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Approximate local magnetic-to-electric surface operators for

time-harmonic Maxwell’s equations

M. El Bouajaji ∗†, X. Antoine ∗†, C. Geuzaine ‡

Abstract

The aim of this paper is to propose new local and accurate approximate magnetic-to-electric
surface boundary operators for the three-dimensional time-harmonic Maxwell’s equations. After
their construction where their accuracy is improved through a regularization process, a local-
ization of these operators and a full finite element approximation is introduced. Next, their
numerical efficiency and accuracy is investigated in detail for different scatterers when these
operators are used in the extreme situation of On-Surface Radiation Conditions methods.
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1 Introduction

Time harmonic electromagnetic scattering is an important area of research because of its numer-
ous scientific and technological applications. In terms of computational methods, solving three-
dimensional electromagnetic scattering problems is known to be a challenging topic, most partic-
ularly in the high frequency regime. Various approaches can be used to numerically obtain the
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electromagnetic fields diffracted by an object. Among the most widely used methods, let us men-
tion e.g. the finite element method [36, 24] with an Absorbing Boundary Condition (ABC) [36]
or a Bérenger’s Perfectly Matched Layer (PML) [36, 18, 25] or the integral equation formulations
[48, 40, 23] discretized by boundary element methods, in conjunction with the Multilevel Fast
Multipole Method (MFMM) [24, 40, 29, 28] and Krylov subspace solvers [54]. Of course, other
approaches may be considered like for example asymptotic methods [4].

In all case, the success of a numerical method for prospecting high frequency scattering is
based on the fact that the method is stable and well conditioned [23] with respect to the wave
number k. Different strategies can be adopted for the stabilization of a numerical method. For
example, for preconditioning, many developments have been made over the last two decades from
the algebraic point of view [54]. However, when k is large, these techniques are limited in terms
of stability because the mathematical structure and physics of the underlying operator, that is the
Maxwell operators, are lost during the purely algebraic operations. To overcome this problem,
recent promising directions [11, 12, 13, 10, 9, 21, 22, 2, 19, 39] have emerged by producing new
preconditioning techniques based on (pseudo differential) operators calculus and integral equations
that are then discretized to get a matrix representation. One crucial point in these approaches
is to build approximate and accurate representations of the operators linking the magnetic (M)
and the electric (J) surface currents through the so-called Magnetic-to-Electric (MtE) map [48]:
MtE(M,J) = 0 on Γ, where Γ is the scattering surface. It is quite natural that this map plays a key
role in a numerical method since the scattered electromagnetic fields can be computed a posteriori
through the Stratton-Chu formulae (3) once these the quantities M and J are determined. When
an approximation of the MtE surface operator is known, it can be suitably injected into a standard
integral equation for preconditioning or can be used to build new well-conditioned and stable
integral equations with respect to k. These directions have now been widely studied in the case
of three-dimensional acoustics [10, 9, 11, 12, 13, 21, 22, 2, 19, 39], where the MtE operator is
then the Dirichlet-to-Neumann map (DtN(u, ∂nu) = 0 on Γ) [56, 35, 34, 14, 7], but much less
deeply for electromagnetic scattering [27, 21, 22, 2, 19, 51]. Other applications of approximate DtN
operators in acoustics include ABCs [7, 37, 52, 16, 15, 44, 57, 17, 56, 35, 34] techniques for domain
truncation and Domain Decomposition Methods (DDM) [33, 30, 31, 42, 41, 50, 49, 20]. In these
two last situations, the DtN/MtE surface operators are applied on a fictitious boundary Σ and not
Γ. A last potential application is related to the construction of generalized impedance boundary
operators for scattering by dielectric obstacles [55, 8].

The goal of the present paper is to propose some accurate and local approximations of MtE
surface operators for the three-dimensional time harmonic Maxwell’s equation. In section 2, we set
the scattering problem and explain why MtE maps are important in a practical calculation, most
particularly because of the central role played by the Stratton-Chu integral equations representa-
tions. Section 3 is devoted to the construction of approximate nonlocal MtE surface operators on a
general shape Γ. We first begin in subsection 3.1 by introducing the standard surface operators that
will be needed in the sequel of the paper. Next, in subsection 3.2, we develop the full analysis for
building the exact MtE maps for the half-space case through Fourier analysis. We also discuss the
extension to a general shape Γ. In this latter case, the two operators that we propose are no longer
exact but approximate. To increase their accuracy, we introduce in subsection 3.3 a regularization
process of the local and nonlocal operators that define the MtE maps. Numerical simulations based
on the calculation of the exact electromagnetic fields for a sphere show that an optimal regulariza-
tion parameter must be carefully chosen. We obtain a precise estimate of this parameter through
an asymptotic analysis of the reflection coefficients associated with the exact solution. Section 4
discusses the numerical approximation of these MtE operators by first using a localization process
based on complex rational Padé approximants (section 4.1) and next finite element discretizations
(section 4.2). Section 5 provides various numerical simulations of these new MtE surface operators
when they are used in the extreme context of On-Surface Radiation Condition (OSRCs) methods

2



[38, 6, 44, 17, 52, 5, 14]. Let us mention that only a few results are available in the literature
[27, 47, 3, 53] when the OSRC technique is used in the framework of the full set of Maxwell’s equa-
tions. Indeed, these papers only derive special canonical solutions but not a general and flexible
approach as the one presented here for a general surface Γ. We mainly discuss the efficiency and
accuracy of the methods when the local MtE operators are used. This allows us to show that fast
and accurate OSRCs solutions (surface fields and far-field patterns computations) can be obtained
and that these operators should be useful when applied in the context of preconditioning, DDM
and other hybrid computational techniques for electromagnetic scattering.

2 Problem setting and integral representations

Let Ωi be a bounded scatterer in R3 with a smooth closed boundary Γ. The associated unbounded
domain of propagation is denoted by Ωe := R3\Ωi. The exterior electromagnetic scattering problem
by a Perfect Electrically Conducting (PEC) body Ωi writes down

curl H + ıkZ−1
0 E = 0, in Ωe,

curl E− ıkZ0H = 0, in Ωe,
n× (n×E) = −n× (n×Einc), on Γ,
limr→∞ r (E + Z0x̂×H) = 0.

(1)

In the above equations, H := (H1, H2, H3)t and E := (E1, E2, E3)t denote the scattered magnetic
and electric fields, respectively. The wavenumber is k := 2π/λ, where λ is the wavelength. The real
valued parameter Z0 is the impedance of the exterior media Ωe and the unit imaginary number is
ı =
√
−1. Vector n is the unit outwardly directed normal to Ωi. The notation a × b designates

the cross product and a · b the inner product between two complex valued vector fields a and b in
C3, where z is the complex conjugate of z ∈ C. The associated norm is ||a|| :=

√
a · a. Vector Einc

defines a given incident electric field. The rotational operator is denoted by curl. Let us now define
x = (x1, x2, x3)t = rx̂ ∈ R3, with r := ||x|| and x̂ the directional vector of the unit sphere S1. Then,
the last equation of system (1), the so-called Silver-Müller radiation condition at infinity, provides
the uniqueness of the solution to the boundary-value problem. More precisely, it can be proved
[46, 48] that the solution (E,H) to the boundary-value problem (1) is unique in the functional
space Hloc(curl,Ωe) ×Hloc(curl,Ωe) once Einc is an element of Hloc(curl,Ωe) := {v ∈ L2

loc(Ωe)/
curl v ∈ L2

loc(Ωe)}.
The free-space Green’s function G is given in the three-dimensional case by

G(x,y) =
exp (ık||x− y||)

4π||x− y|| ,x 6= y. (2)

Let us introduce the surface electric and magnetic currents J = n×E and M = n×H, respectively.
Then, one way to solve system (1) is based on writing well-posed integral equation formulations
starting from the Stratton-Chu representation formulae [26]

E(x) := ıkZ0TM(x)−KJ(x),

H(x) := −KM(x)− ıkZ−1
0 T J(x),

(3)

for any x ∈ Ωe. The electric and magnetic potentials T and K are respectively given by

TM(x) :=
1

k2
curlxcurlx

∫
Γ
G(x,y)M(y)dΓ(y),

KJ(x) := −curlx

∫
Γ
G(x,y)J(y)dΓ(y).

(4)
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From (2)-(3)-(4), we can deduce a surface integral equation [24] to solve on Γ (an EFIE or CFIE
for instance), according to the unknowns J and M. We can thus compute the scattered fields from
(3). In particular, we have the following asymptotic expression in the far-field region

E(x) =
exp(ıkr)

r

(
E∞(x̂) +O

(
1

r

))
as r →∞, (5)

where the electric far-field pattern E∞ is defined by

E∞(x̂) =
ık

4π

∫
Γ

(J(y) + M(y)× x̂) exp(−ıkx̂ · y)dΓ(y). (6)

As already told, the computation of J and M on Γ is based on an integral equation. Since
the operators defining such an equation are nonlocal, the computational cost required to obtain an
approximation of these two quantities can be huge, most particularly for large wave numbers k (high
frequency regime). Of course, modern computational strategies combine a fast evaluation algorithm
(FMM,... [24, 40, 29, 28]) and a preconditioned Krylov solver [54] but this is still extremely memory
and time consuming most particularly in the high frequency regime. For this reason, being able to
design a representation like

MM + J J = 0, on Γ, (7)

with M and J two inversible local boundary operators is clearly useful since the corresponding
discrete part would correspond to sparse matrices. In fact, as we will see later (section 3), local
operators are not enough but explicit non local operators that are “easy-to-localize” implicitly can
be obtained (see Section 4.1). Of course, in Equation (7), the corresponding surface fields M and

J are not exact but approximate, even at the continuous level, and should therefore be labeled M̃
and J̃ (we often omit the tilde when there is no ambiguity in the discussions). Having a relation
like (7) makes the method fall into the class of On-Surface Radiation Conditions (OSRCs) methods
[?]. An approximate relation linking M and J is called an approximate Magnetic-to-Electric (MtE)
surface map.

3 Approximate MtE surface operators for a general smooth sur-
face Γ

The construction of the non-local boundary condition (7) through the maps M and J is realized
in two steps. First, we consider the half-space case where Fourier analysis allows us to build some
exact operators. Next, we propose the extension to a three-dimensional smooth surface Γ by using
the local tangent plane approximation of the surface (section 3.2) and a regularization procedure
of a square-root operator (section 3.3). The numerical localization of the operator as well as its
finite element approximation and numerical validation are treated in Section 4.

3.1 Surface operators and Sobolev spaces

In what follows we need some surface operators and their functional background for a general
smooth three-dimensional surface Γ. Let us define the tangential gradient ∇Γ which acts from

H1/2(Γ) to H
−1/2
× (Γ), where Hs

×(Γ) := {v ∈ Hs(Γ)/v · n = 0 on Γ} = n ×Hs, for s ∈ R. The

tangential vector curl operator curlΓ acts from H1/2(Γ) to H
−1/2
× (Γ) (the duality is defined with

respect to the L2- and L2-inner products). These continuous operators have dual operators divΓ

and curlΓ, respectively, acting from H
1/2
× (Γ) to H−1/2(Γ). The scalar Laplace-Beltrami operator

is defined by ∆Γ := divΓ∇Γ = −curlΓcurlΓ. The vectorial Laplace-Beltrami operator satisfies

∆Γ = ∇ΓdivΓ−curlΓcurlΓ. Let us denote by H
−1/2
× (divΓ,Γ) := {v ∈ H

−1/2
× (Γ)/divΓv ∈ H−1/2(Γ)}
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the Hilbert space of well-defined surface divergence fields and by H
−1/2
× (curlΓ,Γ) := {v ∈ H

−1/2
× (Γ)/

curlΓv ∈ H−1/2(Γ)} its dual. Finally, let us consider a smooth vector field v ∈ C∞(Ω). We define
the tangential traces applications by

γt : v 7→ vt := v|Γ × n and γT : v 7→ vT := n× (v|Γ × n) = v|Γ − (v|Γ · n)n. (8)

In the case of a smooth domain, the applications γt and γT can be extended by continuity to

surjective linear applications from H(curl,Ω) to H
−1/2
× (divΓ,Γ) and H

−1/2
× (curlΓ,Γ), respectively.

3.2 Construction of nonlocal approximate MtE operators: from the half-plane
case to a general surface

Let us consider that Γ := {x ∈ R3/x1 = 0}. We denote by n := (1, 0, 0) the outwardly directed
unit normal vector at Γ to Ωi := {x ∈ R3/x1 < 0}. If we consider that x1 is the radial direction
to Ωi, then the tangential direction is x‖ := (x2, x3). In the following, we define the partial Fourier

transform f̂ of a function f := (f1, f2, f3) : R3 → R3 by

f̂j(x1, ξ) :=

∫
R2

fj(x1,x‖)e
−ix‖·ξdx‖, j = 2, 3, (9)

and the inverse Fourier transform by

fj(x) :=
1

(2π)2

∫
R2

f̂j(x1, ξ)eix‖·ξdξ, j = 2, 3. (10)

The dual variable of x‖ is ξ := (ξ2, ξ3) and we set : ||ξ|| := √ξ · ξ. Under the above notations, we
can state the following proposition.

Proposition 1. For Γ := {x ∈ R3/x1 = 0}, we have the following exact MtE surface relation

M + Λex(n× J) = 0, on Γ, (11)

where the operator Λex is defined by

Λex =
1

Z0

(
I +

1

k2
∆Γ

)− 1
2
(

I− 1

k2
curlΓcurlΓ

)
, (12)

and I is the tangent plane identity operator.

Proof. We begin by developing the Maxwell’s system in (1)

−ikZ0H1 +
∂E3

∂x2
− ∂E2

∂x3
= 0, ikZ−1

0 E1 +
∂H3

∂x2
− ∂H2

∂x3
= 0,

−ikZ0H2 +
∂E1

∂x3
− ∂E3

∂x1
= 0, ikZ−1

0 E2 +
∂H1

∂x3
− ∂H3

∂x1
= 0,

−ikZ0H3 +
∂E2

∂x1
− ∂E1

∂x2
= 0, ikZ−1

0 E3 +
∂H2

∂x1
− ∂H1

∂x2
= 0.

(13)

By using the two first equations of (13), we eliminate the radial components H1 and E1 to get

−ikZ0H2 −
∂E3

∂x1
+
Z0

ik

(
∂2H2

∂x2
3

− ∂2H3

∂x2∂x3

)
= 0,

−ikZ0H3 +
∂E2

∂x1
+
Z0

ik

(
∂2H3

∂x2
2

− ∂2H2

∂x2∂x3

)
= 0,

ikZ−1
0 E2 −

∂H3

∂x1
+

1

ikZ0

(
∂2E3

∂x3∂x2
− ∂2E2

∂x2
3

)
= 0,

ikZ−1
0 E3 +

∂H2

∂x1
+

1

ikZ0

(
∂2E2

∂x2∂x3
− ∂2E3

∂x2
2

)
= 0.

(14)
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The application of the partial Fourier transform along x‖ to system (14) leads to

∂x1

(
n× (Ê× n)

n× (Ĥ× n)

)
− ıλ

(
0 M
M−1 0

)(
n× (Ê× n)

n× (Ĥ× n)

)
=

(
0
0

)
, (15)

with

M := Z0λ
−1

(
ξ2ξ3 (k2 − ξ2

2)
−(k2 − ξ2

3) −ξ2ξ3

)
.

The eigenvalues of the matrix M that defines system (15) are −1 and +1, with multiplicity two.
The associated eigenvectors are respectively

v−1 = (−Z0(k2 − ξ2
2)

λ
,
Z0ξ2ξ3

λ
, 0, 1)t, v−2 = (−Z0ξ2ξ3

λ
,
Z0(k2 − ξ2

3)

λ
, 1, 0)t, (16)

and

v+
1 = (

Z0ξ2ξ3

λ
,−Z0(k2 − ξ2

3)

λ
, 1, 0)t, v+

2 = (
Z0(k2 − ξ2

2)

λ
,−Z0ξ2ξ3

λ
, 0, 1)t, (17)

where λ = k
√
k2 − ||ξ||2. The matrix M can be diagonalized as M = PDP−1, with D =

diag(−1,−1,+1,+1) and P = (v1,v2,v3,v4). Another way of writing P is the following

P :=

(
−SM M
S I

)
, (18)

where S := (0, 1; 1, 0) is the symmetry according to the main diagonal in the two-dimensional plane.
The inverse of P is

P−1 :=
1

2

(
Z−2

0 SM S
−Z−2

0 M I

)
. (19)

This means that we can also rewrite system (15) as a first-order hyperbolic system

∂x1W − ıλDW = 0, for x1 ≥ 0, (20)

where W = P−1U, U = (n × (Ê × n),n × (Ĥ × n))t. The solution of Eq. (20) is: W(x1) =
eıλDx1W(0). Since we are characterizing the part of the wave field that is square integrable in the
right half-space, then we must impose that: W1,2 = 0. Coming back to U, we obtain the equation

Z−2
0 SM(n× (Ê× n)) + S(n× (Ĥ× n)) = 0, (21)

for x1 ≥ 0. In addition, we have

Z−2
0 SM =

1

Z0
λ−1

((
k2 0
0 k2

)
−
(

ξ2
3 −ξ2ξ3

−ξ2ξ3 ξ2
2

))
.

Since λ = k
√
k2 − ||ξ||2 = k2

√
1− ||ξ||

2

k2
, applying an inverse Fourier transform along ξ leads to

the exact operator

Λex = Z−1
0 (I +

∆Γ

k2
)−

1
2 (I− 1

k2
curlΓcurlΓ).

Finally, we obtain the MtE equation

M + Λex(n× J) = 0. (22)
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Now, let us assume that Γ is a general smooth surface. We propose a formal way of constructing
a first version of the surface operator (11)-(12) in this case. Let us consider that, at a point x0

of the surface Γ, we make a tangent plane approximation of the map that links M to J. This
means that, locally, the curved surface at x0 is replaced by the local tangent plane Tx0(Γ). As a
first approximation, we can consider that (11)-(12) is valid, the extension of the various surface
tangential operators being direct from their definition (see subsection 3.1). Following this approach,
we formally deduce the following surface approximation onto Γ

M + Λ(n× J) = 0, on Γ, (23)

where the operator Λ is defined by

Λ = Λ−1
1 Λ2, Λ1 = Z0

(
I +

∆Γ

k2

) 1
2

, Λ2 = I− 1

k2
curlΓcurlΓ. (24)

Following this approach, this means that x1 is the local radial variable along the outwardly directed
unit normal vector n(x0), and x‖ is the tangential variable in the tangent plane Tx0(Γ).

A more rigorous approach, which would lead to the same conclusion, is the following. First,
instead of considering the tangent plane approximation, local coordinate mappings based on a
partition of unity of Γ allow to set the initial system (1) into a general local system of coordinates.
As a result, the system can be written as a new system set in the half-space, the radial variable
along n(x0) now playing the role of x1. The price to pay is that the system is no longer a constant
coefficients system like for (13). Hence, the diagonalization in the Fourier space of the resulting
system cannot be made in an exact way. Nevertheless, the technique of microlocal diagonalization
for hyperbolic systems, initiated by Majda & Osher [43] and applied in the background of Absorbing
Boundary Conditions by Engquist and Majda [32], can be used. Doing that, this rigorous way of
proceeding leads to a first-order approximation that strictly corresponds to (23)-(24) since, indeed,
the curvatures are considered as zero. The strenght of this technique is that higher-order corrective
terms can be computed through the diagonalization process making use of the pseudodifferential
operator calculus. For example, the next approximation includes curvature tensor effects. However,
as shown below, we propose another improvement of (23)-(24) that also formally includes curvature
terms. Even if this second approach appears as less rigorous mathematically, it has also been proven
to be much more accurate in practical computations for the Helmholtz equation [14].

Let us remark that (23)-(24) is not the only boundary condition that can be built. Indeed,
another solution that is studied later is to write

Λ1M + Λ2(n× J) = 0, on Γ. (25)

We will see during the approximation procedure and the numerical experiments the difference
between these two possibilities. All these relations fall into the framework of expressions like (7).

3.3 Construction of nonlocal approximate MtE operators: accuracy improve-
ment by regularization

One way to assess the accuracy of the approximate OSRC operator (24) is to directly apply it on
the surface of a perfectly conducting sphere Γ := SR of radius R > 0. This situation allows us
to understand analytically where some errors can appear in the numerical solution and provides a
guideline to build more accurate operators.

Let us consider that the sphere is illuminated by a plane wave traveling in the x3-direction, i.e.
Einc(x) = (1, 0, 0)te−ikx3 . By using a decomposition in the Debye potentials, one gets the following

7



expression of the tangential trace of Einc onto SR

Einc
T (Rn) = − 1

k

∞∑
m=1

(−ı)m 2m+ 1

m(m+ 1)
ψm(kR)n×∇SR(P 1

n(cos(θ)) sin(φ))

+
1

k

∞∑
m=1

(−ı)m 2m+ 1

m(m+ 1)
ıψ′m(kR)∇SR(P 1

n(cos(θ)) cos(φ)), (26)

where ψm is the Ricatti-Bessel function of order m, P 1
m is the first-order Legendre function of degree

m and (θ, φ) are the spherical coordinates. In this context, M is explicitly given by

M =
Z−1

0

k

∞∑
m=1

Aexa
1,m n×∇SR(P 1

n(cos(θ)) sin(φ))− Z−1
0

k

∞∑
m=1

Aexa
2,m∇SR(P 1

n(cos(θ)) cos(φ)), (27)

where 
Aexa

1,m = −(−ı)m+1 2m+ 1

m(m+ 1)

ξ
(1)′
m (kR)

ξ
(1)
m (kR)

ψm(kR),

Aexa
2,m = (−ı)m 2m+ 1

m(m+ 1)

ξ
(1)
m (kR)

ξ
(1)′
m (kR)

ψ′m(kR),

(28)

and ξ
(1)
m designates the first-kind spherical Hankel’s function of order m.

Now, by using the plane wave expansion given by (26), we can also compute the approximate

surface current M̃ corresponding to the OSRC equation associated to (23)-(24) as

M̃ =
Z−1

0

k

∞∑
m=1

Aapp
1,m n×∇SR(P 1

n(cos(θ)) sin(φ))− Z−1
0

k

∞∑
m=1

Aapp
2,m∇SR(P 1

n(cos(θ)) cos(φ)), (29)

where 
Aapp

1,m = ı(−ı)m+1 2m+ 1

m(m+ 1)

(
1− m(m+ 1)

k2R2

) 1
2

ψm(kR),

Aapp
2,m = ı(−ı)m 2m+ 1

m(m+ 1)

(
1− m(m+ 1)

k2R2

)− 1
2

ψ′m(kR).

(30)

The expressions (29)-(30) are obtained by using the following properties (see [48] p.39)
∆SR∇SRY

n
m = −m(m+ 1)

R2
∇SRY

n
m,

∆SRcurlSRY
n
m = −m(m+ 1)

R2
curlSRY

n
m,

(31)

where Y n
m is the spherical harmonic of order (m,n).

We report on Figure 1 the real parts of the coefficients Aexa
i,m and Aapp

i,m , for i = 1, 2, with respect
to the modes m (similar curves can be obtained for the imaginary parts). We fix k = 50 and R = 1.
We can observe a very good agreement between the exact and approximate coefficients for both the
propagative (1 ≤ m � kR) and evanescent (m � kR) modes. However, some errors are localized
for the grazing modes m ' kR near the cut-off frequency. This is indeed due to the singularity
that arises in the square-root in (30).

To improve the accuracy for these frequencies and avoid the singularity, we regularize the square-
root operator by adding a small damping parameter ε > 0 to the wavenumber k that appears inside
the square-root. Let us set kε = k + ıε and introduce the new MtE operator

M + Λε(n× J) = 0, on Γ, (32)
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Figure 1: Real parts of the coefficients Aexa
i,m and Aapp

i,m , i = 1, 2 (k = 50 and R = 1).

where we define the regularized operator Λε by

Λε = Λ−1
1,εΛ2,ε, Λ1,ε = Z0

(
I +

1

k2
ε

∆Γ

) 1
2

, Λ2,ε = I− 1

k2
ε

curlΓcurlΓ. (33)

Let us remark that it is also important to add the damping term in the operator Λ2,ε to avoid some
possible resonant frequencies and have a corresponding well-posed problem. Numerical simulations
confirm this point. Considering this new OSRC, we can compute the associated coefficients Aapp

i,m,ε,
i = 1, 2. To fix the value of ε, we propose to minimize the error between the exact and approximate
coefficients, that is Aexa

1,m and Aapp
1,m,ε, for m ≥ 1 and ε > 0. Let ρ be the function defined by

ρm,ε := |Aexa
1,m −Aapp

1,m,ε|. (34)

We consider the following min-max problem{
Find (εopt,mopt) solution to
ρεopt,mopt := min

ε>0
max
m≥1

ρm,ε.
(35)

Then, we have the following proposition.

Proposition 2. For kR sufficiently large, an approximation of εopt (that appears in the solution
of the min-max problem (35)) is given by

εopt ' 0.39k1/3R−2/3. (36)

Proof. The function ρε,m is defined by

ρε,m := |(1− m(m+ 1)

R2k2
ε

)
1
2 +

ξ
(1)′
m (kR)

ξ
(1)
m (kR)

||ψm(kR)|. (37)

For a fixed ε, we numerically observe that the error is maximal at m = [kR], where [·] denotes the
integer part of a real number (for kR large enough (see Figure 2)).

By taking mopt = [kR], we have to solve the corresponding minimization problem{
Find εopt solution to
ρεopt,[kR] := min

ε>0
ρε,[kR].

(38)
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To simplify the computations, let us assume that k and R are two integers. If we set K = kR, then
we have

ψK(K) =

√
πK

2
JK+ 1

2
(K), ξ

(1)
K (K) =

√
πK

2
H

(1)

K+ 1
2

(K),

ξ
(1)′

K (K) =

√
πK

2

(
K + 1

2K + 1
H

(1)

K− 1
2

(K)− K

2K + 1
H

(1)

K+ 3
2

(K)

)
,

(39)

with H
(1)
K (x) = JK(x) + ıYK(x). From [1] (pp. 367), we have for µ large

Jµ(µ+ zµ
1
3 ) ∼ 2

1
3

µ
1
3

Ai(−2
1
3 z), Yµ(µ+ zµ

1
3 ) ∼ − 2

1
3

µ
1
3

Bi(−2
1
3 z), (40)

where Ai and Bi are the Airy functions. For µ = K + 1
2 and z = − (K+ 1

2
)−

1
3

2 , we get
JK+ 1

2
(K) ∼ 2

1
3 (K +

1

2
)−1/3Ai(2

1
3 (K +

1

2
)−1/3),

YK+ 1
2
(K) ∼ −2

1
3 (K +

1

2
)−1/3Bi(−2−

5
3 (K +

1

2
)−1/3).

(41)

For a small argument z = − (K+ 1
2

)−
1
3

2 , a Taylor’s expansion leads to: Ai(z) ∼ Ai(0)+Ai′(0)z = a+bz

and Bi(z) ∼ Bi(0) + Bi′(0)z =
√

3(a − bz), where a and b are computed through the Gamma
function: a =' 0.355, b ' −0.259. By using these approximations, one obtains for K →∞

ψK(K) ∼ a
√
π

2
1
6

K
1
6 , ξ

(1)
K (K) ∼ a

√
π(1− ı

√
3)

2
1
6

K
1
6 ,

ξ
(1)′

K (K) ∼ b
√
π(1 + ı

√
3)

K
1
6

2
1
6 , (1− K(K + 1)

R2k2
)
1
2 ∼
√

2ıεR− 1K−
1
2 .

(42)

Combining these approximations with (37) for mopt = K, we get the following approximation

ρ′ε,K(ε) ∼ 64b4R2ε2 + 512
√

3
3
√

2a2K−2/3R3ε3 − 1024
3
√

4a4K−2/3R4ε4.

Deriving the above local expression provides the following approximation of the optimal value εopt:
εopt = (2 +

√
3)2−7/3a−2b2k1/3R−2/3 ' 0.39k1/3R−2/3.
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For comparison, we report on Figure 3 the real parts of the coefficients Aexa
i,m and Aapp

i,m,εopt
, i = 1,

2. We can see that we have a very good agreement between the exact and approximate coefficients
considering the optimal damping parameter εopt. We obtain similar results for the imaginary parts.
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Figure 3: Real parts of the coefficients Aexa
i,m and Aapp

i,m,εopt
, i = 1, 2 (k = 50 and R = 1).

All the computations during the estimate of εopt have been done in the special case of a sphere.
The extension to a more general shape is a priori not trivial. Indeed, the radius R in the case
of the sphere can be seen as the simplification of different geometrical quantities in the general
framework (Gauss curvature, mean curvature,...). We make the choice here to replace 1/R by H
which is the mean curvature at the boundary, e.g. the average of the two principal curvatures at
the boundary. This implies that the corresponding damping parameter is now

εopt = 0.39k1/3H2/3, (43)

in (32)-(33). However, if we do this formal substitution and keep on developing the localization
process of the operators Λ1,εopt and Λ2,εopt as in Section 4.1, it can be seen that the associated
variational formulations are non symmetrical (we do not detail the calculations, which are left to
the reader). In fact, a better adapted way of deriving the regularized MtE operator is to consider
the following symmetrical expression

M + Λεopt(n× J) = 0, on Γ, (44)

with

Λεopt = Λ−1
1,εopt

Λ2,εopt , Λ1,εopt = Z0

(
I +∇Γ

1

k2
εopt

divΓ − curlΓ
1

k2
εopt

curlΓ

)1/2

,

Λ2,εopt = I− curlΓ
1

k2
εopt

curlΓ,

(45)

for a general arbitrarily-shaped boundary Γ. For conciseness, we do not precise the “opt” index in
εopt defined by relation (43) and write ε in the sequel of the paper.

4 Localization and discretization of the MtE operators

4.1 Local representation of the MtE operators

We now consider that we apply the MtE operator as an On-Surface Radiation Condition (OSRC) [6,
38]. This means that we solve approximately the boundary-value problem (1) by setting one of the
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MtE operators on the physical surface Γ, and, with the help of the PEC boundary condition in (1),
we solve the scattering problem. Thanks to (5)-(6), we get an approximation of the electromagnetic
far-field pattern.

From (1), (44) and (45), we can get an OSRC approximation of M through the equation

Λ1,εM = Λ2,ε(n× Jinc), on Γ. (46)

The operator Λ2,ε given by (45) is a local symmetrical operator that can be approximated quite
directly. The difficulty when one wants to numerically solve (46) is more related to the operator
Λ−1

1,ε which is a nonlocal pseudodifferential operator. More precisely, let us define the following
local symmetrical surface operator

T := ∇Γ
1

k2
ε

divΓ − curlΓ
1

k2
ε

curlΓ. (47)

Then, we have
Λ1,ε := Z0(I + T )1/2. (48)

Discretizing such a square-root operator is non trivial, most particularly for a general surface Γ.
Furthermore, even in the positive case and like for integral equation formulations, the resulting dis-
crete matrix representation would lead to solving an associated full linear system since the operator
is nonlocal. One usual way to obtain a local representation and a sparse discrete matrix repre-
sentation is to approximate the square-root function by rational approximations [14]. A rotating
branch-cut rational Padé approximation of the square-root function [45] is given by

(1 + z)1/2 ≈ eı
θp
2 RNp((1 + z)e−ıθp − 1) = C0 +

Np∑
j=1

Ajz

1 +Bjz
= R0 −

Np∑
j=1

Aj
Bj(1 +Bjz)

, (49)

where RNp is the standard real-valued Padé approximation of order Np

(1 + z)1/2 ≈ RNp(z) = 1 +

Np∑
j=1

ajz

1 + bjz
, (50)

with

aj =
2

2Np + 1
sin2(

jπ

2Np + 1
), bj = cos2(

jπ

2Np + 1
).

The angle of rotation θp is a free parameter that has to be fixed during the numerical simulations
and the constants are given by

C0 = eı
θp
2 RNp(e

−ıθp − 1), Aj =
e−ı

θp
2 aj

(1 + bj(e−ıθp − 1))2
,

Bj =
e−ıθpbj

1 + bj(e−ıθp − 1)
, R0 = C0 +

Np∑
j=1

Aj
Bj
.

(51)

Formally (considering that z = T ), we approximate Λ1,ε by

Λ1,ε = Z0(I + T )1/2 ≈ Z0(R0 −
Np∑
j=1

Aj
Bj

(I +BjT )−1). (52)
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Using this approximation, the expression (47) of T and introducing Np coupled auxiliary vector
fields {φj}j=1,...,Np , one gets the local approximate representation of (46)

M−
Np∑
j=1

Aj
R0Bj

φj = − 1

Z0R0
u, on Γ,

M−
(

I +Bj

(
∇Γ

1

k2
ε

divΓ − curlΓ
1

k2
ε

curlΓ

))
φj = 0, j = 1, .., Np, on Γ,

(53)

setting

u = −
(

I− curlΓ
1

k2
ε

curlΓ

)
(n× Jinc). (54)

Another possibility is to rather use a formulation based on

M = Λ−1
1,εΛ2,ε(n× Jinc), on Γ, (55)

with
Λ−1

1,ε := Z−1
0 (I + T )−1/2. (56)

The approximation of (1 + z)−1/2 is realized in the same spirit as before. We use the fact that

(1 + z)1/2 ≈ C0 +

Np∑
j=1

Ajz

1 +Bjz
=
PNp(z)

QNp(z)
,

where PNp and QNp are two polynomials of degree Np. As a consequence, the inverse of the
square-root is approximated by

(1 + z)−
1
2 ≈ QNp(z)

PNp(z)
= r0 +

Np∑
j=1

rj
z − qj

, (57)

where the coefficients r0, rj and qj are obtained through the calculations of the roots of PNp and
QNp , and next decomposing the fraction into elementary elements. Therefore, by using (57), the
OSRC (55)-(56) is computed by

M +

Np∑
j=1

rj
Z0

φj = − r0

Z0
u,(

∇Γ
1

k2
ε

divΓ − curlΓ
1

k2
ε

curlΓ − qjI
)
φj = u, j = 1, .., Np,

(58)

where u is given by (54). The nice point with (58) is that there is no coupling between the auxiliary
vector fields φj , j = 1, ..., Np. This is not the case when considering system (53). During the
numerical simulations, we will see that this directly impacts the overall computational performances
of the methods (see Table 3).

Concerning the choice of the angle of rotation, one possibility consists in writing the exact
solution M̃Pade for the scattering by the sphere SR and for the Padé approximation (58). Some
calculations lead to the expression

M̃Pade =
Z−1

0

k

∞∑
m=1

APade
1,m n×∇SR(P 1

n(cos(θ)) sin(φ))

−Z
−1
0

k

∞∑
m=1

APade
2,m ∇SR(P 1

n(cos(θ)) cos(φ)),

(59)
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where 
APade

1,m = (−ı)m+1 2m+ 1

m(m+ 1)

(
1− m(m+ 1)

k2R2

)r0 +

Np∑
j=1

rj
qj
Cm,j

ψm(kR),

APade
2,m = ı(−ı)m 2m+ 1

m(m+ 1)

r0 −
Np∑
j=1

rj
qj

(
1 +

m(m+ 1)

qjk2R2

)−1
ψ′m(kR),

(60)

with

Cm,j =

(
1− m(m+ 1)

k2R2

)(
1 +

m(m+ 1)

qjk2R2

)−1

.

We can assess the accuracy of the Padé approximation, according to Np and θp, by computing
||Aapp

2 − APade
2 || (|| · || is the euclidian norm), with Aapp

2 := (Aapp
2,1 , ..., A

app
2,mmax

)t and APade
2 :=

(Aapp
2,1 , ..., A

Pade
2,mmax

). We report the numerical results in Table 1, for mmax := 10[k] and k = 10. We
see that increasing Np leads to a better accuracy, but less trivially, considering θp = π/2 minimizes
the error. Similar computations can be made by using the second formulation based on (56), the
conclusion being the same. From now on, we choose θp = π/2.

θp Np = 2 Np = 4 Np = 8 Np = 16

0 1.25× 100 6.5× 10−1 3.7× 10−1 1.9× 10−1

π
8 3.6× 10−1 1.1× 10−1 1.4× 10−2 1.3× 10−3

π
6 2.7× 10−1 6.7× 10−2 5.0× 10−3 2.7× 10−4

π
4 1.6× 10−1 2.8× 10−2 9.4× 10−4 1.2× 10−5

π
3 1.1× 10−1 1.5× 10−2 3.2× 10−4 1.5× 10−6

π
2 8.0× 10−2 1.0× 10−2 1.7× 10−4 5.3× 10−7

5π
8 1.2× 10−1 1.6× 10−2 4.6× 10−4 1.8× 10−5

2π
3 1.4× 10−1 2.0× 10−2 5.4× 10−4 1.2× 10−5

3π
4 2.1× 10−1 4.1× 10−2 1.7× 10−3 2.4× 10−5

Table 1: ||Aapp
2 −APade

2 ||2 vs. Np and θp.

4.2 Finite element discretization

In view of a finite element approximation for a general shape Γ, we consider a polyhedral approxi-
mation Γh of Γ, for a triangulation Th := ∪NT`=1T

` involving NT surface triangles. Let us introduce:

Φh := (φjh)j=1,...,Np and ρh := (ρjh)j=1,...,Np . For solving system (53), we use the following symmet-
rical weak formulation: find (Mh,Φh,ρh) ∈ Vh × V p

h × Z
p
h such that

∫
Γh

Mh · vhdΓh +

Np∑
j=1

αj

∫
Γh

φjh · vhdΓh = − 1

R0Z0

∫
Γh

uh · vhdΓh,∫
Γh

Mh ·wj
hdΓh −

∫
Γh

(φjh ·w
j
h −

Bj
k2
ε,h

curlΓhφ
j
h · curlΓhw

j
h)dΓh

−Bj
∫

Γh

∇Γhρ
j
h ·w

j
hdΓh = 0, j = 1, ..., Np,∫

Γh

(k2
ε,hρ

j
hz
j
h + φjh · ∇Γhz

j
h)dΓh = 0, j = 1, ..., Np,

(61)
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for any test-functions vh and wj
h in Vh, and zjh in Zh, for j = 1, ..., Np. The input vector uh is

computed through∫
Γh

uh · vhdΓh =

∫
Γh

1

k2
ε,h

curlΓh(nh × Jinc
h ) · curlΓhvh − (nh × Jinc

h ) · vhdΓh. (62)

We set αj = −Aj/(R0Bj). The approximation space Vh is the usual Nédélec’s space of linear edge
finite element [46]. If NE is the number of edges of Γh, then dim(Vh) = NE . The space V p

h is

defined by: V p
h := ×Npj=1Vh, with dimension NE,p := NpNE . The approximation space Zh is the

nodal finite element space defined by

Zh =
{
zh ∈ H−1/2(Γh) | zh|T ` ∈ P1(T `), ∀` = 1, ..., NT

}
,

where P1 is the space of linear functions. In particular, we have: dim(Zh) = NV , where NV is the

number of vertices of the triangulation. We also define: Zph := ×Npj=1Zh, with dimension NV,p :=

NpNV . The discrete surface and damped wavenumber kε,h is defined by: kε,h := k+ ı0.39k1/3H2/3
h ,

where Hh is a piecewise constant interpolation of the mean curvature H over Γh on each triangle
T ` of the triangulation. In practice, the numerical computation of Hh is based on the finite element
discretization of the following PDE

2H = −divΓn, on Γ, (63)

Let us now introduce (r1, ..., rNE ) (respectively (`1, ..., `NV )) as the basis of Vh (respectively
of Zh). Then, one gets for vh ∈ Vh and zh ∈ Zh

vh =

NE∑
p=1

vprp and zh =

NV∑
m=1

um`m.

Let us define the elementary integrals
Apq =

∫
Γh

rp · rqdΓh, Npq =

∫
Γh

1

k2
ε,h

curlΓhrp · curlΓrqdΓh,

Kmn =

∫
Γh

k2
ε,h`m`ndΓh, Lmq =

∫
Γh

∇Γh`m · rqdΓh,
(64)

with 1 ≤ p, q ≤ NE and 1 ≤ m,n ≤ NV . The associated matrices A and N are in MNE ,NE (C),
K ∈ MNV ,NV (C) and L ∈ MNE ,NV (C). Under these notations, system (61) leads to solving the
coupled linear system

M1Uh = F1, (65)

where we define

M1 =

 A Aα 0

ATα Aα,B AL
α,B

0 AL,T
α,B AK

α,B

 ,Uh =

 Mh

Φh

ρh

 , F1 =

 F1,1

0
0

 , (66)

with
Aα := ((αjA)j=1,...,Np) ∈MNE ,NE,p(C),

Aα,B := diag(αj(BjN− A)j=1,...,Np) ∈MNE,p,NE,p(C),

AL
α,B := diag((−αjBjL)j=1,...,Np) ∈MNE,p,NV,p(C),

AK
α,B := diag((−αjBjK)j=1,...,Np) ∈MNV,p,NV,p(C),

F1,1 := −(N− A)

R0Z0
(nh × Jinc

h ) ∈ CNE .

(67)

15



By MT , we designate the transposed matrix of M. The sparse matrix M1 of size n1,p × n1,p (with
n1,p := NE +NE,p +NV,p) that defines the linear system (65) is non-definite positive, symmetrical
and complex-valued. The vector fields Uh and F1 are in Cn1,p .

Concerning the second OSRC formulation (58), the globally unsymmetrical variational formu-
lation is given by: find (Mh,Φh,ρh) ∈ Vh × V p

h × Z
p
h solution to

∫
Γh

Mh · vhdΓh +

Np∑
j=1

βj

∫
Γh

φjh · vhdΓh = −β0

∫
Γh

uh · vhdΓh,∫
Γh

(qjφ
j
h ·w

j
h +

1

k2
ε,h

curlΓhφ
j
h · curlΓhw

j
h)dΓh −

∫
Γh

∇Γhρ
j
h ·w

j
hdΓh =

−
∫

Γh

uh ·wj
hdΓh, j = 1, ..., Np,∫

Γh

(k2
ε,hρ

j
hz
j
h + φjh · ∇Γhz

j
h)dΓh = 0, j = 1, ..., Np,

(68)

where vh and wj
h are in Vh, zjh ∈ Zh, βj = rj/Z0, for j = 1, ..., Np. We recall that the entry uh

is given by the equation (62). There is a major difference between systems (61) and (68). Indeed,
system (61) fully couples all the components of (Mh,Φh,ρh) while, for (68), only φjh and ρjh are
related by the two last equations of (68), for a fixed j = 1, ..., Np. More precisely, we first have to
solve (possibly in parallel) Np decoupled symmetrical complex-valued sparse linear systems

Mj
2

[
φjh
ρjh

]
:=

[
Bqj L
LT K

][
φjh
ρjh

]
=

[
F2,1

0

]
, j = 1, ..., Np, (69)

with Bqj := −(qjA + N) and F2,1 = (N− A)(nh × Jinc
h ). The square matrix Mj

2 has a size n2 × n2,
with n2 := NE +NV , which is much less than for M1 and Np-independent. Then, in a second step,
we obtain the unknown discrete magnetic surface current Mh by solving the linear system

AMh =
r0

Z0
(A− N)(nh × Jinc

h )− A(

Np∑
j=1

βjφ
j
h), (70)

of size NE ×NE which is again much less than for M1. As a consequence, we can expect that this
second approach, based on (68), outperforms (61) in terms of computational times.

5 Numerical results

We now consider various scattering problems by PEC and impedance scatterers to numerically
validate the MtE operators in the context of OSRCs methods. The objects are illuminated by an
electromagnetic plane wave defined by

Einc(x) = p eıd·x,

where p is the polarization vector and d = (sin(θinc) cos(φinc), sin(θinc) sin(φinc), cos(θinc))t is the
incidence vector such that p ·d = 0. To evaluate the method, we consider the bistatic Radar Cross
Section (RCS) given by

RCS(θ, φ) = 10 log10(|E∞(x̂(θ, φ))|2) (dB),

where E∞ is defined by relation (6) and the point x̂ is given on the unit sphere S1 by its spherical
coordinates: x̂(θ, φ) = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ))T (the angles are given in degrees here).
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Before assessing the accuracy of the OSRC methods, let us take a look at the convergence
of the finite element approximations and their computational performance. We recall that we
have two formulations. The first one, based on system (66)-(67), essentially uses the square-root
approximation (50) of the OSRC operators. For this reason, this formulation is called Sqrt in the
sequel. The second formulation uses the approximation (57) and leads to the decoupled systems
(69)-(70) of surface PDEs. The resulting method is called Isqrt. Concerning the finite element
methods, we introduce the density of discretization points per wavelength nλ = λ/h. We consider
the scattering problem of an incident plane wave with incidence angle (θinc, φinc) = (180, 180) by

the unit sphere S1. We report in Table 2 the error ||M̃ −Mh||L2(S1)/||M̃||L2(S1) (in %) between

the analytical OSRC surface field M̃ given by (29) and the numerical field Mh provided by (70),
with respect to the wavenumber k and number Np of Padé functions. The discretization density
is fixed to nλ = 21. We can see that the finite element approximation is very accurate in all the
situations (for Np ≥ 2). Furthermore, the accuracy of the OSRC method is quite optimal for
Np = 2 auxiliary functions whatever is the wavenumber k. A similar accuracy is observed for Sqrt.
Other simulations show that nλ = 10 already leads to correct results and that finer meshes improve
the accuracy.

k Np = 0 Np = 2 Np = 4 Np = 8 Np = 12

π 29.18 0.553 0.521 0.514 0.513

2π 37.68 0.426 0.395 0.393 0.393

4π 43.93 0.408 0.340 0.340 0.340

6π 46.57 0.450 0.332 0.331 0.331

8π 48.11 0.510 0.330 0.329 0.329

Table 2: Accuracy of the finite element method for Isqrt in the case of the unit sphere S1 vs. k
and Np. The discretization density is nλ = 21.

Let us now consider the performances of the different OSRC formulations. We report in Table
3 the total CPU time (in seconds) for the two formulations Sqrt and Isqrt. All the tests run on an
Intel (R) Xeon at 2.27Ghz (8Go memory). The linear systems are solved by the sparse direct solver
MUMPS∗. In the case of formulation Sqrt, the linear system to solve, i.e. system (65), couples
the Np auxiliary functions. We have seen that this system can be quite large most particularly if
Np � 1 since then n1,p is large too. In the case of formulation Isqrt, the Np systems defined by

Mj
2, j = 1, ..., Np, are decoupled (see Eq. (69)) and of fixed size n2 × n2 with respect to Np. From

these numerical results, we clearly see that Isqrt requires less memory and is much faster than
Sqrt for an equivalent accuracy. As a consequence, the Isqrt OSRC formulation outperforms the
Sqrt OSRC formulation. For this reason, we only use the Isqrt formulation in the sequel of the
paper.

Let us now come to the evaluation of the OSRC methods compared to a reference solution
for various scatterers, frequencies and incidence angles. First, the reference solution consists in
the full Maxwell’s equations solution obtained through a three-dimensional finite element method
with fine mesh. The solution to the large size associated linear system is computed by using a
Domain Decomposition Method when the use of a direct sparse solver is limited. For comparison,
we essentially report the bistatic RCS (dB) and the (real part of) surface current Mh.

In the first example, we consider on Figure 4 the bistatic RCS for the scattering problem of an
incident electromagnetic plane wave by the PEC sphere S1 for k = π and k = 8π. In both cases,
we observe that the OSRC solution (with Np = 2) is a very good approximation of the reference
solution obtained for a cheap computational cost. In the illuminated forward scattering directions,
the accuracy of the OSRC solution is satisfactory. The discrepancies are mainly observable in the

∗http://graal.ens-lyon.fr/MUMPS/
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Np = 1 Np = 2 Np = 4 Np = 8

k = 6π, nλ = 11

Sqrt n1,p 108 383 170 317 294 185 541 921
CPU (sec.) 18 29 84 416

Isqrt n2 61 934 61 934 61 934 61 934
CPU (sec.) 19 28 44 77

k = 6π, nλ = 21

Sqrt n1,p 404 056 634 946 1 096 726 2 020 286
CPU (sec.) 84 146 515 2778

Isqrt n2 230 890 230 890 230 890 230 890
CPU (sec.) 90 124 194 333

k = 8π, nλ = 11

Sqrt n1,p 197 388 310 182 535 770 986 946
CPU (sec.) 35 60 184 928

Isqrt n2 112 794 112 794 112 794 112 794
CPU (sec.) 37 53 85 149

Table 3: Size of the linear systems and CPU time of the Sqrt and Isqrt OSRC methods with
respect to the different parameters k, nλ and Np (for the scattering by the unit PEC sphere).

deep shadow zone. This is due to the fact that the complex phase of the grazing waves is not
completely correctly modeled in the OSRC operators. Indeed, the ε parameter defined by relation
(43) is used to increase the accuracy in the shadow zone but in an approximate way. Finally,
the analytical (i.e. Mie series) and numerical (i.e. finite element for nλ = 25) OSRC solutions
superpose which means that the full numerical OSRC method is accurate. Increasing Np does not
improve the accuracy here, which means that Np = 2 is optimal for the OSRC method.
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Figure 4: Bistatic RCS for the PEC unit sphere S1 illuminated by an incident electromagnetic
plane wave with (θinc, φinc) := (180, 180) at k = π (right) and k = 8π (left).

The second test case consists in the scattering problem by an ellipsoid with semi-axes a = 1,
b = 0.5 and c = b along the x-, y- and z-directions, respectively. We report on Figures 5 and 6 the
real parts of the reference and (numerical) OSRC (for nλ = 30) surface currents M for two couples
of incidence angles and k = 3π. We remark that globally the surface fields are correctly computed
even if some errors are again observed in the shadow zone. When computing the corresponding
bistatic RCS (see Figure 7), we see that we obtain a correct approximation for all angles, with an
optimal accuracy for Np = 2.
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Figure 5: Scattering of a plane wave by a PEC prolate ellipsoid; real part of the surface current M
for k = 3π and (θincφinc) = (180, 180) deg.: reference solution (left) and numerical OSRC solution
for Np = 2 (right picture).

Figure 6: Scattering of a plane wave by a PEC prolate ellipsoid; real part of the surface current M
for k = 3π and (θincφinc) = (90, 0) deg.: reference solution (left) and numerical OSRC solution for
Np = 2 (right).

The third obstacle is a semi concave sphere (see Figure 8). We report on figures 9 the RCS for
k = 3π in two situations. The first example (Figure 9, left) consists in considering (θinc, φinc) =
(180, 180) degrees. First, we see that the RCS is correct in the forward scattering direction and
that errors occur in the shadow zone. Furthermore, the accuracy is better in the convex transition
zone than in the concave part. The second example (Figure 9, right) takes (θinc, φinc) = (90, 0).
We observe that the main errors arise in the non convex part (θ = 90 degrees) while scattering in
the convex part (θ = 270 degrees) is very well reproduced.

In the next example, we consider the scattering problem by a PEC cube of side one, centered
at the origin. We report on figure 10 the bistatic RCS for k = 2π and (θinc, φinc) = (180, 180). We
remark that the RCS is correctly computed. For comparison, we also give the RCS computed by
using a global constant mean curvature Heqv =

√
2 in relation (43) and the numerical one. We see

that considering the numerical curvature improves the precision of the method for some angles.
Finally, we consider the scattering problem by a scatterer with an impedance boundary condi-

tion. Therefore, we have a boundary condition of the following form [55]

n× J + Z(Z0M) = g, on Γ, (71)

where Z is a given surface operator. Here, we restrict the study to the case where Z is a given
complex valued constant but more general operators can be considered, our approach being direct
to extend. Using the Isqrt OSRC approach, we have to solve for g = −n × Jinc − ZZ0M

inc, the
equation

(Λ1,ε −ZZ0Λ2,ε)M = −Λ2,εg (72)

Unlike the PEC case, the problem is fully coupled in terms of surface fields M and J. Whatever is
the OSRC formulation, i.e. Isqrt or Sqrt, introducing auxiliary functions requires the solution to
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Figure 7: Bistatic RCS for the PEC prolate ellipsoid illuminated by an incident electromagnetic
plane wave with k = 3π: (θinc, φinc) = (180, 180) deg. (left) and (θinc, φinc) = (90, 0) deg. (right).

Figure 8: The semi concave sphere.

a coupled system of PDEs over Γ similarly to Sqrt. Decoupling the fields could be possible by using
a numerical iterative procedure that we do not study here. To show one example of computation,
we fix Γ = S1 for an incident plane wave Einc(x) = (1, 0, 0)te−ikx3 . This allows us to obtain
an analytical solution for the exact solution. For the OSRC solution, we use the full numerical
approximation by adapting the previous finite element formulations. We choose Z := 1 + 0.5ı. We
report on Figure 11 the RCS for k = 4π. We observe again a very good agreement between the
exact and approximate solutions even is small oscillations occur in the shadow zone. Figure 12
gives (the real part of) the surface fields M for the reference and approximate methods. We see
that the fields are correctly reproduced even if small errors occur in the shadow zone.

6 Conclusion

The aim of this paper was to propose some new local approximate accurate magnetic-to-electric
surface operators for the three-dimensional time harmonic Maxwell’s equations. These operators
are built by using a diagonalization procedure, a regularization technique and a local operator
representation based on rational complex Padé approximants. These operators are next numerically
approximated by using finite element methods. The resulting techniques, applied in the context of
OSRC methods, provide fast accurate surface fields and associated RCS for various obstacles.

One of the main application of these new operators is to consider them as tools for improving
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Figure 9: Bistatic RCS for the PEC semi concave sphere illuminated by an incident electromagnetic
plane wave with k = 3π: (θinc, φinc) = (180, 180) deg. (left) and (θinc, φinc) = (90, 180) deg. (right).
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Figure 10: Bistatic RCS for the PEC unit cube illuminated by an incident electromagnetic plane
wave with k = 2π and (θinc, φinc) = (180, 180) degrees.

other numerical methods. Let us e.g. mention preconditioning techniques and well conditioned
integral equation formulations [11, 12, 13, 10, 9, 21, 22, 2, 19, 39] or robust domain decomposition
methods [33, 30, 31, 42, 41, 50, 49, 20]. They can also be applied as Absorbing Boundary Conditions
(ABCs) [7, 37, 52, 16, 15, 44, 57, 17, 56, 35, 34] on a general convex shape surrounding the scatterer.
Some of these aspects will be the subject of forthcoming studies.
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