
HAL Id: hal-01094819
https://hal.science/hal-01094819v1

Submitted on 28 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asynchronous alternating direction method of
multipliers applied to the direct-current optimal power

flow problem
Azary Abboud, Romain Couillet, Merouane Debbah, Houria Siguerdidjane

To cite this version:
Azary Abboud, Romain Couillet, Merouane Debbah, Houria Siguerdidjane. Asynchronous alternating
direction method of multipliers applied to the direct-current optimal power flow problem. 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP) , May 2014, Florence,
Italy. �10.1109/ICASSP.2014.6855111�. �hal-01094819�

https://hal.science/hal-01094819v1
https://hal.archives-ouvertes.fr

ASYNCHRONOUS ALTERNATING DIRECTION METHOD OF MULTIPLIERS

APPLIED TO THE DIRECT-CURRENT OPTIMAL POWER FLOW PROBLEM

Azary Abboud⋆† Romain Couillet⋆ Mérouane Debbah⋆ Houria Siguerdidjane†

⋆ Alcatel-Lucent Chair on Flexible Radio - SUPÉLEC, Gif-sur-Yvette, France
†Automatic Control Department - SUPÉLEC, Gif-sur-Yvette, France.

ABSTRACT

In a large network of agents, we consider a distributed convex

optimization problem where each agent has a private convex cost

function and a set of local variables. We provide an algorithm

to carry out a multi-area decentralized optimization in an asyn-

chronous fashion, obtained by applying random Gauss-Seidel itera-

tions on the Douglas-Rachford splitting operator. As an application,

a direct-current linear optimal power flow model is implemented

and simulations results confirm the convergence of the proposed

algorithm.

Index Terms— convex optimization; operator splitting;

distributed control; optimal power flow.

I. INTRODUCTION

In this paper, we focus on power grid networks and specifically

on the direct-current optimal power flow (DC-OPF) problem [1].

The network contains a set of N agents that control their own

generated powers. These agents aim at minimizing the global

generation cost in a distributed manner. However, this minimization

is constrained by the grid infrastructure and the physical limits on

the available power. We formulate this problem generically as a

convex optimization problem with linear constraints as follows

minimize
{xv, v∈{1,...,N}}

N
∑

v=1

fv(xv)

subject to

a
T

i (x
T

1 , . . . ,x
T

N)T = bi i = 1, . . . ,m,

xv,min ≤ xv ≤ xv,max v = 1, . . . , N.
(1)

where each node v ∈{1, . . . , N} controls a vector of local vari-

ables xv = (x
(
∑v−1

ϑ=1
nϑ+1)

, . . . , x(
∑

v
ϑ=1

nϑ))
T ∈R

nv , bounded by

xv,min ∈R
nv and xv,max ∈R

nv . The local operating cost of

a node v is given by the closed proper convex function fv :
R

nv 7−→ R. Note that fv is proper if ∃xv ∈R
nv such that

fv(xv)< +∞, and ∀xv ∈R
nv , fv(xv)>−∞. Each equality

constraint i, i∈{1, . . . ,m}, is characterized by the vector of

coefficients ai = (ai1, . . . , aij , . . . , ain)
T ∈R

n, with n =
∑N

v=1 nv ,

and bi ∈R. Unless stated otherwise, all the vectors are supposed

to be column vectors.

To solve the problem distibutively, we decompose the overall

system into L smaller areas/micro grids. Each area has its own

subproblem and it seeks to update its variables while having

limited coordination with the other areas. Several mathematical

methods can be used to perform the distributed optimization,

such as the augmented Lagrangian technique [2], the auxiliary

problem principle [3] and the approximate Newton directions [4],

[5]. These methods usually require the computation of the Hessian

of the global objective function, the inversion of large matrices,

synchronization and coordination between the areas and may have

convergence issues [6]. The alternating direction method of mul-

tipliers (ADMM) [7], [8], in which the augmented Lagrangian

of the problem is recursively minimized first with respect to

the primal variables and then with respect to the dual variables,

converges faster than the aforementioned methods and overcomes

all their problems, except the synchronization and the coordination

issues [8].

Synchronization induces latency in the computation of the solu-

tion because all the areas must wait for the slowest area to solve

its subproblem before carrying out another iteration. Moreover,

neighboring areas need to coordinate and communicate the values

of the variables coupling them. For these reasons, relying on

the recent results of [9], we derive an asynchronous distributed

algorithm with guaranteed convergence. The work presented in [9]

aims at finding the global state of the network by solving an

unconstrained optimization problem. The agents share the same

state which represents the global network state and they try to find

a consensus on the value of this individual variable. In contrast,

in this paper, every node has its own set of primal variables

that it seeks to determine, and the global cost of the network is

minimized subject to a set of equality and inequality constraints.

The update steps of this algorithm inherits the principle of ADMM

(i.e., alternating between the resolution of a primal and dual convex

optimization problems), but at each iteration, only one area is

randomly chosen to solve its subproblem. Since the areas are

assumed overlapping, no coordination takes place between them

and no inter-area communication is required. We give our algorithm

in a generic form, which makes it applicable to problems involving

distributed computations other than power systems.

The rest of the paper is organized as follows. We formulate

the problem in Section II. In Section III, we apply the Douglas-

Rachford (DR) splitting method in order to obtain our distributed

algorithm. Then, we derive in Section IV the asynchronous

distributed algorithm that we prove to converge. We provide an

implementation of the DC-OPF problem and simulations in Section

V. Section VI concludes the article.

II. PROBLEM FORMULATION

The network is represented by an undirected graph G = (V,E)
consisting of a set of N nodes, V , and a set of edges E. We

divide G into L overlapping areas Al, l∈{1, . . . , L}. For each

area Al, we assign a subset of vertices Vl ⊂V and a subset of

edges El = {{u, v}; (u, v) ∈ V 2
l }∩ E such that

⋃L

l=1 Vl =V and
⋃L

l=1 G(Vl) is connected, where G(Vl) is the sub-graph (Vl, El) .

Let x = (xT
1 , . . . ,x

T
v , . . . ,x

T
N)T ∈R

n, A = [a1, . . . ,am]T ∈R
mn,

b = (b1, . . . , bm)T∈R
m, xmin = (xT

1,min, . . . ,x
T
N,min)

T∈R
n and

xmax = (xT
1,max, . . . ,x

T
N,max)

T∈R
n. We convert problem (1) into

the following canonical form

minimize
x∈Rn

f(x) + g(z)

subject to Mx = z,
(2)

where f and g are two closed proper convex functions given by

f(x) =

∑

v∈V

fv(xv) if xv,min ≤ xv ≤ xv,max, ∀v ∈ V

+∞ otherwise,

g(z) =

0 if
n
∑

j=1

zij = bi; aij = 0⇒zij = 0, ∀i = 1, . . . ,m

+∞ otherwise,

where z = (zT
1 , . . . , z

T

l , . . . , z
T
L)

T
, and zl =

∏

Vl
z′ is the projec-

tion of z′ = (z11, z12, . . . , zij , . . . , zmn)
T

on Vl given by
∏

Vl

: Rmn → R
ml

z
′ 7→ z = (zij)(i,j)∈Il

. (3)

Il =
{

(i, j); aij 6= 0, j ∈
⋃

v∈Vl

{
∑v−1

ϑ=1 nϑ + 1, . . . ,
∑v

ϑ=1 nϑ

}

}

and ml = |Il|. Thus, zl is the vector composed by the

elements {zij} of z′ corresponding to the jth component

of xv having a nonzero coefficient aij in the ith constraint

assigned to Al. M ′ = [diag(a1), . . . , diag(am)]T , where

diag(ai) is the diagonal matrix constituted by ai, and

Mx = ((
∏

Vl
M ′x)T , . . . , (

∏

Vl
M ′x)T)T .

Problem (2) is equivalent to problem (1). This is proved by letting

aijxj = zij and then summing on j for each constraint i.
The dual of the minimization problem (2) is given by [10]

minimize
λ∈Rm

{f∗(−M
∗
λ) + g∗(λ)} , (4)

where λ = (λT
1 , . . . ,λ

T

l , . . . ,λ
T
L)

T
with λl =

∏

Vl
λ′, and

λ′ = (λ11, . . . , λmn)
T ∈R

mn being the Lagrangian multipliers

vector associated to the set of constraints aijxj = zij . The functions

f∗ and g∗ are the Fenchel’s conjugate of f and g respectively, i.e.,

f∗(u) = sup
x

{〈x,u〉 − f(x)}, where 〈x,u〉 = xTu is the inner

product of x and u.

By strong duality, the optimization problem reduces to finding

the minimum of the dual (4).

III. MONOTONE OPERATOR THEORY AND

DISTRIBUTED OPTIMIZATION

Using monotone operator theory basics, we prove that the dual

problem (4) can be solved distributively by applying the proximal

point algorithm (PPA) on the Douglas-Rachford (DR) splitting

operator.

III-A. Monotone operator theory

Take an Euclidean space set Y . We define its power set, denoted

P(Y) = 2Y , as the family of all subsets of Y including the empty set

∅ and Y itself. An operator D : X → Y maps every point x∈X
to a point Dx ∈ Y , while a set valued operator D : X → 2Y maps

every point x∈X to a set Dx⊂Y .

An operator D (single-valued or multi-valued), is characterized

by its:

• graph: gra (D) = {(x,y) ∈ X × Y | y ∈ Dx} ;
• domain: dom (D) = {x ∈ X | ∃ y ∈ Y : (x,y) ∈ D} ;
• inverse: D−1 = {(y,x) ∈ Y × X | (x,y) ∈ gra D} ;
• zero’s set: Zer (D) = D−10 = {x ∈ X | 0 ∈ Dx} ;
• set of fixed points: Fix (D) = {x ∈ X | x ∈ Dx} .

III-B. Proximal point algorithm

Let λ be the minimum of the dual problem, and D(λ) =
−M ∂f∗(−M∗λ)+∂g∗(λ) its subgradient mapping. By Fermat’s

rule [10, Th 16.2], λ is also the zero of D. D itself is a single

valued maximal monotone operator [11]. Thus, by [12, Th 3.6]

and for any ρ > 0, the resolvent JρD = (I + ρD)−1 of D is a

single valued firmly nonexpansive operator with full domain. The

following Lemma is then applicable.

Lemma 1 (PPA, [13]): Given a maximal monotone operator

D, such that Zer (D) 6= ∅. Then Fix (JρD) is a singleton and

Zer (D) = Fix (JρD). Moreover, starting from any initial point

ζ0 ∈ dom (D), ζk → Fix (JρD), where ζk+1 = JρD(ζk), k ≥ 1.

Hence, instead of searching for Zer (D), we search for

Fix (JρD). That is, starting from any initial point ζ0, we iterate

ζk+1 = JρD(ζk) until convergence.

III-C. The distributed optimization

D can be written as D =T + U , where T =−M∂f∗ ◦ (−M∗)
and U = ∂g∗ are two maximal monotone operators [11] . To apply

the PPA, we need to compute Jρ(T+U) which is not an easy task.

From the structure of D, searching for Zer (D) is equivalent to

searching for Zer (T +U). This naturally calls for the DR splitting

method in which the operators T and U are employed in separate

steps. The DR method is indeed used to find the zero of the sum

of two maximal monotone operators. The DR splitting operator, on

which we apply the PPA, is given by

R = {(ν + ρz,λ− ν) ; (ν,α) ∈ T, (λ, z) ∈ U

and ν + ρα = λ− ρz}. (5)

Since T and U are maximal monotone operators, R is also a

maximal monotone operator [7]. The resolvent S = (R + I)−1 of

R is firmly nonexpansive with full domain, it is given by

S = JλT ◦ (2JλU − I) + (I − JλU)

= {(λ+ ρz,ν + ρz) ; (ν,α) ∈ T, (λ, z) ∈ U

and ν + ρα = λ− ρz}, (6)

with Fix (S) = {λ+ ρz; (λ, z) ∈ U, (λ,−z) ∈ T} . (7)

Lemma 2: If ζ̄ = Zer (R), then λ̄ =JρU (ζ̄) = Zer (T + U),
where JρU = {(λ+ ρz,λ) ; (λ, z) ∈ U} is the resolvent of U .

Proof: Let ζ̄ = Zer (R) then, ζ̄ = Fix (S). From (7), there is

a unique (λ̄, z̄)∈U verifying ζ̄ = λ̄ + ρ z̄ and T (λ̄) =−z̄. Then,

JρU (ζ̄) =JρU (λ̄+ ρ z̄) = λ̄ and (T + U)(λ̄) =T (λ̄) + U(λ̄) = 0.

Thus, λ̄= Zer (T + U).
From Lemma 2, we conclude that trying to find Zer (R) is

equivalent to finding Zer (T + U). Hence, we apply PPA on R,

i.e., we recursively search for ζ̄ = Fix (S).
Lemma 3: For any ζ =λ + ρz, such that (λ, z)∈U and

λ =JρU (ζ), there is a unique x such that the following is valid

(i) S(ζ) = JR(ζ) = λ+ ρMx,
(ii) x = argmin

x
Lρ(x, z;λ),

where ρ > 0 and Lρ(x, z;λ) is the augmented Lagrangian of the

general problem (2) given by

Lρ(x, z;λ)
∆
= f(x) + g(z) + 〈λ,Mx− z〉+ ρ

2
‖Mx− z‖2.

Proof: (i) R(ζ) =λ−ν where (ν,α)∈T and ν+ρα =λ−ρz.

T is the maximal monotone operator given by T =−M∂f∗ ◦
(−M∗). Therefore, α∈−M∂f∗(−M∗ν) and there is a unique

x∈ ∂f∗(−M∗ν) such that α =−Mx. From (6) we have

S(ζ) =ν + ρz =λ − ρα. But α =−Mx, we conclude that

S(ζ) =λ+ ρMx.

(ii) Since f is a closed proper convex function, then by

the Fenchel-Young inequality [10, Prop 16.9] the expression

x∈ ∂f∗(−M∗ν) is equivalent to −M∗ν ∈ ∂f(x), it follows that

0∈ ∂f(x)+M∗ν. From the output of (5), we have ν =λ−ρ(z+
α). We also have α =−Mx. Then, ν =λ+ρ(Mx−z). It follows

that 0∈ ∂f(x) +M∗ν which translates to 0∈ ∂f(x) +M∗λ+
ρM∗(Mx− z). We conclude that x = argmin

x
Lρ(x, z;λ).

Next, we write explicitly the kth recursion of the PPA applied

to R, i.e., the recursion ζk+1 = S(ζk).

Lemma 4: Let ζ0 =λ0 + ρz0 such that λ0 =JρU (ζ
0) and

(z0,λ0)∈U . Define ∀ k ≥ 0, ζk+1 = S(ζk). Let λk =JρU (ζ
k),

(zk,λk)∈U and xk+1 the unique x defined in Lemma 2 such

that S(ζk) = λk + ρMx. Then the following holds

x
k+1 = argmin

x

Lρ(x, z
k;λk),

z
k+1 = argmin

z

Lρ(x
k+1, z;λk),

λ
k+1 = λ

k + ρ(Mx
k+1 − z

k+1),

Proof: ζk =λk + ρzk, by Lemma 3 there is a unique

xk+1 such that S(ζk) =νk + ρzk =λk + ρMxk+1 and

xk+1 = argmin
x
Lρ(x, z

k;λk).

To demonstrate the expressions of λk+1 and zk+1 we

use the hypothesis ζk+1 = S(ζk). On the one hand,

let ζk+1 =λk+1 + ρzk+1 where (λk+1, zk+1)∈U and

λk+1 =JρU (ζ
k+1), then λk+1 = ζk+1 − ρzk+1. On the other

hand, S(ζk) =λk + ρMxk+1 = ζk+1. Thus λk+1 =λk +
ρMxk+1 − ρzk+1. Moreover, zk+1 ∈U(λk+1), then by the

Fenchel-Young inequality [10, Prop 16.9] this is equivalent to

λk+1 ∈ ∂g(zk+1). Thus 0∈ ∂g(zk+1) − λk+1, it follows that

0∈ ∂g(zk+1) − λk + ρzk+1 − ρMxk+1, which is equivalent to

zk+1 = argmin
z
Lρ(x

k+1, z;λk).

These three update steps of xk+1, zk+1 and λk+1 can be

distributed among the L subsystems as demonstrated next.

Lemma 5 : Define Sl(ζ) = (λl +
∏

Vl
M ′x), i.e, the lth sub-

block of S(ζ) = ((λ1 +
∏

Vl
M ′x)T , . . . , (λL +

∏

Vl
M ′x)T)T .

For each area Al we have

x
k+1
l = argmin

xl

∑

v∈Vl

fv(xv) + λ
k
l

T
∏

Vl

(M ′
x)

+
ρ

2
‖
∏

Vl

(M ′
x)− zl

k‖2 (8a)

z
k+1
l = argmin

zl

− λ
k
l

T

zl +
ρ

2
‖
∏

Vl

(M ′
x

k+1)− zl‖
2

(8b)

λ
k+1
l = λ

k
l + ρ(

∏

Vl

(M ′
x

k+1)− z
k+1
l). (8c)

Proof: Hereafter, we prove that the decomposition is true for

x. The same argumentation can be used for z and λ.

xk+1= argmin
x
f(x)+g(zk)+〈λk,Mx−zk〉+ ρ

2
‖Mx−zk‖2

= argmin
x
f(x) + 〈λk,Mx〉+ ρ

2
‖Mx− zk‖2

= argmin
x
f(x)+

L
∑

l=1

{λk
l

T ∏

Vl
(M ′x)+ ρ

2
‖
∏

Vl
(M ′x)− zk

l ‖
2}.

This expression is separable into L independent parts xk+1
l where

xl =
∏

Vl
(x)∈R

nl and nl =
∑

v∈Vl
nv . The sub-block xk+1

l

is assigned to Al and contains only the components of xk+1

corresponding to the nodes v ∈ Vl.

As a conclusion, when we use the PPA on the DR splitting oper-

ator R, by Lemma 1 we can iteratively find the solution x̄ of (1).

However, if every area Al solves the subproblem given by (8a), (8b)

and (8c) at every iteration k, we obtain the synchronous distributed

algorithm, ADMM [7]. In the next section, we prove that applying

these update steps in a random fashion, where the subproblem of a

randomly chosen area is solved at each iteration, converges to the

solution of (1).

IV. ASYNCHRONOUS DISTRIBUTED OPTIMIZATION

The Gauss-Seidel method is a method of successive displacement

used to find an approximate solution of a linear system of equations

starting from any initial point, and iterating till a stopping criterion

is fulfilled.

As stated in the previous Section, when we iterate ζk+1 =S(ζk),
we obtain the well-known synchronous ADMM algorithm. In

order to obtain an asynchronous algorithm, the updating process

should be endowed with a random behavior. To this end, let

ζ = (ζT

1 , . . . , ζ
T

L)
T and suppose S(ζ) = (ST

1 (ζ), . . . ,S
T
L (ζ))

T . We

define for each area Al, the operator Ŝl: Y → Y as

Ŝl(ζ) = (ζT

1 , . . . , ζ
T

l−1,S
T

l (ζ), ζ
T

l+1, . . . , ζ
T

L)
T , (9)

and we use the following theorem.

Theorem 1 [9, Th. 2] : Take a firmly nonexpansive operator

S = (ST
1 , . . . ,S

T
L)

T with full domain on Y and a sequence of

i.i.d. random variables (ξk)k∈N. Starting from any initial value ζ0,

the random iterates, ζk+1 = Ŝξk+1
(ζk) converges almost surely

to a random variable supported by Fix (S) (when Fix (S) 6= ∅).

In our case, the expression of the resolvent S is simpli-

fied to S(ζ)= ((
∏

Vl
λ′ + M ′x)T , . . . , (

∏

Vl
λ′ + M ′x)T)T

divided between the L areas , and we define Ŝl as in (9). We

choose a sequence of i.i.d. random variables (ξk), and we iterate

ζk+1 = Ŝξk+1
(ζk) (i.e., if ξk+1 = l, then only the nodes of Al

update their variables). Then these iterations converge almost surely

to ζ̄ = Fix (S).
Thus, if we use the result of Theorem 1 along with the DR

splitting method, the random iterates lead to λ̄ =JρU (ζ̄) which

converges almost surely to Zer (D), i.e., the minimum of the

dual problem (4). That is, by applying the random Gauss-Seidel

iterations on the DR splitting method, we obtain an asynchronous

iterative distributed process, named the asynchronous ADMM. This

algorithm is given by solving (8a) to (8c) for a randomly chosen

area Al at each iteration k. This leads us to the solution x̄ of (1).

To summarize our asynchronous ADMM algorithm, at the kth

iteration, we pick a random variable ξk+1 (as stated in Theorem 1),

and consequently the area, Al, whose l = ξk+1 is chosen to perform

the update process by solving its subproblem given by (8a) to (8c)

while the other areas retain their older values of the primal and

dual variables. The result converges almost surely to the solution

of (1).

V. IMPLEMENTATION AND SIMULATIONS

To illustrate our result, we consider the DC-OPF problem repre-

sented as (1), where we aim to control and optimize the operation

of a power system so as to meet the underlying energy demand,

with respect to a given objective function and subject to physical

constraints on the available power and the grid infrastructure. We

extract A and b from the linearized DC power flow equations

PD =PG − P and P =Bθ, where PD ,PG and P represent

respectively the power demanded, generated and transmitted by the

agents, θ is the voltage phase vector and B is the imaginary part

of the admittance matrix Y , assumed to be purely imaginary. We

divide the network into L overlapping connected areas and we solve

the subproblem (8a), (8b) and (8c) for a given area Al. Each node

1 2

34

5 6

78

41 42

4344

45 46

4748

9

Area 1 Area 2 Area 11 Area 12

Fig. 1. Network of N = 48 nodes divided into L = 12 overlapping

control areas.

1 2

34

5 6

78

13 14

1516

179 10

1112

Area 1 Area 2 Area 3

18

1920

Fig. 2. Network of N = 48 nodes divided into L = 6 overlapping

control areas.

v ∈Vl has 3 primal variables indexed by j ∈{3v− 2, 3v− 1, 3v},

the associated update expressions are given by

xk+1
j =max{xj,min,min{xj,max, x

k
j −

1
∑

i

a2
ij

∑

i

aijri(x
k
l)

dl(i)

+
1

ρ
∑

i

a2
ij

(
∂fv
∂xj

∣

∣

∣

∣

xj=xk
j

+
∑

i

aijλ
k
ij)}}, (10)

λk+1
ij =λk

ij +
ρ

dl(i)
ri(x

k+1
l), (11)

where each constraint i∈{ip, . . . , iq} is characterized by its degree

d(i) (i.e., the number of nonzero elements {aij}), by dl(i) its

degree with respect to Al (i.e., the number of nonzero elements

{aij} that corresponds to v ∈Vl) and by its residual with respect

to Al, ri(x
k
l) =

∑

j aijxj −
dl(i)
d(i)

bi. The update step of zij reduces

to zk+1
ij = aijx

k+1
j −

ri(x
k+1

l
)

dl(i)
which is not involved in the above

expressions and can be eliminated. It should be pointed out that

for each i, λij is the same ∀j ∈ {1, . . . , n}.

Let V = {1, . . . , 24} and E = {1, . . . , 35} be the set of nodes and

edges respectively. The network is first divided into L = 12 then to

L = 6 connected areas, as depicted in Fig. 1 and Fig. 2 respectively.

Some nodes are shared, such as the nodes {5, 9, . . . , 45} in Fig.

1, and {9, 17, . . . , 41} in Fig. 2. We apply, using Matlab, the

derived synchronous and asynchronous ADMM algorithms and

we choose ρ < 2 because the convergence rate is degraded for

larger values of ρ. We examine the convergence to the theoretical

global cost and the global network state. If we compare upon the

number of iterations performed, we obtain the mean global cost

evolution (Fig. 3(a)) and the normalized mean squared deviation

NMSD=E{‖x− xtheoretical‖
2/‖xtheoretical‖

2} of the primal

variables from the theoretical values (Fig. 3(b)). These plots prove

the convergence of the derived algorithms, we also observe that

having larger areas increases the convergence rate. In Fig. 4(a)

and Fig. 4(b) we compare the evolution of the mean global cost

and the NMSD with respect to the number of updates performed.

In synchronous ADMM, at each iteration, all the nodes update and

exchange their variables, while in the asynchronous algorithm, only

the nodes of a randomly chosen area update their variables without

communicating with the other areas (i.e., if we take a window of

iterations, we may observe that one area updated more than one

time its variables, while other areas were inactive). Thus, if we

performed the same amount of updates as the synchronous version

0 1000 2000 3000 4000
5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6
x 10

4

Iteration k

M
e

a
n

 G
lo

b
a

l
c
o

s
t

Theoretical

Synchronous ADMM

Asynchronous ADMM, L=6

Asynchronous ADMM, L=12

(a) Mean global cost evolution

0 1000 2000 3000 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Iteration k

N
M

S
D

Synchronous ADMM

Asynchronous ADMM, L=6

Asynchronous ADMM, L=12

(b) Normalized mean squared deviation

Fig. 3. Performance of the proposed ADMM algorithms with

respect to the number of iterations performed, N = 48, ρ = 1.8.

0 100 200 300 400
5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6
x 10

4

Number of updates/48

M
e

a
n

 g
lo

b
a

l
c
o

s
t

Theoretical

Synchronous ADMM

Asynchronous ADMM, L=6

Asynchronous ADMM, L=12

(a) Mean global cost evolution

0 100 200 300 400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

N
M

S
D

Number of updates/48

Synchronous ADMM

Asynchronous ADMM, L=6

Asynchronous ADMM, L=12

(b) Normalized mean squared deviation

Fig. 4. Performance of the proposed ADMM algorithms with

respect to the number of updates performed, N = 48, ρ = 1.8.

of ADMM, our algorithm would lead to the same result although

theses updates are not equally divided between the areas.

VI. CONCLUSION

In this paper, we have presented an iterative decentralized solver

of convex optimization problems in large networks. The derived

algorithm divides the optimization problem into L subproblems,

each is then solved independently of the other subproblems. We

have proved that the algorithm converges almost surely to the

solution when the subproblems are solved synchronously (i.e., all

the subproblems are solved at each iteration) or asynchronously

(i.e., one subproblem is randomly chosen and solved at each itera-

tion). We have applied these distributed algorithms to the DC-OPF

problem. We have showed through simulations the convergence

to the optimal cost and the optimal network global state. Proving

the convergence of this asynchronous distributed optimization al-

gorithm in case of non-overlapping areas and studying the impact

of noisy data exchange are interesting topics for future work.

VII. REFERENCES

[1] A. J. Wood and B. F. Wollenberg, Power generation, opera-

tion, and control. John Wiley & Sons, 2012.

[2] B. H. Kim and R. Baldick, “Coarse-grained distributed op-

timal power flow,” Power Systems, IEEE Transactions on,

vol. 12, no. 2, pp. 932–939, 1997.

[3] A. Losi and M. Russo, “On the application of the auxiliary

problem principle,” Journal of optimization theory and appli-

cations, vol. 117, no. 2, pp. 377–396, 2003.

[4] A. J. Conejo, F. J. Nogales, and F. J. Prieto, “A decomposition

procedure based on approximate newton directions,” Mathe-

matical programming, vol. 93, no. 3, pp. 495–515, 2002.

[5] D. G. Luenberger, Linear and nonlinear programming.

Springer, 2003.

[6] D. Kalyanmoy, Optimization for engineering design: Algo-

rithms and examples. PHI Learning Pvt. Ltd., 2004.

[7] J. Eckstein and D. P. Bertsekas, “On the Douglas–Rachford

splitting method and the proximal point algorithm for maximal

monotone operators,” Mathematical Programming, vol. 55,

no. 1-3, pp. 293–318, 1992.

[8] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,

“Distributed Optimization and Statistical Learning via the

Alternating Direction Method of Multipliers,” Foundations

and Trends R© in Machine Learning, vol. 3, no. 1, pp. 1–122,

2011.

[9] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Asyn-

chronous Distributed Optimization using a Randomized Al-

ternating Direction Method of Multipliers,” arXiv preprint

arXiv:1303.2837, 2013.

[10] H. H. Bauschke and P. L. Combettes, Convex analysis and

monotone operator theory in Hilbert spaces. Springer, 2011.

[11] R. Rockafellar, “On the maximal monotonicity of subdiffer-

ential mappings,” Pacific J. Math, vol. 33, no. 1, pp. 209–216,

1970.

[12] J. Eckstein, Splitting methods for monotone operators with ap-

plications to parallel optimization. PhD thesis, Massachusetts

Institute of Technology, 1989.

[13] R. T. Rockafellar, “Monotone operators and the proximal

point algorithm,” SIAM Journal on Control and Optimization,

vol. 14, no. 5, pp. 877–898, 1976.

	 Introduction
	 Problem formulation
	 Monotone Operator Theory and Distributed Optimization
	 Monotone operator theory
	 Proximal point algorithm
	 The distributed optimization

	 Asynchronous distributed optimization
	 Implementation and simulations
	 Conclusion
	 References

