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Abstract 24 
 25 

Chlorophyll a fluorescence has been increasingly applied to benthic microalgae, 26 

especially diatoms, for measurements of electron transport rate (ETR) and 27 

construction of rapid light response curves (RLCs) for the determination of 28 

photophysiological parameters (mainly the maximum relative ETR (rETRmax), the 29 

light saturation coefficient (Ek) and the maximum light use coefficient). Various 30 

problems with the estimation of ETR from the microphytobenthos have been 31 

identified, especially in situ. This study further examined the effects of light history of 32 

the cells and light dose accumulation during RLCs on the fluorescence measurements 33 

of ETR using the benthic diatom Navicula phyllepta. RLCs failed to saturate when 34 

using incremental increases in irradiance, however curves with decreasing irradiance 35 

did saturate. Patterns indicating photoacclimation in response to light histories were 36 

observed, with higher rETRmax and Ek, and lower , at high light compared to low 37 

light. However these differences could be negated by increasing the RLC irradiance 38 

duration from 30 to 60 s. It is suggested that problems arose as a result of rapid 39 

fluorescence variations due to ubiquinone, QA, oxidation and non-photochemical 40 

chlorophyll fluorescence quenching, NPQ, which depended upon the light history of 41 

the cells and the RLCs accumulated light dose. Also, RLCs with irradiance duration 42 

of 10 s were shown to have an error possibly specific to the fluorimeter programming. 43 

It is suggested that RLCs, using a Diving-PAM fluorimeter on benthic diatoms, 44 

should be run using decreasing irradiance steps of 30 s duration. 45 

46 
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Introduction 47 

Benthic microalgae communities, mainly composed of diatoms, inhabit 48 

shallow estuarine intertidal sediments where they are responsible for the major part of 49 

the photosynthetic primary production (MacIntyre et al., 1996). The light environment 50 

to which the microphytobenthos are exposed is highly variable due to the tidal regime, 51 

which expose the cells to a wide range of, and rapid changes between, levels of 52 

irradiance, together with a high spatial and temporal frequency of light fluctuations. 53 

Therefore, one the main challenges for microphytobenthic algae is to cope with 54 

fluctuations in irradiance, largely through avoidance of energy imbalance within the 55 

photosynthetic apparatus, and maintainance of an optimal irradiance to maximise 56 

photosynthetic productivity (Underwood and Kromkamp, 1999, Perkins et al 2002, 57 

Consalvey et al. 2005a). For this purpose, algae have evolved a number of 58 

mechanisms referred to as photoacclimation (MacIntyre et al. 2000, Raven and 59 

Geider, 2003). 60 

To investigate the photosynthesis of the microphytobenthos, chlorophyll a 61 

(Chl a) fluorescence measurements of electron transport rate (ETR) and related 62 

photophysiological parameters are being increasingly applied (Consalvey et al. 63 

2005a). Studies have been used to compare measurements of primary productivity 64 

using different methodologies, principally carbon uptake (radio-labeled 
14

C), electron 65 

transport rate (Chl a fluorescence) and oxygen evolution (oxygen electrodes) 66 

(Flameling & Kromkamp 1998, Hartig et al. 1998, Barranguet and Kromkamp 2000, 67 

Perkins et al. 2001, 2002). Others have been confined solely to the use of Chl a 68 

fluorescence as a proxy for primary productivity by measuring ETR (Kromkamp et al. 69 

1998; Serôdio and Catarino 2000; Serôdio 2003; Serôdio et al. 2005a; Underwood et 70 

al. 2005) or as a proxy for algal biomass (Serôdio et al. 1997; Honeywill et al. 2002). 71 
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The recent technique of rapid light response curves (RLCs), defined as very 72 

short (tens of seconds) light steps of different intensity, has been widely applied for 73 

the determination of ETR versus irradiance on different photosynthetic aquatic 74 

organisms like macro-and micro-algae, seagrasses and corals (Schreiber et al. 1997, 75 

Ralph et al. 1999, Kühl et al. 2001, Glud et al. 2002, Ralph and Gademann 2005). The 76 

short duration of each light step is an attempt to minimize the confounding effects of 77 

light acclimation encountered with „steady-state‟ traditional light curves (Serôdio 78 

2004, Serôdio et al. 2005a). RLCs have been used with success on microphytobenthos 79 

assemblages isolated from the field or directly in situ (Perkins et al. 2002, Serôdio et 80 

al. 2005a). However, the assessment of RLCs on intact biofilms can be disturbed, 81 

which may alter the calculation of ETR as a function of light intensity (Perkins et al. 82 

2002). The two major sources of disturbance that have been identified are the 83 

attenuation of light in the sediment and the depth-integration of fluorescence emitted 84 

from sub-surface layers (Forster and Kromkamp 2004, Serôdio 2004), and the 85 

migration of the cells within the biofilm (Kromkamp et al. 1998, Perkins et al. 2002, 86 

Serôdio 2004). In addition, rapid as well as endogenous changes in photosynthesis 87 

activity, which modulate the Chl a fluorescence emission, can potentially affect ETR 88 

measurements (Serôdio et al. 2005a). In particular, the red-ox state of QA, the primary 89 

PSII electron acceptor, and non-photochemical Chl a fluorescence quenching (NPQ) 90 

have been shown to influence the fluorescence measurements in microphytobnethic 91 

diatoms (Consalvey et al. 2004, Serôdio et al. 2005a, 2005b). In this context, technical 92 

features of the RLCs, such as the length of each irradiance step, have been shown to 93 

be important for the assessment of ETR (Serôdio et al. 2005a). 94 

This study aimed to further improve the use of Chl a fluorescence 95 

measurements for the construction of RLCs for application to benthic algae. We 96 
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especially focused on the ability of the RLCs to relate the photoacclimation status 97 

through the assessment of ETR. By using algal cultures of the benthic diatom, 98 

Navicula phyllepta Kützing, we investigated the effect on the ETR/light relationship 99 

of: 1) the light history of the cells, 2) the RLCs light step duration and order (i.e. 100 

increasing or decreasing irradiance). The data obtained were compared with RLCs 101 

performed on separate replicates of the culture for each light step („non sequential‟ 102 

light curves, N-SLCs) to assess the potential cumulative effect of rapid 103 

photoacclimation of the cells during the light curve itself. The results raise important 104 

questions with regard to potential errors in the measurement and interpretation of 105 

RLCs for cultured benthic diatoms, errors which may equally apply for in situ 106 

measurements. 107 

 108 

Methods 109 
 110 

 111 

Navicula phyllepta cultures 112 

 113 

 114 

Navicula phyllepta was obtained from the microalgal culture collection of the 115 

Laboratoire de Biologie Marine (ISOMer, Nantes, France). Stock cultures were grown 116 

in an artificial seawater medium (Harrison et al., 1980) at low irradiance (20 µmol 117 

photons m
-2

 s
-1

, 6h/18h, light/dark photoperiod). The original medium was 118 

complemented following De Brouwer et al. (2002), with the addition of Fe-NH4-119 

citrate (1.37 µM final concentration), CuSO4 5H2O (0.04 µM f.c.), folic acid (0.18 nM 120 

f.c.), nicotinic acid (0.0325 µM f.c.), thymine (0.95 µM f.c.), Ca-d-pantothenate (8.39 121 

nM f.c.) and inositol (1.11 µM f.c.). Experiments were run with cultures grown in 122 

semi-continuous culture mode (volume: 250 mL, temperature: 15 ± 1°C) in 123 

Erlenmeyer flasks (500 mL) illuminated from below (100 µmol photons m
-2

 s
-1

, 124 
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14h/10h, light/dark photoperiod) by a high intensity discharge lamp (Osram HQI BT, 125 

400 W). 126 

 127 

Rapid light response curves 128 

 129 

 130 

Fluorescence measurements were made using a Diving-PAM fluorimeter (Walz, 131 

Effeltrich, Germany). Sub-samples of N. phyllepta cultures were incubated at either 132 

low or high light (LL or HL; 25 or 400 µmol photons m
-2 

s
-1

 PPFD respectively), in a 133 

stirred, temperature controlled (15 C) chamber, for 60 min. This light acclimation 134 

period was staggered, so that each sub-sample had been exposed for exactly 60 min 135 

prior to measurement of each RLC. After light acclimation, the culture sub-sample 136 

was transferred into a temperature controlled (15 C) Hansatech DW2 chamber, with 137 

continuous stirring to prevent settling. The Diving-PAM fibre optic probe was applied 138 

to the top aperture of the chamber so that measurements were taken from cells 139 

exposed to the actinic light level applied from the halogen internal light source, thus 140 

minimising any light gradient effect (other apertures were darkened). Cultures were 141 

dark-adapted for 5 min prior to RLCs, with measurements at 10, 30 and 60 s at each 142 

light intensity. RLCs were performed with either incremental increases („up‟) or 143 

decreases („down‟) in the actinic light intensity between 0 and 1850 µmol photons m
-2

 144 

s
-1

 PPFD. Light levels were measured using the Diving-PAM quantum meter, 145 

corrected against a calibrated Li-Cor LI-189 quantum meter with a Q21284 quantum 146 

sensor. 147 

 At each light level, effective photosystem II (PSII) quantum efficiency 148 

(Fq’/Fm’, Oxborough et al. 2000; Lawson et al. 2002; Perkins et al. 2002) was 149 

measured by the saturation pulse technique, whereby a saturating light pulse of 150 

7,600 µmol photons m
-2

 s
-1

 PPFD was applied for 400 ms to measure the maximum 151 
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fluorescence yield, Fm‟. Fq’/Fm’ is equivalent to ΔF/Fm’ (Genty et al., 1989), however  152 

Fq’ is preferred as it represents, not a change in fluorescence yield, but a difference 153 

resulting from photosynthetic quenching of yield, hence the suffix q (Oxborough et 154 

al., 2000). Fq’/Fm’ was calculated as (Fm’ – F’) / Fm’, where F’ is the fluorescence 155 

yield in the light adapted state, just prior to the application of the saturating pulse. 156 

Hence Fq’/Fm’ is equivalent to the Genty parameter in the light adapted state (Genty et 157 

al. 1989). Relative electron transport rate (rETR) was then calculated as the product of 158 

Fq’/Fm’ and PPFD/2 (Sakshaug et al. 1997; Perkins et al. 2001 2002). 159 

 The Diving-PAM has internal programmes allowing 8-step RLCs with 160 

increasing light levels. Therefore, RLCs were performed using the remote control 161 

functions in the WinControl software (Walz, Effeltrich, Germany) from a laptop 162 

computer, so as to apply decreasing as well as increasing light levels covering 12 light 163 

increments. This also enabled examination of the transient fluorescence kinetics, by 164 

monitoring the F’ signal in the chart mode, allowing determination of F’ „steady-165 

state‟ as well as examining changes in F’ in response to application of each actinic 166 

light level.  167 

 Prior to all sets of light curves, the Diving-PAM auto-zero function was set 168 

using the Hansatech chamber filled with an equivalent volume of clear media. Light 169 

calibration was also carried out before and after all light curves due to an observed 170 

10 % variation in halogen output over time, despite running the Diving-PAM from a 171 

mains supply. As a result light levels differed between curves by up to 10 %, with this 172 

variation accounted for in calculations of rETR. 173 

 Over-estimation of photochemical efficiency can occur when using the 174 

Diving-PAM with low biomass culture which results in an F’ signal below 175 

130 relative units (Walz Diving-PAM handbook). This low signal strength may also 176 
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occur at exposure to high light due to high levels of non-photochemical fluorescence 177 

quenching (NPQ). Therefore the Diving-PAM gain setting was set to a maximum of 178 

12 to avoid low values of F’. However at such a high gain, the auto-zero function can 179 

also result in over-estimation of quantum efficiency. A large auto-zero value will be a 180 

greater proportion of F’ compared to Fm‟, when F’ decreases as actinic light level 181 

increases. Mathematically, the same percentage change in F’ and Fm’ will therefore 182 

result in different values of Fq’/Fm‟ due to the weighted influence of the auto-zero. 183 

Therefore, only measurements with a low auto-zero (< 40 relative units) were used in 184 

the construction of RLCs. 185 

 186 

Non-sequential light response curves 187 

 188 

To remove the cumulative effect of light history experienced during a RLC, the above 189 

methods were modified by using a different replicate sub-sample of culture for each 190 

actinic light level. The range of light intensities was also extended up to 3200 µmol 191 

photons m
-2

 s
-1

. In addition a further RLC data point was added, with measurements 192 

made when the fluorescence signal F’ reached a constant level (as observed on the 193 

Win Control software chart function). This value of F’, defined here as „steady-state‟, 194 

was probably not a true steady-state due to time limitations and so was not defined as 195 

Fs.  196 

Non-sequential light response curves (N-SLCs) and calculations were 197 

otherwise the same as for rapid RLCs, except that a first set of curves used cells 198 

maintained at 100 µmol photons m
-2

 s
-1 

PPFD, with no photo-acclimation to high or 199 

low light. A second set of N-SLCs were then obtained using a different original semi-200 

continuous culture of N. phyllepta, but incorporating the HL and LL photoacclimation 201 
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period. These curves were not directly comparable to the preceding datasets, due to 202 

the change in source culture. 203 

NPQ was calculated during N-SLCs, as (Fm – Fm’) / Fm’ (Krause and Weiss 204 

1991; Lavaud et al. 2002a). Fm’ was measured as described above, using application 205 

of the saturating pulse after 10, 30 and 60 s at each irradiance, and when F’ reached 206 

an approximate „steady-state‟. The maximum fluorescence yield in the dark adapted 207 

state, Fm, is more problematic to measure for diatoms, due to NPQ being maintained 208 

in the dark through processes such as chlororespiration (Jakob et al. 2001; Dijkman 209 

and Kroon 2002; Lavaud et al. 2002b), thus suppressing Fm below its true value 210 

(Mouget and Tremblin 2002). The calculated values of NPQ therefore show relative 211 

changes, using an approximation of Fm obtained after 5 min dark adaptation prior to 212 

each RLC. 213 

 214 

Statistical analysis 215 

 216 

RLCs of rETR against light intensity (PPFD) were constructed using the model of 217 

Eilers and Peeters (1988), estimating the maximum electron transport rate (rETRmax), 218 

the maximum light use efficiency (α) and the light saturation coefficient (Ek) 219 

calculated as (rETRmax / α).  220 

Curve fitting was achieved using the downhill simplex method of the Nelder-221 

Mead model, and standard deviation of parameters was estimated by a bootstrap 222 

method under Fortan 77 code (Press et al. 2003). All fittings were tested by analyses 223 

of variance (P<0.001), residues being tested for normality and homogeneity of 224 

variance, and parameters significance by Student t-test (P<0.05). RLCs and 225 
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photosynthetic parameter comparisons were achieved using the method of Ratkowski 226 

(1983) for non-linear models. 227 

 228 

Results 229 

 230 

Rapid light response curves  231 

 232 

Rapid RLCs for low light (LL) and high light (HL) acclimated cultures of N. 233 

phyllepta showed saturation and down regulation when irradiance was reduced from 234 

1850 µmol photons m
-2

 s
-1

 (Fig. 1A,B: 10, 30 and 60 down). In contrast, when 235 

irradiance was incrementally increased, light saturation and photoinhibition (Fig. 236 

1A,B: 10, 30 and 60 up) did not occur. When irradiance was increased or reduced, 237 

rETR above 500 µmol photons m
-2

 s
-1

 increased in proportional to the increase in 238 

length of time at each light level.  239 

Calculated values of rETRmax,  and Ek obtained from RLCs with decreasing 240 

light levels were compared between HL and LL cultures (Fig. 2). 10, 30 and 60 s 241 

RLCs for HL cultures showed rETRmax and Ek higher and α lower than LL cultures 242 

(P<0.001; Fig. 2A,B,C). Thus photoacclimation occurred within the 1 h light 243 

treatment period. rETRmax increased significantly with the length of irradiance step for 244 

low light and high light (P < 0.01) acclimated cultures, whereas α showed no 245 

significant correlation with length of irradiance step.  Ek, due the nature of its 246 

derivation from (rETRmax / α) showed the same increase as rETRmax as a function of 247 

lengthening irradiance step (P<0.001). 248 

RLCs with increasing light levels did not saturate for LL (Fig. 1A: 60 s) and 249 

HL cultures (Fig. 1B: 10, 30 and 60 s), preventing calculation of rETRmax and Ek. 250 

Estimation of α indicated photoacclimation patterns similar to the decreasing 251 
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irradiance RLCs. LL cultures had significant higher values of α compared to HL 252 

cultures (P<0.001). 10 and 30 s LCRs for LL cultures just reached saturation, and 253 

showed the same pattern in rETRmax observed for decreasing RLCs, with a significant 254 

increase in rETRmax (165 to 235 rel. units from 10 to 30 s respectively), an increase in 255 

Ek (319 to 439 µmol photons m
-2

 s
-1

 PPFD), but no change in α (0.52 rel. units).  256 

 257 

Non-sequential light response curves  258 

 259 

Separate replicate N. phyllepta cultures used for each light level (Fig. 3) 260 

resulted in N-SLCs with similar patterns as rapid RLCs (Fig. 1). rETR increased 261 

significantly with length of irradiance step (P <0.001) at irradiances above 300 µmol 262 

photons m
-2

 s
-1

, with correspondingly higher rETRmax. 10, 30 and 60 s RLCs all 263 

showed light saturation and down regulation, whereas light curves when F’ was 264 

allowed to reach an apparent „steady-state‟ at each light intensity, did not saturate. No 265 

steady state data point was possible at 1850 µmol photons m
-2

 s
-1

 as photosynthetic 266 

down regulation (presumably NPQ) resulted in a Chl a fluorescence yield (F’) below 267 

the minimum value of 130 relative units required for accurate measurement of 268 

Fq’/Fm’. 269 

 N. phyllepta (a different culture from that used above and so not directly 270 

comparable) was then acclimated to either low (25 µmol photons m
-2

 s
-1

) or high 271 

(400) light as above, prior to RLCs with different replicate cultures used for each light 272 

intensity (Fig. 4). There were significant differences between the curves (P<0.001), 273 

HL and LL cultures showed a significant increase in rETR proportional to an increase 274 

in time at each irradiance step, except between 10 and 30 s HL, 30 and 60 s HL and 275 

between steady state HL and LL RLCs. 276 
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Despite changing replicate cultures for each light level, the same patterns were 277 

observed as for the rapid RLCs (Fig. 1). HL acclimated cultures had significant 278 

greater rETRmax (P<0.001, Fig. 5A), and higher Ek (P<0.001, Fig. 5C) than LL 279 

acclimated cultures. There were no significant differences for α (P>0.05; Fig. 5B). 280 

However the difference in rETRmax between HL and LL cells declined as the time at 281 

each RLC increment increased. There was a significant increase in rETRmax and Ek 282 

with the length of irradiance step for low light and high light acclimated cultures 283 

(P<0.001); α showed no significant differences for both LL and HL cultures (P>0.05). 284 

 285 

Chl a fluorescence and NPQ kinetics  286 

 287 

An example of the fluorescence kinetics obtained at irradiance steps above 300 µmol 288 

photons m
-2

 s
-1

 is reproduced (Fig. 6) showing the position at which saturation pulses 289 

were applied. The example is for a low-light culture (25 μmol m
-2

 s
-1

), transferred to 290 

370 μmol m
-2

 s
-1

. At 10 s the comparatively slow data acquisition time of the Diving-291 

PAM fluorimeter (compared to the rapid induction of fluorescence quenching) 292 

resulted in an under-estimation of Fq’/Fm’. This resulted from the high rate of 293 

decrease in F’ following the increase in actinic irradiance. F’ was recorded by the 294 

Diving-PAM prior to a further decrease before the measurement of Fm’. F’ and Fm’ 295 

were therefore recorded at different times, resulting in under-estimation of Fm’ 296 

relative to F’ so that values of Fq’/Fm’ were underestimated and often values of zero 297 

were reported. 10 s light curves would then result in under-estimation of rETR above 298 

300 µmol photons m
-2

 s
-1

 PPFD. This was most obvious for HL cultures, which 299 

showed a more rapid decline in F’ compared to LL cultures (data not shown). The 300 

magnitude of the increase in F’ on the application of the actinic light and the rate of 301 
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decline after the peak in F’ both increased as irradiance increased above 300 µmol 302 

photons m
-2

 s
-1

. 303 

Above 300 μmol photons m
-2

 s
-1

, NPQ was induced rapidly during RLCs, with 304 

relatively high levels after 60 s at each irradiance, for both LL and HL acclimated 305 

cultures (Fig. 7). While the amplitude of NPQ increased with illumination time for LL 306 

cultures, it remained relatively similar for HL cultures. LL cultures (Fig. 7A) had 307 

similar or lower levels of NPQ compared to HL cultures (Fig. 7B) after 10, 30 and 60 308 

s, but higher NPQ at „steady-state‟ (insert, Fig. 7B).  309 

 310 

Discussion 311 

 312 

The aims of the study were to determine the effects of light history prior to, and 313 

accumulated light dose during, a light response curve (RLC) obtained using Chl a 314 

fluorescence. It was expected that the light dose experienced by the algal cells over 315 

different time scales during RLCs, would affect the Chl a fluorescence measurements 316 

obtained, and hence modify the resulting RLCs and photophysiological parameters 317 

derived. The data obtained raise important questions with regard to the measurement 318 

and interpretation of Chl a fluorescence rapid RLCs. The primary question is, what is 319 

being measured for light curves of different length of actinic irradiance steps?  320 

The data reported here suggest two stages of photoacclimation. Firstly, the 321 

acclimation resulting from exposure to low and high irradiance prior to RLCs, 322 

effectively the type of photoacclimation that a RLC attempts to detect. Secondly, the 323 

„acclimation‟ during the RLCs themselves; which RLC methodology should avoid. In 324 

addition, the limitations of available methodology must also be considered.  325 

 326 
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 327 

The effect of accumulated light dose on RLCs interpretation 328 

 329 

RLCs with incremental decreases in irradiance showed saturation and a decrease in 330 

rETRmax at higher irradiance due to photoinhibition (Fig. 1). In contrast, RLCs with 331 

increasing irradiance often did not saturate. This raises the first issue of RLCs 332 

methodology: the effect of accumulated light dose during the light curve, dependent 333 

upon the order of irradiances („up‟ or „down‟) and the duration of each step (from 10 s 334 

to 2-3 min). 335 

With increasing irradiance, there is an accumulative effect of light dosage 336 

resulting in progressive induction, occurring on a time scale of 10‟s of seconds, of the 337 

different components of the photosynthetic apparatus. Ubiquinone (QA) oxidation, the 338 

rate limiting step in electron transport (Dau 1994) would have been faster for 339 

increasing irradiance light curves due to induction of more rapid photochemical 340 

energy transfer. Also, induction of non-photochemical Chl a fluorescence quenching, 341 

NPQ will have increased proportionally to the light dose experienced during the RLC. 342 

In diatoms, the photosynthetic translocation of protons across the thylakoid membrane 343 

has been linked to energy dependent NPQ (Ting & Owens 1993; Lavaud et al. 2002c) 344 

associated with xanthophyll pigment synthesis (Arsalane et al. 1994; Olaizola et al. 345 

1994; Lavaud et al. 2002a 2003 2004; Serôdio et al. 2005b). This process generates a 346 

photoprotective dissipation of excess energy in photosystem II (PSII) reducing the Chl 347 

a fluorescence yield, on a time scale of 10‟s of seconds (MacIntyre et al. 2000; 348 

Lavaud et al. 2002a 2004; Raven and Geider 2003). Hence, QA oxidation and NPQ 349 

will affect in complex ways, the measurement of effective PSII quantum efficiency 350 

and resultant calculation of (r)ETR.  351 



 

 

15 

Increasing the duration of each incremental irradiance step was also seen to 352 

induce photoacclimation. As the length of each step increased from 10 to 60 s rETR 353 

increased proportionally, often resulting in a lack of saturation for RLCs with 354 

increasing irradiance. Above 500 µmol photons m
-2

 s
-1

, NPQ increased in importance, 355 

and the duration for each irradiance step increased the extent of NPQ (Fig. 7). In 356 

N. phyllepta, QA oxidation was the primary cause of the change in fluorescence yield 357 

for RLCs with 10 s steps, however for 30 s and above, the level of NPQ became most 358 

significant. As discussed below, the relative importance of QA oxidation and NPQ is 359 

species and light history dependent, and in diatoms the relationship between PSII 360 

redox-state and NPQ is species specific (Ruban et al. 2004; Lavaud unpublished 361 

results).  362 

For decreasing irradiance steps, the accumulative light dose effect described 363 

above was reduced relative to increasing irradiance RLCs. However, decreasing the 364 

irradiance and hence immediate exposure to high irradiance did not appear to induce 365 

photodamage. Two observations support this, the low amplitude of NPQ for 10 and 366 

30 s illumination duration at high irradiances, and the fact that rETR below 500 µmol 367 

photons m
-2

 s
-1

 was similar to that obtained with increasing irradiance. The use of 368 

decreasing irradiance therefore reduces the over-estimation of rETR and is likely to be 369 

more representative of the photophysiological state of the diatom cells prior to 370 

application of the RLC, which is the state that the RLC aims to ascertain. 371 

Despite changing the culture used for each irradiance step (N-SLCs), the same 372 

patterns in data were observed as for rapid RLCs (Fig. 3, 4). rETR increased as a 373 

function of the length of irradiance during the light curve, such that even when F’ was 374 

allowed to reach an approximation of „steady-state‟, RLCs failed to saturate. The N-375 

SLCs indicate that the effect of light dose on the fluorescence measurements occurred 376 
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rapidly, within the duration of each irradiance step. This observation confirms the 377 

impact of combined QA redox state and NPQ on the Chl a fluorescence kinetics and 378 

acquisition of F’ and Fm’ for the calculation of rETR (see Fig. 6). 379 

Ralph and Gademann (2005) conducted a recent similar investigation on the 380 

higher aquatic plant Zostera marina. They did not report a lack of saturation of the 381 

rETR curves, but in some cases did report a lack of down regulation post saturation. 382 

This lack of down regulation occurred for plants after low light treatment, and Ralph 383 

and Gademann (2005) suggested that their capacity for down regulation was 384 

exceeded. This differs from the data reported in the present study, where a lack of 385 

saturation in rETR was greater for high light compared to low light treatments, despite 386 

a higher capacity for NPQ in the former. We suggest that the lack of saturation of 387 

RLCs observed with N. phyllepta is an additional indication (see also Ruban et al. 388 

2004) that rapid photoacclimatory processes occur in diatoms which can greatly affect 389 

fluorescence measurements, and especially the velocity of fluorescence transients 390 

(Ruban et al. 2004). Rapid processes known to occur to a higher extent and with more 391 

rapid induction kinetics in diatoms are the xanthophyll cycle (Jakob et al 2001; 392 

Lavaud et al 2004), NPQ (Lavaud et al. 2002a; Ruban et al 2004, Serôdio et al. 393 

2005b) and the PS II electron cycle (Lavaud et al 2002b). 394 

 395 

The effect of light history on RLC interpretation 396 

 397 

The effects of the order and the duration of each RLC irradiance step were greatest for 398 

high light (HL) acclimated cultures (Fig. 1, 4). The light history, to which the cells 399 

were exposed, modified the speed of response of photochemistry to short changes in 400 

irradiance. HL cells had a greater capability to respond quickly to an increase in 401 
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irradiance, most likely due to a greater availability in electron acceptors from 402 

photochemical reactions, increasing the speed of QA oxidation. The more rapid 403 

kinetics for NPQ in HL cells can be explained by the basal level of NPQ developed 404 

after 1 h exposure at 400 µmol photons m
-2

 s
-1

, which did not relax during the 5 min 405 

dark adaptation (Lavaud et al. 2002c; Ruban et al. 2004) In diatoms, NPQ amplitude 406 

and kinetics are closely related to the amount of xanthophylls (Casper-Lindley and 407 

Bjorkman 1998; Lavaud et al. 2002a 2002c), and are dependent upon light history 408 

(Willemoes and Monas 1991; Mouget et al. 1999 2004; Lavaud et al. 2003), the state 409 

of growth (Arsalane et al. 1994) and the species (Lavaud et al. 2004; Serôdio et al. 410 

2005b). Thus, all these aspects have to be taken into account in the potential effects of 411 

NPQ during the RLC acquisition and interpretation. 412 

 413 

Consequences for photophysiological parameters calculated from the RLCs 414 

 415 

 An expected pattern was observed when comparing rETRmax,  and Ek 416 

between HL and LL cultures (Fig. 2). The 1 h acclimation resulted in higher rETRmax 417 

and Ek and lower  for HL compared to LL cells. Higher rETRmax and Ek are typical 418 

for high light acclimated cells which have modified their light harvesting to utilise the 419 

high levels of light to which they are exposed. Conversely, low light acclimated cells 420 

modify their photophysiology to maximise light harvesting efficiency and hence have 421 

higher values of α. However the light dose effect experienced during the RLCs 422 

reduced or even negated these differences in rETRmax. Similarly, for N-SLCs, the 423 

differences in photophysiological parameters reduced as a function of increasing 424 

length of each irradiance period. As a result, no difference was observed in rETRmax 425 

by „steady-state‟ (Fig. 5). This implies that long irradiance steps caused a photo-dose 426 
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effect that reduced or even negated the real level of 1 h photoacclimation. It remains 427 

surprising though that cultures of  N. phyllepta acclimated to 25 or 400 µmol photons 428 

m
-2

 s
-1

 did not saturate at 1850 µmol photons m
-2

 s
-1

. N. phyllepta may have a high 429 

capacity to respond quickly to high light, probably through regeneration of ADP and 430 

NADP
+
 and as a result of alternative electron pathways known to be active in diatoms 431 

(Caron et al. 1987; Lavaud et al. 2002b; Wilhelm et al. 2004). This is possibly a 432 

common feature of benthic diatoms, which may often experience rapid variations in 433 

incident light intensity. 434 

 Although the dataset was obtained from measurements on diatom cells in 435 

culture, the data suggest possible ecological implications with regard to diatom 436 

acclimation to light environment fluctuation in situ (Serôdio et al. 2005b). It would 437 

appear that N. phyllepta has a high ability to acclimate quickly to increasing 438 

irradiance. This would obviously be an advantage to cells inhabiting an open mudflat 439 

environment in which rapid changes could occur, e.g. as a result of cloud induced 440 

light flecking. Any energy dependent photoprotective acclimation, being more rapid 441 

than downward migration, would not only precede migration (Underwood et al., 442 

2005) should high irradiance persist, but would also prevent wasteful short-term 443 

migrations requiring production and excretion of extracellular polymeric substances 444 

(carbohydrates generically described as EPS) used in migration (Consalvey et al. 445 

2005b and references there-in).  446 

 447 

Specificity of the RLCs acquisition with the Diving-PAM methodology 448 

 449 

 Analysis of the fluorescence kinetics from N. phyllepta indicated an aspect of 450 

methodology, which may be particular to the Diving-PAM, and which can generate an 451 
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error in the measurement of Fm’ and hence rETR for 10 s irradiance steps (see the 452 

description in the Results section, Fig. 6). To summarise, the time delay between 453 

measurement of F’ and the corresponding Fm’ used in calculation of the quantum 454 

efficiency resulted (during this study) in an under-estimation of Fm’ relative to F’ and 455 

hence a falsely low efficiency. The example illustrated was for a low light culture at 456 

25 μmol m
-2

 s
-1

, transferred to 370 μmol m
-2

 s
-1

. This is an abrupt change, however the 457 

effect was greatest for HL acclimated cultures and at high irradiances, when the rate 458 

decay in F’ (presumably resulting from interaction between QA oxidation and NPQ 459 

induction) was greatest. As such the level of this error is a function of light dose and 460 

hence the light history to which the cells were exposed. This problem was not 461 

encountered with the higher aquatic plant Zostera (Ralph and Gademann 2005) 462 

presumably because the transients in fluorescence yield in plants are slower than in 463 

diatoms, although NPQ relaxation is slower in diatoms (Ruban et al. 2004).  464 

 465 

Conclusions 466 

The present work indicates that light dose and light history strongly affect 467 

fluorescence measurements used in RLC acquisition. These features have to be taken 468 

into account in the acquisition and interpretation of Chl a fluorescence RLCs. For 469 

cultured benthic diatoms, and presumably for in situ mixed biofilms for the same 470 

reasons, extreme care should be taken in choice of light curve methodology. 471 

Parameters measured will be functions of light history and light exposure during the 472 

light curve itself and the extent of this will in turn be dependent upon the light history 473 

prior to the RLC. It is suggested that it is not always possible to answer the question 474 

posed above: what is being measured for light curves of different length of actinic 475 

irradiance? It is not possible to extrapolate these results to make general comments for 476 
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all diatom species, nor to say that the changes suggested will occur for in situ 477 

measurements. Indeed, no methodology is perfect and in many cases measurement 478 

itself induces a change, thus making the commonly stated “non-intrusive” nature of 479 

fluorescence measurements incorrect. For example, an increasing RLC induces 480 

photoacclimation, however a decreasing RLC will allow dissipation of 481 

photophysiological state (e.g. high light induced NPQ) as light level is reduced: 482 

neither method is devoid of experimental error. However it is suggested that the 483 

changes induced during a RLC should be carefully considered during interpretation of 484 

results. In general, RLCs of 60 s or those with increasing incremental irradiance steps 485 

may not detect differences in photophysiological state caused by light history, 486 

differences that RLCs aim to determine. Conversely RLCs with short irradiance steps 487 

may result in errors due to rapid NPQ induction and QA oxidation, especially for 488 

diatom cells exposed to high light or a high-accumulated light dose history. Overall, 489 

re-programming of the Diving-PAM fluorimeter to enable RLCs with decreasing 490 

irradiance levels is advised, and RLCs of 30 s at each irradiance step may be optimal 491 

for use with benthic diatoms. 492 

493 
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Figure Legends 725 

 726 

Figure 1. Rapid light response curves for N. phyllepta cultures grown at an irradiance 727 

of 100 µmol photons m
-2

 s
-1

 and exposed to 1 h light acclimation period of low (A, 25 728 

µmol photons m
-2

 s
-1

) or high (B, 400 µmol photons m
-2

 s
-1

) light. Light response 729 

curves were run with irradiance durations at each light curve increment of 10, 30 and 730 

60 s and with either increasing (up) or decreasing (down) irradiance steps. Curves 731 

were constructed using the model of Eilers and Peeters (1988) followed by curve 732 

fitting following the Nelder-Mead model (Press et al., 2003). 733 

  734 

Figure 2. Rapid light response curve parameters for light curves obtained using 735 

decreasing irradiance steps, shown in Fig. 1. (A) maximum electron transport rate, 736 

rETRmax; (B) maximum light use coefficient (); (C) light saturation coefficient (Ek).  737 

 738 

Figure 3. Non-sequential light response curves for N. phyllepta cultures grown at 100 739 

µmol photons m
-2

 s
-1

. Light curves were run using different sub-samples of culture for 740 

each light curve step and with irradiance durations of 10, 30 and 60 s, followed by a 741 

final measurement when F’ reached approximate „steady-state‟ after 2 to 3 minutes. 742 

Curves were constructed using the model of Eilers and Peeters (1988) followed by 743 

curve fitting following the Nelder-Mead model (Press et al., 2003). 744 

 745 

Figure 4. Non-sequential light response curves (mean  s.e., n = 3) for N. phyllepta 746 

cultures grown at an irradiance of 100 µmol photons m
-2

 s
-1

 and exposed to 1 h light 747 

acclimation period of low (A, 25 µmol photons m
-2

 s
-1

) or high (B, 400 µmol photons 748 

m
-2

 s
-1

) light. Light curves were run using different sub-samples of culture for each 749 

light curve step, and with irradiance durations of 10, 30 and 60 s, followed by a final 750 
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measurement when F’ reached approximate „steady-state‟ after 2 to 3 minutes. Curves 751 

were constructed using the model of Eilers and Peeters (1988) followed by curve 752 

fitting following the Nelder-Mead model (Press et al., 2003). 753 

 754 

Figure  5. Non-sequential light response curve parameters (mean ± s.e., n = 3) for 755 

light curves obtained using different sub-samples of N. phyllepta culture for each 756 

irradiance step, shown in Figure 4. (A) maximum electron transport rate, rETRmax; (B) 757 

maximum light use coefficient (); (C) light saturation coefficient (Ek).  758 

 759 

Figure 6. Example of fluorescence kinetics obtained for a sub-sample of N. phyllepta 760 

low-light culture used in a non-sequential light response curve step. Application of 761 

saturating pulses are indicated by downward arrows after 10, 30 and 60 s and when F’ 762 

reached approximate „steady-state‟ after 2 to 3 minutes. The actinic light increase was 763 

from 25 to 370 μmol m
-2

 s
-1

. 764 

 765 

Figure 7. Non-photochemical Chl a fluorescence quenching (NPQ) calculated as (Fm - 766 

Fm’) / Fm‟ for non-sequential light curves (Fig. 4) of N. phyllepta exposed to 1 h light 767 

acclimation period of low (A, 25 µmol photons m
-2

 s
-1

) or high (B, 400 µmol photons 768 

m
-2

 s
-1

) light. NPQ was calculated using Fm’ obtained from saturating pulses after 769 

irradiance durations of 10, 30 and 60 s, followed by a final measurement when F’ 770 

reached approximate „steady-state‟ after 2 to 3 minutes. The insert shows the change 771 

in NPQ at 560 and 3200 µmol photons m
-2

 s
-1

 over time. 772 
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