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Abstract—This work stems on the idea that timed automata
models and model-checking techniques may bring much in a
decision-aid context when dealing with large and interacting
qualitative models. In this paper, we focus on two key issues when
facing the interpretation and explanation of behavior in real-
world systems: the model building and its exploration using logic
patterns. We illustrate this approach in the ecological domain
with the modeling and exploration of a fisheries ecosystem.

I. INTRODUCTION

In numerous application domains, the vast majority of

models are simulation ones. However, as model complexity

increases, it becomes more and more difficult to simulate

real systems without being exposed to the problem of scale.

Moreover, in many cases, appropriate data and knowledge

are not available to supply real-valued models. At the same

time, a very attractive approach, model-checking, has been

introduced in computer science and is now widely applied to

verify if the behavior of a timed system is complying with

its specifications. Our work stems on the idea that model-

checking could help a lot for the decision-aid task in large

and complex systems. It is especially true when we want to

explore the impact of a decision on real-world systems.

Classical model-checking techniques are dedicated to finite

state systems. However many systems are usually represented

by analytical models as a set of differential equations. Some

studies present how to quantize continuous-time systems as

discrete-event systems in order to diagnose them [1]. Some

others, in the biological and biomedical field, promote qual-

itative models to analyze complex and large systems in a

formalism that is closed to finite-state systems [2][3]. Quali-

tative modeling [4][5] relies on solid theoretical foundations

to provide a reliable abstraction of real-world models. Ne-

vertheless, even for qualitative models, the exploration still

remains costly and usually relies on exhaustive simulation.

Recent studies have emphasized the great interest of coupling

qualitative models, generally acquired from expert knowl-

edge, with model-checking techniques [6][7][8]. But writing

a temporal logic request remains a challenging step reserved

to experts. Query patterns have already been defined for

the verification of industrial applications [9] or biological

systems [10]. However translating requests that help the user

understanding the possible system trajectories, when applying

new decisions, has not been yet studied.

This paper presents two original contributions in the use

of model-checking techniques for decision-aid in large and

complex systems. Firstly, we propose a method to build auto-

matically a network of timed automata, tractable in practice for

decision problems. The key point is to quantize the continuous-

time sub-systems and to automatically get a network of timed

automata from an abstracted description of the system. The

originality of this approach is to reduce the model complexity,

which is important after the automatic generation, by using

a hierarchical classification algorithm. Secondly, we propose

high-level query patterns to explore and predict future changes

in a decision-aid context. We illustrate our approach in the

field of ecology with the modeling and exploration of fisheries

ecosystems. The global ecosystem is defined as a set of

interacting components such as the anthropogenic pressures,

the environmental units and the continuous predator-prey

subsystems.

This paper is organized as follows. Section 2 describes our

illustrative ecosystem example. Section 3 gives more details on

the qualitative model described as a timed automata network.

Section 4 explains the model building algorithm and details

the reduction performed. Section 5 focuses on the definition

of high-level logic patterns well-suited for the model explo-

ration by non-specialists. Section 6 presents three kinds of

results: performance tests on benchmark models, the EcoMata

software and finally the application on real-world applications

such as a lagoon fisheries system in New-Caledonia. Some

elements of conclusion are given Section 7.

II. ILLUSTRATIVE EXAMPLE

A theoretical ecosystem of interacting species under fishing

pressures and climatic events is presented Figure 1. The

system is composed of three units, each of which structured

in components. These three units interact through potentially

complex ways, via synchronized events and timing constraints.

The components of ENV and AP are naturally expressed in a

qualitative way while ES is usually represented by a population

dynamics model.

• AP contains two components: the two fishing pressures

PP0 and PP1 related to the exploitation of the fish species

SP0 and SP1.



• ENV contains the Hurricane and Warming sea compo-

nents that impact respectively the species SP2 and SP3.

• ES models the dynamics of the ecosystem itself, the

fish species having predator-prey interactions. ES contains

four components: the four fish species SP0 to SP3. The

species SP0 is the predator of species SP1 (the biomass

flow is represented by an arrow) while species SP2 and

SP3 are the preys of SP1. These components follow a

population dynamics modeling such as Lotka-Volterra

equations [11].

ES 

Species 0 (SP0) 

Species 1 (SP1) 

Species 2 (SP2)  Species 3 (SP3) 

Fishing pressure (PP0) 

Fishing pressure (PP1) 

Hurricane  Warming sea 

ES: EcoSystem AP: Anthropogenic 
Pressures 

ENV: ENVironmental 
Issues 

Fig. 1. Interacting species under fishing and environmental pressures

III. TIMED AUTOMATA NETWORK

We are interested in systems where time constraints have

a key role and should be dealt with in an explicit way. The

discrete-event representation given by timed automata is an ap-

propriate formalism to model this kind of systems. The system

states of each component can be represented using qualitative

levels and expressed using a property associated to locations.

For our illustrative example, the biomass values as well as the

fishing pressures are described using qualitative levels Low,

Medium, High and Endanger. For the ENV components, we

can distinguish two states: before and after the climatic event

(with a timing constraint for the WarmingSea).

A Timed Automaton (TA), first proposed by Alur and Dill

[12], is a finite automaton (a graph containing a finite set of

locations and a finite set of labeled edges) extended with real-

valued variables. The variables model the logical clocks in

the system, that are initialized with zero when the system is

started, and then increase synchronously with the same rate.

Clock constraints are of two types: invariants which restrict the

way time may elapse in a location and guards which restrict

the temporal occurrence of a transition. Clocks may be reset

to zero when a transition is taken.

The system model is then defined as a network of timed au-

tomata having as many timed automata as components. There

is only one clock defined for each automaton. The numerical

constraints, the guards and invariants, express the dynamics of

the system and are obtained from user requirements or from

any analytical dynamic model that describes the system.

Synchronized events model efficiently the interaction bet-

ween components and local clocks allow each component to

have its own temporal scale. Each component is represented

by one automaton and the different automata are synchronized

through the shared event labels of the edges. This means that

edges of different automata labeled with the same synchro-

nized event are taken simultaneously. The behavior of the

global system is obtained by synchronizing the timed automata

on the event labels they share, this operation is called parallel

composition [13].

The network of timed automata (NTA) is the finite family

Ai{1≤i≤n} such that n is the number of components. For

each Ai of a NTA, we define the set of neighbouring timed

automata Nei(Ai) = {Aj}{1≤j≤n−1} as the set of automata

Aj such that Aj shares at least one synchronized event with

Ai (Ai having at most n−1 neighbours). To model the system

dynamics, there are two kinds of locations in an automaton Ai:

• Stable locations refer to states associated to qualitative

properties that may only evolve when receiving synchro-

nized event (stable locations are also called qualitative

states). If no event is received, the system stays in his

stable location. For instance, the TA of SP1 contains

four stable locations sp1 H, sp1 N, sp1 L and sp1 E

corresponding to the four biomass qualitative levels High,

Normal, Low and Endanger. It is quite similar for the

fishing pressure automata, for which we can denote three

stable locations for the three qualitative fishing pressure

levels: High, Normal and Low

• Transient locations correspond to an increasing or de-

creasing dynamics of a qualitative level. Transient lo-

cations correspond to a period of time in which the

subsystem is evolving between two stable locations. The

invariants express the maximum delay of stay in this

transitory location.

Let A be a NTA of n automata Ai, each one being defined

by N qualitative levels. Any possible change of qualitative

state in Nei(Ai) may trigger a change in Ai and then

determines a transient location. If we consider that each Ai can

have at most j neighbouring automata, the maximum number

of transient locations of each Ai is then N j .

The edges of Ai are of four types:

• Edges whose source is a stable location and destination a

transient one. They are labelled by the triggerring event

received from a neighbouring automaton. The local clock

is reset and is used to express the time elapsed in the

transient location.

• Edges whose source is a transient location and destination

a stable location. The minimum duration allowed in the

source transient location is expressed by the guard. This

kind of edges correspond to a move to a new stable state.

An event specifying the type of change is emitted.

• Edges whose source is a transient location and destination

the stable location from which the evolution has been

initiated. This edge is a ”return edge” and cancel any

evolution when a contradictory event occurs from a



neighbour.

• Edges between transient locations. When a new event

happens during an evolution, it could be necessary to

adjust the temporal constraints to increase or decrease the

evolution speed and then the time spent in the transient

location.

Let us illustrate the modeling process for an ecosystem of

only three species SP0 → SP1 → SP2 where SP0 is the

prey of SP1 and SP2 the predator of SP1. Figure 2 shows part

of the SP1 species automata. Stable locations are represented

in white circles while transient locations are in black. The local

clock is t. On this simplified automaton SP1 can move from its

initial location sp1 N to a transient location when receiving

one of these three synchronized events sp0 H?, sp2 N? or

sp2 L?. The received event as well as the qualitative level

of the other neighbors determine the triggered edge towards

the transient location. For instance when the prey SP0 has

increased to the High level and emitted an sp0 H! event, the

duration of the SP1 increase depends also on the level value

of its predator SP2. When the predator SP2 is in a low level

(sp2==L) SP1 will increase more quickly to the high level

than if SP2 is in a normal level (sp2==N). Consequently

two transient locations need to be designed. They differ from

their temporal constraints: the invariant and the guard on

the outgoing edge. In Figure 2, the right transient location

represents a faster increase of the SP1 biomass level for a

same received event sp0 H?. Using this right path, it takes

from 23 to 36 time units to get to the location sp1 H . If

a neighbor automata evolves during the increasing step, for

instance sp2 N? is received while the system is already in

a transient location, the system moves to a another transient

location and computes a new clock value taking into account

the time already elapsed in its former transient location and

the new increase speed. When SP1 finally moves to the stable

location sp1 H, a synchronized event sp1 H! is emitted and its

neighbor automata will evolve in turn. Figure 2 is only a part

of the SP1 species automaton, the corresponding decreasing

part exists between the sp1 H and sp1 N locations, the both

increasing and decreasing trend between sp1 N and sp1 L as

well as between sp1 L and sp1 E.

IV. AUTOMATIC MODEL CONSTRUCTION

The model is usually too large to be hand-built. It is

especially true for the temporal constraints that should comply

with numerical equations of the domain. We propose an

efficient algorithm that automatically generates the network

of timed automata according to a simple system description

requiring the number of components, their interactions and the

number of qualitative levels (and their relative values). The

algorithm is composed of two mains parts: the generation of

the timed automata network and its simplification to make it

more tractable.

A. Model Generation

We propose a qualitative model of the ecosystem part

(species components) from a discretization of classical po-

Fig. 2. Part of SP1 species timed automata. Two stable locations (white circle)
sp1 N (initial location) and sp1 H and two transient locations (black circles)
denoting an increasing trends between the Normal and High levels. A clock
t express the timing constraints of the evolution.

pulation dynamics equations. Components having only con-

trollable events (fishing pressures) can be derived from any

simple description since the change between qualitative levels

is instantaneous. Figure 3 presents the automatic generation

of the network of timed automata describing an ecosystem.

Each timed automaton is built independently. The algorithm

Fig. 3. Automatic generation of timed automata algorithm

begins to build the stable locations and the transient locations

depending on the possible evolutions in the neighbouring

automata. Once the locations are defined, simple edges are

created and finally return edges and edges between transient

locations. The key point is to compute the guards on the edges

and the invariants on the transient locations. According to the

domain, these timed constraints could be difficult to obtain

from experts. Given a discretized model and some simple

parameters on the system, our idea is to use the analytical

model to estimate the temporal information between two

qualitative levels. The assumption that the current qualitative

level of neighbours is constant as soon as their qualitative



levels have not changed often allows a formal and efficient

use of the original model.

In our ecosystem example, the timing constraints associated

to transient locations are estimated using a simple parame-

terization routine based on the Lotka-Volterra equations that

usually describe the population dynamics of biological systems

[11]. We assume that the biomass level of the neighbouring

species is constant as soon as they do not reach another

biomass level. This assumption allows a simplification of the

differential equations that enable its formal resolution. The

three required parameters of these equations are well-known

species information given by experts and sufficient for the

computation of the timing constraints on species automata. A

confidence interval is added on given parameters. Thus, given

the state of the neighbouring automata, the simplified Lotka-

Volterra model is used to evaluate the invariant of transient

locations as well as the guard of the outgoing edges. It is

also used to estimate the timed response of varying fishing

pressures related to the exploited species, as fish pressure

can be seen as a kind of predator. Finally, the same method

is used to estimate the new clock values on edges between

two transient locations. For the fishing pressure automata,

timing constraints are deduced from fishing description as

chronograms. For the environmental disturbances automata,

temporal information is directly given by the user.

B. Model Simplification

After the generation step described above, the size of the

automata network is huge. The exhaustive generation creates a

lot of transient states between two stable states. The analysis

of transient locations reveals a lot of redundancies in their

temporal constraints (invariants and outgoing edges). The idea

is then to reduce the size of the automata network by detecting

similar transient locations and by merging them. A classical

hierarchical clustering algorithm is applied to reduce the num-

ber of transient locations. This simplification is performed on

”similar” transient locations, which means that only locations

having the same properties (qualitative properties, incoming

and outgoing edges) but different invariants are merged. The

model semantics is not modified but timing constraints are

aggregated.

The distance used by this clustering algorithm is the fol-

lowing: d =
√
∆I2 +∆G2 such that ∆I (resp. ∆G) is

the difference between invariants (resp. outgoing guards) of

transient locations. Transient locations belonging to the same

cluster are merged into one. The invariant of the resulting

transient location is the invariant average of the locations

belonging to the cluster. The outgoing edges of the cluster

transient locations are also merged into one, having a guard

as the average of the cluster guards. Since the entering edges

do not support guards, their merging is not a problem. The

maximum number of transient locations between two stable

locations can be parametrized. Benchmarks on real-world

ecosystems have shown that 12 transient locations between

two stable locations is a good compromise to maintain the

model accuracy while getting a decent time response.

V. QUERY PATTERNS

When dealing with qualitative models of large complex sys-

tems, the number of possible qualitative behaviors is huge as

the size of the model exponentially grows with the number of

components. To analyse or query the model, classical methods

reach their limits, especially when explicit temporal constraints

have to be managed. Model-checking is one of the most

successful techniques for automatic verification of complex

systems [14]. When model checking a timed automaton, the

properties to be verified are usually expressed using the time

logic TCTL (Timed Computation Tree Logic) defined by Alur

and Dill [13]. TCTL formulae are defined using the following

grammar:

f ::= p | x ∈ I | ¬p | p1∨p2 | ∃✸I p | ∀✸I p | ∃✷I p | ∀✷I p

where p is a property, x ∈ X is a clock and I is a time

interval. The diamond operator ✸p expresses that a path (i.e.

a sequence of states) leads to a state satisfying the property p.

The box operator ✷p means that all the states on a path satisfy

the property p. These modal operators can be combined with

the universal quantifiers ∃ or ∀ over the paths.

WhichStates Pattern

Looks for all the possible situations at time t

for all Si: ∃✸(Si ∧ chrono.t = t)
WhichDate Pattern

Looks for time ti of the first occurrence of situation S

for all ti ∈ [0, tmax]: ∃✸(S ∧ chrono.t = ti)
WhichDateSi Pattern

Variant of previous pattern, the initial situation is S and not Sinit

if ( ∃✸(S ∧ chrono.t = t))
for all ti ∈ [t, tmax]: (S ∧ chrono.t = t) ⇒ ∃✸(S′ ∧ chrono.t = ti)
Safety Pattern

Looks if an undesirable situation S never happens
not(∃✸Si) or ∀✷(notS)
Always Pattern

Determines whether a situation S is always satisfied
∀✷(S)
Stability Pattern

Look for a stable state S

∀✷(S ⇒ ∀✷S)

TABLE I
SCENARIO PATTERNS AND THEIR TCTL EXPRESSIONS

Asking the stakeholders to directly query the model with

TCTL properties is clearly too demanding. We identified six

main query patterns that capture recurring queries a stake-

holder would like to ask (cf. Table I). These queries can

be expressed in TCTL and answered using model-checking

algorithms.

VI. RESULTS

We present three kinds of results: benchmarks models, the

developed Software called EcoMata and a brief description of

real-case applications.

Some performance tests have been realized on the Reacha-

bility property on which rely the WhichStates and WhichDate

patterns (the Safety and Always patterns take only few seconds

whatever the model size). We have evaluated the response time

of the UPPAAL model-checker (called VERIFYTA [15]) with



an increasing complexity of the global system model. Table

II presents the time response (in seconds) of a reachability

analysis. For each experiment we give the number of species

and the number of fishing pressures of the ecosystem. We

suppose that each species is described by four qualitative

biomass levels and that each species interacts with three other

network components (fishing pressures or other species). The

number of locations and edges, as well as the number of

locations of the biggest automaton of the network obtained

after the automatic generation are given.

Species Fishing Loc. Edges Max. Loc. Response
number Press number number automata Time in s

Number number Reachability

1 1 55 92 51 0.245

2 1 357 654 357 0.664

3 1 783 2146 717 2.090

4 2 836 2237 717 2.038

5 2 1184 2867 717 2.472

6 2 1644 4410 777 3.523

7 2 1902 4894 777 4.3

8 2 3484 9316 777 6.093

TABLE II
BENCHMARKS ON Reachability ANALYSIS

The large number of interactions between species and

fishing pressures explains the size of the network (even after

the reduction step). Up to 6 species, the model can be used

in a very fluent way. An ecosystem having more than 8

species (with three interactions each) is hardly tractable in

an interactive process.

EcoMata is the toolbox we developed in order to allow

any stakeholder to design and explore his own prey-predator

ecosystem. EcoMata, which is composed of three main parts:

the network editor, the automata network generator and the

query launcher, interacts with the UPPAAL model-checker

[15] for the verification task. EcoMata is a free software1

platform-independent written in JAVA.

This approach has been applied with success on a subsis-

tence fishery in the Uvea coral reef lagoon in New-Caledonia

[16]. A timed automata network has been developed to investi-

gate the direct and indirect effects of various fishing strategies

on the trophic network that contains five major lagoon species

and three fishing forces. EcoMata has also been applied on

a marine ecosystem in North Sea where a sequence of data

was available for seven species (cod, haddock, herring, norway

pout, saithe, sandeel, whiting) over 20 years. The idea was to

create an ecosystem model initialized with the 1990’s data and

to compare the predictions given by EcoMata with the real data

observed on sea. Given the uncertainties on such real data, the

results reflects, for most of the species, the same trends on the

dynamics.

VII. CONCLUSION

In this paper, we propose to model an ecosystem as a quali-

tative model represented by a network of timed automata. The

1Ecomata can be downloaded from https://team.inria.fr/dream/ecomata/

qualitative model includes the integration of quantized conti-

nuous time subsystems and allows explicit timed constraints.

The first contribution consists in building automatically the

network of timed automata from a simple model description.

One of the novelty is to give a way to control the complexity of

the resulting model by detecting similarities in automata and

by merging them using a hierarchical classification algorithm.

The second contribution consists in a set of query patterns,

expressed in the temporal logic TCTL and answering the most

common requirements an user is asking when exploring a

model. Experimental results demonstrate the effectiveness of

model-checking algorithms for patterns based on reachability.

Future work will focus on proactive scenarios using control

synthesis techniques and the addition of new features such as

costs to enriched the searched strategies.
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