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Abstract The computational burden associated to finite element based digital image correlation methods
is mostly due to the inversion of finite element systems and to image interpolations. A non-overlapping dual
domain decomposition method is here proposed to rationalize the computational cost of high resolution finite
element digital image correlation measurements when dealing with large images. It consists in splitting the
global mesh into submeshes and the reference and deformed states images into subset images. Classic finite
element digital image correlation formulations are first written in each subdomain independently. The displace-
ment continuity at the interfaces is enforced by introducing a set of Lagrange multipliers. The problem is then
condensed on the interface and solved by a conjuguate gradient algorithm. Three different preconditionners are
proposed to accelerate its convergence. The proposed domain decomposition method is here exemplified with
real high resolution images. It is shown to combine the metrological performances of finite element based digital
image correlation and the parallelisation ability of subset based methods.

keywords parallel computing, global DIC, high performance computing, substructuring, finite elements, do-
main decomposition

1 Introduction

The analysis of the mechanical behavior of materials and structures rely more and more on full-field mea-
surements. It is mainly due the large quantity of data they provide, which are particularly interesting for
parameter identification purposes for instance. Among them, Digital Image Correlation (DIC) has become one
of the most popular because of a favorable ease of use to accuracy ratio [46, 45] and its ability to deal with
3D measurements on the surface (stereo DIC [27]) and also in the bulk with Digital Volume Correlation (DVC
[1, 37]). In continuum solid mechanics, finite element based DIC (FE-DIC [44, 3, 11, 17]) has proved to be a
relevant choice since (a) it allows for interpolation-free communications with finite element simulations, (b) it
significantly reduces the measurement uncertainties with respect to classical subset based approaches [17], since
prescribed continuity of the unknown displacement fields acts as a regularisation. The drawback of FE-DIC over
subset-DIC [45] is the computational cost when high resolution is sought for [24, 35]. Indeed, subset based DIC
approaches lead to a set of small independent nonlinear systems of equations which are highly parallelisable,
whereas FE-DIC method lead to one global non-linear system whose inversion can become prohibitive with a
large number of degrees of freedom [35]. In addition, due to the constantly increasing resolution of photographic
sensors (standard sensors provide nowadays 29 million pixels, which can be extended up to 260 million pixels
using a piezoelectric pixel shift), the manipulation and interpolation of images (large dense matrices) become
more and more an issue. This problem is even more acute with tomographic images.

The two main causes responsible for the high computational cost of high resolution FE-DIC are thus system
inversions and image interpolations. A method that addresses the first issue consists in reducing the dimen-
sionnality of the problem. A variable separation technique based on the Proper Generalised Decomposition
(PGD) has been proposed recently to decrease the numerical complexity of FE-DIC [35, 13], while preserving
the above mentioned advantages. It was shown that it may drastically reduce the computation time associated
to the resolution of the FE systems. Another attempt based on GPU implementation proposed recently to
adress both sources of computational cost [22]. However, the limitations remain when the size of the region of
interest increases.
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In the community of numerical simulation, a family of solvers, referred to as domain decomposition methods
(DDM) has been developed for high performance computing on parallel computer architectures. The domain
decomposition methods, such as Schwarz methods [12], were originally based on overlapping partitions of the
studied region. Then non-overlapping methods were preferred because of their ease of implementation. The
dual domain decomposition (such as Finite Element Tearing and Interconnecting, FETI [9]) seeks iteratively the
displacement continuity at the interface assuming the equilibrium of the subdomains. On the contrary, primal
domain decomposition methods (such as Balancing Domain Decomposition, BDD [28]) prescribe displacement
continuity and get iteratively equilibrium at the interface. Mixed [21, 43, 33] and hybrid [14] alternatives have
also been proposed that mixes primal and dual approaches. Most often, the global problem is condensed onto
the interface degrees of freedom and solved by a Krylov iterative algorithm [9, 28]. The latter can be computed
in parallel since it involves independent problems on each subdomain.

In the same way, a dual non-overlapping domain decomposition algorithm is proposed herein, in the context
of FE-DIC, to alleviate both finite element system solving and image manipulation issues at the same time.
The method consists in splitting the domain into a set of subdomains (with submeshes and subset images).
The algorithm based on the preconditionned conjugate gradient thus involves a set of smaller independent
problems (based on small meshes and small subset images) well suited for parallel processing. Three different
preconditionners are proposed with different extra-costs and efficiencies. After describing its principle, the
method is used to analyse high resolution images of a real experiment.

2 The proposed domain decomposition approach

2.1 Digital image correlation

Let us consider two grayscale images f(x) and after g(x) corresponding to the reference and deformed states
of the specimen respectively. The displacement field between those two states is denoted u(x), where x ∈ Ω
is a point in the region of interest Ω of the image. Given f and g, the DIC problem consists in finding the
displacement field u? ∈ L2(Ω) (where L2(Ω) defines Hilbert space [L2(Ω)]d with d = 2 for DIC and 3 for DVC)
that best fullfils the graylevel conservation equation [19]:

u? = arg min
u(x)∈L2(Ω)

∫
Ω

(
f(x)− g(x + u(x))

)2

dx (1)

Problem (1) is nonlinear. Assuming that g (and thus f) is differentiable, it can be solved by a Newton-like
algorithm. At iteration k the unknown displacement correction δuk = uk−uk−1 is assumed to be small enough
to allow for a first order Taylor expansion of the deformed state image

g(x + uk) ≈ g(x + uk−1) + δukT∇g(x + uk−1) (2)

In equation (2), ∇g(x + uk−1) denotes the gradient of image g at non integer pixels positions x + uk−1. Since
g(x + uk−1) is supposed to converge to f(x), the gradient ∇g(x + uk−1) is approximated by ∇f(x), which does
not depend on the unknown and which can then be computed once and for all.

The stationnarity conditions associated to the minimisation of the linearised version of Problem (1) yields
the following variationnal formulation:

a(δuk,v) = lk(v) ∀v ∈ L2(Ω) (3)

where ∀(u,v) ∈ L2(Ω)× L2(Ω),

a(u,v) =

∫
Ω

vT∇f ∇fTu dx and lk(v) =

∫
Ω

vT∇f
(
f(x)− g(x + uk−1)

)
dx

As such, this problem is ill-posed in Hadamar’s sense, i.e. the displacement cannot be found pixel-wise. This
problem needs to be regularised. For that the unknown displacement u(x) is searched for in an approximation
subspace V ⊂ L2(Ω) whose dimension is much smaller than the number of pixels in Ω. Generally, V is defined
by a set of basis functions Ni(x). The approximation of the displacement thus reads δuk(x) =

∑
i Ni(x) qki

where qki are the corresponding coefficients of the linear combination, referred to as degrees of freedom (dof) of
the displacement correction at iteration k.

By applying the Galerkin method, Problem (3) produces, at iteration k, the following linear system of
equations:

M qk = bk (4)
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where qk is a vector collecting the dof qki and

Mij = a(Ni(x),Nj(x)) and bk
j = lk(Nj(x)) (5)

The correlation operator M is symmetric positive definite [10].
The choice of the approximation subspace V or more precisely of its basis functions Ni(x) may be varied:

piecewise constant [26] or polynomial functions [46], Fourier series [42, 30], rigid body translations and rotations
[32, 34], B-splines [6, 8], NURBS [7], finite elements [44, 3, 11], eXtended finite elements [40, 37], separation of
variable [35, 13], mechanical [41, 18, 4] and optical analytical function [39] or numerical precomputed functions
[23].

As regards computational costs, the so-called subset methods, that rely on piecewise polynomial functions,
involve a bloc diagonal correlation operator M. Its resolution is therefore highly parallelisable. In opposition,
with almost all the other interpolation types, and in particular with finite elements, the operator M is global.
Its size, which is equal to the dimension of the approximation subspace (or the number of dofs), can become
prohibitive when high resolution is required [24, 35, 13].

As stated in the introduction, the second main computational limitations, which is not peculiar to FE-DIC,
is the computation of the right hand side bk. The latter needs to evaluate the deformed state image g at
the non-integer pixels values x + uk−1(x). This implies using interpolation algorithms whose computational
complexity scales in O(n log(n)) where n is the number of points.

The computational cost of FE-DIC may become significant when high resolution images and meshes are
jointly used. In the following, a domain decomposition algorithm is proposed to alleviate both computational
issues associated to the resolution of large systems and the manipulation of large images.

Remark. The subset based approaches [26, 46] could be seen as a kind of overlapping partition of the
region of interest since the size of the step between two subsets can be set smaller than the size of the subset
itself. However, all the problems on the subsets are solved independently and the displacement continuity across
interfaces is not searched for.

2.2 Domain decomposition

Let us now consider a non-overlapping partition of the region of interest Ω into a set of subdomains Ωs. In the
same way any quantity with subscript �s defines the restriction to Ωs of quantity �. For the sake of simplicity,
the method will be first presented in the case of two subdomains Ω1 and Ω2 without loss of generality. In each
subdomain, the linearised correlation problem at iteration k reads: find δuk

s ∈ L2(Ωs), such that

∀s,∀vs ∈ L2(Ωs), as(δu
k
s ,vs) = lks (vs) (6)

Problem (6) must be solved under the constraint of displacement continuity at the interface Γ = Ω1 ∩ Ω2, see
Figure 1. For that a Lagrange multiplier λ ∈ L (L being the ad-hoc space) is introduced to ensure this constraint
in a weak sense:

〈u1 − u2, λ〉 = λT (u1|Γ − u2|Γ) = 0 (7)

The three fields formulation thus reads, ∀(v1,v2, µ) ∈ L2(Ω1)× L2(Ω2)× L,

a1(δuk
1 ,v1) + a2(δuk

2 ,v2) + 〈δuk
1 − δuk

2 , µ〉+ 〈v1 − v2, λ〉
= lk1(v1) + lk2(v2) + 〈uk−1

2 − uk−1
1 , µ〉 (8)

When introduced in formulation (8), the finite element interpolation leads to the following coupled linear
system:  M1 0 CT

1

0 M2 CT
2

C1 C2 0

 qk
1

qk
2

Λ

 =

 bk
1

bk
2

−C1p1 −C2p2

 (9)

where Λ, p1 and p2 are the dof vectors corresponding to the FE interpolation of λ, uk−1
1 and uk−1

2 respectively.
Cs denote rectangular signed boolean operators such that if a dof belong to Γ, his value is set to 1 and the
corresponding dof on the other side of Γ is set to -1.

As such, Problem (9) is coupled and involves all the unknown and the data of the image in the entire region
of interest Ω. It is thus obviously not solved directly. In order to rationalize the computational cost of FE-DIC,
the problem is split into the following coupled equations:

qk
s = M−1

s (bk
s −CT

s Λ) ∀s (10)∑
s

Cs

(
qk
s + ps

)
= 0 (11)
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The dual interface problem is then obtained by the condensation of Problem (9) on Interface Γ. It consists
in substituting equations (10) into equation (11):

Sd Λ = tk (12)

where the condensed right hand side tk and the so-called dual Shur complement operator Sd read

Sd =
∑
s

CsM
−1
s CT

s (13)

tk =
∑
s

Cs

(
ps + M−1

s bk
s

)
(14)

Remark. It is easy to see that Problem (12) remains in the same form when more than two subdomains are
considered. Nevertheless, attention must be paid to the interface dof belonging to more than two subdomains
(multiplicity greater than 2). If an interface node is linked to n subdomains, n − 1 Lagrange multipliers are
introduced in each dimension.

2.3 Iterative solution algorithm

Introducing a decomposition of the domain and writing the condensed problem at the interface is not sufficient
to make this method parallelisable. More, operator Sd is formally based on the inversion of the local correlation
operators Ms whose computation cost would be prohibitive. Obviously, it is actually neither computed nor
assembled. Indeed, the condensed symmetric linear system (12) is solved thanks to a preconditionned conjugate
gradient (CG) solver. After initialisation r0 = tk −SdΛ0 and d0 = P−1r0, one iteration of the preconditionned
CG reads:

α =
rTi P−1ri
dT
i Sddi

(15)

Λi+1 = Λi + α di (16)

ri+1 = ri − α Sddi (17)

β =
rTi+1P

−1ri+1

rTi P−1ri
(18)

di+1 = P−1ri+1 + β di (19)

where P is a preconditionner whose choice is discussed later. As written in the above algorithm, the conjugate
gradient only requires matrix-vector products between operator Sd and vector di. As Sd is expressed as a sum
on subdomains, this product corresponds to the following computation:

Sddi =
∑
s

CsM
−1
s CT

s di =
∑
s

Csys

where ys are the solutions of the set of local systems Msys = CT
s di that correspond to local correlation

problems with different right hand sides. These system inversions are thus computationally affordable and,
above all, independent from one subdomain to the other. That means that parallel processing can be used when
computing these local products. Since the right hand side tk is the sum of local contributions tks , it can also
be computed in parallel. Note that operators Ms remains unchanged during correlation iterations k. They can
be factorised once at the beginning. The stopping criterion of the CG is classically based on the norm of the
residual ri+1.

The resulting domain decomposition DIC method yields exacly the solution one would get with one single
mesh and a classical FE-DIC. The metrological performances of this method are thus the same than a classical
FE-DIC method with a unique subdomain [17].

2.4 Image decomposition

However, as stated earlier, the computation of the local contributions to the left and right hand side of (12)
requires to manipulate and interpolate images f and g at non-interger pixels positions within subdomain Ωs. In
order to reduce the computational burden associated to whole image interpolation, we propose also to subdivide
images f and g in a set of rectangular subset images fs and gs surrounding domain Ωs as it is usually done
in subset-based approaches [45]. More precisely, gs is interpolated at the position x + u(x). Since u is neither
constant within subdomain Ωs nor zero mean, gs is defined up to the average rigid body translation estimated
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1 f (x)2f (x)f(x)

initial FE-DIC pb independant
FE-DIC

sub-problems

iterative solver

Figure 1: Global image f and domain Ω decomposition in two subdomains Ωs and two subset images fs. A
set of subset of image g are also built. Note that subdomains and submeshes are not overlapping, but subset
images are.

by a Fast Fourier Transform, and it is a bit larger than fs. As in subset based methods, it may appear that
the displacement us is such that x + us is larger than initially estimated subset image gs. A simple test is
done before each interpolation step in order to avoid such a problem by enlarging or shifting the corresponding
deformed subset image gs.

Therefore the computational effort associated to both finite elements (system inversions) and image inter-
polations are local, and thus parallelisable. A scheme of the image and mesh decomposition is provided in
Figure 1. Not only these computations can be made on parallel computers, but the complexity and memory
requirements of both system inversion and image interpolation are such that this method may be of interest in
the context of high resolution analyses even in a sequential implementation.

2.5 Initialisation

Initialisation of the DIC iterations. Since a Newton-like solver is used for solving the correlation problem, a
good initial value u0(x) of the unknwon displacement is required. In practice, the algorithm is here initialised
by the solution to DIC problems in each subdomain independently. These problems correspond to classical FE-
DIC analyses performed independently on each subdomain. Note that these problems may themselves be also
initialised by multigrid and coarse graining techniques [16, 13] in order to avoid local minimas. This provides
a good initial estimate of the unknown displacement as shown in the examples below. The displacement of
the inner nodes in the subdomains are almost converged. The correction computed by the proposed domain
decomposition method mostly concerns nodes near the interface. Therefore, only a few extra iterations on the
correlation problem are required using the proposed domain decomposition method, to bond the subdomains
solutions.

Initialisation of the CG iterations. One conjugate gradient solver is used at each correlation iteration k.
Each time, an initial value of Λ is also required. In practice, the first one (iteration k = 0) is set to zero, and
the next ones (k > 0) are set to the last value of the previous CG resolution. This is a very naive but effective
way to reduce the number of CG iterations, as shown in the examples below.

2.6 Convergence acceleration

In addition to a good initialisation, there are obviously many more efficient ways to speed-up a CG resolution.
For instance, one can use preconditionning [12, 9]. The idea is to improve the condition number of the initial
operator Sd on which depend the convergence rate of the CG. In practice, a classical choice consists in con-
structing an operator P that is an approximation of Sd but easier to invert. The preconditionned conjuguate
gradient solver (15-19) consists in solving the problem P−1SdΛ = P−1tks . In the following, we propose to use
three basic preconditionners, listed in an increasing order of efficiency:

1. the double diagonal preconditionner which is both cheap to build and to use in the preconditionned
conjugate gradient (PCG), since the resulting operator is diagonal:

Pdd =
∑
s

diag(Cs diag(Ms)
−1CT

s )

2. the diagonal preconditionner which is a bit more expensive to assemble since local operators Ms need to
be inverted. Its cost is however affordable since it has to be done once and comparable to the cost of the
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so-called Dirichlet preconditionner of FETI [9]:

Pd =
∑
s

diag(Cs M−1
s CT

s )

3. the quasi-diagonal preconditionner. Its assembly is almost as cheap as the double diagonal, but it is not
exactly diagonal.

Pqd =
∑
s

Cs diag(Ms)
−1CT

s

In practice, CsC
T
s are band matrices and their bandwidth, a priori, depends on the numbering of the

Lagrange multipliers and the dimension of the problem (2D in this case). However, it is possible to build
a tridiagonal operator by using an appropriate numbering of the Lagrange multipliers. Two rules have to
be considered: (1) an interface dof in one subdomain must not be associated to more than 2 Lagrange
multipliers (which is possible even for multiplicity higher than 2) and (2) the Lagrange multipliers must
be sorted by physical dimension (first x dofs, then y dofs). It can be noticed that such a method will
also work in 3D DVC. Furthermore, the number of non-zero extra diagonal values is equal to the sum
of the multiplicity of each interface dof minus the number of interface dof, which, at least in 2D DIC, is
very low. However, it is necessary to perform a Cholesky factorisation, for instance, once and for all the
correlation iterations. Then, at each CG iteration, a forward and a backward substitution is performed.
The associated extra cost is therefore very reasonable.

Remarks Another possibility would consists in computing a lumped correlation operator as what is done
in transient dynamics [2]. But according to our tests, and thanks to the short varying evolution of the image
gradients, our implementation of such a technique was not efficient for preconditionning a domain-decomposition
DIC problem. Beyond preconditionning, another way to accelerate the CG resolution would be to reuse Krylov
subspaces [15] which would be particularly efficient in this case since the operator is constant and the right
hand side changes little.

Finally, a scheme of the domain decomposition DIC algorithm is given in Figure 2.

Find the max. on     of  

Fourier Initialisation

Compute 
Fourier Initialisation
Assemble 
Loop on 
    Gray level interp. 
    Assemble
    Solve 
end

Loop on 
    Loop on       (in parallel)  
        Gray level interp.  
        Assemble
        Solve 
    end
    Assemble
    Loop on 
        Compute (15) and (16)
        Loop on        (in parallel)  
            Solve  
        end
         Compute (17) to (19)
     end
end
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Mesh and images    and    partitions
Loop on        (in parallel) 
    Standard FE-DIC on  
    Assemble coupling operators
end

Figure 2: A scheme highlighting the link between the proposed approach, the conventional FE-DIC strategy
and piecewise constant Fourier based approach used for initialisation.

3 Application to a four point bending test

3.1 Experimental setup

The domain decomposition method previously described is now applied to the analysis of a four point bending
test performed on an open hole polymethyl methacrylate (PMMA) specimen. The latter is a parallelepipedic
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coupon of dimension 200× 20× 5mm with a 8mm hole drilled in the center. A black and white speckle pattern
is sprayed onto the surface of the specimen. A high resolution CCD camera (29 megapixels) has been used to
capture images (4384× 6576 pixels). An unstructured finite element mesh (including both linear triangles and
quadrangles of 30 pixels width in average) is adjusted on the image, see Figure 3.

Figure 3: Example of a four point bending test. Image and domain decomposition in the case of 179 subdomains.
The overlapping subset images fs are in yellow dashed line. The finite elements belonging to a same subdomain
are plotted with the same color. A zoom is provided on the right.

3.2 Initialisation and DD solution

A first decomposition into 179 subdomains1 is considered (Fig. 3). The average subdomain size is 160 pixels. The
analysis is performed with a stopping tolerance for correlation and CG iterations of 10−3. First, the initialisation
is performed on each subdomain indepandantly. This stage is highly parallelisable since no communications
are required between subdomains. This initial displacement solution is plotted in Figure 4 (top) with an
amplification factor of 50. The colorscale corresponds to the horizontal component of the displacement field.

Figure 4: Example of a four point bending test: displacement solution in pixels (amplification factor 50):
(top) FE-DIC solution computed independently on each subdomain (bloc Initialis. in Figure 2) and (bottom)
continuous solution computed by the domain decomposition method (bloc Correlation iterations in Figure 2)

It can be noticed that this low-cost solution is a good initialisation for the proposed domain decomposition
solver. A zoom in the top right is provided to show that the displacement continuity is actually not verified
between subdomains. It seems clear that the extra effort, provided by the domain decomposition solver, to
make the displacement continuous between subdomains, is rather slight. In this case, it took 8 extra iterations
to converge. The resulting displacement is plotted in Figure 3 (bottom). The zoom on the bottom right shows
that the displacement is then continuous.

1Ω is devided into 180 (6 × 30) regions. But no subdomain is associated to the region of the hole since it is not meshed.
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3.3 Convergence acceleration

The variation of the norm of the residual ri as a function of the CG iteration i for the third correlation iteration
(k = 3) is plotted in Figure 5 for the five following solvers:

Figure 5: Variation of the norm of the residual ri as a function of the iteration number i for the third correlation
iteration k = 3 as a function of the choosen solver

• CG. A standard conjuguate gradient without preconditionning (P set to identity) initialised by Λ0 = 0
at each correlation iteration k.

• iCG. A standard conjuguate gradient without preconditionning (P set to identity) where the solution Λ
of the previous correlation iteration (k − 1) is used to initialize the CG at correlation iteration k.

• iCG Pdd. The same as iCG but with the double diagonal preconditionner Pdd.

• iCG Pd. The same as iCG but with the diagonal preconditionner Pd.

• iCG Pqd. The same as iCG but with the quasi diagonal preconditionner Pqd.

It took around 65 iterations for the classic CG to reach convergence. By merely initializing the CG with the
previous solution vector Λ, it can be seen that the number of iterations is almost divided by two since the
initial estimate of Λ is better by one decade in comparison to Λ = 0. However, this technique is not actually
an acceleration technique since the convergence rate is the same than without initialisation. When using the
proposed preconditionners, it can be noticed that the convergence rate itself is also improved.

The number of iterations required by the CG to reach the convergence criterion is reported in Figure 6 as a
function of the chosen solver for the eight correlation iterations. The total number of CG iteration used by the
domain decomposition solver can be drastically reduced when using both initialisation and preconditionning.
According to this example, all of the three proposed preconditionners are efficient in reducing the number of
iterations. The quasi-diagonal preconditionner seems the more efficient in this case.

In order to illustrate the sparsity of the quasi-diagonal preconditionner, the non-zero values of Pqd are
potted in black in Figure 7 (left). The matrix is actually tridiagonal, but the number of non-zero extra diagonal
elements is very low. It is equal to 2× 568 (by symmetry) whereas the number interface dof is 5238. It seems
that Pqd is a cheap but rather good approximation of the dual Schur complement Sd even if the latter is not
banded at all. Indeed, its non-zero values are plotted in Figure 7 (right) for comparison purposes.

3.4 Metrological and computational performances

The measurement uncertainty is finally analysed in Figure 8. As mentionned above, the domain decomposition
method actually converges toward the monolithic solution (one single domain). Therefore, the metrological
performances are the same. However, an a priori performance analysis is carried out in order to illustrate
the effect of bonding the subdomains on measurement uncertainties. The standard displacement uncertainty is
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Figure 6: Number of iteration required to satisfy the convergence indicator as a function of the correlation
iteration k for 5 different solvers.

Figure 7: Non-zero elements of the quasi-diagonal preconditionner Pqd (left) and comparison to those of the
dual Schur complement Sd (right).

estimated by subjecting the reference image to a sub-pixel rigid body shift with a Fast Fourier Transform [5].
Then the measurement is performed between the reference and shifted images. The standard deviation of the
error between measured and prescribed displacement is plotted as a function of the average subdomain size in
pixels. This standard uncertainty is estimated for the initial displacement estimate (uncoupled subdomains),
the solution to the proposed domain decomposition solver (coupled subdomains) and a standard single domain
FE-DIC method used as a reference. As expected, the uncertainty of the solution to the domain decomposition
solver is equal to the one with a single subdomain solution, regardless of the subdomains size. On the other hand,
the solution computed independently on each subdomain (which is used as initialisation), is subject to larger
uncertainties, as subset-based DIC methods do [17], since continuity is not prescribed between subdomains.

At this stage, only a sequential implementation of the method was performed in Matlab. It is subsequently
not possible to provide a relevant estimate of the speed-up. However, the average normalised CPU time required
to compute one iteration of local FE-DIC (including image interpolation and FE system resolution) is plotted
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Figure 8: A priori performance analysis: Variation of the standard displacement uncertainty with respect to
graylevel interpolation for the initial displacement estimate (uncoupled subdomains), the solution to the domain
decomposition solver (coupled subdomains) and a standard single domain FE-DIC method (red dashed line).
The gray zone corresponds to subdomain size smaller than the average element size of the mesh.

in Figure 9 versus average sudomain size. It appears that the numerical complexity seems to be a bit less

Figure 9: Insight in CPU performance: average CPU time required to compute one iteration of local FE-DIC
normalised by the cost of one iteration of the global FE-DIC problem.

that O(N2). In other words, the CPU time of one iteration is divided by almost 100 when the size of the
subdomains is divided by 10. With a sequential implementation of the method, 65% of the CPU time is devoted
to compute the initialisation (first bloc of Figure 2), whereas the remaining 35% are used to perform the 8 extra
iterations with the DD solver (second bloc of Figure 2). Since the first 65% correspond to computations that
are independent by subdomain (it requires no data exchange between subdomains), this first initialisation is
thus highly parallelizable and its computational cost, with a parallel implementation, is expected to be divided
by the number of subdomains. The second part (35%) is also highly parallelizable, but requires some data
exchange between subdomains. The results presented in Figures 8 and 9 exemplify that the proposed approach
combines the advantages of FE-based DIC and subset-based DIC methods.
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4 Summary and perspectives

A non-overlapping dual domain decomposition method is proposed for finite element based digital image correla-
tion. It consists in splitting the resolution of a global FE-DIC problem into a set of local FE-DIC sub-problems,
based on smaller independent submeshes and subset images. The initial problem is condensed on the interface.
A well initialised conjuguate gradient solver combined with three possible cheap preconditionners is presented.
The method is used to analyse a 2D DIC problem with real high resolution images. The fact that the method
has the same metrological performances as a classic FE-DIC method is illustrated. The first CPU estimations
gives a glimpse of the potential of a parallel implementation of the method. It should offer the scalability of
subset-based methods to global approaches to DIC. The use of such a domain decomposition method should be
of great interest for the correlation of high definition digital volume images that are out of reach with standard
FE DVC approaches [24, 22].

Essentially developed for high performance computing considerations, such a method may have also other
applications. Indeed, this partitionning method is also a good candidate for measuring continuous displacements
in the case of a multiple-camera instrumentation of a single specimen [31, 32]. This kind of instrumentation
yields, in essence, a set of independent images, that the proposed domain decomposition method would manage
conveniently and efficiently. The extention to stereo digital image correlation could subsequently be a good
candidate for measurements on large structures. This will also be a good tool for the high resolution analysis
of complex microstructures present, for instance, in composite materials, polycrystaline metals or biomaterials
[29, 25, 13]. Such a coupling method could also be used to couple finite elements with other interpolations
types, like, for instance, X-FEM [38] and Williams’ series expansions [41], for the estimation of stress intensity
factors of curvilinear cracks, following what is done in simulation [36].
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[21] P. Ladevèze. Nonlinear computationnal structural mechanics–New approaches and non-incremental methods
of calculation. Springer Verlag, 1999.
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