolson
(CN) scheme that has the a priori advantage of being second-order accurate both in
space and time. The difficulty is that this scheme is extremely time consuming since
it requires the accurate solution to a nonlinear PDE at each time step. A possibil-
ity consists in writing in an explicit way the nonlinear term (semi-implicit scheme)
resulting in the solution of a linear (and not nonlinear) system at each time step.
Even if this solution seems attractive, the associated sequence is minimizing if a
strong restrictive CFL (Courant-Friedrichs-Lewy) condition between the time and
spatial steps holds. Concerning the backward Euler scheme (and similarly to the
CN scheme), a nonlinear system must also be solved at each time step. However,
the very nice result obtained by Bao & Du [22] is that the semi-implicit backward
Euler scheme (see section 2.2.1) produces a minimizing sequence without any CFL
condition, unlike the CN scheme. This property holds when the potential V is posi-
tive.

Concerning the spatial discretization, we consider two approaches (section 2.2.2).
The first one consists in simply choosing a standard second-order finite difference
scheme. An alternative discretization is the pseudo-spectral scheme based on Fast
Fourier Transforms (FFTs). The reason why this last choice is seducing is that the
resulting CNGF method is very robust while also being simple. Indeed, it leads to
the accurate computation of the stationary states even for GPEs with large rotation
speeds Ω . These states cannot be reached when considering low-order spatial dis-
cretization schemes (second-order for example). Finally, the efficiency of the FFT
algorithms on large clusters of HPC can lead to the possibility of computing ex-
tremely complex 3d BECs configurations, based on CPU, GPU or hybrid comput-
ers.

2.2.1 Semi-implicit backward Euler scheme in time

Let us introduce the semi-implicit Euler scheme [22] (which is a reference scheme in
the sequel). We consider a uniform time discretization: δ tn = δ t = tn+1−tn, ∀n∈N,
and obtain the semi-discrete time scheme for CNGF

φ̃(x)−φ(x, tn)
δ t

=
1
2

∆φ̃(x)+ΩLzφ̃(x)−V (x)φ̃(x)
− f (|φ(x, tn)|2)φ̃(x), ∀x ∈ Rd ,

φ(x, tn+1) =
φ̃(x)
||φ̃ ||L2

x

,

φ(x,0) = φ0(x), with ||φ0||L2
x
= 1.

(26)

The reason why this scheme is considered as a ”good” discretization scheme for
CNGF is a consequence of the following Theorem (Bao & Du [22]).

Theorem 1 Let us assume that V (x) ≥ 0, ∀x ∈ Rd , Ω = 0 and f (|φ |2) = β |φ |2.
Then, for any β ≥ 0, the following results hold: ∀n ∈ N,
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‖φ(x, tn)‖L2
x
= ‖φ0‖L2

x
= 1,

and
EΩ , f (φ̃(·))≤ EΩ , f (φ(·, tn)).

Theorem 1 confirms that the semi-implicit Euler discretization scheme leads to a
decaying modified energy EΩ , f at each step of the projected steepest descent algo-
rithm.

To numerically check that the numerical solution converged to the stationary
state, we consider in the sequel the following (strong) criterion

||φ(·, tn+1)−φ(·, tn)||∞ < εδ t, (27)

where ‖ · ‖∞ is the infinity norm. We need to fix ε small enough to obtain a good
accuracy of the stationary state, most particularly when considering highly accurate
solutions based on pseudo-spectral approximation techniques. Let us remark that
we may also choose another (weak) stopping criterion that is associated with the
evolution of the energy

|EΩ ,F(φ(·, tn+1))−EΩ ,F(φ(·, tn))|< εδ t. (28)

This second criterion is defined in GPELab.

2.2.2 Spatial discretizations

We now focus on the spatial discretization of system (27). We consider the case of
the dimension d = 2, the generalization to d = 1 and d = 3 being direct by adapt-
ing the notations. Since problem (27) is set in the whole space, the computational
domain has to be truncated. Because there is no physical boundary, it is natural to
choose a rectangular computational domain O :=]−ax,ax[×]−ay,ay[. We consider
a uniform discretization grid for O: for any indices J(≥ 3) and K(≥ 3) in N, we
define

OJ,K =
{

x j,k = (x j,yk) ∈ O, ∀ j ∈ {0, ...,J} and ∀k ∈ {0, ...,K}
}
, (29)

with hx = x j+1 − x j, ∀ j ∈ {0, ...,J − 1}, and hy = yk+1 − yk, ∀k ∈ {0, ...,K −
1}. We introduce: x0 = −ax, xJ = ax, y0 = −ay and yK = ay. Furthermore, we
define the set of indices: FJ,K =

{
( j,k) ∈ N2;1≤ j ≤ J−1 and 1≤ k ≤ K−1

}
,

for finite difference schemes with a Dirichlet boundary condition, and PJ,K ={
( j,k) ∈ N2;1≤ j ≤ J and 1≤ k ≤ K

}
, for the pseudo-spectral approximation with

periodic boundary condition.
Finite difference discretization. We give the discretization of the operators ap-

pearing in problem (27) when using finite differences. We assume that the potential
V confines the stationary states in O (which is physically realistic) and that we can
choose a Dirichlet boundary condition, i.e. φ̃(x) = 0, for x ∈ ∂O . For any function
ϕ defined on the grid OJ,K , we set: ϕ(x j,k) = ϕ(x j,yk) = ϕ j,k, for points x j,k in the
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computational grid, j ∈ {1, ...,J− 1}, k ∈ {1, ...,K− 1}, considering the Dirichlet
boundary condition. Concerning the directional derivatives along x or y, we use the
second-order approximations

∀( j,k) ∈FJ,K , δxφ j,k =
φ j+1,k−φ j−1,k

2hx
, δyφ j,k =

φ j,k+1−φ j,k−1

2hy
. (30)

Since we impose a Dirichlet boundary condition, we have: ∀( j,k) ∈FJ,K

δxφ1,k =
φ2,k

2hx
, δyφ j,1 =

φ j,2

2hy
, δxφJ−1,k =−

φJ−2,k

2hx
, δyφ j,K−1 =−

φ j,K−2

2hy
.

Consequently, the second-order discretization of the rotation operator Lz is

∀( j,k) ∈FJ,K ,([Lz]φ) j,k :=−i(x jδyφ j,k− ykδxφ j,k). (31)

If L = (J− 1)(K− 1), we associate the matrix [Lz] ∈ML(C) to this discrete op-
erator and we denote by φ := (φI( j,k))( j,k)∈FJ,K the unknown vector in CL, where
we assume that the indices ordering is such that: I( j,k) = j +(J− 1)(k− 1), and
φI( j,k) = φ j,k.

Concerning the derivatives of order two, we use the second-order centered three-
points formulae in the directions x and y: ∀( j,k) ∈FJ,K

δ
2
x φ j,k =

φ j+1,k−2φ j,k +φ j−1,k

h2
x

, δ
2
y φ j,k =

φ j,k+1−2φ j,k +φ j,k−1

h2
y

. (32)

Since we consider a Dirichlet boundary condition, we have: ∀( j,k) ∈FJ,K

δ
2
x φ1,k =

φ2,k−2φ1,k

h2
x

, δ
2
y φ j,1 =

φ j,2−2φ j,1

h2
y

,

δ
2
x φJ−1,k =

−2φJ−1,k +φJ−2,k

h2
x

, δyφ j,K−1 =
−2φ j,K−1 +φ j,K−2

h2
y

.

The Laplacian operator ∆ is then classically discretized by the five-points finite
difference scheme

∀( j,k) ∈FJ,K , ([∆ ]φ) j,k = δ
2
x φ j,k +δ

2
y φ j,k. (33)

We associate the matrix [∆ ] ∈ML(C) to this discrete operator.
The potential and nonlinear operators are pointwise evaluated: ∀( j,k) ∈FJ,K

([V ]φ) j,k =V (x j,k)φ j,k and ([ f (|φ n|2)]φ) j,k = f (|φ n
j,k|2)φ j,k. (34)

The matrices [V ] ∈ML(C) and [ f (|φ n|2)] ∈ML(C) are diagonal after the indices
reordering.

Finally, the finite difference discretization of problem (27) leads to the finite
dimensional approximation: compute the sequence of vector fields (φ n)n∈N in CL



Modeling and computation of BECs 29

through 
ABE,n

FD φ̃ = bn,

φ
n+1 =

φ̃

||φ̃ ||`2
0

,

φ
0 = φ 0,

(35)

with 
ABE,n

FD :=
1
δ t

[I]− 1
2
[∆ ]−Ω [Lz]+ [V ]+ [ f (|φ n|2)],

bn :=
φ

n

δ t
.

In the above system, [I] is the identity matrix in ML(C). The initial data φ
0 is fixed

by the values of φ0 at the grid points. In the framework of Dirichlet boundary con-
ditions, we define the 2-norm || · ||`2

0
of a complex-valued vector φ ∈ CL by

||φ ||`2
0

:= h1/2
x h1/2

y ( ∑
( j,k)∈FJ,K

|φI( j,k)|2)1/2. (36)

Furthermore, we define the discrete (strong) stopping criterion as

||φ n+1−φ
n||∞ < εδ t, (37)

with the discrete uniform norm defined by: ∀φ ∈CL, ‖φ‖∞ = max( j,k)∈FJ,K |φI( j,k)|,
and the discrete (weak) stopping criterion as

|EΩ ,F(φ
n+1)−EΩ ,F(φ

n)|< εδ t, (38)

with the discrete energy

EΩ ,F(φ) =

(hxhy)
1/2

∑
( j,k)∈FJ,K

Re

{
φ
∗
I( j,k)

(
−1

2
[∆ ]φ −Ω [Lz]φ +[V ]φ +[F(|φ |2)]φ

)
j,k

}
.

In the sequel, the discretization scheme (36) is called BEFD (for Backward Euler
Finite Difference). This scheme produces a minimizing sequence (φ n)n∈N of the
modified energy under the assumptions of Theorem 1, without CFL condition, and
with second-order accuracy in space.

Pseudo-spectral discretization. Let us now consider the pseudo-spectral approx-
imation scheme based on FFTs. We still assume that the state is localized in the
box O . Unlike finite differences, we consider a periodic boundary condition which
is satisfied since the function a priori vanishes on the boundary. If one chooses a
Dirichlet boundary condition, then Fast Sine Transforms must be used. For a Neu-
mann boundary condition, Fast Cosine Transforms must be applied. Nevertheless,
these two last transforms require to be correctly coded through FFTs to be efficient.
For example, these two methods are not included in the basic version of Matlab
(but are defined in the signal processing toolbox) contrary to the FFT (which is a
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compiled version of FFT3W). Since GPELab is developed under the basic Matlab
version, we restrict our study to the FFT-based algorithm.

In this framework, a function ϕ (that can be considered as an approximation of
the solution φ̃ of problem (27)) is defined on the uniform grid OJ,K by ϕ j,k, for any
indices ( j,k) ∈PJ,K , i.e. excluding j = 0 and k = 0. Let M := JK be the number
of degrees of freedom for the periodic boundary-value problem. Let us introduce
ϕ := (ϕ j,k)( j,k)∈PJ,K , that is, ϕ ∈ CM by a lexicographic reordering (that we do
not precise for conciseness). The approximate pseudo-spectral approximations of a
function φ in the x- and y-directions (which is represented on OJ,K) are respectively
based on truncated partial inverse Fourier series representations: ∀( j,k) ∈PJ,K ,

φ(t,x j,yk)≈ ϕ(x j,yk, t) =
1
J

J/2−1

∑
p=−J/2

ϕ̂p(yk, t)eiµp(x j+ax),

φ(t,x j,yk)≈ ϕ(x j,yk, t) =
1
K

K/2−1

∑
q=−K/2

ϕ̂q(xk, t)eiλq(yk+ay),

(39)

where ϕ̂p and ϕ̂q are respectively the Fourier coefficients of the function ϕ in the
directions x and y, the Fourier multipliers being: µp =

π p
ax

and λq =
πq
ay

. The functions
ϕ̂p and ϕ̂q can be expressed as

ϕ̂p(yk, t) =
J−1

∑
j=0

ϕ(x j,yk, t)e−iµp(x j+ax),

ϕ̂q(x j, t) =
K−1

∑
k=0

ϕ(x j,yk, t)e−iλq(yk+ay).

(40)

Consequently, the effect of a directional derivative along x or y, respectively, is writ-
ten under the form, ∀( j,k) ∈PJ,K ,

([[∂x]]ϕ) j,k =
1
J

J/2−1

∑
p=−J/2

iµpϕ̂p(yk, t)eiµp(x j+ax),

([[∂y]]ϕ) j,k =
1
K

K/2−1

∑
q=−K/2

iλqϕ̂q(xk, t)eiλq(yk+ay).

Hence, we deduce the following approximation of the rotational operator Lz on OJ,K

([[Lz]]ϕ) j,k =−i
(
x j([[∂y]]ϕ) j,k− yk([[∂x]]ϕ) j,k

)
. (41)

The formal applications of derivatives to the previous representations yield the ap-
proximations of the second-order derivatives: ∀( j,k) ∈PJ,K ,
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([[∂ 2
x ]]ϕ) j,k =

1
J

J/2−1

∑
p=−J/2

−µ
2
pϕ̂p(yk, t)eiµp(x j+ax),

([[∂ 2
y ]]ϕ) j,k =

1
K

K/2−1

∑
q=−K/2

−λ
2
q ϕ̂q(xk, t)eiλq(yk+ay),

leading to the approximation of the Laplacian operator ∆

([[∆ ]]ϕ) j,k =
(
[[∂ 2

x ]]ϕ +[[∂ 2
y ]]ϕ

)
j,k . (42)

The potential and nonlinear operators are given pointwise, ∀( j,k) ∈PJ,K ,

([[V ]]ϕ) j,k =V (x j,k)ϕ j,k and ([[ f (|φ n|2)]]ϕ) j,k = f (|φ n
j,k|2)ϕ j,k. (43)

The pseudo-spectral approximation of (27) then produces a sequence of vectors
(φ n)n∈N solution to 

ABE,n
SP φ̃ = bBE,n,

φ
n+1 =

φ̃

||φ̃ ||`2
π

,

φ
0 := φ 0,

(44)

where φ̃ ∈ CM . The right-hand side is

bBE,n :=
φ

n

δ t
,

with φ
n ∈CM . The map ‖ ·‖`2

π
corresponds to the discrete L2

x-norm on the grid OJ,K

for a vector φ ∈ CM

||φ ||`2
π

:= h1/2
x h1/2

y ( ∑
( j,k)∈PJ,K

|φ j,k|2)1/2. (45)

Furthermore, we define the discrete (strong) stopping criterion as

||φ n+1−φ
n||∞ < εδ t, (46)

with the discrete uniform norm defined by: ∀φ ∈ CM , ‖φ‖∞ = max( j,k)∈PJ,K |φ j,k|,
and the discrete (weak) stopping criterion as

|EΩ ,F(φ
n+1)−EΩ ,F(φ

n)|< εδ t, (47)

with the discrete energy

EΩ ,F(φ) =

(hxhy)
1/2

∑
( j,k)∈PJ,K

Re

{
φ
∗
j,k

(
−1

2
[[∆ ]]φ −Ω [[Lz]]φ +[[V ]]φ +[[F(|φ |2)]]φ

)
j,k

}
.
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In (45), the operator ABE,n
SP is a map which, for any vector φ ∈ CM , associates a

vector ψ ∈ CM such that

ψ := ABE,n
SP φ = ABE,n

TF ψ +ABE
∆ ,Ω φ ,

ABE,n
TF φ := (

[[I]]
δ t

+[[V ]]+ [[ f (|φ n|2)]])φ ,

ABE
∆ ,Ω φ := (−1

2
[[∆ ]]−Ω [[Lz]])φ ,

(48)

where [[I]] is the identity matrix of MM(C).
To evaluate the operator ABE,n

TF , we use (44). We remark that the operator is diag-
onal in the physical space. For ABE

∆ ,Ω , we consider (42) and (43) for [[Lz]] and [[∆ ]],
respectively. Let us note that ABE

∆ ,Ω is not diagonal in the physical space but [[∆ ]],
defined by (43), is diagonal in the Fourier space. The semi-implicit backward Eu-
ler scheme with a pseudo-spectral approximation is now designated by BESP (for
Backward Euler pseudo-SPectral).

2.2.3 Fully discretized semi-implicit Crank-Nicolson scheme

The discretization of (25) by using the semi-implicit Crank-Nicolson scheme is

φ̃(x)−φ(x, tn)
δ t

=
1
2

∆(
φ̃(x)+φ(x, tn)

2
)+ΩLz(

φ̃(x)+φ(x, tn)
2

)

−V (x)(
φ̃(x)+φ(x, tn)

2
)− f (|φ(x, tn)|2)(

φ̃(x)+φ(x, tn)
2

), ∀x ∈ Rd ,

φ(x, tn+1) =
φ̃(x)
||φ̃(x)||L2

x

,

φ
0 = φ0, with ||φ0||L2

x
= 1.

(49)
In [22], Bao & Du proved that the scheme (50) for the one-dimensional case gener-
ates a minimizing sequence of the energy functional under some assumptions similar
to Theorem 1, with β = 0, but with the following strong CFL constraint

δ t ≤ 2h2
x

2+h2
x max

j∈{1,...,J−1}
V (x j)

, (50)

for a uniform finite difference discretization (x j) j∈{1,...,J−1}, with spatial step hx, on
an interval ]−ax,ax[. In a practical computation, this CFL is very restrictive.

Concerning the spatial discretization, the previous approaches (FD and SP) di-
rectly extend. For example, for the finite difference scheme at the iteration n, we
obtain the CNFD scheme 

ACN,n
FD φ̃ = bn,

φ
n+1 =

φ̃

||φ̃ ||`2
0

,
(51)
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with
ACN,n

FD :=
1
δ t

[I]+
1
2
(−1

2
[∆ ]−Ω [Lz]+ [V ]+ [ f (|φ n|2)]),

bn :=
φ

n

δ t
+

1
2
(

1
2
[∆ ]+Ω [Lz]− [V]− [ f (|φ n|2)])φ n,

and the initial data φ
0 = φ 0 ∈ CL.

For the pseudo-spectral approximation at iteration n, the CNSP scheme is
ACN,n

SP φ̃ = bCN,n,

φ
n+1 =

φ̃

||φ̃ ||`2
π

,
(52)

where ACN,n
SP is the operator which maps any vector φ ∈ CM to ψ ∈ CM through the

relations
ψ := ACN,n

SP φ = ACN,n
TF φ +ACN,n

∆ ,Ω φ ,

ACN,n
TF φ := (

[[I]]
δ t

+
1
2
[[V ]]+

1
2
[[ f (|φ n|2)]])φ ,

ACN
∆ ,Ω φ := (−1

4
[[∆ ]]− 1

2
Ω [[Lz]])φ .

(53)

The right-hand side is

bCN,n := (
[[I]]
δ t

+
1
2
(

1
2
[[∆ ]]+Ω [[Lz]]− [[V ]]− [[ f (|φ n|2)]]))φ n. (54)

Like for the semi-implicit Euler scheme, we remark that ACN,n
TF is diagonal in the

physical space and A∆ ,0 is also diagonal but in the Fourier space.

2.2.4 BESP or CNSP? That is the question

In Sections 2.2.1, 2.2.2 and 2.2.3, we introduced the BESP and CNSP schemes that
correspond to the semi-implicit Euler and Crank-Nicolson schemes for a pseudo-
spectral spatial discretization. We have seen that BESP diminishes the energy with-
out any CFL condition between the time and spatial steps while the CNSP scheme
is constrained. We illustrate here through a numerical example that the constraint
related to CNSP makes it useless for computing a stationary state while BESP is
robust. A similar conclusion applies to BEFD and CNFD.

Let us consider the two-dimensional problem{
i∂tψ(t,x) =−1

2
∆ψ(t,x)−ΩLzψ(t,x)+V (x)ψ(t,x)+β |ψ|2ψ(t,x),

ψ(0,x) = ψ0(x) ∈ L2
x,

(55)

for t > 0 and x ∈ R2. The potential is harmonic: V (x) = 1
2 (γ

2
x x2 + γ2

y y2), with γx =
γy = 1. Moreover, we assume that: β ∈R+ and Ω ∈R. We consider BESP and CNSP
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for δ t = 10−1 to show the behavior of the associated energy. When using BESP and
CNSP, each iteration n requires the solution to a linear system by a Krylov subspace
iterative solver (see Section 2.4). The computational domain is: O =]−10,10[2, for
a uniform grid OJ,K , with J = K = 29. The initial data is chosen as the Thomas-
Fermi approximation (66) when β 6= 0 and the centered gaussian

φosc(x) =
(γxγy)

1/4
√

π
e−(γxx2+γyy2)/2, (56)

for β = 0.
We report on Figures 3(a)-3(b) the evolution of the energy ∆EΩ ,F = EΩ ,F(φ

1)−
EΩ ,F(φ

0) for BESP and CNSP for the first time step with respect to β and Ω . We
observe that the energy decays for BESP in all cases. However, the energy increases
for CNSP, leading to the divergence of the scheme almost immediately (this is worst
for large values of β ). To illustrate the difference between these two schemes, we
draw on Figures 4(a) and 4(b) the evolution of the energy for BESP and CNSP,
respectively, until T = 1 for the time steps δ t = 10−1, 10−2 and 10−3, with β = 500
and Ω = 0.5. For BESP, the energy decays for the three time steps. We can also
see that the energy decays faster as the time step is smaller. Concerning CNSP, we
observe that the method diverges for δ t = 10−1 since the energy increases. For the
time steps δ t = 10−2 and 10−3, the energy decays smoothly all along the simulation
similarly to BESP. To have a diminishing energy, a significantly smaller time step
must be chosen, limiting hence the application range of CNSP most particularly in
terms of convergence rate towards the minimum. For this reason, BESP is a robust
scheme. Other simulations support this conclusion for Ω > 0. Finally, only BESP
and BEFD are considered in the sequel.
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Fig. 3 Evolution of the energy for the first time step for BESP and CNSP.
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Fig. 4 Evolution of the energy until T = 1 for BESP and CNSP with β = 500 and Ω = 0.5.

2.2.5 BESP or BEFD? This is another question

We analyze now the spatial accuracy of BESP and BEFD. In particular, we show that
there is a great interest in considering the pseudo-spectral approximation rather than
the finite difference scheme. A similar study has been conducted by Bao, Chern &
Lim [21], for Ω = 0, where the authors show that BESP provides a spectral precision
compared with BEFD.

We first consider a numerical test similar to [21]. The problem is{
i∂tψ(t,x) =−1

2
∂

2
x ψ(t,x)+V (x)ψ(t,x)+β |ψ|2ψ(t,x),

ψ(0,x) = ψ0(x) ∈ L2
x ,

(57)

where V (x) = 1
2 x2, β = 300 and ψ0 is the centered normalized gaussian, i.e.

∀x ∈ R, ψ0(x) =
1

π1/4 e−
x2
2 .

We choose the computational domain O =]−10,10[ and the associated uniform grid
OJ , with 6 ≤ J ≤ 12. We use BESP and BEFD for computing a stationary state of
(58) on various grids. The time step is δ t = 10−1 and the linear systems are solved by
BiCGStab with a stopping criterion εKrylov = 10−12. Let φ

SP
J (respectively, φ

FD
J ) be

the stationary state computed on OJ , 6≤ J ≤ 12, with BESP (respectively, BEFD),
and φ

SP
ref = φ

SP
212 (respectively, φ

FD
ref = φ

FD
212 ) the reference stationary state. We report

in Table 1 the quadratic error, the infinity norm error and finally the energy norm
error between the reference and computed stationary states for BESP and BEFD.
We observe the spectral accuracy of the stationary states obtained with BESP and
the quadratic precision of BEFD with respect to the different grids.

Let us now consider the two-dimensional example given by system (56) for the
harmonic potential : V (x) = 1

2 (γ
2
x x2 + γ2

y y2), with γx = γy = 1. We fix β = 300 and
Ω = 0.6. The computational domain is O =]− 10,10[2, for a uniform spatial grid



36 Modeling and computation of BECs

J = 26 J = 27 J = 28 J = 29 J = 210 J = 211

‖φ SP
ref−φ

SP
J ‖∞ 5.00e-5 8.30e-9 <1e-12 <1e-12 <1e-12 <1e-12

‖φ FD
ref −φ

FD
J ‖∞ 3.21e-5 2.12e-6 1.33e-7 8.32e-9 6.03e-10 1.94e-10

‖φ SP
ref−φ

SP
J ‖`2

π
4.51e-5 1.00 e-8 <1e-12 <1e-12 <1e-12 <1e-12

‖φ FD
ref −φ

FD
J ‖`2

0
2.99e-5 1.96e-6 1.23e-7 7.83e-9 7.15e-10 1.74e-10

|EΩ ,F (φ
SP
ref)−EΩ ,F (φ

SP
J )| 9.19e-5 3.65e-10 2.22e-12 2.66e-12 <1e-12 1.91e-12

|EΩ ,F (φ
FD
ref )−EΩ ,F (φ

FD
J )| 8.30e-6 5.54e-7 3.51e-8 2.23e-9 1.52e-10 1.25e-11

Table 1 Numerical accuracy for BESP/BEFD for computing the ground state associated to (58).

OJ,K , with: 5≤ J,K ≤ 9. The time step is δ t = 10−1. The linear systems are solved
by BiCGStab for a stopping criterion on the residual equal to εKrylov = 10−12. For
J and K varying, we can compare the different computed stationary states with a
reference numerical solution φ ref obtained with BESP on a fine uniform grid (here
OJ,K , with J = K = 29). Let φ J be the state calculated on a grid OJ,K (J = K). We
report on Figure 5(a)-5(f) the different densities obtained for BESP and BEFD. We
remark that, for coarse grids, the solutions are very different and the finite difference
discretization seems to lead to the most accurate results in this case. In Table 2, we
can see that there is an improved accuracy of BESP when going from a grid with
J = 26 to a grid with J = 27. We observe a convergence towards a different stationary
state for the grids with J ≤ 26 and the grids for J > 6 as seen on Figures 5(a)-5(f).
We see that BESP provides a high resolution calculation and the accuracy is far
better than for BEFD for discretization grids with J ≥ 27.

J = 25 J = 26 J = 27 J = 28

‖φ SP
ref−φ

SP
J ‖∞ 1.47e-1 6.95e-2 5.41e-7 1.78e-9

‖φ FD
ref −φ

FD
J ‖∞ 1.29e-1 5.02e-3 6.71e-5 4.39e-6

‖φ SP
ref−φ

SP
J ‖`2

π
1.82e-1 4.23e-2 <1e-12 <1e-12

‖φ FD
ref −φ

FD
J ‖`2

0
4.77e-2 6.46e-5 3.79e-8 1.44e-10

|EΩ ,F (φ
SP
ref)−EΩ ,F (φ

SP
J )| 7.55e-3 5.29e-5 2.54e-8 <1e-12

|EΩ ,F (φ
FD
ref )−EΩ ,F (φ

FD
J )| 5.274e-2 3.054e-3 1.871e-4 1.12e-5

Table 2 Numerical accuracy of BESP and BEFD for computing the stationary state associated
with problem (56).

To conclude, BESP is far more accurate than BEFD when fine enough grids are
considered. As seen in the examples, this precision directly impacts the accuracy of
the associated physical quantities. In the sequel, we focus on BESP.
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(c) BEFD: J = 26
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Fig. 5 Representation of |φ J |2 obtained by BEFD (left) and BESP (right) for different spatial
discretizations.

2.3 Which initial guess for CNGF?

As we discussed above, our goal is to compute a (global) minimizer of the optimiza-
tion problem (23). Before any numerical computation by BESP (or another iterative
scheme), it is quite natural to prospect if some explicit exact or approximate solu-
tions to the GPE are available. This is important for two reasons. Indeed, having
such a solution allows to better understand the physical properties of the GPEs and
BECs from the mathematical point of view. Many developments can be found in
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the Physics literature [97, 99]. We give below the example of the Thomas-Fermi
approximation. In addition, since the optimization problem is extremely complex,
it is unexpected to get an analytical solution for the problem, valid for any interest-
ing situation (weak or strong nonlinearity, various potentials, inclusion of a rotation
term,...). Since the optimization problem is nonlinear, there is no other alternative
than developing some iterative numerical methods. To this end, we need to deter-
mine a suitable initial guess that is injected into the algorithm. In particular, a well-
chosen approximate analytical solution can play this role. In Section 1.4 (page 17),
we distinguished two cases where it is possible to build an approximate solution.
Let us precise these approximations for different situations.

When there is no rotation (i.e. Ω = 0) and the potential is confining, the mini-
mization problem (23) admits a unique global solution φg up to a phase factor [87].
For a potential V such that: ∀x ∈ Rd , V (x) =V0(x)+W (x), where

V0(x) =
1
2

d

∑
j=1

γ
2
x j

x2
j and lim

|x|→∞

W (x)
V (x)

= 0, (58)

and for a weak nonlinear interaction (for example | f (1)| ≤ 10), a suitable approxi-
mation [21] of the fundamental state of problem (21) is given by

∀x ∈ Rd , φosc(x) =
(∏d

j=1 γx j)
1/4

πd/4 e−
1
2 ∑

d
j=1 γx j x2

j , (59)

which corresponds to the fundamental state of the quantum harmonic oscillator [87]{
i∂tψ(t,x) =−1

2
∆ψ(t,x)+V0(x)ψ(t,x), ∀t ∈ R+, ∀x ∈ Rd ,

ψ(0,x) = ψ0(x) ∈ L2
x.

(60)

If one considers now a rotation term (i.e. Ω 6= 0), finding a good approximation is
much more problematic. In particular, the solution to the minimization problem is
not necessarily unique, local minimizers possibly exist (23) and there is sometimes
not even existence of a solution if the rotation is too large [107]. In the case of
a harmonic potential (59), the critical velocity above which there is no existence
of a fundamental state is given by Ωc = min{γx,γy}. In [101], the author shows
that some phase transition phenomenae occur with respect to the rotation velocity
when a quadratic-plus-quartic potential is considered. In particular, it is proved that a
second critical velocity exists above which a giant vortex is created. For more details
about the theory of quantum vortices, we refer to Rougerie & al. [37, 49, 102],
Aftalion & al. [5, 6, 7, 8] and Tsubota & al. [80, 81, 119]. An initial data allowing
to converge towards the correct fundamental state has been proposed by Bao, Wang
& Markowich [32] and consists in choosing the following approximation

φ(x) =
(1−Ω)φosc(x)+Ωφ v

osc(x)
||(1−Ω)φosc(x)+Ωφ v

osc(x)||L2
x

, (61)
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with

φosc(x) = e−
1
2 (γxx2+γyy2) and φ

v
osc(x) = (γxx+ iγyy)e−

1
2 (γxx2+γyy2). (62)

This approximation is in fact an interpolation of the gaussian (60) and the same
gaussian with an added centered vortex (singularity). In the case of a confining po-
tential in the x-direction, we can simplify the equation as a two-dimensional GPE
(see Section 1.5.2, page 21). Moreover, by using the polar coordinates and for an
isotropic potential γx = γy, we obtain [32]

φ
v
osc(x) =

γ2
x eimθ

√
π

e−γxr2/2, (63)

where m = 1 is the ”winding number” of the central vortex and corresponds to
the first vortex mode. By using these initial data, it is possible to converge to the
fundamental state in the case of a subcritical velocity Ω < Ωc. We present on Figure
6(a)-6(b) the initial data (62) in 2d for two rotation speeds. For completeness, we
report the three- and one-dimensional cases (respectively, on Figures 7 (for two
rotation velocities) and 8).

(a) Ω = 0 (b) Ω = 0.99

Fig. 6 Representation of |φ0|2 for the two-dimensional harmonic potential problem (γx = γy = 1)
with a weak nonlinear interaction, without and with a rotation term, by using formula (62).

In the case of a strong interaction, we consider the Thomas-Fermi approximation
(cf. Section 1.4, page 17) which consists in neglecting the kinetic energy related
to the Laplacian and rotation operators. One then gets a simplified minimization
problem where the energy is given by

EΩ ,F(ψ)≈ ETF(ψ) :=
∫
Rd

[
V (x)|ψ(t,x)|2 +F(|ψ(t,x)|2)

]
dx.

More precisely, coming back to an eigenvalue problem similarly to the general case
(24), we are looking for the eigenfunction φTF ∈ L2

x and the eigenvalue µTF ∈ R of
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(a) Ω = 0 (b) Ω = 0.99

Fig. 7 Isovalues |φ0|2 = 10−3 for a three-dimensional harmonic problem (γx = γy = γz = 1) with a
weak interaction, without and with a rotation term, by using formula (62).
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Fig. 8 Representation of |φ0|2 for a one-dimensional harmonic problem (γx = 1) with a weak
interaction.

the problem
µTFφTF = f (|φTF|2)φTF +V φTF,

under the normalization constraint N (φTF) = ‖φTF‖L2
x
= 1. We obtain

∀x ∈ supp(φTF), µTF = f (|φTF|2)+V (x). (64)

By assuming that it is possible to inverse the function f on R, we can then deduce
an explicit form of φTF which is assumed to be real-valued,

∀x ∈ Rd , φTF(x) =

{√
f−1 (µTF−V (x)), for f−1 (µTF−V (x))> 0,

0 , for f−1 (µTF−V (x))≤ 0.

To get µ , we use the mass conservation. For a cubic nonlinearity f (|φ |2) = β |φ |2,
with β ∈ R+, we can choose the following approximation of the fundamental state
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φTF(x) =

{√
µTF−V (x)

β
, for µTF−V (x)> 0,

0 , for µTF−V (x)≤ 0,
(65)

where µTF is given by the expression [21]

µTF =
1
2


(3βγx)

2/3 for d = 1,
(4βγxγy)

1/2 for d = 2,
(

15βγxγyγz
4π

)2/5 for d = 3.
(66)

We represent on Figure 9 the moduli of the Thomas-Fermi approximations (66) for
a quadratic potential (γx = γy = γz = 1) and a cubic nonlinearity in 1d, 2d and 3d.
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(a) Dimension d = 1 (b) Dimension d = 2

(c) Dimension d = 3

Fig. 9 Representation of |φ0|2 for the Thomas-Fermi approximation and a quadratic potential,
β = 1000 (strong interaction) for the 1d, 2d and 3d cases.

The Thomas-Fermi approximation has the advantage of being less restrictive than
the weak interaction approximation concerning the classes of potentials and nonlin-
earities that are eligible. In particular, the following potentials can be considered
(d = 2)

• Quadratic-plus-quartic potential [124]
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V (x) = (1−α)
1
2
(γ2

x x2 + γ
2
y y2)+

κ

4
(γ2

x x2 + γ
2
y y2)2. (67)

• Quadratic-plus-gaussian potential [77]

V (x) =
1
2
(γ2

x x2 + γ
2
y y2)+w0e−

(x−x0)
2+(y−y0)

2

d2 . (68)

• Quadratic-plus-sine potential (also called optical potential) [124]

V (x) =
1
2
(γ2

x x2 + γ
2
y y2)+

a1

2
sin(

πx
d1

)2 +
a2

2
sin(

πy
d2

)2. (69)

• Double-well potential [122]

V (x) =
1
2
(γ2

x x2 + γ
2
y y2)+V0e−x2/2d2

. (70)

Examples of Thomas-Fermi approximations for these potentials are given on Fig-
ures 10 and 11.

(a) γx = γy = 1 (b) γx = γy = 1;x0 = (1,0);d = 1;w0 = 10

Fig. 10 Examples of Thomas-Fermi approximations for potentials (68) (left) and (69) (right).

2.4 Solving BESP linear systems: the fixed point method, its
limitations and Krylov subspace iterative solvers

We consider now the BESP scheme
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(a) γx = γy = 1;a1 = a2 = 25;d1 = d2 = 4 (b) γx = γy = 1/2;V0 = 40;d = 0.5

Fig. 11 Examples of Thomas-Fermi approximations for potentials (70) (left) and (71) (right).


ABE,nφ̃ = bBE,n,

φ
n+1 =

φ̃

||φ̃ ||`2
π

,

φ
0 := φ 0,

(71)

where, for the sake of conciseness, we set: ABE,n := ABE,n
SP . At each iteration n,

it is clear that the minimization method requires the solution of a linear system:
ABE,nφ̃ = bBE,n. Since we use pseudo-spectral approximation methods, the opera-
tor ABE,n is given implicitly through a FFT, meaning that the matrix ABE,n is not
explicitly known by its coefficients. As a consequence, using a direct matrix solver
is not permitted. An alternative solution consists in considering a matrix-free itera-
tive method. A first approach, introduced by Bao et al. [21] for non rotating GPEs,
is based on stationary (fixed-point) methods. It has been next extended to rotating
BEC by Zeng & Zhang [124]. Nevertheless, in [12], some examples show that the
method does not converge when the rotation speed Ω is too large. In [12], the in-
troduction of Krylov subspace iterative solvers (GMRES, BiCGStab) accelerated
by simple operator-based preconditioners provides robust and fast iterative methods
that can be easily extended to the mutli-components case.

2.5 Extension to multi-components BECs

In this Section, we present the extension of BESP to BECs with Nc ∈N components.
The GPEs system that describes this situation is

i∂tΨ(t,x) =−1
2

∆Ψ(t,x)−ΩLzΨ(t,x)+V(x)Ψ(t,x)
+f(Ψ)Ψ(t,x), ∀t ∈ R+, ∀x ∈ Rd ,

Ψ(0,x) =Ψ0(x) ∈ L2,Nc
x , ∀x ∈ Rd ,

(72)
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where we setΨ(t,x)= (Ψ`(t,x))`∈{1,...,Nc} and |Ψ(t,x)|2 =∑
Nc
`=1 |Ψ`(t,x)|2. The non

diagonal operators involved in this system are: V(x) =
(
V`,m(x)

)
`,m∈{1,...,Nc}, and

f(Ψ) =
(
f`,m(Ψ1, ...,ΨNc ,Ψ

∗
1 , ...,Ψ

∗
Nc)
)
`,m∈{1,...,Nc}

.

For the partial differential operators, we have

∆Ψ(t,x) = (∆Ψ`(t,x))`∈{1,...,Nc}, LzΨ(t,x) = (LzΨ`(t,x))`∈{1,...,Nc}.

We furthermore assume that f`,m, 1≤ `,m≤ Nc, are smooth real-valued polynomial
functions and that the operators V and f are symmetrical, i.e. V`,m = Vm,` and f`,m =
fm,`, 1≤ `,m≤Nc, in such a way that we have the mass conservation. For the multi-
components case, let us recall that the mass is given by

N (Ψ) := ‖Ψ‖2
L2

x
=

Nc

∑
`=1
‖Ψ`(t,x)‖2

L2
x
=

Nc

∑
`=1

∫
Rd
|Ψ`(t,x)|2dx,

and the energy by

EΩ ,F(Ψ) :=
Nc

∑
`=1

∫
Rd
(

1
2
|∇Ψ`(t,x)|2−ΩΨ

∗
` (t,x)LzΨ`(t,x))dx

+
Nc

∑
`,m=1

∫
Rd

V`,m(t,x)Ψ ∗` (t,x)Ψm(t,x)+F`,m(Ψ)dx,

where

F`,m(Ψ) :=
∫ 1

0
f`,m(Ψ1, ...,ΨNc ,Ψ

∗
1 , ..., ιΨ

∗
` , ...,Ψ

∗
Nc)Ψ

∗
` Ψmdι .

2.5.1 CNGF for multi-components BECs

Similarly to the proof detailed in Section 1.4 (page 17), we show that a stationary
state is a critical point of the energy functional, i.e. it is solution to the minimization
problem: find a function Φ ∈ L2,Nc

x such that

EΩ ,F(Φ) = min
N (Ψ)=1

EΩ ,F(Ψ). (73)

The CNGF method directly applies to the multi-components case
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∂tΦ(t,x) =−DΦ∗EΩ ,F(Φ) =
1
2

∆Φ(x, t)+ΩLzΦ(x, t)+V(x)Φ(x, t)
+f(Φ)Φ(x, t), ∀t ∈ [tn, tn+1[, ∀x ∈ Rd ,

Φ(x, tn+1) =
Φ(x, t−n+1)

‖Φ(x, t−n+1)‖L2
x

,

Φ(0,x) = Φ0(x) ∈ L2,Nc
x .

(74)

This problem has been studied for example in [16, 17]. Let us recall the following
result which proves that the energy associated with the solution to (75) is decaying
under suitable assumptions.

Theorem 2 Let us assume that the potential operator is diagonal, i.e. V(x) =
(V`(x))`∈{1,...,Nc}, and is such that V`(x) ≥ 0, ∀x ∈ Rd , ∀` ∈ {1, ...,Nc}. Further-
more, we suppose that the nonlinearity is diagonal: f(Φ) = (f`(Ψ))`∈{1,...,Nc}, and
such that f`(Ψ) =∑

Nc
m=1 β`,m|φm|2|φ`|2, with β`,m≥ 0, ∀`,m∈ {1, ...,Nc}. Finally, we

consider that there is no rotation, i.e. Ω = 0. Then, the solution Φ to (75) satisfies,
∀n ∈ N,

∀t ∈ [tn, tn+1[, E0,F(Φ(x, t))≤ E0,F(Φ(x, tn)).

2.5.2 BESP for multi-components BECs

We now essentially focus on the semi-implicit backward Euler time discretization
of (75)

Φ̃(x)−Φ(x, tn)
δ t

=
1
2

∆Φ̃(x)+ΩLzΦ̃(x)+V(x)Φ̃(x)

+f(Φ(x, tn))Φ̃(x), ∀t ∈ [tn, tn+1[, ∀x ∈ Rd ,

Φ(x, tn+1) =
Φ̃(x)
‖Φ̃‖L2

x

,

Φ(0,x) = Φ0(x) ∈ L2,Nc
x .

(75)

Let us precise the spatial discretization of (76) leading to BESP. We consider
that d = 2, the extension to d = 1 and d = 3 being straightforward. The computa-
tional box is O :=]− ax,ax[×]− ay,ay[. The associated discrete grid OJ,K is given
by (30). Let: PNc,J,K =

{
(`, j,k) ∈ N3;1≤ `≤ Nc, 1≤ j ≤ J and 1≤ k ≤ K

}
. For

the pseudo-spectral approximation, the multi-components Laplacian is discretized
by

∀(`, j,k) ∈PNc,J,K , ([[∆ ]]Φ)`, j,k = ([[∆ ]]Φ`)( j,k),

where [[∆ ]] that appears in the right-hand side is given by the expression (43). Sim-
ilarly, the multi-components rotation operator is discretized by

∀(`, j,k) ∈PNc,J,K , ([[Lz]]Φ)`, j,k = ([[Lz]]Φ`)( j,k),
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where [[Lz]] is fixed by (42). For the potential and nonlinear operators, the discretiza-
tion is direct on the grid OJ,K

[[V]] :=


[[V1,1]] [[V1,2]] · · · [[V1,Nc ]]
[[V2,1]] [[V2,2]] · · · [[V2,Nc ]]

...
...

. . .
...

[[VNc,1]] [[V2,Nc ]] · · · [VNc,Nc ]]

 ∈MMNc(C), (76)

where [[Vm,`]] is given by (44), and

[[f(Φn)]] :=


[[f1,1(Φ

n)]] [[f1,2(Φ
n)]] · · · [[f1,Nc(Φ

n)]]
[[f2,1(Φ

n)]] [[f2,2(Φ
n)]] · · · [[f2,Nc(Φ

n)]]
...

...
. . .

...
[[fNc,1(Φ

n)]] [[f2,Nc(Φ
n)]] · · · [[fNc,Nc(Φ

n)]]

 ∈MMNc(C), (77)

where [[fm,`(Φ
n)]], ∀`,m ∈ {1, ...,Nc}, is defined, for any vector field ϕ ∈ CM ,

∀( j,k) ∈PJ,K , by (
[fm,`(Φ

n)]ϕ
)

j,k = fm,`(Φ
n(x j,k))ϕ j,k, (78)

with Φn(x)=Φ(x, tn) for (76). Setting Φ̃ ∈CMNc as the solution to (76), one obtains
the BESP scheme, ∀n ∈ N, 

ABE,n
Φ̃ = bBE,n,

Φ
n+1 =

Φ̃

||Φ̃ ||`2
π

,
(79)

where the operator ABE,n maps a given vector Φ ∈ CMNc to Ψ ∈ CMNc through

Ψ := ABE,n
Φ = ABE,n

TF Φ +ABE,n
∆ ,Ω Φ ,

ABE,n
TF Φ := (

[[I]]
δ t

+[[V]]+ [[f(Φn)]])Φ ,

ABE
∆ ,Ω Φ := (−1

2
[[∆ ]]−Ω [[Lz]])Φ .

(80)

The right-hand side is

bBE,n :=
Φ

n

δ t
. (81)

The matrix [[I]] is the identity matrix of MMNc(C). Finally, the discrete L2,Nc
x -norm

of a vector Φ ∈ CMNc is defined by

||Φ ||`2
π

:= (
Nc

∑
`=1
‖Φ`‖2

`2
π

)1/2. (82)

Furthermore, we define the discrete (strong) stopping criterion as
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||Φn+1−Φ
n||∞ < εδ t, (83)

with the discrete uniform norm defined by: ∀Φ ∈CMNc , ‖Φ‖∞ =∑
Nc
`=1 max( j,k)∈PJ,K |Φ`, j,k|,

and the discrete (weak) stopping criterion as

|EΩ ,F(Φ
n+1)−EΩ ,F(Φ

n)|< εδ t, (84)

with the discrete energy

EΩ ,F(Φ) =

(hxhy)
1/2

∑
( j,k)∈PJ,K

1≤`≤NC

Re

{
Φ
∗
`, j,k

(
−1

2
[[∆ ]]Φ−Ω [[Lz]]Φ +[[V ]]Φ +[[F(|Φ |2)]]Φ

)
`, j,k

}
.

As in the one-component case, preconditioned Krylov subspace solvers can be
used to iteratively solve the associated linear systems (see [12]).

3 Computation: the Gross-Pitaevskii Equation Laboratory

3.1 GPELab: a short presentation

As seen in Section 2 for the stationary state computation and as it will be explained
in Section 4 for the dynamics, the numerical methods that we present are robust
and efficient. Furthermore, they can be quite directly extended to different kinds
of Gross-Pitaevskii Equations and systems. The aim of this Section is to present a
freely available Matlab toolbox called GPELab1 (Gross-Pitaevskii Equation Labo-
ratory) which is based on these advanced numerical schemes. The computational
tools are developed in such a way that they can be easily used by physicists work-
ing on BECs. GPELab allows the user to make various computations in 1d-2d-3d,
for multi-components GPEs with general potentials and nonlinearities. In addition,
the stochastic effects that are described for the dynamics can be numerically simu-
lated according to efficient and accurate schemes. Even if GPELab is dedicated to
Gross-Pitaevskii Equations, it is more generally useful when one wants to solve
problems related to nonlinear Schrödinger equations. Let us remark that at the
time of writing this contribution, other interesting computational codes for solv-
ing GPEs (with a cubic nonlinearity) are proposed by different authors. In [118], a
Fortran 90 solver based on the imaginary time method can solve the stationary state
problem for the one-component GPE with a quadratic potential and without rota-
tion term. In [95, 120], the authors distribute finite difference Fortran 90 codes for
one-component problems with radial and spherical potentials, and no rotation. Im-
provements, in particular the parallelization of the code with OpenMP, are provided

1 http://gpelab.math.cnrs.fr/

http://gpelab.math.cnrs.fr/
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in [120]. Other codes (developed with Fortran or Matlab) for GPEs are available
[44, 75, 90]. Nevertheless, it seems that none of these solvers propose the flexibil-
ity that GPELab offers where many physical situations of interest can be consid-
ered: any potential and nonlinearity, inclusion of gradient-like terms for fast rota-
tions, multi-components cases, stationary states and dynamics of BECs, stochastic
effects. To show how GEPLab is powerful, we now consider a few numerical exam-
ples. Other interesting situations (with downloadable source files) are given in the
GPELab user guide and the associated papers [11, 13].

3.2 Experiment I: stationary state of a 1d BEC with Josephson
junction

In this example, we want to reproduce the numerical simulations obtained in [17]
where the following one-dimensional (d = 1) system of GPEs with a Josephson
junction is considered{

i∂tψ1 =
[
− 1

2 ∆ +V (x)+δ +(β11|ψ1|2 +β12|ψ2|2)
]

ψ1 +λψ2,

i∂tψ2 =
[
− 1

2 ∆ +V (x)+(β22|ψ2|2 +β12|ψ1|2)
]

ψ2 +λψ1.
(85)

In the above system, δ is the detuning constant of the Raman transition, β jk are
the interaction constants between the gazes and λ is the effective Rabi frequency.
We use BESP for a time step δ t = 10−1 and a uniform spatial grid with 210 + 1
points on ]− 16,16[. In addition, the (strong) stopping criterion for computing the
stationary states is 10−6. Following [17], the values of the physical parameters are:
λ = −1, δ = 0, β = 500, β11 = β , β12 = 0.94β , β22 = 0.97β . The initial data is
a centered gaussian for each component. At the end of the computation, we obtain
each component of the stationary state and some interesting physical outputs (see
Table 3). We can also simultaneously print out the moduli of the components and
conclude that they are the same as the ones reported in [17] (see Figure 12).

3.3 Experiment II: stationary state of a fast rotating 2d BEC in a
strongly confining trap

We consider the stationary state computation for a two-dimensional (d = 2) GPE
with a quadratic-plus-quartic potential, a cubic nonlinearity and a rotation operator

i∂tψ =
1
2

∆ψ +

[
1−α

2
(
γx|x|2 + γy|y|2

)
+

κ

4
(
γx|x|2 + γy|y|2

)2
]

ψ

+β |ψ|2ψ + iΩ (y∂x− x∂y)ψ,
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----------------------------------------
Iteration 164 on 1000000
---Outputs of component 1---------------
Square at the origin: 0.03512761887793
x-radius mean square: 2.67309309073190
Energy: 9.97806793424214
Chemical potential: 32.84198217411518
Energy evolution: 0.00000000000000
---Outputs of component 2---------------
Square at the origin: 0.04853615539806
x-radius mean square: 2.99189318517412
Energy: 13.16187704973455
Chemical potential: 38.16552799804442
Energy evolution: 0.00000000000000
----------------------------------------
CPU time: 8.28
>>

Table 3 Stationary states outputs for the two-components GPEs system with Josephson junction.
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Fig. 12 Moduli of the two-components BEC.

with the parameters values α = 1.2, κ = 0.3, γx = γy = 1, β = 1000 and Ω = 3.5.
This is a typical example of a fast rotating BEC. We consider BESP with δ t = 10−3.
The computational domain is ]−10,10[2, discretized by a uniform grid with 28 +1
points in each direction x and y. The (strong) stopping criterion of BESP is 10−5

and the initial data is the Thomas-Fermi approximation associated with the physical
problem. In Table 4, we report the outputs at the end of the simulation. We represent
the modulus of the ground state on Figure 13 obtained by GPELab. In particular, we
can see the existence of many uniformly distributed vortices in the annulus.
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----------------------------------------
Iteration 46766 on 1000000
---Outputs of component 1---------------
Square at the origin: 0.00000000000000
x-radius mean square: 4.57951169686043
y-radius mean square: 4.57951071463754
Energy: 115.52164061561449
Chemical potential: 122.58168418655728
Angular momentum: 146.32747911959200
Energy evolution: -0.00000000141087
>>

Table 4 Outputs at the end of the computation.

Fig. 13 Modulus of the converged stationary state.

3.4 Experiment III: stationary state of a 3d dipole-dipole BEC

We show here a last numerical experiment for the three-dimensional (d = 3) GPE
with a quadratic potential, a cubic nonlinearity to which a dipole-dipole nonlocal
nonlinear interaction is added

i∂tψ =
1
2

∆ψ +
1
2
(
γx|x|2 + γy|y|2 + γz|z|2

)
Ψ

+β |ψ|2ψ +d2(
∫
R3

1−3cos2(â, x̃)
||(x,y,z)− x̃||3

|ψ(t, x̃)|2dx̃)ψ,
(86)

with γx = γy = γz = 1, β = 2000 and a = (0,0,1). The discretization for BESP uses
δ t = 10−2 and a uniform grid with 26 +1 points in each direction x, y and z for the
computational domain ]−15,15[3. The (strong) stopping criterion is fixed to 10−6.
In GEPLab, the nonlinearity which is defined by the dipole-dipole interaction can
be efficiently computed by using FFTs via
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d2
∫
R3

1−3cos2(â, x̃)
||x− x̃||3

|ψ(t, x̃)|2dx̃ =

F−1
(

4π

3
d2(3cos2(â,ω)−1)F

(
|ψ(t,x)|2

)
(ω)

)
(x).

The initial data is the Thomas-Fermi approximation. The converged stationary state
is given on Figure 14 where we report the isovalues of the solution. We remark that
the stationary state has the property of being elongated along the dipolar direction.

Fig. 14 10−3-isovalues of the modulus for the converged stationary state.

4 Computation: dynamics

We develop now the numerical simulation of the dynamics of deterministic (Section
4) or stochastic (Section 5) GPEs (or systems of GPEs) with a rotational term. Let
us consider the model equation

i∂tψ(t,x) =−1
2

∆ψ(t,x)−ΩLzψ(t,x)+V (t,x)ψ(t,x)
+ f (|ψ|2)ψ(t,x), ∀t ∈ R+, ∀x ∈ Rd ,

ψ(0,x) = ψ0(x) ∈ L2
x.

(87)

Our aim is to propose some efficient, robust and accurate discretization schemes
that reproduce at the discrete level some continuous physical properties (see Sec-
tion 4.1). Like for the stationary states computation, we use high-precision pseudo-
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spectral FFT-based discretization schemes. Essentially, we analyze the time-splitting
(Section 4.2) and relaxation (Section 4.3) schemes. We discuss some other schemes
that we do not recommend (Section 4.4). We also present a recent idea [27] based
on a change of frame for a rotational BEC that should be further investigated in the
future since it simplifies the implementation of the standard schemes. We extend
the time-splitting and relaxation schemes to multi-components GPEs (Section 4.5).
We detail three examples of numerical simulations for a rotating BEC (Section 4.6).
The orders of all these schemes are computed and we check the mass and energy
conservation properties. The examples are based on GPELab.

Section 5 concerns the extension and study of these numerical schemes for solv-
ing the stochastic GPE

i∂tψ(t,x) =−1
2

∆ψ(t,x)−ΩLzψ(t,x)+V (ẇt ,x)ψ(t,x)
+ f (|ψ|2)ψ(t,x), ∀t ∈ R+, ∀x ∈ Rd ,

ψ(0,x) = ψ0(x) ∈ L2
x,

(88)

introduced in Section 1.3.3 (page 13).

4.1 Dynamics of the GPE and continuous/discrete properties

The dynamics of a BEC is driven by the GPE (d = 1,2,3)
i∂tψ(t,x) =−1

2
∆ψ(t,x)−ΩLzψ(t,x)+V (t,x)ψ(t,x)

+ f (|ψ|2)ψ(t,x), ∀t ∈ R+, ∀x ∈ Rd ,

ψ(0,x) = ψ0(x) ∈ L2
x.

(89)

We use the notations introduced in Section 2.1. We assume that the initial data is
localized in a rectangular domain O =]−ax,ax[×]−ay,ay[×]−az,az[, with ax, ay,
az ∈ R+ (depending on the dimension). Let Ω = 0 and V (t,x) = V (x). The so-
lution ψ of (90) fulfills some important mathematical/physical properties that the
approximation schemes should preserve at the discrete level. In the positive case,
the scheme is considered as a ”good” scheme. These continuous properties are the
following

• Time reversibility: the solution ψ is still the solution of equation (90) after chang-
ing the time variable t→−t and applying a complex conjugation.

• Dispersion relation: if V ≡ 0, the plane wave solution ψ(t,x) = ρei(k·x−ωt) sat-
isfies the following dispersion relation

ω =
|k|2

2
+ f (|ρ|).

• Gauge transformation: the translation of the potential
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∀ρ ∈ R,∀x ∈ Rd , V (x)−→V (x)+ρ,

creates the following change of phase in the solution

∀t ∈ R+, ∀x ∈ Rd , ψ(t,x)−→ ψ(t,x)e−iρt .

We remark that the modulus of the solution remains unchanged.
• Mass conservation: the total mass is conserved over the time

N (ψ)(t) := ‖ψ(t, ·)‖2
L2

x
=
∫
Rd
|ψ(t,x)|2dx = N (ψ0),∀t > 0. (90)

• Energy conservation: if f (|ψ|2) = β |ψ|2, the energy is preserved [19]

E0,β (ψ)(t) :=
∫
Rd
(

1
2
|∇ψ(t,x)|2 +V (x)|ψ(t,x)|2 + β

2
|ψ(t,x)|4)dx = E0,β (ψ0),

for any t > 0.

We consider the two-dimensional case, the extensions to the dimensions d = 1
and d = 3 are direct. Let δ t be the uniform time step and

(ψn
( j,k))( j,k)∈F j,k

the approximate solution at time tn = nδ t on a uniform grid OJ,K . At the discrete
level, the previous properties read

• Time reversibility: changing the indices (n,n+ 1)↔ (n+ 1,n) lets the solution
unchanged: ψn+1↔ ψn.

• Dispersion relation: if V ≡ 0 and the initial data is given by

ψ
0
( j,k) = ρeik·x j,k ,

the discrete solution is
ψ

n
( j,k) = ρei(k·x j,k−ωtn),

where we have the dispersion relation

ω =
|k|2

2
+ f (|ρ|).

This property characterizes the fact that the numerical and exact velocities are
the same or not.

• Gauge transformation: the change of potential

∀ρ ∈ R,∀x ∈ Rd , V (x)−→V (x)+ρ,

implies that the solution is modified as follows

∀n ∈ N, ∀( j,k) ∈PJ,K , ψ
n
( j,k) −→ ψ

n
( j,k)e

−iρtn ,
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letting the modulus of the solution unchanged. This characterizes the property
that the scheme may induce a phase error in the numerical solution.

• Mass conservation: the discrete mass conservation writes

∀n ∈ N∗, N (ψn) := ‖ψn‖2
`2

π

= N (ψ0), (91)

also stating the `2
π -stability of the scheme.

• Energy conservation: if Ω = 0 and f (|ψ|2) = β |ψ|2, the energy conservation
[19] is given by: ∀n ∈ N∗, E0,β (ψ

n) = E0,β (ψ
0), where

E0,β (ψ
n) :=

(hxhy)
1/2

∑
( j,k)∈PJ,K

Re

{
ψ

n,∗
j,k

(
−1

2
[[∆ ]]ψn +[[V ]]ψn +

β

2
[[|ψn|4]]ψn

)
j,k

}
.

4.2 Time-splitting pseudo-spectral schemes for the rotating GPE

4.2.1 General principle of time-splitting techniques

The first schemes that we present is the class of time-splitting schemes for (90). This
scheme, which is known since a long time, has been studied in particular by Strang
[112] in a general framework. It has next been applied to the nonlinear Schrödinger
equation in [56, 96, 115, 121]. The numerical analysis of the Lie and Strang time-
splitting schemes for the Schrödinger equation can be found in particular in [36, 89].

To present the time-splitting schemes (also called fractional step methods), we
consider a general dynamical problem. Let A and B be two self-adjoint operators
such that: D(A)⊂ L2

x, D(B)⊂ L2
x and A+B a self-adjoint operator on D(A)∩D(B).

We denote by D(A) and D(B) the domains of the operators A and B, respectively.
Let us consider the system{

∂tψ(t,x) = Aψ(t,x)+Bψ(t,x), t ∈ R+, x ∈ Rd ,
ψ(0,x) = ψ0(x) ∈ L2

x.

Let ψ(t,x) = e(A+B)tψ0(x) be the solution of this system, for t > 0 and x ∈ Rd .
The time-splitting scheme consists in approximating the solution ψ of this problem
via an approximation of the operator e(A+B)· through the operators eA· and eB·. This
leads to solve successively two simpler systems. We seek an approximation of the
form

ψ(t +δ t,x) = e(A+B)δ t
ψ(t,x)≈ ea1Aδ teb1Bδ tea2Aδ teb2Bδ t ...eapAδ tebpBδ t

ψ(t,x),

where {ak,bk}1≤k≤p ⊂ R are some computed weights such that the approximation
of e(A+B)δ t has a given order for a local time step δ t(� 1). The two most well-
known time-splitting methods are the Lie (corresponding to a1 = b1 = 1) and the
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Strang (for a1 = a2 = 1/2, b1 = 1 and b2 = 0) schemes. They are respectively of
order one and two in time. It is possible to get higher-order schemes by suitably
choosing the weights [43, 116, 117]. We now focus on the Lie and Strang schemes.

In the case of the GPE with a rotation term, we make the following choice [23,
31]

• we set
A =

i
2

∆ + iΩLz, (92)

which leads to the solution of a linear Schrödinger equation, without potential
operator but with a rotational term,

• and
B =−iV (t,x)− i f (|ψ(t,x)|2), (93)

which gives a nonlinear differential equation that can be solved explicitly in some
cases.

The previous decomposition is motivated by the fact that, by using an Alternating
Direction Implicit (ADI) method [31], the equation associated to the operator (93)
can be solved spectrally by using FFTs. Furthermore, as already mentioned, the
equation associated to the operator (94) is solved explicitly. This leads to highly
accurate methods. Other choice of operators A and B (e.g. including a part of the
potential V in A) lead to different spectral basis that diagonalize the operators (see
[26, 28, 29] for Hermite or Laguerre polynomials).

4.2.2 Lie time-splitting scheme for (90)

Application of the Lie time-splitting scheme and ADI method. The Lie scheme
leads to the following approximation of the solution

ψ(t +δ t,x)≈ ei( 1
2 ∆+ΩLz)δ te−i(V (t,x)+ f (|ψ(t,x)|2))δ t

ψ(t,x).

Let us assume that we want to compute the solution ψ on [0;T ] that is uniformly
discretized into N intervals (a non uniform grid can also be used): T = Nδ t, N ∈N.
Let us set: tn := nδ t, 0≤ n≤N. For an initial condition ψ0 =ψ0, the scheme writes:
for 0≤ n≤ N−1,

1) Compute ψ1 such that{
i∂tψ1(t,x) =−

1
2

∆ψ1(t,x)−ΩLzψ1(t,x), nδ t < t ≤ (n+1)δ t, ∀x ∈ Rd ,

ψ1(tn,x) = ψn(x), ∀x ∈ Rd .
(94)

2) Determine ψ2 satisfying
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i∂tψ2(t,x) =V (t,x)ψ2(t,x)+ f (|ψ2(t,x)|2)ψ2(t,x),

nδ t < t ≤ (n+1)δ t, ∀x ∈ Rd ,
ψ2(tn,x) = ψ1(tn+1,x), ∀x ∈ Rd .

(95)

If ψn+1(x) := ψ2(tn+1,x), we have ψn+1(x)≈ ψ(tn+1,x).
We consider the two-dimensional case to simplify the presentation (but the one-

and three-dimensional cases can be easily deduced). The first step (95) of the split-
ting scheme can be spectrally resolved for Ω = 0 since the Laplacian operator is
diagonal in the Fourier space. However, when Ω > 0, the situation is more complex
since the operator Lz = −i(x∂y− y∂x) cannot be directly inverted by using FFTs.
Indeed, variable coefficients are present in its expression. A solution to this problem
has been proposed by Bao et al. [31]. It consists in applying the ADI method to
split the derivations with respect to x and y in two successive steps, allowing to use
one-directional FFTs. More precisely, the resulting scheme for solving (95) is given
by

1.a) Compute ψ(1) solution to
i∂tψ

(1)(t,x) =−1
2

∂
2
x ψ

(1)(t,x)

− iΩy∂xψ
(1)(t,x), ∀t ∈ ]tn, tn+1], ∀x ∈ R2,

ψ(1)(tn,x) = ψn(x), ∀x ∈ R2.

(96)

1.b) Determine ψ(2) such that
i∂tψ

(2)(t,x) =−1
2

∂
2
y ψ

(2)(t,x)

+ iΩx∂yψ
(2)(t,x), ∀t ∈ ]tn, tn+1], ∀x ∈ R2,

ψ(2)(tn,x) = ψ(1)(tn+1,x), ∀x ∈ R2.

(97)

We remark that each partial differential operator appearing in the above equa-
tions can be diagonalized by FFTs. After this process, one gets an approximation:
ψ1(tn+1,x)≈ ψ(2)(tn+1,x) for the first step (95), the second step leading to resolve
the ODE (96) which is written as: ∀x ∈ R2

i∂tψ
(3)(t,x) =V (t,x)ψ(3)(t,x)

+ f (|ψ(3)(t,x)|2)ψ(3)(t,x), ∀t ∈ ]tn, tn+1],

ψ(3)(tn,x) = ψ(2)(tn+1,x).
(98)

This ordinary differential equation is explicitly integrable thanks to the following
result [23].

Lemma 1 Let ψ(3) be the solution to (99). Then, we have

∀t ∈]tn, tn+1], ∀x ∈ R2, |ψ(3)(t,x)|= |ψ(2)(tn+1,x)|.

Dmonstration. The proof is direct since we have: ∀t ∈]tn, tn+1],
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∂t |ψ(3)(t,x)|2 = 2Re(ψ(3)∗(t,x)∂tψ
(3)(t,x))

=−2Im(V (t,x)|ψ(3)(t,x)|2)−2Im( f (|ψ(3)|2)|ψ(3)(t,x)|2) = 0.

We then get the solution to (99)

∀t ∈ [tn, tn+1], ψ
(3)(t,x) = e−i f (|ψ(2)(tn+1,x)|2)(t−tn)−i

∫ t
tn V (s,x)ds

ψ
(2)(tn+1,x). (99)

Finally, the Lie scheme with ADI leads to the approximation ψn+1(x)≈ψ(3)(tn+1,x).
Let us remark that the above ADI method implies a loss of symmetry of the

global scheme. Indeed, we first solve the equation in the x-direction via (97) and then
in the y-direction by using (98). The symmetry can be obtained easily by alternating
the directions at each step. For problem (95), we first solve (97)-(98) at time tn and
next (98)-(97) at time tn+1.

Pseudo-spectral discretization in space. Let us now consider the problem of the
spatial discretization. We again assume that the solution remains confined within
the computational box: O =]−ax,ax[×]−ay,ay[, with ax,ay > 0. We impose some
periodic boundary conditions on ∂O and consider a uniform discretization grid OJ,K
associated with O . Let us recall that PJ,K designates the set of grid points indices
used for the pseudo-spectral discretization

PJ,K =
{
( j,k) ∈ N2;1≤ j ≤ J and 1≤ k ≤ K

}
.

We consider an approximation of ψ(m) on this grid that we designate by ϕ(m), m= 1,
2, 3. Moreover, the approximation of ψn is denoted by ϕn. As for the stationary
case, we use the following pseudo-spectral discretization of a function ψ in the x-
and y-directions on OJ,K and based on the truncated inverse partial Fourier series,
∀( j,k) ∈PJ,K , ∀t ∈ R+, respectively,

ψ(t,x j,yk)≈ ϕ(t,x j,yk) =
1
J

J/2−1

∑
p=−J/2

ϕ̂p(t,yk)eiµp(x j+ax),

ψ(t,x j,yk)≈ ϕ(t,x j,yk) =
1
K

K/2−1

∑
q=−K/2

ϕ̂q(t,xk)eiλq(yk+ay),

(100)

where ϕ̂p and ϕ̂q are respectively the Fourier coefficients of the function ϕ in the x-
and y-directions, the Fourier multipliers being: µp =

π p
ax

and λq =
πq
ay

. The functions
ϕ̂p and ϕ̂q are written as

ϕ̂p(t,yk) =
J−1

∑
j=0

ϕ(t,x j,yk)e−iµp(x j+ax),

ϕ̂q(t,x j) =
K−1

∑
k=0

ϕ(t,x j,yk)e−iλq(yk+ay).

(101)

In the x-direction of the Fourier space, we have, 1− J/2≤ p≤ J/2,
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∀t ∈ [tn, tn+1], ∀1≤ k ≤ K, i∂t ϕ̂
(1)
p (t,yk) = (

1
2

µ
2
p +Ωyµp)ϕ̂

(1)
p (t,yk).

Integrating this equation yields

∀t ∈ [tn, tn+1], ∀1≤ k ≤ K, ϕ̂
(1)
p (t,yk) = e−i( 1

2 µ2
p+Ωyµp)(t−tn)ϕ̂

(1)
p (tn,yk).

Similarly, (98) leads to: 1−K/2≤ q≤ K/2,

∀t ∈ [tn, tn+1], ∀1≤ j ≤ J, ϕ̂
(2)
q (t,x j) = e−i( 1

2 λ 2
q−Ωxλq)(t−tn)ϕ̂

(2)
q (tn,x j).

Therefore, the first part of the Lie time-splitting scheme, where we first solve (97)
and next (98) on [tn, tn+1], is implemented as: ∀( j,k) ∈PJ,K ,

ϕ
(1)(tn+1,x j,yk) =

1
J

J/2−1

∑
p=−J/2

e−i( 1
2 µ2

p+Ωykµp)(tn+1−tn)ϕ̂n
p(yk)eiµp(x j+Lx),

ϕ
(2)(tn+1,x j,yk)

=
1
K

K/2−1

∑
q=−K/2

e−i( 1
2 λ 2

q−Ωx jλq)(tn+1−tn)ϕ̂
(1)
q (tn+1,x j)eiλq(yk+Ly).

(102)

For solving (100) and for a time-dependent potential V , we use the Simpson’s
quadrature rule∫ tn+1

tn
V (s,x j,yk)ds≈ 1

6
(
V (tn,x j,yk)+6V (tn+1/2,x j,yk)

+V (tn+1,x j,yk))(tn+1− tn) := Ṽn(x j,yk)δ t,

where tn+ 1
2
= (tn + tn+1)/2 and ( j,k) ∈PJ,K . This leads to

ϕ
(3)(tn+1,x j,yk) = ϕ

(2)(tn+1,x j,yk)e−iδ t( f (|ϕ(2)(tn+1,x j ,yk)|2)+Ṽn(x j ,yk)). (103)

The complete scheme (103)-(104) is first-order accurate in time and spectral in
space. In the sequel, the Time-Splitting SPectral scheme of order 1-ADI is denoted
by TSSP1-ADI.

4.2.3 Strang time-splitting scheme for (90)

To improve the time accuracy of the Lie scheme, we now discuss the second-order
Strang TSSP scheme. Since the derivation is quite similar to the previous scheme,
we do not detail too much its construction. The Strang time-splitting scheme re-
quires three fractional steps while only one is needed for the Lie scheme. We first
resolve the operator A on a time step δ t/2, next B for δ t and finally A for δ t/2. This
leads to the following approximation
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ψ(t +δ t,x)≈ ei( 1
2 ∆+ΩLz)

δ t
2 e−i(V (t,x)+ f (|ψ(t,x)|2))δ tei( 1

2 ∆+iΩLz)
δ t
2 ψ(t,x),

for t > 0. An alternative solution consists in changing the roles of A and B. The
Strang time-splitting scheme with ADI is then

1) Compute ψ(1) solution to
i∂tψ

(1)(t,x) =−1
2

∂
2
x ψ

(1)(t,x)
−iΩy∂xψ(1)(t,x), ∀t ∈]tn, tn+ 1

2
],∀x ∈ R2,

ψ(1)(tn,x) = ψn(x),∀x ∈ R2.

(104)

2) Determine ψ(2) solution of the equation
i∂tψ

(2)(t,x) =−1
2

∂
2
y ψ

(2)(t,x)
+iΩx∂yψ(2)(t,x), ∀t ∈]tn, tn+ 1

2
],∀x ∈ R2,

ψ(2)(tn,x) = ψ(1)(tn+ 1
2
,x),∀x ∈ R2.

(105)

3) Compute ψ(3) such that
i∂tψ

(3)(t,x) =V (t,x)ψ(3)(t,x)
+ f (|ψ(3)(t,x)|2)ψ(3)(t,x), ∀t ∈]tn, tn+1],∀x ∈ R2,

ψ(3)(tn,x) = ψ(2)(tn+ 1
2
,x),∀x ∈ R2.

(106)

4) Obtain ψ(4) solution to
i∂tψ

(4)(t,x) =−1
2

∂
2
y ψ

(4)(t,x)
+iΩx∂yψ(4)(t,x), ∀t ∈]tn, tn+1/2],∀x ∈ R2,

ψ(4)(tn,x) = ψ(3)(tn+1,x),∀x ∈ R2.

(107)

5) Determine ψ(5) such that
i∂tψ

(5)(t,x) =−1
2

∂
2
x ψ

(5)(t,x)
−iΩy∂xψ(5)(t,x), ∀t ∈]tn, tn+1/2],∀x ∈ R2,

ψ(5)(tn,x) = ψ(4)(tn+ 1
2
,x),∀x ∈ R2.

(108)

The last step gives ψn+1(x) ≈ ψ(5)(tn+ 1
2
,x). Like the Lie scheme, we solve (105),

(106), (108) and (109) by using one-directional FFTs. Equation (107) is explicitly
integrated. The Strang scheme is second-order in time and spectral in space which
makes it very attractive for the deterministic simulations. Extensions to the one- and
three-dimensional cases are direct. The total computational cost of both schemes is
O(M logM), with M := J, JK, JKL, in dimensions d = 1, 2, 3, respectively, since we
use FFTs. The Strang scheme is time reversible, mass preserving, invariant under
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gauge transformation and the dispersive relation holds. However, it is not energy
conserving but the scheme is unconditionally stable for the 2-norm [31]. More de-
tails can be found in [10, 24, 25]. In the sequel, the scheme (105)-(109) (with FFTs)
is called TSSP2-ADI for Time Splitting SPectral scheme of order 2-ADI.

4.3 The relaxation scheme for the rotating GPE

Introduced by Besse [35] for nonlinear Schrödinger equations, the relaxation scheme
has some analogies with the standard Crank-Nicolson scheme (Section 4.4) but the
nonlinearity is relaxed to avoid a fixed point or a Newton-Raphson method. There-
fore, the computational cost is strongly reduced while the scheme is simple to im-
plement. For problem (90), the relaxation scheme is

φ n+1/2 +φ n−1/2

2
= f (|ψn|2),

i
ψn+1−ψn

δ t
= (−1

2
∆ −ΩLz)(

ψn+1 +ψn

2
)+

V n+1ψn+1 +V nψn

2

+φ
n+1/2(

ψn+1 +ψn

2
),

(109)

where ψn = ψ(tn,x) and V n = V (tn,x), 0 ≤ n ≤ N− 1. The initial conditions are:
ψ0(x) = ψ0(x) and φ−1/2(x) = f (|ψ0(x)|2). The operator (−∆ −ΩLz) is dis-
cretized by the highly accurate pseudo-spectral scheme (see page 30 and equations
(101)-(102)). Under the same notations, the discrete system is{

φ
n+1/2 = cRe,n,

ARe,n+1ψn+1 = bRe,n,
(110)

where ARe,n+1, bRe,n and cRe,n are such that

ARe,n+1 := i
[[I]]
δ t

+
1
4
[[∆ ]]+

1
2

Ω [[Lz]]−
1
2
[[V n+1]]− 1

2
[[φ n+1/2]],

bRe,n := (i
[[I]]
δ t
− 1

4
[[∆ ]]− 1

2
Ω [[Lz]]+

1
2
[[V n]]+

1
2
[[φ n+1/2]])ψn,

cRe,n := 2 f (|ψn|2)−φ
n−1/2.

(111)

The linear system appearing in (111) and depending on n is solved by a Krylov
subspace iterative solver (CGS, BiCGStab, GMRES) [12]. The method is called
Relaxation SPectral (ReSP) scheme. The discretization is second-order in time and
spectrally accurate in space like for the TSSP2-ADI scheme. Moreover, it is time re-
versible, mass preserving, unconditionally stable and energy preserving (for a cubic
nonlinearity, i.e. f (|ψ|2) = β |ψ|2). However, it is not invariant under gauge trans-
formation and the dispersive relation does not hold [10, 35]. The computational cost
is O(M logM) since we again use FFTs.
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4.4 Other schemes: Euler, Crank-Nicolson, Leap-Frog, rotating
frame system

In this section, we give a brief description of other schemes that could be applied
to equation (90). These schemes are not recommended because of some problems
that we detail now. We end by presenting a nice idea that can be found in [27] and
which considers a change of frame to simplify the implementation of well-adapted
schemes.

The forward or backward Euler schemes are simple schemes in the framework
of evolution problems. For (90), the forward Euler scheme is given by

i
ψn+1−ψn

δ t
= (−1

2
∆ −ΩLz +V n + f (|ψn|2))ψn, (112)

where ψn =ψ(tn,x) and V n =V (tn,x), ∀n∈N. The spatial discretization can be ob-
tained, for instance, by using the pseudo-spectral FFT-based approximation leading
to

ψ
n+1 =−iδ tbEuler,n

Exp , (113)

where bEuler,n
Exp is such that

bEuler,n
Exp := (i

[[I]]
δ t
− 1

2
[[∆ ]]−Ω [[Lz]+ [[V n]]+ [[ f (|ψn|2)]])ψn.

Since there is no linear system to solve, the computational effort is low. However,
this first-order scheme is well-known to be conditionally stable under a CFL condi-
tion and is therefore useless. The backward Euler scheme is

i
ψn+1−ψn

δ t
= (−1

2
∆ −ΩLz +V n+1 + f (|ψn+1|2))ψn+1, (114)

leading to the linear system

AEuler,n
Imp ψ = bEuler,n

Imp , (115)

where AEuler,n
Imp and bEuler,n

Imp are such that

AEuler,n
Imp := i

[[I]]
δ t

+
1
2
[[∆ ]]+Ω [[Lz]]− [[V n+1]]− [[ f (|ψn+1|2)]],

bEuler,n
Imp := i

[[I]]
δ t

ψ
n.

The system (116) cannot be directly inverted since the nonlinearity is implicit. At
each iteration, a fixed point or a Newton-Raphson method is required to resolve the
nonlinearity leading to a computationally expensive scheme. Finally, the scheme is
only first-order accurate in time.

The implicit Crank-Nicolson scheme [10, 19, 18] is
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i
ψn+1−ψn

δ t
= (−1

2
∆ −ΩLz +g(ψn+1,ψn))

ψn+1 +ψn

2
+

1
2
(V n+1

ψ
n+1 +V n

ψ
n),

(116)

with

g(ψn+1,ψn) :=
∫ 1

0
f (ι |ψn+1|2 +(1− ι)|ψn|2)dι .

Even if this scheme is second-order accurate in time, the presence of the nonlinearity
makes it computationally expensive.

The semi-implicit Leap-Frog scheme [10, 18, 19, 20] is

i
ψn+1−ψn−1

δ t
= (−1

2
∆ −ΩLz)

ψn+1 +ψn−1

2
+(V n + f (|ψn|2))ψn. (117)

For the initialization, we use

i
ψ1−ψ0

δ t
= (−1

2
∆ −ΩLz +V 0 + f (|ψ0|2))ψ0.

The major disadvantages of this scheme are that it is conditionally stable and it does
not satisfy most of the properties from Section 4.1 (see [10]).

In Section 1.3 (page 11), we have seen that a change of variables is used for
modeling a rotating condensate. This change of frame, with respect to the reference
frame in dimensions d = 2 and 3, is based on: for x=(x,y)∈R2 or x=(x,y,z)∈R3,{

x′ = cos(Ω t)x+ sin(Ω t)y,
y′ =−sin(Ω t)x+ cos(Ω t)y,

where Ω ∈ R is the rotational speed of the condensate. This gives the relation: x′ =
Ω(t)x, where, for d = 2,

Ω(t) =
(

cos(Ω t) sin(Ω t)
−sin(Ω t) cos(Ω t)

)
,

and, for d = 3,

Ω(t) =

 cos(Ω t) sin(Ω t) 0
−sin(Ω t) cos(Ω t) 0

0 0 1

 .

This change of variables makes the rotation operator Lz appear. In [27], the authors
propose to compute the dynamics of a rotating condensate by considering the coor-
dinates Ω(t)x instead of x′. By setting ψΩ (t,x) := ψ(t,Ω(t)x), where ψ satisfies
(90), we obtain that ψΩ is solution to
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i∂tψΩ (t,x) =−1

2
∆ψΩ (t,x)+V (t,Ω(t)x)ψΩ (t,x)

+ f (|ψΩ |2)ψΩ (t,x), ∀t ∈ R+, ∀x ∈ Rd ,

ψΩ (0,x) = ψ0(x) ∈ L2
x.

(118)

By simply modifying the potential: VΩ (t,x) := V (t,Ω(t)x), we do not need to dis-
cretize the rotation operator which greatly simplifies the resolution of the initial-
value problem. For example, ADI is no longer necessary for the time-splitting
scheme. This recent approach is very promising for both the dynamics and station-
ary states computation and should be further studied.

4.5 The multi-components case

We now extend the splitting and relaxation schemes to the case of a system of GPEs
with Nc components

i∂tΨ(t,x) =−1
2

∆Ψ(t,x)−ΩLzΨ(t,x)+V(t,x)Ψ(t,x)
+f(Ψ)Ψ(t,x), ∀t ∈ R+, ∀x ∈ Rd ,

Ψ(0,x) =Ψ0(x) ∈ L2,Nc
x , ∀x ∈ Rd ,

(119)

where L2,Nc
x := (L2

x)
Nc . We refer to Section 2.5 (page 43) for the notations.

4.5.1 Time-splitting schemes for a system with Nc components

The strategy adopted here is closely related to the one developed for the one-
component case. We will see that the explicit formula is only valid for a specific
form of the nonlinearity, which explains why the method has some limitations. For
the sake of simplicity, we only present the Lie TSSP scheme, the extension to the
Strang TSSP scheme being direct. The scheme is given by the two following steps

1) Solve the following system with respect to Ψ (1)


i∂tΨ

(1)(t,x) =−1
2

∆Ψ
(1)(t,x)−ΩLzΨ

(1)(t,x),
∀t ∈]tn, tn+1],∀x ∈ Rd ,

Ψ (1)(tn,x) =Ψ n(x), ∀x ∈ Rd .

(120)

2) Compute Ψ (2) such that
i∂tΨ

(2)(t,x) = V(t,x)Ψ (2)(t,x)+ f(Ψ (2)(t,x))Ψ (2)(t,x),
∀t ∈]tn, tn+1], ∀x ∈ Rd ,

Ψ (2)(tn,x) =Ψ (1)(tn+1,x), ∀x ∈ Rd .

(121)
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Since the operators are diagonal in (121), the unknowns are uncoupled. There-
fore, we can apply the ADI method to effectively solve the system of equations
by using FFTs. For example, equation (121) is solved in the two-dimensional case
through the two following successive steps

i∂tΨ
(1,1)(t,x) =−1

2
∂xxΨ

(1,1)(t,x)− iΩy∂xΨ
(1,1)(t,x),

∀t ∈]tn, tn+1], ∀x ∈ R2,

Ψ (1,1)(tn,x) =Ψ n(x), ∀x ∈ R2,

(122)

and 
i∂tΨ

(1,2)(t,x) =−1
2

∂yyΨ
(1,2)(t,x)+ iΩx∂yΨ

(1,2)(t,x),
∀t ∈]tn, tn+1], ∀x ∈ R2,

Ψ (1,2)(tn,x) =Ψ (1,1)(tn+1,x), ∀x ∈ R2.

(123)

For the system of equations (122), we have the following result.

Lemma 2 Let Ψ (2) be the solution of (122). Then, we have

∀t ∈ [tn, tn+1], |Ψ (2)(t,x)|= |Ψ (2)(tn,x)|.

Dmonstration. First, we have, ∀t ∈]tn, tn+1], ∀x ∈ R2,

Nc

∑
m=1

∂t |Ψ (2)
m (t,x)|2 = 2

Nc

∑
m=1

Re(Ψ (2)
m (t,x)∗∂tΨ

(2)
m (t,x))

= −2
Nc

∑
m,o=1

Im(Ψ
(2)

m (t,x)∗(Vmo(t,x)+ fmo(Ψ
(2)))Ψ

(2)
o (t,x)).

By using: Vmo(t,x) = Vom(t,x) and fmo(Ψ
(2)(t,x)) = fom(Ψ

(2)(t,x)), it follows that

Nc

∑
m=1

∂t |Ψ (2)
m (t,x)|2 =−2 ∑

Nc≥o>m≥1
Im
(
(Vmo(t,x)+ fmo(Ψ

(2)(t,x)))

(Ψ
(2)

m (t,x)∗Ψ (2)
o (t,x)+Ψ

(2)
o (t,x)∗Ψ (2)

m (t,x))
)

−2 ∑
Nc≥m≥1

Im
(
(Vmm(t,x)+ fmm(Ψ

(2)(t,x)))|Ψ (2)
m (t,x)|2

)
=−4 ∑

Nc≥o>m≥1
Im
(
(Vmo(t,x)+ fmo(Ψ

(2)(t,x)))Re(Ψ (2)
m (t,x)∗Ψ (2)

o (t,x))
)
= 0.

Thus, we conclude that |Ψ (2)(t,x)|= |Ψ (2)(tn,x)|, ∀t ∈ [tn, tn+1].

According to the above result, the modulus of the solution is time preserved. This
implies that we can obtain an explicit formulation of the solution by using an expo-
nential operator assuming that f is such that: f(Ψ)= f(|Ψ |)=

(
fm,`(|Ψ |)

)
m,`∈{1,...,Nc},

and that the potential is time-independent: V(t,x) := V(x). Under these assump-
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tions, the system of equations (122) admits the following solution

Ψ
(2)(t,x) = e−if(|Ψ (1,2)(tn+1,x)|)(t−tn)−iV(x)(t−tn)Ψ (1,2)(tn+1,x). (124)

This finally leads to the approximation: Ψ n+1(x)≈Ψ (2)(tn+1,x).
The form (125) of the solution requires the evaluation of an exponential ma-

trix. Moreover, the Lie and Strang splitting schemes need to be symmetrized as for
the one-component case because of the ADI method. In the sequel, we call again
these methods TSSP1-ADI and TSSP2-ADI, respectively. The computational cost
O(M logM) is essentially related to the FFTs.

4.5.2 Relaxation scheme for a system with Nc components

For a system of equations, the relaxation scheme is given by
Φn+1/2 +Φn−1/2

2
= f(Ψ n)+Vn, x ∈ Rd ,

Ψ n+1−Ψ n

δ t
=−i(−1

2
∆ −ΩLz +Φ

n+1/2)
Ψ n+1 +Ψ n

2
, x ∈ Rd ,

where Ψ n =Ψ(tn,x) and Vn = V(tn,x). The initial data are given by Ψ 0(x) =Ψ0(x)
and Φ−1/2(x) = f(Ψ 0(x)). By using the pseudo-spectral scheme, we are led to solve{

MRe,n+1/2 = 2[[f(Ψ n)]]−MRe,n−1/2,

ARe,n+1
Ψ

n+1 = BRe,n
Ψ

n,
(125)

where Ψ
n = (ψn

1 , ...,ψ
n
Nc
) is the unknown in CMNc , with M := JK. The nonlinear op-

erator MRe,n+1/2 ∈MMNc(C) corresponding to the relaxation is computed by using
the nonlinear operator

[[f(Ψ n)]] :=


[[f1,1(Ψ

n)]] [[f1,2(Ψ
n)]] · · · [[f1,Nc(Ψ

n)]]
[[f2,1(Ψ

n)]] [[f2,2(Ψ
n)]] · · · [[f2,Nc(Ψ

n)]]
...

...
. . .

...
[[fNc,1(Ψ

n)]] [[fNc,2(Ψ
n)]] · · · [[fNc,Nc(Ψ

n)]]

 ∈MMNc(R),

where we set [[f`,m(Ψ n)]] =
(
f`,m(Ψ n(x j,k)

)
( j,k)∈PJ,K

, 1 ≤ `,m ≤ Nc. Furthermore,

we choose MRe,−1/2 = f(Ψ0(x)). The operator ARe,n ∈MMNc(C) is such that

ARe,n+1Ψ = ARe,n+1
TF Ψ +ARe

∆ ,ΩΨ ,

ARe,n+1
TF Ψ := i

[[I]]
δ t

Ψ − 1
2
([[Vn+1]]+MRe,n+1/2)Ψ ,

ARe
∆ ,ΩΨ :=

1
2
(

1
2
[[∆ ]]+Ω [[Lz]])Ψ .

(126)
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The operator ARe,n+1
TF ∈MMNc(C) is defined through the block-matrices

[[I]] :=


[[I]] 0 · · · 0
0 [[I]] · · · 0
...

...
. . .

...
0 0 · · · [[I]]

 ∈MMNc(R),

[[Vn]] :=


[[Vn

1,1]] [[Vn
1,2]] · · · [[Vn

1,Nc
]]

[[Vn
2,1]] [[Vn

2,2]] · · · [[Vn
2,Nc

]]

...
...

. . .
...

[[Vn
Nc,1]] [[V

n
Nc,2]] · · · [[V

n
Nc,Nc

]]

 ∈MMNc(R),

where: [[Vn
`,m]] = (Vn

`,m(x j,k))( j,k)∈PJ,K ∈MM(R). The diagonal operator ARe
∆ ,Ω in

(127) is implicitly given by

[[∆ ]]Ψ := ([[∆Ψ`]])`=1,...,Nc
∈ CMNc and [[Lz]]Ψ := ([[LzΨ`]])`=1,...,Nc

∈ CMNc .

Finally, the right-hand side is defined by the operator BRe,n : CMNc → CMNc

BRe,nΨ = BRe,n
TF Ψ +BRe

∆ ,ΩΨ ,

BRe,n
TF Ψ := i

[[I]]
δ t

Ψ +
1
2
MRe,n+1/2

Ψ ,

BRe
∆ ,ΩΨ :=

1
2
(−1

2
[[∆ ]]−Ω [[Lz]])Ψ .

(127)

The linear system in (126) is solved by a preconditioned Krylov subspace itera-
tive solver [12] at a computational cost O(M logM). Unlike the splitting schemes,
no assumption is required for the relaxation scheme concerning the nonlinear or
potential operators.

4.6 Numerical study of the TSSP1-ADI, TSSP2-ADI and ReSP
schemes for the dynamics of rotating GPEs

4.6.1 Experiment I: dynamics of a rotating BEC in a harmonic trap

The first numerical experiment consists in solving
i∂tψ(t,x) =−1

2
∆ψ(t,x)−ΩLzψ(t,x)+V (x)ψ(t,x)

+β |ψ|2ψ(t,x), ∀t ∈ [0,T ], ∀x ∈ R2,

ψ(0,x) = ψ0(x) ∈ L2
x,

(128)
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where Ω = 0.4 and β = 1000. We fix the quadratic potential

V (x) =
1
2
(γxx2 + γyy2),

with γx = γy = 1. The initial data ψ0 is computed (by using BESP) as the stationary
state (see Figure 15) associated with the problem (129) for the quadratic potential
with γx = γy = 2. The modification of the coefficients increases the confinement of
the BEC. This creates a contraction without changing its global shape.

Fig. 15 Initial data |ψ0|2 (on the domain O =]−10,10[2, J = K = 29 for BESP).

For TSSP1-ADI, TSSP2-ADI and ReSP, we use a time step equal to δ t = 10−3

for a final computational time T = 1 (T := Nδ t). The pseudo-spectral discretization
scheme considers J = K = 29 points for the computational domain O =]−10,10[2.
For ReSP, we solve the linear system by using BiCGStab with a stopping criterion
set to εKrylov = 10−12. We report on Figure 16 the solution ψn,ref obtained by the
ReSP scheme at different times. We remark that the potential confines the conden-
sate. Visualizing the solutions computed by TSSP1-ADI, TSSP2-ADI and ReSP
does not allow to make the difference between them.

Let us analyze the spatial accuracy of the schemes. The previous simulation is
repeated on different uniform grids OJ,K , with 5 ≤ J,K ≤ 9, where the reference
grid is considered for J = K = 9. For each grid, the initial data is computed by us-
ing the BESP scheme with the parameters of problem (129) for the finest grid. We
represent on Figure 17 the maximum error Errn,∞

J,K between the solution ψn
J,K on the

grid OJ,K and the solution ψn,ref computed on the grid O9,9 and then extrapolated
on the coarser grid OJ,K , i.e.: Errn,∞

J,K := ||ψn
J,K −ψn,ref||∞. We also report the error

between the energy (without the rotational term) E0,β (ψ
n
J,K) on the grid OJ,K and the

reference energy E0,β (ψ
n,ref): E n,∞

J,K := |E0,β (ψ
n
J,K)−E0,β (ψ

n,ref)|. We remark that
the high accuracy of the TSSP1-ADI, TSSP2-ADI and ReSP is obtained for a suf-
ficiently fine grid, i.e. J,K ≥ 8. Concerning the coarser grids, the error is relatively
important and localized near the central vortex. For this example, the spatial accu-
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(a) t = 0.13 (b) t = 0.26

(c) t = 0.39 (d) t = 0.52

Fig. 16 Evolution of the density |ψ|2 for problem (129) computed by the ReSP scheme.

racy of the three schemes is about the same. Finally, the energy which is a global
quantity is quite accurately computed even for coarse grids.

We are now interested in computing the order of accuracy in time of the three
schemes. We also want to analyze the mass and energy (without the rotational term)
conservation properties. To numerically obtain the order, we use the Richardson
method. Let us denote by ψk

δ t ∈ CM , k ∈ N, the numerical approximation of a so-
lution ψk of the problem (131) at time tk > 0 by a numerical scheme for a time
step δ t. Then, the Richardson method consists in computing the numerical order of
accuracy by the expression

pk,num := log2

(
‖ψk

δ t −ψk
δ t/2‖`2

π

‖ψk
δ t/2−ψk

δ t/4‖`2
π

)
,1≤ k ≤ Nδ t . (129)

Indeed, if we assume that the order is p, we have

‖ψk
δ t −ψ

k
δ t/2‖`2

π
≈Cδ t p,

and
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Fig. 17 Evolution of Errn,∞
J,K and E

n,∞
J,K for the TSSP1-ADI, TSSP2-ADI and ReSP schemes and

different spatial grids.

‖ψk
δ t/2−ψ

k
δ t/4‖`2

π
≈C

δ t p

2p ,

leading to (130). Let us consider J = K = 29 grid points. We take: tkNδ t = k, with
1 ≤ k ≤ Nδ t . We report two cases: δ t = 10−2 (Table 5) and δ t = 10−3 (Table 6).
Here, we introduce the different quantities
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max pNδ t ,num := max
1≤k≤Nδ t

pk,num, min pNδ t ,num := min
1≤k≤Nδ t

pk,num,

and

mean pNδ t ,num :=
1

Nδ t

Nδ t

∑
k=1

pk,num.

For δ t = 10−2, the numerical orders of TSSP1-ADI and TSSP2-ADI are in average
higher than those expected. This can be explained by the fact that the time step is
too large to get a stable scheme and that instabilities arise most particularly because
of the rotational term. The ReSP scheme seems to provide a better accuracy. For
δ t = 10−3, we recover the expected orders for the three schemes.

TSSP1-ADI TSSP2-ADI ReSP
max pNδ t ,num 5.45 6.01 2.04
min pNδ t ,num 1.00 2.02 1.84

mean pNδ t ,num 2.54 3.97 1.91

Table 5 Numerical orders of the TSSP1-ADI, TSSP2-ADI and ReSP schemes for δ t = 10−2.

TSSP1-ADI TSSP2-ADI ReSP
max pNδ t ,num 1.00 2.00 1.99
min pNδ t ,num 0.99 2.00 1.99

mean pNδ t ,num 1.00 2.00 1.99

Table 6 Numerical orders of the TSSP1-ADI, TSSP2-ADI and ReSP schemes for δ t = 10−3.

We now report (see Figure 18(a)) the error on the mass of the solution: ErrMn :=
||1−N (ψn)||∞ and the error (Figure 18(b)) on the non rotating energy of the so-
lution: E0,β (ψ

n), for a time step δ t = 10−3. We can see that the mass is not ex-
actly conserved but the error is relatively small, even if it increases in time. The
ReSP scheme is the scheme that presents the best mass conservation property for
this example. In addition, the non rotational energy is well conserved for both the
TSSP2-ADI and ReSP schemes while TSSP1-ADI exhibits large fluctuations.

We end the analysis by showing the evolution of the error on the mass (Figure
19(a)) and energy without the rotational term E0,β (ψ

n) (Figure 19(b)) for δ t = 10−2.
For the three schemes, we observe that the error on the mass is smaller than when
considering the time step δ t = 10−3. Nevertheless, the energy also grows substan-
tially in the middle of the simulation for both TSSP1-ADI and TSSP2-ADI. The
ReSP scheme conserves correctly the non rotating energy. This example shows that
ReSP is a robust and accurate scheme.
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Fig. 18 Mass and energy (without rotational term) conservation properties for the three schemes,
for δ t = 10−3 and problem (131).
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Fig. 19 Mass and energy conservation (without rotational term) properties for the three schemes,
for δ t = 10−2 and problem (131).

4.6.2 Experiment II: dynamics of a BEC in quadratic-plus-quartic trap

The second example consists in solving the following two-dimensional GPE
i∂tψ(t,x) =−1

2
∆ψ(t,x)−ΩLzψ(t,x)+V (x)ψ(t,x)

+β |ψ|2ψ(t,x), ∀t ∈ [0,T ], ∀x ∈ R2,

ψ(0,x) = ψ0(x) ∈ L2
x,

(130)

where Ω = 3.5 and β = 1000. The potential is the quadratic-plus-quartic potential

V (x) =
1−α

2
(γxx2 + γyy2)+

κ

4
(γxx2 + γyy2)2,

where γx = γy = 1, α = 1.2 and κ = 0.7. To obtain the initial data ψ0, we compute
the stationary state of (131) for the trapping parameters γx = γy = 1, α = 1.2 and
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κ = 0.3 (see Figure 20). The stationary state is a circular ring with 36 uniformly
distributed vortices.

Fig. 20 Density |ψ0|2 of the stationary state (with a domain O =]−10,10[2, J =K = 28 for BESP).

The parameters for the simulation of the dynamics with TSSP1-ADI, TSSP2-
ADI and ReSP are: δ t = 10−3 for a maximal time of computation T = 1 (T :=Nδ t),
a spatial discretization with J = K = 28 points in O =]− 10,10[2. Concerning the
ReSP scheme, the linear system is again solved by BiCGStab for a stopping criterion
on the residual equal to εKrylov = 10−12. We report on Figure 21 some snapshots of
the solution obtained with TSSP2-ADI. We observe a complex dynamics in the ring
BEC. The solutions computed by TSSP2-ADI and ReSP looks the same. Unlike
the first experiment, it is not possible here to analyze the spatial accuracy of the
schemes since the extrapolated stationary state is not accurate enough on a coarse
grid with J = K = 27 points. If one considers more grid points (J = K ≥ 29 points),
the computational time is too large for GPELab.

We now focus on the numerical order of the TSSP1-ADI, TSSP2-ADI and ReSP
schemes and on the discrete mass and energy conservation properties. For δ t =
10−2, the orders are not recovered because the time step is too large (Table 7).
For δ t = 10−3 (Table 8), the numerical orders are consistent with their respective
theoretical values, meaning that the time step is sufficiently small.

TSSP1-ADI TSSP2-ADI ReSP
max pNδ t ,num 1.15 1.97 1.55
min pNδ t ,num 0.89 0.85 0.08

mean pNδ t ,num 0.95 1.08 0.92

Table 7 Numerical orders of the TSSP1-ADI, TSSP2-ADI and ReSP schemes for δ t = 10−2.

We consider now the evolution of the error ErrMn on the mass of the solution
(Figure 22(a)) and the non rotational energy E0,β (ψ

n) (Figure 22(b)) for δ t = 10−3.
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(a) t = 0 (b) t = 0.07

(c) t = 0.14 (d) t = 0.21

(e) t = 0.28 (f) t = 0.35

Fig. 21 Snapshots of the density |ψ|2 computed with TSSP2-ADI for problem (131).

TSSP1-ADI TSSP2-ADI ReSP
max pNδ t ,num 1.01 2.30 1.99
min pNδ t ,num 0.99 2.00 1.98

mean pNδ t ,num 1.00 2.02 1.99

Table 8 Numerical orders of the TSSP1-ADI, TSSP2-ADI and ReSP schemes for δ t = 10−3.
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The mass is not exactly preserved for the three schemes but is numerically accept-
able. The energy (without the rotational term) E0,β (ψ

n) is well conserved for the
TSSP2-ADI scheme. Concerning the ReSP scheme, the energy fluctuates a little.
For the TSSP1-ADI scheme, the energy is not conserved. For δ t = 10−2, we have no
energy conservation for the three schemes. Globally, TSSP2-ADI is the best scheme
for this specific problem.
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Fig. 22 Mass and energy conservation properties for the three schemes, for δ t = 10−3 and problem
(131).

4.6.3 Experiment III: dynamics of a 2d dark soliton

The last example consists in the simulation of a black soliton inside a BEC. We
consider the two-dimensional GPE

i∂tψ(t,x) =
1
2

∆ψ(t,x)+
1
2
(
|x|2 + |y|2

)
ψ(t,x)+β |ψ(t,x)|2ψ(t,x), (131)

with β = 10000. To get a physically admissible initial data, we first compute a
stationary state of (132) by using the BESP scheme for δ t = 10−1 and the stopping
criterion ε = 10−8. The computational domain O =]− 10,10[2 is discretized by a
uniform grid with 29 + 1 points in the x- and y-directions. We choose the Thomas-
Fermi approximation to initialize the computation. The converged solution is given
on Figure 23.

We now phase-imprint the black soliton in the condensate and simulate its dy-
namics. We use ReSP with a time step δ t equal to 10−3. The final time of computa-
tion is T = 1.5. A phase-imprinting method [53] is used to initiate the propagation
of a black soliton in the condensate. More precisely, the initial data is multiplied by

ξ (x) = ei ∆θ0
2 (1+tanh( x−x0

s )),
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Fig. 23 Modulus of the stationary state computed by BESP with the parameters of Section 4.6.3.

where ∆θ0 = π/3, x0 = 5 and s= 0.2. We represent a few snapshots of the computed
solution on Figure 24 with the new initial data.

5 Computation: dynamics & stochasticity

The aim of this last Section is to provide a few ideas concerning the extension of the
previous schemes when a random term is included into the GPE. Let us consider the
stochastic GPE (see Section 1.3.3)

i∂tψ(t,x) =−1
2

∆ψ(t,x)−ΩLzψ(t,x)+
1
2
|x|2ψ(t,x)(1+ ẇt)

+β |ψ|2σ
ψ(t,x), ∀t ∈ R+, ∀x ∈ Rd ,

ψ(0,x) = ψ0(x) ∈ L2
x,

(132)

where β ∈ R, σ > 0 and (wt)t∈R+ ∈ C γ

t (R+) is a Hölder continuous function, with
γ ∈ ]0,1[. More generally, we consider the following stochastic GPE (d = 1, 2, 3)
for the potential V (ẇt ,x) :=V (x)ẇt

i∂tψ(t,x) =−1
2

∆ψ(t,x)−ΩLzψ(t,x)+V (ẇt ,x)ψ(t,x)
+ f (|ψ|2)ψ(t,x), ∀t ∈ R+, ∀x ∈ Rd ,

ψ(0,x) = ψ0(x) ∈ L2
x,

(133)

where f is a real-valued polynomial function.
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(a) Soliton at time t = 0.25 (b) Soliton at time t = 0.5

(c) Soliton at time t = 0.75 (d) Soliton at time t = 1

(e) Soliton at time t = 1.25 (f) Soliton at time t = 1.5

Fig. 24 Dynamics of a phase-imprinted black soliton in a BEC by using the ReSP scheme.

5.1 Numerical schemes for the stochastic GPE

We discuss the way the stochastic potential has to be discretized in the (Lie and
Strang) time-splitting and relaxation schemes. For the time-splitting schemes (Sec-
tion 5.1.1), the integration is similar to the deterministic case. Concerning the mean-
ing of the time-derivative of a continuous process, we use the definition given
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by Sussmann [114]. For the relaxation scheme (Section 5.1.2), we introduce the
Stratonovich product to precise the formal time-derivative of a continuous process
that will have to be discretized.

5.1.1 The time-splitting schemes

Following Sussmann’s approach, we first assume that the process (wt)t∈R+ is in
C 1

t (R+). For the Lie time-splitting scheme, we use the following decomposition of
the problem (134): let δ t > 0, n ∈ N,

1) Solve the system{
i∂tψ1(t,x) =−

1
2

∆ψ1(t,x)−ΩLzψ1(t,x), t ∈]tn, tn+1],

ψ1(tn,x) = ψn(x).
(134)

2) Compute ψ2 solution to{
i∂tψ2(t,x) =V (ẇt ,x)ψ2(t,x)+β |ψ2(t,x)|2ψ2(t,x), t ∈]tn, tn+1],
ψ2(tn,x) = ψ1(tn+1,x).

(135)

The equation (135) is solved by the ADI method and one-directional FFTs like for
the deterministic case (see section 4.2.2). For (136), we have seen in Section 4.2.2
that it is possible to exactly integrate the equation for the nonlinearity and potential,
and then to obtain an explicit formula. It follows that, for all t ∈ [tn, tn+1],

ψ2(t,x) = ψ1(tn+1,x)e−i f (|ψ1(tn+1,x)|2)(t−tn)−i
∫ t
tn V (ẇs,x)ds.

The time integration of the stochastic potential is direct∫ t

tn
V (ẇs,x)ds =

∫ t

tn
V (x)ẇsds =V (x)(wt −wtn) =V (wt −wtn ,x),

leading to the exact formula for (136)

ψ2(t,x) = ψ1(tn+1,x)e−i f (|ψ1(tn+1,x)|2)(t−tn)−iV (wt−wtn ,x).

This means that the implementation in the Lie time-splitting scheme is straighfor-
ward. Moreover, it is easy to see that this solution is continuous with respect to
(wt)t∈R+ ∈ Ct(R+). Following a similar approach to Sussmann, we can extend the
solution to the case of a continuous process by using a density argument. The exten-
sion to the Strang time-splitting scheme is trivial. The stochastic schemes are still
called TSSP1-ADI and TSSP2-ADI.
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5.1.2 The relaxation scheme

In Section 4.3, we derived the relaxation scheme for the deterministic GPE. Con-
cerning the extension to the stochastic case, the main difference is related to the
way the noise is discretized. To have a better understanding of how to discretize
the derivative of the stochastic process, it is necessary to define the meaning of the
following stochastic integral∫ tn+1

tn
V (ẇs,x)ψ(s,x)ds =V (x)

∫ tn+1

tn
ẇsψ(s,x)ds.

Here, we consider this integral as the Stratonovich integral, i.e.∫ tn+1

tn
ẇsψ(s,x)ds =

∫ tn+1

tn
ψ(s,x)◦dws :=

lim
`→∞

∑
(sk)0≤k≤`

ψ(sk+1,x)+ψ(sk,x)
2

(
wsk+1 −wsk

)
,

where, ∀` ∈ N, (sk)0≤k≤` is a partition of the interval [tn, tn+1]. This type of integral
takes its meaning for a Wiener process (Wt)t∈R+ (also called the brownian motion)
through∫ tn+1

tn
V (ẇs,x)ψ(s,x)≈V (x)

ψ(tn+1,x)+ψ(tn,x)
2

(
wtn+1 −wtn

)
. (136)

The associated ReSP scheme related to the discretization (137) for the problem
(134) is then

φ n+1/2 +φ n−1/2

2
= f (|ψn|2),

i
ψn+1−ψn

δ t
= (−1

2
∆ −ΩLz +V n +φ

n+1/2)(
ψn+1 +ψn

2
),

(137)

where φ n+1/2 = φ(tn+1/2,x), ψn = ψ(tn,x) and V n = V ((wtn+1 −wtn)/δ t,x). The
initial data are

ψ
0(x) = ψ0(x), and φ

−1/2(x) = β |ψ0(x)|2.

5.2 Numerical examples

We present here a few numerical simulations. First, we explain how to correctly
and efficiently simulate a fractional brownian motion (Section 5.2.1). Next, exam-
ples of computations are given for a one-dimensional example. Most particularly,
we numerically explore the order of the schemes of the stochastic GPE under con-
sideration (see Section 5.2.2).
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5.2.1 Simulation of fractional brownian motions

The simulation of stochastic gaussian processes with stationary increments can be
efficiently and accurately realized by using FFTs [123]. Let us recall that a fractional
brownian motion (fbm) (W H

t )t∈R+ , with Hurst index H ∈]0,1[, is a gaussian process
with the following properties

• (W H
t )t∈R+ is continuous and self-similar, i.e.

∀t ∈ R+, ∀a ∈ R+,
1

aH W H
at =W H

t in law, (138)

• W H
0 = 0 almost surely,

• the increments W H
t −W H

s , for all t,s ∈ R+, such that t ≥ s, are stationary and
follow a normal distribution law with zero mean and (t− s)2H as variance,

• for all t,s ∈ R+, such that t ≥ s, we have

E[W H
t W H

s ] =
1
2
(t2H + s2H −|t− s|2H). (139)

Let (t j) j∈N be a uniform time discretization of [0,1]. Then, we remark that, being
given the increments (δW H

t j+1
) j∈N = (W H

t j+1
−W H

t j
) j∈N, the fbm can be built through

the telescoping sum

W H
t j

=
j

∑
k=1

δW H
tk .

Therefore, we have to simulate the fbm increments to construct the process. More-
over, thanks to the self-similarity of the process (139), we remark that the simulation
of a fbm for (t j) j∈N boils down to the simulation of a fbm for the time discretization
(t j = j) j∈N. In this case, for all k ∈ Z, the autocovariance function cW H (k) of the
process (δW H

j ) j∈N is given by

cW H (k) = E[δW H
j+kδW H

j ] =
1
2
(|k+1|2H + |k−1|2H −2|k|2H).

If we assume that we want to construct a process of length N ∈ N and being given
the stationary process (δW H

j ) j∈{1,...,N}, its spectral density [54, 123] is such that

∀ j ∈ {−N/2, ...,N/2−1}, sW H ( j) =
N/2−1

∑
k=−N/2

cW H (k)e−2πi jk
N .

By using this expression, the following spectral representation of the process [123]
can be obtained

δW H
k = Re(

√
2
N

N/2−1

∑
j=−N/2

√
sW H ( j) Ŵ 1/2

je2πi jk
N ),
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where (Ŵ 1/2
j) j∈{−N/2,...,N/2−1} is the discrete Fourier transform of the brownian

motion. Therefore, the increments of a fbm can be efficiently computed with high
precision. We report on Figure 25 the simulation of fbm trajectories for various
values of H, on a uniformly discretized time interval [0,1] (with δ t = 10−4).
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(a) Fractional brownian mo-
tion for H = 1/2
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(b) Fractional brownian mo-
tion for H = 3/4
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(c) Fractional brownian mo-
tion for H = 1/4

Fig. 25 Trajectories of the fbm for various Hurst indices H on the time interval [0,1].

5.2.2 Order in time of the schemes for the stochastic GPE

We now numerically study the order in time of the Lie and Strang time-splitting and
relaxation schemes for a stochastic potential. The order in time can be understood
as the largest real number p such that

E
[
‖ψδ t(tn,x)−ψ(tn,x)‖2

L2
x

]1/2
≤C(δ t)p,

where C > 0 is a real-valued positive constant, ψ is the exact solution of the dy-
namical system and ψδ t is the approximation of ψ by using a numerical scheme
for a time step δ t. Numerically computing such an order requires the simulation of
a large number of trajectories of the process (wt)t∈R+ for the problem (133) since
the mean error is approximated by a Monte-Carlo method. For N(∈ N) trajectories
(w j

t )t∈R+ , 1≤ j ≤ N, we compute the numerical approximation of the solution ψ
j

δ t
of (133) by using one of the numerical schemes. For a sufficiently large value N,
one gets

E
[
‖ψδ t(tn,x)−ψ(tn,x)‖2

L2
x

]1/2
≈

N

∑
j=1

(
‖ψ j

δ t(tn,x)−ψ(tn,x)‖2
L2

x

)1/2
.

Therefore, p can be estimated by a numerical order pnum that is computed thanks to
a formula similar to (130)

p(tk)≈ pnum(tk) := log2

(
E[‖ψδ t(tk,x)−ψδ t/2(tk,x)‖2

L2
x
]1/2

E[‖ψδ t/2(tk,x)−ψδ t/4(tk,x)‖2
L2

x
]1/2

)
. (140)
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In the following study, we are interested in the fbm of Hurst index H that we denote
by (W H

t )t∈R+ , H ∈]0,1[. As previously mentioned, the fbm are gaussian processes
with zero mean that are generalizations of the brownian motion. Moreover, their
trajectories are (H−η)-Hölder continuous, for all η > 0. This means that we can
analyze the schemes for processes with various smoothness.

Let us now consider the following one-dimensional stochastic GPE
i∂tψ(t,x) =−1

2
∂

2
x ψ(t,x)+

1
2

x2
ψ(t,x)(1+Ẇ H

t )

+β |ψ|2ψ(t,x), ∀t ∈ R+, ∀x ∈ R,
ψ(0,x) = ψ0(x) ∈ L2

x ,

(141)

where β = 300 and (W H
t )t∈R+ is a fbm with Hurst index H ∈]0,1[. The initial data

ψ0 is a stationary state computed by the BESP scheme. The computational domain
O =]− 15,15[ is discretized by a uniform grid OJ , where J = 29. We fix the time
step to δ t = 10−3 and the final time of computation to T = 1. The numerical results
of the Monte-Carlo method are based on N = 1000 trajectories.

We report in Table 9 the numerical orders resulting from formula (141) for the
Lie splitting scheme. We remark that the order is linked to the Hurst index H. For
H ≥ 1/2, the order saturates to 1 while for H < 1/2 it is less than 1. For H = 1/4,
we observe that N is not large enough to yield a good approximation of the order
and the scheme seems unstable.

H = 1/4 H = 1/2 H = 3/4
maxtk pnum(tk) 0.87 1.10 1.06
mintk pnum(tk) 0.67 0.91 0.97
meantk pnum(tk) 0.76 1.01 1.01

Table 9 Numerical orders of the TSSP1-ADI scheme for the stochastic GPE (142), with various
Hurst indices H of the fbm.

We consider now the Strang time-splitting scheme (TSSP2-ADI). The numerical
orders are given in Table 10. We observe that the order can be larger than 1 like for
H = 3/4. There is no saturation in the numerical order. Furthermore, we notice that
the numerical order for a fbm of Hurst index H = 1/4 significantly fluctuates. This is
probably due to the fact that N is not large enough to obtain a correct approximation
of the order of TSSP2-ADI. The numerical order of the standard brownian motion
(H = 1/2) is not improved in comparison with the TSSP1-ADI scheme.

H = 1/4 H = 1/2 H = 3/4
maxtk pnum(tk) 1.59 1.14 1.59
mintk pnum(tk) -0.04 0.90 0.97
meantk pnum(tk) 0.89 1.01 1.33

Table 10 Numerical orders of the TSSP2-ADI scheme for the stochastic GPE (142), with various
Hurst indices H for the fbm.
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Table 11 shows the results obtained for the ReSP scheme. For a standard brow-
nian motion (H = 1/2), the order of the ReSP scheme is lower order than for the
time-splitting schemes. In the case of a fbm of Hurst index H = 3/4, the numerical
order is larger than 1 and higher than for TSSP2-ADI. The numerical order for the
fbm with H = 1/4 is fluctuating. Therefore, it is not possible to conclude on the
effective order of the scheme. This is probably due to the fact that the discretization
used for the noise (see Equation (137)) is not adapted to a process with a smoothness
lower than the brownian motion.

H = 1/4 H = 1/2 H = 3/4
maxtk pnum(tk) 1.10 0.80 1.58
mintk pnum(tk) 0.27 0.43 1.31
meantk pnum(tk) 0.84 0.58 1.49

Table 11 Numerical orders of the ReSP scheme for the stochastic GPE (142), with various Hurst
indices H for the fbm and β = 300.

To complete the numerical simulation for ReSP, we run the same tests as before
but with a smaller nonlinearity β (β = 100 here) to show its influence on the order of
the scheme. We report the numerical orders on Table 12. For the brownian motion,
we observe an improved order of accuracy which is closer to the value 1 obtained for
the time-splitting schemes. For the fbm with Hurst index 3/4, the order is practically
unchanged. Finally, for H = 1/4, the problem of the discretization remains.

H = 1/4 H = 1/2 H = 3/4
maxtk pnum(tk) 0.02 0.99 1.60
mintk pnum(tk) -0.12 0.43 1.42
meantk pnum(tk) 0.00 0.76 1.51

Table 12 Numerical orders of the ReSP scheme for the stochastic GPE (142), with various Hurst
indices H for the fbm and β = 100.

As seen before, TSSP2-ADI and ReSP are some suitable schemes for the stochas-
tic GPE (accordingly to H). When a rotation term is further added, then they should
be privileged for a practical computation. Since the related computations are too
heavy for GPELab, we do not analyze this problem here. Furthermore, it would be
interesting to develop a complete numerical analysis of these schemes to understand
the rigorous mathematical properties that can be expected. However, these points are
beyond the scope of this paper and can be considered as some open questions.

6 Conclusion

In this paper, we have developed some elements related to the modeling and com-
putation of Bose-Einstein Condensates when the Gross-Pitaevskii Equation is used.
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We have introduced a few GPE systems in various physical situations of inter-
est: dynamics, stationary states, multi-components BECs, inclusion of rotation and
stochastic terms. Next, we have developed in details some stable pseudo-spectral
numerical methods for computing the stationary states of GPEs. A few numeri-
cal examples have been produced by using the dedicated Matlab toolbox GPELab.
Then, we have explained how to correctly reproduce the dynamics of BECs by using
adapted computational schemes (time-splitting and relaxation methods). Again, var-
ious numerical examples have been presented to have a better understanding of the
schemes. Finally, the extensions of the schemes to a stochastic GPE are explained
and numerical simulations based on GPELab show what are the expected properties
of the schemes, in particular concerning the accuracy in time.
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