
HAL Id: hal-01094727
https://hal.science/hal-01094727v1

Submitted on 15 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bounded-degree factors of lacunary multivariate
polynomials

Bruno Grenet

To cite this version:
Bruno Grenet. Bounded-degree factors of lacunary multivariate polynomials. Journal of Symbolic
Computation, 2016, Special issue on the conference ISSAC 2014: Symbolic computation and computer
algebra, 75, pp.171-192. �10.1016/j.jsc.2015.11.013�. �hal-01094727�

https://hal.science/hal-01094727v1
https://hal.archives-ouvertes.fr


BOUNDED-DEGREE FACTORS OF LACUNARY MULTIVARIATE
POLYNOMIALS

BRUNO GRENET

Abstract. In this paper, we present a new method for computing bounded-
degree factors of lacunary multivariate polynomials. In particular for poly-
nomials over number fields, we give a new algorithm that takes as input a
multivariate polynomial f in lacunary representation and a degree bound d and
computes the irreducible factors of degree at most d of f in time polynomial
in the lacunary size of f and in d. Our algorithm, which is valid for any field
of zero characteristic, is based on a new gap theorem that enables reducing
the problem to several instances of (a) the univariate case and (b) low-degree
multivariate factorization.

The reduction algorithms we propose are elementary in that they only ma-
nipulate the exponent vectors of the input polynomial. The proof of correctness
and the complexity bounds rely on the Newton polytope of the polynomial,
where the underlying valued field consists of Puiseux series in a single variable.

1. Introduction

The factorization of polynomials is a well-studied subject in symbolic com-
putation. Although there exist effective fields in which testing irreducibility of
polynomials is undecidable [1313], the irreducible factorization of univariate or
multivariate polynomials can be computed in time polynomial in the degree of
the input polynomial for many base fields. Without claim of exhaustiveness,
one can cite the cases of polynomials over rational numbers [2525, 1818] and al-
gebraic number fields [2626, 2424, 2727], or over finite fields [33]. From a somewhat
different perspective, one can also compute the factorization in an extension
of the base field, such as (approximate) factorization in the real or complex
numbers [2929, 2121] or absolute factorization, that is factorization over an algebraic
closure of the base field [1010].

The purpose of this paper is to propose polynomial-time algorithms when the
input polynomial is given in lacunary representation, that is as a list of nonzero
monomials. These algorithms have complexity logarithmic in the degree.11 Note
that in lacunary representation, even evaluating a polynomial over an input
is intractable: For instance, the monomial Xd has lacunary size O(log d) while

1The lacunary representation is also known as sparse representation in the literature. Yet is
customary to use the term lacunary for algorithms of complexity logarithmic in the degree, and
sparse for algorithms of complexity polynomial in the degree.
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its evaluation on the input 2 is an integer of size d. More generally, testing
the irreducibility of lacunary polynomials or computing the greatest common
divisor of two lacunary polynomials are NP-hard problems [3030, 2222, 1919]. This
motivates refining our ambitions and computing only a partial factorization of
the input polynomial, namely the irreducible factors of bounded degree.

1.1. Previous work. Cucker, Koiran, and Smale [1111] gave an algorithm to com-
pute the integer roots of univariate integer polynomials in time polynomial in
the lacunary representation. This result was generalized by Lenstra [2828] who
described an algorithm to compute the bounded-degree factors of polynomials
over number fields. His algorithm takes as input a description of the num-
ber field by means of an irreducible polynomial with integer coefficients in
dense representation, the polynomial to factor in lacunary representation, and a
bound on the degree of the factors it computes. The complexity is polynomial
in the size of the input and in the degree bound (rather than in its bit-size).
Then, Kaltofen and Koiran [1919] generalized this result to the computation of
linear factors of bivariate polynomials over the rational numbers, and then to
the computation of bounded-degree factors of multivariate polynomials over
number fields [2020]. Seemingly independently of this latest result, Avendaño,
Krick, and Sombra [22] generalized the first result of Kaltofen and Koiran [1919]
and gave an algorithm to compute the bounded-degree factors of bivariate
polynomials over number fields. They also explained how to compute the
bounded-degree factors with at least three monomials over an algebraic closure
of the rational numbers. Note that the binomial factors include univariate linear
factors and the number of such factors cannot be polynomially bounded in the
logarithm of the degree. We proposed another algorithm for the computation
of the multilinear factors in the bivariate and multivariate cases [88, 99]. Since it
relies on Lenstra’s algorithm for univariate factors, it is valid in full generality
over number fields only, though our approach works in more general settings
and allow for partial results over any fields of characteristic zero and to some
extent in positive characteristic. All these results are based on a technique, due
to Cucker, Koiran, and Smale [1111], that consists in finding gaps in the input
polynomial (cf. next section).

Avendaño [11] proposed a different technique to test whether a given linear
factor divides a lacunary bivariate polynomial, again over number fields. To our
knowledge, his approach does not allow to compute the factors. It is based on a
bound on the number of real roots of the intersection of a lacunary polynomial
with a line. This latter result has been extended to the intersection of a lacunary
polynomial with a low-degree polynomial by Koiran, Portier, and Tavenas [2323].
It appears that Avendaño’s method could be combined with this more recent
result to obtain an algorithm that tests whether a given low-degree polynomial
divides a lacunary bivariate polynomial. Nevertheless this algorithm would
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only work with some low-degree polynomials, since it requires in particular the
polynomial to have real roots.

Let us finally mention two other results. Sagraloff [3131] gave an algorithm to
compute the real roots of an integer polynomial with arithmetic complexity
polynomial in the size of the lacunary representation of the input but with
exponential bit-complexity. Bi, Cheng, and Rojas [55] proposed an algorithm
to compute the roots of lacunary polynomials over finite fields that run in
sublinear time in the degree, and proved that this problem is NP-hard (under
randomized reductions).

1.2. Main results and techniques. The algorithms of this paper are general-
izations of our algorithms for computing multilinear factors of bivariate and
multivariate polynomials [88, 99]. We identify two distinct kinds of factors, namely
the unidimensional and the multidimensional factors. Roughly speaking, a polyno-
mial is said unidimensional if it can be written as f (Xδ) where f is a univariate
polynomial and Xδ a multivariate monomial. We describe an algorithm to
reduce the computation of the bounded-degree unidimensional factors of a
lacunary multivariate polynomial to the computation of the bounded-degree
factors of some lacunary univariate polynomials. It is based on the fact that
unidimensional factors of a multivariate polynomial are in bijection with the
irreducible factors of some univariate projections of the polynomial. It is valid for
any base field, in any characteristic. Though this paper focuses on bounded-
degree unidimensional factors, the reduction is more general and could be used
as well for low-degree polynomials, or for the computation of the lacunary
unidimensional factors for instance. For the multidimensional factors, we give
an algorithm to reduce their computation to the irreducible factorization of a
low-degree polynomial. This algorithm is based on a so-called Gap Theorem,
valid for any field of characteristic 0, that asserts that if a polynomial f can be
written f1 + Xδ f2 where δ is large enough, each low-degree factor of a f is a
common factor of f1 and f2. Both algorithms are elementary since they only
manipulate the exponent vector of f and not its coefficients.

The proof of our Gap Theorem is based on the notion of Puiseux expansion of
a bivariate polynomial, and makes use of the Newton polygon of the polynomial.
Given a polynomial g ∈ K[X, Y], one can describe its roots in an algebraic closure
K〈〈X〉〉 of K(X) in terms of Puiseux series, that is formal power series whose
exponents are rational numbers with a common denominator. We give a bound
on the valuation of f (X, φ(X)) where f is a lacunary polynomial and φ ∈ K〈〈X〉〉
cancels a low-degree polynomial g. It only depends on the degree of g and
the number of nonzero monomials of f . Its proof is based on the wronskian
determinant of a family of linearly independent power series.

As a corollary, we obtain a new proof of the main result of Kaltofen and
Koiran [2020] stating that over algebraic number fields, one can compute the
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degree-d factors of a lacunary multivariate polynomial f in deterministic time
(size( f ) + d)O(n) or probabilistic time (size( f ) + d)O(1), where size( f ) is the
lacunary size of f . Their algorithm uses a universal constant arising from
number theory that is not explicitly given. In contrast, our algorithm is entirely
explicit and can easily be implemented [1616].

Since our Gap Theorem applies to any field of characteristic 0, we obtain
partial results for other fields. In particular, for any field that admits a mul-
tivariate factorization algorithm running in time polynomial in the degree of
the input polynomial, we obtain a algorithm to compute the bounded-degree
multidimensional factors of multivariate polynomials that runs in time poly-
nomial in the lacunary size of the input polynomial and the degree bound.
Such fields include the fields of real or complex numbers, the fields of p-adic
numbers or the algebraic closure of the rational number. In this latest case, we
obtain a new proof of Avendaño, Krick, and Sombra [22, Theorem 3.5] since the
unidimensional irreducible polynomials over Q are exactly the binomials.

1.3. Open questions. Our results leave open some questions. First, our Gap
Theorem does not apply as such for fields of positive characteristic. Yet, in the
specific case of multilinear factors and fields of large characteristic, we proved
that it is applicable, yielding an algorithm [88]. We suspect that a similar result
holds for low-degree factors more generally, though we were not able to prove
it yet. For fields of small characteristic, the same gap argument does not seem
to apply but there may well exist a different approach that exploits the fact that
the characteristic is small.

Another question concerns the factors computed. As mentioned above, we
cannot hope for a polynomial-time algorithm computing the full irreducible
factorization of a lacunary polynomial, whence the restriction on the degree of
the factors. A natural generalization would be to impose a bound on the number
of nonzero monomials of the factors instead of their degree. Our reduction
for unidimensional factors is valid in this context but it is not usable since an
algorithm for the univariate case misses. Since this problem concerns lacunary
polynomials, the possibility of a hardness result should not be excluded though.

Organization of the paper. In Sec. 22, we introduce the necessary notions used
throughout the paper. Sec. 33 is devoted to the unidimensional factors, and Sec. 44

to the multidimensional factors.

Note. A preliminary version of this article appeared in the proceedings of
ISSAC [1515]. The current paper is a complete rewriting of the preceding article.
In particular, the algorithms for multivariate polynomials were only sketched.
In this version, the algorithms have been simplified and are described in full
details. Moreover, we tighten our complexity analyses.
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2. Preliminaries

2.1. Notations. Let X denote the tuple of variables (X1, . . . , Xn), and α the
tuple (α1, . . . , αn). The notation Xα denotes the monomial ∏n

i=1 Xαi
i . For any

scalar k, kα denotes the vector (kα1, . . . , kαn).
We consider polynomials in a ring K[X] = K[X1, . . . , Xn]. A polynomial

of K[X] with k (nonzero) terms is called an n-variate k-nomial. The degree
of a polynomial f with respect to the variable Xi is denoted degXi

( f ) and
its valuation with respect to Xi is denoted valXi( f ). Let also mdeg( f ) de-
notes the multidegree (degX1

( f ), . . . , degXn
( f )) and mval( f ) the multivalua-

tion (valX1( f ), . . . , valXn( f )). If f is a univariate polynomial, we shall use the
usual notations deg( f ) and val( f ) for its degree and valuation. We say that a
polynomial has multidegree at most (d1, . . . , dn) if degXi

( f ) ≤ di for all i.
The multiplicity of g as a factor of f , that is the maximum integer µ such that

gµ divides f , is denoted by multg( f ).
A partition of a polynomial f = ∑k

j=1 cjXαj is a set of polynomials { f1, . . . , fs}
defined by a partition of {1, . . . , k} into disjoint subsets. The polynomials f1,
. . . , fs are the summands of the partition. In particular, f = f1 + · · ·+ fs and
two distinct summands do not share any common monomial. We shall mainly
write partitions as sums f1 + · · ·+ fs rather than as sets { f1, . . . , fs}.

Let size( f ) denote the lacunary size of a polynomial: If f = ∑k
j=1 cjXαj ∈ K[X]

is an n-variate k-nomial,

size( f ) = k(n max
1≤i≤n
1≤j≤k

(log(αi,j)) + size(cj))

where the size of cj depends on the field K. Actually since our algorithms
only manipulate the exponent vectors, we shall express the complexities as
functions of k, n and the total degree D of f . More precisely, we aim to describe
algorithms of complexity polynomial in k, n and log D. We shall also use the
notion of convex size which denotes the volume of its Newton polytope (cf. next
section).

To express the complexities of some of our algorithms, we shall use the
notation M(m) which denotes the complexity of the multiplication of two m-bit
integers. It satisfies M(m) = O(m log m8log? m) [1414, 1717] where log? is the iterated
logarithm, recursively defined by log?(1) = 0 and log?(m) = 1 + log?(log m).
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Note for instance that computing the greatest common divisor of two m-bit
integers takes O(M(m) log m) bit-operations.

2.2. Newton polytope.

Definition 2.1. Let f ∈ K[X]. Its support is the set of vectors α such that the
coefficient of the monomial Xα in f is nonzero. The Newton polytope of f ,
denoted by Newt( f ), is the convex hull of its support.

A polytope in two dimensions is called a polygon, whence the appellation
Newton polygon when f is bivariate.

Two convex polytopes can be added using the Minkowski sum, defined by
A + B = {a + b : a ∈ A, b ∈ B} for two polytopes A and B. If A and B are
both convex, then so is A + B. Minkowski sum is related to factorization of
polynomials by Ostrowski’s Theorem.

Ostrowski’s Theorem. Let f , g, h ∈ K[X] such that f = gh. Then Newt( f ) =
Newt(g) + Newt(h).

The boundary of the Newton polygon of a bivariate polynomial is made of
edges whose extremities are points of the support. In n variables, the boundary
of a Newton polytope is made of faces which have dimension 1 to (n − 1).
We shall only consider faces of dimension 1 that we still call edges. Again,
the extremities of an edge are points in the support of the polynomial. We
define the direction of an edge of extremities α and β as the unique vector δ ∈ Zn

collinear to α− β = (α1 − β1, . . . , αn − βn) whose first nonzero coordinate is
positive and such that gcd(δ1, . . . , δn) = 1.

Ostrowski’s Theorem shall mainly be used through a corollary concerning
the edges of the Newton polytopes.

Corollary 2.2. Let f , g, h ∈ K[X] such that f = gh. Then each edge in Newt( f ) is
parallel to either an edge of Newt(g) or an edge of Newt(h).

For some algorithms, we may want to have access to the Newton polytope of
f . Actually, this is doable in polynomial time for a fixed number of variables
only [1212].

Proposition 2.3. Let α1, . . . , αk ∈ Zn, ‖α1‖∞, . . . , ‖αk‖∞ ≤ D. Their convex hull
can be deterministically computed in O(kbn/2cnM(log D)) bit-operations.

2.3. Puiseux series.

Definition 2.4. Let K be an algebraic closure of a field K of characteristic 0. The
field of Puiseux series over K, denoted by K〈〈X〉〉, is defined as the set of formal
power series in a single variable of the form

φ(X) = ∑
t≥t0

ftXt/d
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where t0 ∈ Z, d ∈ N, and ft ∈ K for all t.
If ft0 6= 0, the valuation of φ is val(φ) = t0/d.

Addition and multiplication are defined as for standard formal power series.
A theorem of Puiseux states that Puiseux series actually form a field, and that
this field is algebraically closed. We can give a constructive version of this
result using the Newton polygon of a bivariate polynomial f ∈ K[X, Y]. Since
Newt( f ) lives in this case in a plane, one can choose a system of coordinates to
draw it and define the lower and upper parts of the Newton polygon: To each
edge, let us attach a normal vector pointing inside the Newton polygon; The
lower hull is defined as the set of edges whose normal vectors have a positive
second coordinate, the upper hull as the set of edges whose normal vectors have
a negative second coordinate, and vertical edges are the (at most two) edges
whose normal vectors have their second coordinate equal to zero. The names
are clear if we choose to represent the exponents of Y on the x-axis and the
exponents of X on the y-axis.

Newton-Puiseux Theorem. Let g ∈ K[X, Y]. There exists φ ∈ K〈〈X〉〉 of valuation
v such that g(X, φ(X)) = 0 if and only if the lower hull of Newt(g) contains an edge
of direction (p, q) such that v = −p/q.

If g has bidegree (dX, dY), any edge of its Newton polygon is contained in
the rectangle (0, dX) × (0, dY), hence has direction (p, q) with |p| ≤ dX and
|q| ≤ dY. As a consequence, the valuation v of any root φ ∈ K〈〈X〉〉 of g satisfy
1/dY ≤ |v| ≤ dX.

2.4. The wronskian determinant. Our main technical result uses the wron-
skian determinant of a family of Puiseux series.

Definition 2.5. Let (φ1, . . . , φ`) be a family of Puiseux series. Its wronskian is

wr(φ1, . . . , φ`) = det


φ1 · · · φ`
φ′1 · · · φ′`
...

...
φ
(`−1)
1 · · · φ

(`−1)
`

 .

The main property we shall use is the relation of the wronskian to the linear
independence. Bostan and Dumas [66] give a proof of the following proposition
in the case of formal power series. The exact same proof applies to Puiseux
series.

Proposition 2.6. Let φ1, . . . , φ` ∈ K〈〈X〉〉 be Puiseux series. The family (φj)1≤j≤` is
linearly independent if and only if its wronskian does not vanish.

We aim to give bounds on the valuation of the wronskian of certain particular
families of Puiseux series in Sec. 4.14.1. We can first give a general lower bound.
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Lemma 2.7. Let φ1, . . . , φ` ∈ K〈〈X〉〉. Then

val(wr(φ1, . . . , φk)) ≥
`

∑
j=1

val(φj)−
(
`

2

)
.

Proof. Using the full symbolic expansion of the determinant, wr(φ1, . . . , φk) can
be written as a sum of terms of the form φ

(i1)
1 . . . φ

(i`)
` such that {i1, . . . , i`} =

{0, . . . , `− 1}. These terms have valuations
`

∑
j=1

val(φj)− ij =
`

∑
j=1

val(φj)−
`−1

∑
j=0

j =
`

∑
j=1

val(φj)−
(
`

2

)
.

The valuation of the wronskian is at least as large. �

2.5. Uni- and multidimensional polynomials. In our algorithms, we treat in
very different ways unidimensional and multidimensional polynomials. We
first give a formal definition of these terms.

Definition 2.8. A polynomial f ∈ K[X] is unidimensional if the dimension of its
Newton polytope is exactly 1, that is if f has at least two monomials and its
Newton polytope is a line segment. The direction δ ∈ Zn of f is the direction of
the unique edge of its Newton polytope.

A polynomial is multidimensional if its Newton polytope has dimension at
least 2.

Note that monomials are neither unidimensional nor multidimensional. Since
the computation of the monomial factors is obvious, we ignore them in the rest
of the paper.

We remark that for bivariate polynomials, being unidimensional is the same
as being weighted-homogeneous. This is not true anymore for polynomials in
more variables. We now define several notions, by analogy with homogeneous
polynomials.

For f ∈ K[X] and δ ∈ Zn, one can write f = f1 + . . . + fs where each ft is
either unidimensional of direction δ or a monomial. If further no sum ft1 + ft2
is unidimensional (that is the ft’s are maximal), the ft’s are the unidimensional
components of direction δ of f , in short its δ-components.

Homogenization and dehomogenization are called projection and lifting in
our settings. Let us first prove a lemma to justify the definitions.

Lemma 2.9. Let f ∈ K[X] be a unidimensional polynomial of direction δ. There exists
a unique univariate polynomial fπ ∈ K[Z] of valuation 0 such that f (X) = Xα fπ(Xδ)
for some α ∈ Zn. Furthermore, α is in this case nonnegative, that is α ∈ Nn.

Proof. Let f (X) = ∑`
j=1 cjXαj . Since f is unidimensional of direction δ, there

exists for all j an integer λj such that αj − α1 = λjδ. Let j0 be the index of the
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smallest λj and λ?
j = λj − λj0 for all j. The integers λ?

1 , . . . , λ?
` are nonnegative

and satisfy αj − αj0 = λ?
j δ for all j.

Let us define fπ = ∑`
j=1 cjZ

λ?
j . Then fπ belongs to K[Z] and has valuation 0.

Moreover if we let α = αj0 , we have

Xα fπ(Xδ) =
`

∑
j=1

cjX
α+λ?

j δ
=

`

∑
j=1

cjXαj

since α + λ?
j δ = αj by definition of λ?

j . This proves the existence of fπ.

To prove its uniqueness, let us consider g = ∑`
p=1 bpZγp with 0 = γ1 < · · · <

γ` such that f (X) = Xαg(Xδ) for some α ∈ Zn. Clearly, since f is a polynomial
and g has valuation 0, α belongs to Nn and is the exponent of some monomial
of f . Now, for all j there exists a p such that the term cjXαj of f is the image of
the term bpZγp of g. In particular, αj − α = γpδ. Since γp ≥ 0, the uniqueness
of the index j0 defined in the first paragraph shows that α = αj0 . Each γp is
therefore uniquely defined by the differences (αj − αj0) and g = fπ. �

From this lemma, one can define the projection of a unidimensional polyno-
mial.

Definition 2.10. Let f ∈ K[X] a unidimensional polynomial of direction δ. Its
(univariate) projection is the unique polynomial of lowest degree fπ ∈ K[Z] such
that f (X) = Xα fπ(Xδ) for some α ∈ Nn

Let g ∈ K[Z] a univariate polynomial and δ ∈ Zn. Its lifting in direction δ is
the unique unidimensional polynomial f ∈ K[X] of multivaluation 0 defined
by f (X) = Xαg(Xδ) for some α ∈ Zn.

Note that if f ∈ K[X] is a unidimensional polynomial of valuation zero
with respect to each of its variables, the operations of projection and lifting are
inverse of each other. That is, the lifting in direction δ of fπ is f itself. In general,
the lifting of fπ is the polynomial f ◦ defined by f ◦(X) = f (X)/Xmval( f ). In
other words, if two unidimensional polynomials f and g of direction δ have the
same projection, there exists α ∈ Zn such that f (X) = Xαg(X).

We shall need a bound on the degree of the projection gπ of a unidimensional
polynomial g. Let us assume that mval(g) = 0, for example that g is irreducible,
and let δ be the direction of g and d its multidegree. By definition, there exists
α such that g(X) = Xαgπ(Xδ). Consider an index i such that δi 6= 0. If δi > 0,
then di = αi + δi deg(gπ), and since g and gπ have valuation 0, αi = 0. Thus
deg(gπ) = di/δi. If δi < 0, we get αi = di and 0 = αi + δi deg(gπ). Whence in
both cases deg(gπ) = di/|δi|. In particular, let us assume that we only a bound
on the multidegree of g, then deg(gπ) = mini(di/|δi|) where the minimum is
taken over all the indices i such that δi 6= 0.
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3. Unidimensional factors

In this section, we show how to reduce the computation of the unidimensional
factors of some polynomial f ∈ K[X] to the factorization of (several) univariate
polynomials.

3.1. Structural result.

Theorem 3.1. Let f ∈ K[X] and δ ∈ Zn. Let f1, . . . , fs its δ-components and ( f1)π,
. . . , ( fs)π ∈ K[Z] their respective projections. For any unidimensional polynomial g of
direction δ,

multg( f ) = min
1≤t≤s

multgπ(( ft)π)

where gπ is the projection of g.

This theorem is a direct consequence of the two following lemmas.

Lemma 3.2. Let f ∈ K[X], and δ ∈ Zn. The unidimensional factors of direction δ of
f are the common factors of its δ-components. More precisely,

multg( f ) = min
1≤t≤s

multg( ft)

where f1, . . . , ft are the δ-components of f .

Proof. The product of two unidimensional polynomials g and h of direction δ
is itself a unidimensional polynomial of direction δ. Indeed let f = gh and
consider two monomials Xα and Xβ of f . Each monomial is a product of a
monomial of g and a monomial of h. Let us assume that Xα = Xαg Xαh and
Xβ = Xβg Xβh where Xαg and Xβg are monomials of g and Xαh and Xβh are
monomials of h. Then

α− β = (αg + αh)− (βg + βh) = (αg − βg) + (αh − βh)

= λgδ + λhδ = (λg + λh)δ

for some λg, λh ∈ Z. This shows that f is unidimensional of direction δ.
Consider now a unidimensional factor g of direction δ of some polynomial

f ∈ K[X], and let h = f /g. Let us write h = h1 + · · · + hs as a sum of δ-
components. Then gh = gh1 + · · · + ghs and each ght is unidimensional of
direction δ. This proves in particular that g divides each δ-component of f .
To conclude, it remains to notice that the same argument works for gµ where
µ = multg( f ). �

Lemma 3.3. Let f and g ∈ K[X] be unidimensional polynomials of same direction
and fπ and gπ their respective projections. Then

multg( f ) = multgπ( fπ).
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Proof. Let us first prove that if f = gh is a unidimensional polynomial, its
projection is gπhπ where gπ and hπ are the respective projections of g and
h. Let δ be the direction of f , g and h. By definition, there exist αg and
αh ∈ Zn such that g(X) = Xαg gπ(Xδ) and h(X) = Xαh hπ(Xδ). Thus, f (X) =
Xαg+αh gπ(Xδ)hπ(Xδ). Let fπ = gπhπ. Then f (X) = Xαg+αh fπ(Xd) and fπ is
the projection of f , by uniqueness of the projection.

Let us assume that gµ divides f for some µ > 0, that is there exists h such that
f = gµh. The projection of f is fπ = gµ

πhπ, and multgπ( fπ) ≥ µ. Conversely,
let us assume that fπ = gµ

πhπ for some gπ, hπ ∈ K[Z], and denote by g and
h the respective liftings of gπ and hπ in direction δ. Let f ◦ = gµh, so that
f ◦π = gµ

πhπ = fπ. There exists α ∈ Zn such that f ◦(X) = Xα f (X). Since g
and h are prime with Xα, gµ divides f and multg( f ) ≥ µ. This concludes the
proof. �

3.2. Computing the set of directions. The goal of this section is to compute,
given f ∈ K[X], the set ∆0( f ) ⊂ Zn of directions δ such that f has a unidi-
mensional factor of direction δ. More precisely, we are going to compute an
approximation of ∆0( f ), that is a set ∆ that contains ∆0( f ). We give several
algorithms with distinct and often incomparable complexities, that compute
different approximations of ∆0( f ).

Let f , g ∈ K[X] such that g is unidimensional of direction δ and divides f .
Corollary 2.22.2 implies that the Newton polytope of f has two parallel edges
of direction δ. More precisely, Newt( f ) can in this case be partitioned into
line segments of direction δ, none of which in reduced to a single point. This
motivates the definition of three supersets of ∆0( f ).

Definition 3.4. Let f ∈ K[X]. The three sets ∆1( f ), ∆2( f ), ∆3( f ) ⊂ Zn are
defined as follows:

• δ ∈ ∆1( f ) if the support of f can be partitioned into line segments of
direction δ, none of which is reduced to a single point;
• δ ∈ ∆2( f ) if Newt( f ) has two parallel edges of direction δ;
• δ ∈ ∆3( f ) if the support of f has two points α, β such that α− β has

direction δ.

Lemma 3.5. Let f ∈ K[X] be an n-variate k-nomial. Then

∆0( f ) ⊆ ∆1( f ) ⊆ ∆2( f ) ⊆ ∆3( f )

and |∆3( f )| ≤ (k
2).

Proof. The first two inclusions were proved above, and follow from Corollary 2.22.2.
The last inclusion simply comes from the fact that an edge of Newt( f ) connects
two points of the support of f . The bound on the cardinality of ∆3( f ) follows
from the same observation since there are at most (k

2) pairs of points in the
support of f . �
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We now give algorithms to compute ∆1( f ), ∆2( f ) and ∆3( f ), beginning with
the easiest to compute.

Lemma 3.6. Given an n-variate k-nomial f ∈ K[X] of total degree D, one can compute
∆3( f ) in O(k2nM(log D) log D) bit-operations.

Proof. The algorithm is straightforward: For each pair of exponent vectors
{α, β} of f , one computes the direction of (α− β). There are (k

2) such pairs
to consider. Computing the direction of a vector (α − β) reduces to some
arithmetic operations and gcd computations on O(n) integers of size at most
log D.

It remains to detect collisions in the directions. One can to this end sort the
directions using some total order, say lexicographic. This can be computed
in O(k2n log D) operations using Radix Sort, since there are O(k2) vectors
of n integers of size at most log D. The conclusion follows since log D ≤
M(log D). �

We turn to the computation of ∆2( f ). This can be done without computing
first ∆3( f ) in order to avoid considering all the (k

2) pairs of points. Note though
that in the worst case, the quadratic dependence on k is unavoidable since ∆2( f )
may have O(k2) edges.

Lemma 3.7. Given an n-variate k-nomial f ∈ K[X] of total degree D, one can compute
∆2( f ) in O(kbn/2cnM(log D) + k2nM(log D) log D) bit-operations.

Proof. One can use Proposition 2.32.3 to compute the Newton polytope of f . The
output of such an algorithm gives a list of facets, from which one can extract the
edges. We simply have the return the set ∆2( f ) of directions δ such that there
are two distinct edges of direction δ in Newt( f ). The cost is O(kbn/2cnM(log D))
to compute the Newton polytope, and O(k2nM(log D) log D) to compute the
directions of the at most (k

2) edges. �

Computing ∆2( f ) is thus expensive. Though, if n = 3 for instance, Newt( f )
cannot have more than O(k) edges and the cost become linear in k.

We now turn to the computation of ∆1( f ). We propose two approaches.
In the first one, one computes ∆3( f ) (or ∆2( f )) and extracts ∆1( f ) from it by
removing the directions δ such that the support of f cannot be partitioned into
line segments of direction δ. The second one is direct.

Lemma 3.8. Let α1, . . . , αk and δ ∈ Zn, ‖α1‖∞, . . . , ‖αk‖∞, ‖δ‖∞ ≤ D. One
can compute a partition of {α1, . . . , αk} into line segments of direction δ in time
O(nkM(log D)).

Proof. LetH denote the hyperplane whose normal vector is δ. Two points αi and
αj belong to the same line segment of direction δ if and only if their projections
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onto H coincide. The projections can be computed using a dot product: The
projection of α onto H is given by

α− (α · δ)
‖δ‖2

2
δ

where (α · δ) = ∑i αiδi is the dot (or scalar) product of α and δ. This projection
can be computed in time O(nM(log D)) using arithmetic operations on the
coordinates of the vectors. Therefore, one can compute the projection of each
αj onto H in time O(nkM(log D)). It remains to detect the collisions between
these projections as in Lemma 3.63.6. Altogether, a partition of {α1, . . . , αk} into
line segments can be computed in O(nkM(log D)) bit-operations. �

Lemma 3.9. Given an n-variate k-nomial f ∈ K[X] of total degree D, one can compute
∆1( f ) in O(k2n2M(log D) log D) bit-operations.

Proof. As mentioned before, the first strategy is to use Lemma 3.63.6 to com-
pute ∆3( f ) and then for each δ ∈ ∆3( f ), to check whether the support
of f can be partitioned into line segments of direction δ using Lemma 3.83.8.
This takes O(k2nM(log D) log D + k3nM(log D)) bit-operations. Similarly, com-
puting first ∆2( f ) using Lemma 3.73.7 and refining it to obtain ∆1( f ) takes
O(kbn/2cnM(log D) + k2nM(log D) log D + k3nM(log D)).

Let us now turn to the second approach. We consider projections of Newt( f )
onto two-dimensional planes. More precisely, for two distinct variables Xi and
Xj, let us consider f as an element of Lij[Xi, Xj] where Lij = K[X \ {Xi, Xj}] is
the ring of polynomials in the other variables. If g ∈ K[X] is a unidimensional
polynomial of direction δ with δi 6= 0, it is still unidimensional when seen as an
element of Lij[Xi, Xj] for all j, and its direction is collinear to (δi, δj). This means
that if g divides f , the support of f viewed as an element of Lij[Xi, Xj] can be
partitioned into line segments of direction (δi, δj). Thus, if the support of f can
be partitioned into line segments of direction δ, the support of f ∈ Lij[Xi, Xj]
can be partitioned into line segments of direction (δi, δj) for all i and j such that

(δi, δj) 6= (0, 0). Let us define for all (i, j) the set ∆ij
1 ( f ) ⊂ Z2 corresponding to

f ∈ Lij[Xi, Xj]. The set ∆1( f ) can be computed as follows:

1: Compute ∆ij( f ) for 1 ≤ i < j ≤ n;
2: ∆1( f )← {δ 6= 0 : ∀i, j, (δi, δj) ∈ ∆ij( f ) ∪ {(0, 0)}};
3: return ∆1( f ).

To analyze the complexity of this algorithm, first note that each ∆ij( f ) can be
computed in time O(kM(log D) log D). Even though the size of each ∆ij( f ) can
be linear in k, the size of ∆1( f ) is at most quadratic since each pair of monomials
of f defines at most one direction δ. Therefore, the total complexity of the
algorithm is bounded by O(k2n2M(log D) log D). �



14 BRUNO GRENET

3.3. Computing unidimensional factors. This section is devoted to an algo-
rithm to compute the unidimensional factors of direction δ of a lacunary
polynomial f , as soon as one has an algorithm for factoring lacunary univariate
polynomials. One first computes the δ-components of f , then their projections,
and then the set Fπ of common factors of these projections, with multiplicities.
The set F of factors of f is then obtained by lifting the elements of Fπ in
direction δ. Next lemma shows that the complexity of this strategy is roughly
speaking the complexity of the underlying univariate factorization algorithm.

Lemma 3.10. Let f ∈ K[X] be an n-variate k-nomial of total degree D, and δ ∈ Zn a
direction with ‖δ‖∞ ≤ D.

• The δ-components of f can be computed in O(knM(log D)) bit-operations;
• If f is unidimensional of direction δ, its projection can be computed in

O(knM(log D)) bit-operations;
• If g ∈ K[Z] has degree ≤ D and ` terms, its lifting in direction δ can be

computed in O(`nM(log D)).

Proof. The complexity of computing the δ-components is directly given by
Lemma 3.83.8. Projection and lifting are computed using arithmetic functions on
the components of the vectors, whence the same bound. �

Altogether, this proves that if one has an algorithm to compute factors of
lacunary univariate polynomials, one has an algorithm to computing unidimen-
sional factors of lacunary multivariate polynomials. We give here a more formal
description of such an algorithm in the case of bounded-degree factors based
on Lenstra’s algorithm for univariate polynomials [2828].

Theorem 3.11. Given an irreducible polynomial ϕ ∈ Q[ξ] in dense representation, a
polynomial f ∈ K[X], where K = Q[ξ]/〈ϕ〉, given in lacunary representation, and a
multidegree bound (d1, . . . , dn) ∈ Nn, one can compute the unidimensional factors of
multidegree at most (d1, . . . , dn) of f in deterministic time poly(size( f ) + maxi di).

Proof. The algorithm is as follows.
1: Compute ∆1( f ); . Lemma 3.93.9
2: F ← ∅;
3: for all δ ∈ ∆1( f ) do
4: { f 1, . . . , f s} ← δ-components of f ; . Lemma 3.103.10

5: d← min1≤i≤n(di/|δi|);
6: for t = 1 to s do
7: f t

π ← projection of f t in direction δ;
8: F t

π ← degree-d factors of f t
π; . Lenstra’s algorithm

9: F t ← the set of liftings in direction δ of elements of F t
π;

10: end for
11: F ← F ∪⋂t F t;
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12: end for
13: return F .

The correctness and complexity of this algorithm directly follow from the
correctness and complexity of Lenstra’s, using the lemmas of this section. �

4. Multidimensional factors

In this section, we focus on multidimensional factors. Their computation
is based on a Gap Theorem, which follows from a bound on the valuation of
an expression f (X, φ(X)) where f is a lacunary polynomial and φ ∈ K〈〈X〉〉
cancels a low-degree polynomial. This bound is given in Sec. 4.14.1. The Gap
Theorem is stated for bivariate polynomials in Sec. 4.24.2 and yields an algorithm
for bivariate polynomials which consists in reducing the computation to several
factorizations of low-degree polynomials. In Sec. 4.34.3, the bivariate algorithm is
first simplified in order to generalize it to multivariate polynomials.

4.1. Bound on the valuation. The goal of this section is to bound the valuation
of an expression f (X, φ(X)) where f is a lacunary polynomial with at least 2
terms and φ a Puiseux series with a low-degree minimal polynomial.

To express the bound, let us define

γv(`) = 4dXdY(`− 1)2 − 1
2
(`− 1)((3`− 4)dX + v`)

where the dependency of γv(`) on dX and dY is not explicitly stated since these
quantities shall not vary in the following. Note that if v denotes the valuation
of a root of a polynomial of bidegree at most (dX, dY), it is bounded in absolute
value by dX. Thus, (3`− 4)dX + v` ≥ (2`− 4)dX. Furthermore, ` ≥ 2 shall
denote the number of terms of f , whence γv(`) ≤ 4dXdY(`− 1)2 for all v. We
define γ(`) = 4dXdY(`− 1)2, so that γv(`) ≤ γ(`) for all |v| ≤ dX.

Theorem 4.1. Let φ ∈ K〈〈X〉〉 of valuation v and g ∈ K[X, Y] its minimal polynomial
of bidegree (dX, dY). Let f = ∑`

j=1 cjXαjYβ j be a polynomial with exactly ` terms, and
suppose that the family (Xαj φ(X)β j)1≤j≤` is linearly independent over K.

Then
val
(

f (X, φ(X))
)
≤ min

1≤j≤`
(αj + vβ j) + γv(`).

The highest order term of the bound in the theorem is 4dxdY`
2. This is

provably not tight since for dX = dY = 1, the bound `2 + O(`) holds [88].
The proof of Theorem 4.14.1 is based on a series of lemmas. Lemmas 4.24.2 to 4.54.5

appeared in [2323] in a slightly less precise formulation. Lemma 4.34.3 can also be
found in [77]. Lemma 4.64.6 is pretty classical though it does not explicitly appear
as such in the literature. We include proofs for completeness and to obtain
better complexity results.
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Lemma 4.2. Let φ ∈ K〈〈X〉〉, h ∈ K[X, Y] and H(X) = h(X, φ(X)). For all u and
v, let HXuYv(X) = (∂u+vh/∂XuYv)(X, φ(X)). Then for all k ≥ 1,

H(k) = φ(k)HY + ∑
i1+···+ip≤k

1≤ij<k

ciφ
(i1) · · · φ(ip)HXk−iYp

where the sum ranges over all tuples i = (i1, . . . , ip), p ≥ 0, with 1 ≤ ij < k for all j
and i = i1 + . . . + ip ≤ k.

Proof. For a tuple i, let Tk
i = φ(i1) · · · φ(ip)HXk−iYp . We aim to prove by induction

on k that H(k) = φ(k)HY + ∑i ciTk
i . Note that the empty tuple corresponding to

p = 0 is allowed, in which case we have the term c∅HXk .
For k = 1, the chain rule implies H′ = φ′HY + HX = 0 and the result holds

with c∅ = 1. To compute H(k+1), first note that

(φ(k)HY)
′ = φ(k+1)HY + φ(k)(φ′HY2 + HXY) = φ(k+1)HY + Tk+1

(k,1) + Tk+1
(k) .

Further, the product rule applied to Tk
i shows that

(Tk
i )
′ =

p

∑
j=1

Tk+1
(i1,...,ij+1,...,ip)

+ Tk+1
(i1,...,ip,1) + Tk+1

(i1,...,ip)
.

This proves the lemma since H(k+1) = (φ(k)HY)
′ + ∑i ci(Tk

i )
′ by induction. �

Lemma 4.3. Let φ ∈ K〈〈X〉〉 with minimal polynomial g ∈ K[X, Y] of bidegree
(dX, dY). Then

(1) φ(k)(X) =
rk

g2k−1
Y

(X, φ(X))

where gY = ∂g/∂Y and rk ∈ K[X, Y] satisfies{
degX(rk) ≤ (2k− 1)dX − k and
degY(rk) ≤ (2k− 1)dY − 2(k− 1).

Proof. Let G(X) = g(X, φ(X)) and GXiY j(X) = (∂i+jg/∂XiY j)(X, φ(X)) for all
nonnegative i and j. By definition G(X) = 0 whence G(k)(X) = 0 for all k ≥ 0.
By Lemma 4.24.2, φ(k) = −∑i ciTk

i /GY where Tk
i = φ(i1) · · · φ(ip)GXk−iYp . Let us

prove the lemma by induction on k. For k = 1, φ′ = −GX/GY so the lemma
holds. Let us assume that the lemma holds for all j < k, and consider a term Tk

i .
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Let Rk(X) = rk(X, φ(X)) for all k. Then

Tk
i = φ(i1) · · · φ(ip)GXk−iYp

=
Ri1

G2i1−1
Y

· · ·
Rip

G2ip−1
Y

GXk−iYp (by induction)

=
1

G2k−1
Y

Ri1 · · · Rip GXk−iYp G2(k−i)+p−2
Y .

Let rk,i = ri1 · · · rip gXk−iYp g2(k−i)+p−2
Y and rk = ∑i cirk,i. To conclude, it is

enough to bound the degree of rk. By induction, degX(ri) ≤ (2i − 1)dX − i
and degY(ri) ≤ (2i− 1)dY − 2(i− 1). Whence

degX(rk,i) ≤
p

∑
j=1

((2ij − 1)dX − ij) + (dX − k + i) + (2(k− i) + p− 2)dX

≤ (2i− p)dX − i + dX − (k− i) + (2(k− i) + p− 2)dX

≤ (2k− 1)dX − k

and degY(rk,i) ≤ (2k− 1)dX − 2(k− 1) with a similar computation. �

Lemma 4.4. Let φ ∈ K〈〈X〉〉 with minimal polynomial g ∈ K[X, Y] of bidegree
(dX, dY). Let ψ(X) = Xαφ(X)β for some integer α, β ≥ k. Then

ψ(k)(X) = Xα−kφ(X)β−k sk

g2k−1
Y

(X, φ(X))

where gY = ∂g/∂Y and sk satisfies{
degX(sk) ≤ (2k− 1)dX and
degY(sk) ≤ (2k− 1)dY − (k− 1).

Proof. By Lemma 4.24.2 with h(X, Y) = XαYβ,

ψ(k) = φ(k)Xαβφβ−1 + ∑
i

c̃iφ
(i1) · · · φ(ip)Xα−k+iφβ−p

where c̃i = (α)k−i(β)pci for all i. As previously, let GY(X) = gY(X, φ(X)) and
Rk(X) = rk(X, φ(X)) for all k. By Lemma 4.34.3,

φ(k)Xαβφβ−1 =
Xα−kφβ−k

G2k−1
Y

(
βRkXkφk−1

)
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and

φ(i1) · · · φ(ip)Xα−k+iφβ−p =
1

G2i−p
Y

Ri1 · · · Rip Xα−k+iφβ−p

=
Xα−kφβ−k

G2k−1
Y

(
Ri1 · · · Rip Xiφk−pG2(k−i)+p−1

Y

)
.

The function

sk = βXkYk−1rk + ∑
i

c̃iXiYk−pri1 · · · rip g2(k−i)+p−1
Y

satisfies the lemma and it only remains to bound its degree.
To this end, a simple computation shows that

degX(sk) ≤ max
i

(
i + (2i− p)dX − i + (2(k− i) + p− 1)dX

)
≤ (2k− 1)dX

and similarly degY(sk) ≤ (2k− 1)dY − (k− 1). �

Lemma 4.5. Let φ ∈ K〈〈X〉〉 with minimal polynomial g ∈ K[X, Y] of bidegree
(dX, dY). For 1 ≤ j ≤ `, let ψj(X) = Xαj φ(X)β j where αj and β j are nonnegative
integers. If the family (ψj)j is linearly independent, then

(2) wr(ψ1, . . . , ψ`) = XA−(`2)φ(X)B−(`2) t`(X, φ(X))

g(`−1)2

Y (X, φ(X))

where A = ∑j αj, B = ∑j β j and t` ∈ K[X, Y] satisfies{
degX(t`) ≤ (`− 1)2dX and
degY(t`) ≤ (`− 1)2dY − (`−1

2 ).

Proof. Let us first assume that αj, β j ≥ ` and express the wronskian using the
full symbolic expansion of the determinant. It is a sum of terms of the form
ψ
(k1)
1 · · ·ψ(k`)

` such that {k1, . . . , k`} = {0, . . . , `− 1}. By Lemma 4.44.4,

ψ
(k−1)
j = Xαj−k+1φ(X)β j−k+1sk−1(X, φ(X))/g2k−3

Y (X, φ(X))

for k ≥ 2. (Note that in the above expression, sk−1 actually depends on j.) Thus
each term in the wronskian has the form

X∑j αj−(`2)φ(X)∑j β j−(`2) t̃`
g(l−1)2

Y

(X, φ(X))

where t̃` = ∏k≥2 sk−1. Thus

degX(t̃`) ≤
`−1

∑
k=1

(2k− 1)dX = (`− 1)2dX
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and degY(t̃`) ≤ (`− 1)2dY − (`−1
2 ). To conclude, t` is defined as the sum of the

t̃`’s and the degree bounds still hold.
To remove the assumption αj, β j ≥ `, we apply the above proof to the

family (χj)j defined by χj = X`φ`ψj, and that satisfies wr(χ1, . . . , χ`) =

X`2
φ(X)`

2
wr(ψ1, . . . , ψ`). �

Lemma 4.6. Let φ ∈ K〈〈X〉〉 with minimal polynomial g ∈ K[X, Y] of bidegree
(dX, dY). Let h(X, Y) be a polynomial of bidegree (δX, δY). Then

|val(h(X, φ(X)))| ≤ dXδY + δXdY.

Proof. The resultant r(X, Y) = resZ(g(X, Z), Y − h(X, Z)) vanishes for Y =
h(X, φ(X)) since both g(X, Z) and h(X, φ(X))− h(X, Z) vanish when Z = φ(X).
In the Sylvester matrix associated to this resultant, δY rows are made of the
coefficients of g viewed as a polynomial in Z, and dY rows are made of the
coefficients of Y − h(X, Z). Since degX(g) = dX and degX(Y − h(X, Z)) = δX,
each term of the resultant has degree at most dXδY + δXdY in X.

We have shown that h(X, φ) is a Puiseux series which cancels a polynomial
r of degree at most (dXδY + δXdY) in X. By Newton-Puiseux Theorem, this
quantity also bounds the absolute value of its valuation. �

Proof of Theorem 4.14.1. Let W = wr(Xα1φβ1 , . . . , Xα`φβ`) and F(X) = f (X, φ(X)).
Without loss of generality, let us assume that minj(αj + vβ j) is attained for j = 1.

Since F is a linear combination of the family (Xαj φ(X)β j)j, the wronskian WF

of the family (F, Xα2φβ2 , . . . , Xα`φβ`) satisfies WF = a1W and their valuations
coincide. By Lemma 2.72.7,

val(WF) ≥ val(F) + ∑
j>1

(αj + vβ j)−
(
`

2

)
.

On the other hand, as the family (Xαj φβ j)j is linearly independent, Lemma 4.54.5
implies the existence of a nonzero t` such that

W = XA−(`2)φB−(`2) t`(X, φ)

g(`−1)2

Y (X, φ)
.

Moreover, Lemma 4.64.6 implies that val(t`(X, φ)) ≤ 2dXdY(`− 1)2− dX(
`−1

2 ) and
val(gY(X, φ)) ≥ −2dXdY + dX. Therefore,

val(W) ≤ A−
(
`

2

)
+ vB− v

(
`

2

)
+

1
2

dX(`− 1)(8dY(`− 1)− 3`+ 4).

Since A = ∑j αj and B = ∑j β j,

val(F) ≤ α1 + vβ1 − v
(
`

2

)
+

1
2

dX(`− 1)(8dY(`− 1)− 3`+ 4).
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The theorem follows, since α1 + vβ1 = minj(αj + vβ j). �

4.2. The bivariate case. In this section we state a Gap Theorem for bivari-
ate polynomials which derives from Theorem 4.14.1, and deduce an algorithm
to compute the multidimensional factors of bounded bidegree of a lacunary
polynomial.

In order to simplify the exposition, we shall use the bound γv(`) ≤ γ(`),
valid as soon as |v| ≤ dX. Using γv(`) instead of γ(`) yields slightly better
results at the price of much more cumbersome proofs.

Theorem 4.7 (Gap Theorem). Let v ∈ Q, dX, dY ∈ N and f = f1 + f2 ∈ K[X, Y]
where

f1 =
`

∑
j=1

cjXαjYβ j and f2 =
k

∑
j=`+1

cjXαjYβ j

satisfy αj + vβ j ≤ αj+1 + vβ j+1 for 1 ≤ j < k. If ` is the smallest index such that

α`+1 + vβ`+1 > α1 + vβ1 + γ(`),

then for every irreducible polynomial of bidegree at most (dX, dY) such that g has a root
of valuation v in K〈〈X〉〉,

multg( f ) = min(multg( f1), multg( f2)).

Proof. Let us first prove that under the assumptions of the theorem, g divides f
if and only if it divides both f1 and f2.

Consider a polynomial g as in the theorem, and φ ∈ K〈〈X〉〉 such that
g(X, φ(X)) = 0. Since g is irreducible, it divides f if, and only if, f (X, φ(X)) = 0.
Let us assume that g does not divide f1, that is, f1(X, φ(X)) 6= 0, and consider
the family (Xαj φβ j)1≤j≤`. One can extract a basis (Xαjt φβ jt )1≤t≤m of this family
and rewrite

f1(X, φ(X)) =
m

∑
t=1

btXαjt φ(X)β jt

where b1, . . . , bm are linear combinations of c1, . . . , c`. Without any loss of
generality, let us assume that bt 6= 0 for all t. Since (Xαjt φβ jt )1≤t≤m is linearly
independent, Theorem 4.14.1 implies

val( f1(X, φ(X))) ≤ min
t
(αjt + vβ jt) + γ(m).

By minimality of `, αjt + vβ jt ≤ α1 + vβ1 +γ(jt− 1) for all t. Since jt +m− 1 ≤ `
and γ(`1) + γ(`2) ≤ γ(`1 + `2) for all `1 and `2,

val( f1(X, φ(X))) ≤ α1 + vβ1 + γ(`).

By assumption val( f2(X, φ(X))) > val( f1(X, φ(X))), whence f1(X, φ(X)) +
f2(X, φ(X)) 6= 0. In other words, if g does not divide f1, it does not divide f
either.
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To obtain the statement on the multiplicities, consider the p-th derivatives of
f , f1 and f2. Then multg( f ) > p if and only if g divides f (p). Let us assume
without loss of generality that αj, β j > p for all j. (For one can multiply f by
XpYp without changing its irreducible factors but the multiplicity of X and Y
as factors of f .) One can write f (p) = f (p)

1 + f (p)
2 . Furthermore, the condition of

the lemma is satisfied by f (p) if and only if it is satisfied by f since it is based
on the difference of the exponents. Thus, for all p, g divides f (p) if and only if
it divides both f (p)

1 and f (p)
2 . The conclusion follows. �

In order to avoid any misunderstanding, we formalize what it means for a
polynomial f to have a gap relative to a valuation v.

Definition 4.8. Let v ∈ Q, dX, dY ∈ N and f = ∑k
j=1 cjXαjYβ j such that αj +

vβ j ≤ αj+1 + vβ j+1 for 1 ≤ j < k. We say that f has no gap relative to v if for
1 < ` ≤ k,

α` + vβ` ≤ α1 + vβ1 + γ(`− 1).
Otherwise, f has a gap relative to v.

The Gap Theorem can be used to partition an input polynomial f into a
sum f1 + · · ·+ fs such that for all irreducible polynomial g of bidegree at most
(dX, dY) with a root of valuation v, multg( f ) = mint(multg( ft)). Graphically,
this partition corresponds to a partition of the support of f into oblique strips,
each of which has width γ(`t) where `t is the number of points of the support
of f it contains. This is the algorithm Partition (Algorithm 11).

Lemma 4.9. If f is a bivariate k-nomial of total degree D, and dX, dY ≤ D, the
algorithm Partition( f , dX, dY, v, σ) runs in time O(k log D) and outputs a partition
f1 + · · · + fs of f such that multg( f ) = min1≤t≤s(multg( ft)) for all irreducible
polynomials g such that the lower hull of Newt(g) contains an edge of direction (p, q)
with v = −p/q.

Proof. The correctness of the algorithm is a direct consequence of the Gap
Theorem: Indeed, g has a root of valuation v = −p/q in this case. The
complexity of the algorithm is bounded by O(k log D) since there are only
comparisons of integers of size at most log D. �

Alone, this partition does not bound the degree in X nor the degree in Y of
each ft. Using the graphical interpretation, the support of f is partitioned into
strips that have finite width but are infinite though. The idea is then to use
another set of strips, not parallel to the first ones, to refine the partition. Since
the strips are not parallel, this will partition the support into parallelograms
which are finite.

There comes multidimensionality. If g is multidimensional, Newt(g) has by
definition two non-parallel edges. Let us assume that these two edges belong
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Algorithm 1 Partition( f , dX, dY, v, σ)

Input: f = ∑k
j=1 cjXαjYβ j , dX, dY ∈ N, v ∈ Q and σ a permutation such that

j 7→ ασ(j) + vβσ(j) is non-decreasing;
Output: A partition f = f1 + · · ·+ fs.

1: t← 1;
2: jm ← 1;
3: for ` = 2 to k do
4: if ασ(`) + vβσ(`) > ασ(jm) + vβσ(jm) + γ(`− jm) then
5: ft ← ∑`−1

j=jm cσ(j)X
ασ(j)Yβσ(j) ;

6: jm ← `+ 1;
7: t← t + 1;
8: end if
9: end for

10: ft ← ∑k
j=jm cσ(j)X

ασ(j)Yβσ(j) ;
11: return { f1, . . . , ft}.

to the lower hull of the Newton polygon. Then g has a root of valuation v1
and another one of valuation v2 6= v1 where v1 and v2 are determined by the
directions of the two non-parallel edges. One can partition f with respect to
v1 and then each summand in the partition can be again partitioned, this time
with respect to v2. This yields the algorithm Bipartition (Algorithm 22).

Lemma 4.10. If f is a bivariate k-nomial of total degree D, and dX, dY ≤ D, the
algorithm Bipartition( f , dX, dY, v1, v2) runs in time O(k2 log D) and outputs a
partition f1 + · · ·+ fs such that multg( f ) = min1≤t≤s(multg( ft)) for all multidi-
mensional polynomial g such that the lower hull of Newt(g) contains two edges of
directions (p1, q1) and (p2, q2) with v1 = −p1/q1 and v2 = −p2/q2.

Furthermore, the convex size of each ft is at most O(d2
Xd2

Y`
4
t ) where `t is the number

of terms of ft.

Proof. Again, the correctness of this algorithm directly follows from the correct-
ness of the algorithm of Lemma 4.94.9, that is ultimately from the Gap Theorem.
To estimate its complexity, first note that the total number of monomials in
S remains constant, equal to k, during the computation. At each iteration of
the while loop, the procedure Partition is called on polynomials whose total
number of monomials is 2k. Thus the complexity is O(k2 log D) since the sorting
phase can be also performed within this complexity bound.

To bound the convex sizes, note that there is no gap anymore in any ft
at the end of the algorithm. The support of each ft is therefore contained
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Algorithm 2 Bipartition( f , dX, dY, v1, v2)

Input: f = ∑k
j=1 cjXαjYβ j , dX, dY ∈ N, v1, v2 ∈ Q;

Output: A partition f = f1 + · · ·+ fs.

1: for i = 1, 2 do
2: σi ← permutation such that j 7→ ασi(j) + viβσi(j) is non-decreasing;
3: end for
4: S ← { f } and s← 0;
5: while |S| > s do
6: s← |S|;
7: for all h ∈ S do
8: Sh ← Partition(h, dX, dY, v1, σ1);
9: for all h′ ∈ Sh do

10: Sh′ ← Partition(h′, dX, dY, v2, σ2);
11: end for
12: Sh ←

⋃
h′∈Sh

Sh′ ;
13: end for
14: S ← ⋃

h∈S Sh;
15: end while
16: return S .

in two strips of widths bounded by γ(`t), that is in a parallelogram of area
γ(`t)2 = 16d2

Xd2
Y(`t − 1)4. �

From the previous lemma, we obtain a reduction to low-degree factorization
for bivariate polynomials. Note that we do not state any degree bound in the
next theorem (such bounds are given in the next section) but rather a bound
on the convex size of the output polynomials. To really have an algorithm
to compute bounded-degree factors of bivariate polynomials, one can branch
any bivariate factorization algorithm. In order to get the best complexity
bounds, one can preprocess the output polynomials before their factorization
with the techniques of Berthomieu and Lecerf [44]. This allows to compute the
irreducible factorization of a polynomial in time polynomial in the convex size
rather than the degree of the polynomial. This is particularly interesting in our
settings when the support of the input polynomial is partitioned into very flat
parallelograms, that is parallelograms of large dimensions but small area.

Theorem 4.11. Let f ∈ K[X, Y] be a k-nomial of total degree D and dX, dY ∈ N
be degree bounds. One can reduce the computation of the multidimensional bidegree-
(dX, dY) factors of f to the irreducible factorization of at most k polynomials of convex
size O(d2

Xd2
Yk4) in time poly(k, log D, dX, dY).
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Proof. Note first that the Newton polygon of a multidimensional factor g has
two non-parallel edges. There are three possible cases: Either the lower hull of
Newt(g) has two non parallel-edges, or its upper hull has two parallel edges,
or Newt(g) has two vertical edges. These three cases are treated separately.

Let us first only consider factors g such that the lower hull of Newt(g) has
two non-parallel edges. By Corollary 2.22.2, the respective directions of these
edges must also be directions of edges of the lower hull of Newt( f ). This yields
the following algorithm, where Gcd(·) denotes a procedure to compute the gcd
of a set of polynomials:

1: S ← ∅;
2: ∆← the directions of the edges in the lower hull of Newt( f );
3: ∆← ∆ ∩ {(p, q) : p ≤ dX, |q| ≤ dY};
4: for all (p1, q1), (p2, q2) ∈ ∆ do
5: Sp1,q1,p2,q2 = Bipartition( f , dX, dY,−p1/q1,−p2/q2)
6: h← Gcd(Sp1,q1,p2,q2);
7: S ← S ∪ h;
8: end for
9: return S .

The correctness of this algorithm is a direct result of the correctness of
Bipartition. As for the complexity, there are at most O(k) edges in ∆, whence
at most O(k2) iterations of the loop. The call to Bipartition takes polynomial
time. Now, using the techniques of Berthomieu and Lecerf [44], one can compute
the gcd of S in time polynomial in the convex size of the elements of S . This
convex size is bounded by O(d2

Xd2
Yk4) according to Lemma 4.104.10.

It remains to prove that one can give similar algorithms for the factors of
f that have two non-parallel edges in the upper hull of the Newton polygon,
or two vertical edges. For the first remaining case, one can simply consider
f X(X, Y) = YdegX( f ) f (1/X, Y) and apply the previous algorithm to f X. The last
case is a bit more different, though the algorithm is actually slightly simpler.
One has to slightly modify the algorithm Bipartition. Since there is only one
valuation to call Partition, one has to replace the second call to Partition

at line 1010 of Bipartition. For, let us define f̄ (X, Y) = f (Y, X) and ḡ(X, Y) =
g(Y, X) for any g. Clearly, multḡ( f̄ ) = multg( f ) and if g has two vertical
edges, ḡ has two horizontal edges. This means that one can replace the call
Partition(h′, dX, dY, v2, σ2) at line 1010 by Partition(h̄′, dX, dY, 0, σ0) where σ0 is
the permutation such that βσ0(j) ≤ βσ0(j+1) for all j. The rest of the algorithm is
identical. �

4.3. The multivariate case. In this section, we aim to generalize Theorem 4.114.11

to multivariate polynomials. Actually, the algorithm is a simplification of the
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previous one that can be used for bivariate polynomials as well. Yet the price
for the simplicity is an increase of computational complexity.

The first step is a new analysis of the algorithm Bipartition. We have given
a bound on the convex size of the polynomials in the output. For our simplified
algorithm, we need a bound on their degree.

Lemma 4.12. Let (p1, q1) and (p2, q2) be the directions of two non-parallel edges in
the lower hull of the Newton polygon of some polynomial of bidegree (dX, dY), and let
v1 = p1/q1 and v2 = p2/q2. Then

1
|v1 − v2|

≤ d2
Y/4 and

|v1|+ |v2|
|v1 − v2|

≤ dXdY.

Proof. Since (p1, q1) and (p2, q2) are the directions of two edges in the lower
hull of some Newton polygon, there exist λ, µ ∈ N such that λ|q1|+ µ|q2| ≤ dY,
whence |q1|+ |q2| ≤ dY. And for similar reasons, |p1|, |p2| ≤ dX.

Since |q1|+ |q2| ≤ dY, |q1q2| ≤ |q1|(dY − |q1|) ≤ (dY/2)2. Thus

1
|v1 − v2|

=
|q1q2|

|p1q2 − p2q1|
≤ |q1q2| ≤

d2
Y
4

.

Similarly, |p1q2|+ |p2q1| ≤ dX(|q1|+ (dY − |q1|)) ≤ dXdY and

|v1|+ |v2|
|v1 − v2|

=
|p1q2|+ |p2q1|
|p1q2 − p2q1|

≤ dXdY. �

Lemma 4.13. Let S = Bipartition( f , dX, dY, v1, v2) where dX, dY ∈ N, v1, v2 ∈ Q
and f ∈ K[X, Y]. Then for all h ∈ S with ` terms,{

degX(h)− valX(h) ≤ 1
2 d2

Yγ(`) and
degY(h)− degY(h) ≤ dXdYγ(`).

Proof. Let h = ∑`
j=1 cjXαjYβ j ∈ S . Since there is no gap in h, for all j,{
αj + v1β j ≤ min1≤j≤`(αj + v1β j) + γ(`) and
αj + v2β j ≤ min1≤j≤`(αj + v2β j) + γ(`).

In particular, for all p and q, and i = 1, 2, (αp − αq) + vi(βp − βq) ≤ γ(`). Let
us fix some p and some q, and let ∆α = αp − αq and ∆β = βp − βq. We aim to
bound |∆α| and |∆β|.

Since the above bound is valid if we exchange p and q, we have |∆α + vi∆β| ≤
γ(`) for i = 1, 2. Hence, ∆α + v1∆β − (∆α + v2∆β) = (v1 − v2)∆β ≤ 2γ(`) and
by Lemma 4.124.12,

|∆β| ≤
2γ(`)

|v1 − v2|
≤ 1

2
d2

Yγ(`).
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Furthermore, v2∆α + v1v2∆β ≤ |v2|γ(`) and v1∆α + v1v2∆β ≥ −|v1|γ(`).
Thus (v2 − v1)∆α ≤ (|v1|+ |v2|)γ(`) and

|∆α| ≤
|v1|+ |v2|
|v1 − v2|

γ(`) ≤ dXdYγ(`)

again using Lemma 4.124.12. This proves the lemma. �

Until now, we have obtained for each pair of distinct valuations (v1, v2) a
partition of f with the desired properties. We aim to invert the quantifiers,
that is to prove that there exists a partition that has the desired properties with
respect to any pair of valuations.

Lemma 4.14. Let f ∈ K[X, Y] be a k-nomial of total degree D, and dX, dY ∈ N. There
exists a partition f = f1 + · · ·+ fs such that for any multidimensional polynomial g
of bidegree at most (dX, dY),

multg( f ) = min
1≤t≤s

(multg( ft)).

Furthermore, for 1 ≤ t ≤ s

degY( ft)− valY( ft) ≤ kdXdYγ(k).

This partition can be computed in time O(k log D).

Proof. Let us write f = ∑k
j=1 cjXαjYβ j such that β j ≤ β j+1 for 1 ≤ j < k.

Consider the following algorithm that computes a partition of f :
1: t← 1;
2: jm ← 1;
3: for ` = 1 to k− 1 do
4: if β`+1 − β` > dXdYγ(k) then
5: ft ← ∑`

j=jm cjXαjYβ j ;
6: jm ← `+ 1;
7: t← t + 1;
8: end if
9: end for

10: return { f1, . . . , ft}.
Let us first note that the bound on degY( ft)− valY( ft) is straightforward since
the number of terms of ft is bounded by k. The complexity is dominated by the
cost of sorting the exponents, and this cost is O(k log D).

Let s be the final value of t in the above algorithm. We claim that at the
end of the algorithm, the partition f = f1 + · · · + fs satisfies multg( f ) =
mint(multg( ft)) for all multidimensional polynomial g of bidegree at most
(dX, dY). For, let us fix such a polynomial g.

First, if the lower hull of Newt(g) has two non-parallel edges, g has two roots
of distinct valuations v1 and v2 in K〈〈X〉〉. The call Bipartition( f , dX, dY, v1, v2)
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computes a partition f = f 1
1 + · · · + f 1

s1 . This partition satisfies degY( f 1
t ) −

valY( f 1
t ) ≤ dXdYγ(`1

t ) where `1
t is the number of terms of f 1

t and multg( f ) =
mint(multg( f 1

t )). We aim to show that if two monomials XαpYβp and XαqYβq

belong to a same f 1
t in this partition, they also belong to a same polynomial

ft in the partition computed by the algorithm. Indeed, given the bound on
degY( f 1

t )− valY( f 1
t ), we have |αp − αq| ≤ dXdYγ(`1

t ) ≤ dXdYγ(k) since γ is an
increasing function. Let us assume αp ≥ αq. Then, for q < r ≤ p, αr − αr−1 ≤
αp − αq ≤ dXdYγ(k) and αp, αp+1, . . . , αq belong to a same polynomial in the
partition f = f1 + · · · + ft. This proves that each ft is a sum of f 1

t′ ’s, hence
mint(multg( ft)) = mint(multg( f 1

t )).
The two other cases concern polynomials such that the upper hull of their

Newton polygon has two non-parallel edges, and polynomials with two ver-
tical edges. As in the proof of Theorem 4.114.11, one can consider f X(X, Y) =

XdegX( f ) f (1/X, Y) for the first case, and f̄ (X, Y) = f (Y, X) for the second case
to complete the proof. �

Finally, we get to our simple algorithm. First note that we can replace the
bound γ(k)dXdY in the algorithm by any larger value and obtain the same result,
but of course with a larger value for degY( ft)− valY( ft). Our aim is to use the
above partitioning algorithm with respect to all the variables, sequentially. For
ease of presentation, let us reformulate the above algorithm in the settings of a
multivariate polynomial (UnivariatePartition, Algorithm 33) before presenting
the general algorithm (MultivariatePartition, Algorithm 44).

Theorem 4.15. If f ∈ K[X] is an n-variate k-nomial and d1, . . . , dn are posi-
tive integers, the algorithm MultivariatePartition( f , d1, . . . , dn) runs in time
O(nk2 log D) and outputs a partition f1 + · · ·+ fs of f such that each ft has degree
at most O(d4k3) in each variable where d = maxi(di) and for any multidimensional
polynomial g ∈ K[X] of multidegree at most (d1, . . . , dn),

multg( f ) = min
1≤t≤s

(multg( ft)).

Proof. The correctness of the algorithm and the degree bound follow from
Lemma 4.144.14. For the complexity, note that at each iteration of the while loop,
the size of S increases by at least 1, and the final size is bounded by k. This
proves that this loop terminates in at most k iterations. The global complexity
follows from the complexity of UnivariatePartition, given in Lemma 4.144.14. �
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Algorithm 3 UnivariatePartition( f , δ, i)

Input: f = ∑k
j=1 cjX

α1,j
1 · · ·X

αn,j
n , δ and i;

Output: { f1, . . . , fs} such that degXi
( ft)− valXi( ft) ≤ kδ.

1: σ← permutation such that j 7→ αi,σ(j) is non-decreasing;
2: t← 1;
3: jm ← 1;
4: for ` = 1 to k− 1 do
5: if αi,σ(`+1) − αi,σ(`) > δ then

6: ft ← ∑`
j=jm cσ(j)X

α1,σ(j)
1 · · ·Xαn,σ(j)

n ;
7: jm ← `+ 1;
8: t← t + 1;
9: end if

10: end for
11: ft ← ∑k

j=jm cσ(j)X
α1,σ(j)
1 · · ·Xαn,σ(j)

n ;
12: return { f1, . . . , ft}.

Algorithm 4 MultivariatePartition( f , d1, . . . , dn)

Input: f ∈ K[X], d1, . . . , dn ∈ N;
Output: { f1, . . . , fs}.

1: S ← { f };
2: s← 0;
3: while s < |S| do
4: s← |S|;
5: for i = 0 to n do
6: for all h ∈ S do
7: k← number of terms of h;
8: δ← γ(k)di maxi′ 6=i(di′);
9: Sh ← UnivariatePartition( f , δ, i);

10: end for
11: S ← ⋃

h∈S Sh;
12: end for
13: end while
14: return {h/Xmval(h) : h ∈ S}.
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