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Introduction

Let K be a field and let K x be the ring of formal power series over K. Let f 1 (x), . . . , f s (x) be s elements of K x and let R = K f 1 , . . . , f s be the subalgebra of K x generated by f 1 , . . . , f s . Given f ∈ R, let o(f ) the order of f . The set o(R) = {o(f ) | f ∈ R} is a submonoid of N, and the knowledge of a system of generators of this monoid is important for the understanding of the subalgebra R. When furthermore K x is an R-module of finite length, then o(R) is a numerical semigroup.

A similar construction can be made in the ring of polynomials K[x]. More precisely let f 1 (x), . . . , f s (x) be s elements of K[x] and let A = K[f 1 , . . . , f s ] be the subalgebra of K[x] generated by f 1 , . . . , f s . Given f ∈ A, let d(f ) the degree of f . The set d(A) = {d(f ) | f ∈ A} is a submonoid d(A) of N, and the knowledge of a system of generators of this monoid is important for the understanding of the subalgebra A. When furthermore K[x] is an A-module of finite length, then d(A) is a numerical semigroup.

A numerical semigroup S is a submonoid of the set of nonnegative integers under addition such that the N \ S is finite, or equivalently, gcd(S) = 1 (the greatest common divisor of the elements of S), see for instance [START_REF] Rosales | Numerical semigroups[END_REF]. In this case, there exists a minimum c ∈ S such that c + N ⊆ S. We call this element the conductor of S, and denote it by c(S) (the motivation of this name and others coming from Algebraic Geometry is explained in [START_REF] Barucci | Properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains[END_REF][START_REF] Fröberg | On numerical semigroups[END_REF]).

Assume that f i is a monomial x a i for every i ∈ {1, . . . , s}. Then o(R) (respectively d(A)) is generated by a 1 , . . . , a s . In this case, R K X 1 , . . . , X s /T (respectively A K[X 1 , . . . , X s ]/T ), where T is a prime binomial ideal and, thus, V(T ) is a toric variety.

Given a subalgebra R = K[[f 1 , . . . , f s ]] (respectively A = K[f 1 , . . . , f s ]), the main objective of this paper is to describe an algorithm that calculates a generating system of o(R) (respectively d(A)). The algorithm we present here allows us, by using the technique of homogenization, to construct a flat K umodule (respectively K[u]-module) which is a deformation of R (respectively A) to a binomial ideal. This technique is well known when R = K f 1 , f 2 and K is algebraically closed field of characteristic zero (see [START_REF] Goldin | Resolving singularities of plane analytic branches with one toric morphism[END_REF] and [START_REF] Teissier | in Le probléme des pour les branches planes[END_REF]). It turns out that the same holds wherever we can associate a semigroup to the local subalgebra, and also that the same technique can be adapted to the global setting. As a particular case we prove that a plane polynomial curve has a deformation into a complete intersection monomial space curve.

The paper is organized as follows. In Section 2 we focus on the local case, namely the case of a subalgebra R of K x . We introduce the notion of basis of R and we show how to construct such a basis. We also show that if o(R) is a numerical semigroup, then every element of a reduced basis is a polynomial. In Section 3 we show how to construct a deformation from R to a toric ideal (or a formal toric variety) by using the technique of homogenization. In Section 4 we focus on the case when R = K[[f (x), g(x)]] and K is an algebraically closed field of characteristic zero. The existence in this case of the theory of Newton-Puiseux allows us to precise the results of Sections 2 and 3. The difference with the procedure The first author is partially supported by the project GDR CNRS 2945 and a GENIL-SSV 2014 grant. The second author is supported by the projects MTM2014-55367-P, FQM-343, FQM-5849, and FEDER funds.

1 presented in Section 2 is that it does not rely in the computation of successive kernels. Then in Sections 5 and 6 we adapt the local results to the case of a subalgebra A of K[x]. When A = K[f (x), g(x)] and K is algebraically closed field of characteristic zero, a basis of A can be obtained by using the theory of approximate roots of the resultant of X -f (x), Y -g(x), which is a polynomial with one place at infinity.

The procedures presented here have been implemented in GAP ( [START_REF]GAP -Groups, Algorithms, and Programming[END_REF]) and will be part of the forthcoming stable release of the package numericalsgps ( [START_REF] Delgado | NumericalSgps", A GAP package for numerical semigroups[END_REF]).

1.1. Some notation. We denote by A the monoid generated by A, A ⊆ N, that is, the set {n

1 x 1 + • • • + n m x m | m ∈ N, n i ∈ N, x i ∈ A for all i ∈ {1, . . . , m}}.
Associated to each numerical semigroup S we can define a natural partial ordering ≤ S , where for two elements s and r in S we have s ≤ S r if there exists u ∈ S such that r = s + u. The set g i of minimal elements in S \ {0} with this ordering is called a minimal set of generators for S. The set of minimal generators is finite since for any s ∈ S \ {0}, we have x ≡ y (mod s) if x = y are minimal elements with respect to ≤ S . The cardinality of the minimal generating system is known as the embedding dimension of S.

Semigroup of a formal space curve

Let K be a field. In this section we will consider rings R that are subalgebras of K x and such that, if we denote the integral closure of R in its quotient field by R, then R = K x and λ R ( R/R) < ∞ where λ R (•) is the length as R-module. Part of the results of this section are inspired in [START_REF] Micale | Order bases of subalgebras of k X , Commutative rings[END_REF] and in [START_REF] Micale | Order bases of subalgebras of power series rings[END_REF]. An alternative procedure (implemented in Maple) is provided in [START_REF] Castellanos | Algorithm for the Semigroup of a Space Curve Singularity[END_REF]. The main difference with our approach is that we do not rely on the multiplicity sequence, and thus we do not need to perform blow-ups. Also we take intrinsic advantage in our implementation of the GAP package numericalsgps ( [START_REF]GAP -Groups, Algorithms, and Programming[END_REF][START_REF] Delgado | NumericalSgps", A GAP package for numerical semigroups[END_REF]).

Let

f = i c i x i ∈ R * = R \ {0}. Define supp(f ) = {i, c i = 0}.
We call min supp(f ) the order of f and we denote it by o(f ). We also set

M o (f ) = c o(f ) x o(f ) . If M o (f ) = x o(f )
, then we shall say, by abuse of notation, that f is monic. We set o(0) = +∞.

We denote by o(R) the set of orders of elements in

R * = R \ {0}, that is, o(R) = {o(f ) | f ∈ R * }. We finally set M o (R) = K[M o (f ) | f ∈ R * ]. Proposition 2.1. Let f 1 , f 2 be elements of R * and let a = min{o(f 1 ), o(f 2 )}. (i) a ≤ o(f 1 + f 2 ). (ii) If o(f 1 ) = o(f 2 ) then a = o(f 1 + f 2 ). (iii) o(f 1 f 2 ) = o(f 1 ) + o(f 2 ).
Proof. This follows easily from the definition of order.

Proposition 2.2. [13, Lemma 3, p.486] Let R 1 and R 2 be rings of our type such that

R 1 ⊆ R 2 and o(R 1 ) = o(R 2 ). Then R 1 = R 2 . Proposition 2.3. [13, Proposition 1, p.488] Let R be a ring of our type. Then λ R ( R/R) = |N \ o(R)|.
The following two results appear in [START_REF] Micale | Order bases of subalgebras of k X , Commutative rings[END_REF], and since this paper is very hard to find, we include the proofs for sake of completeness. Proposition 2.4. [START_REF] Micale | Order bases of subalgebras of k X , Commutative rings[END_REF] Let R be a ring of our type. Then o(R) is a numerical semigroup.

Proof. Since R is a ring and by (iii) of Proposition 2.1, we have that o(R) is a subsemigroup of N. By λ R ( R/R) < ∞ and Proposition 2.3, we have the proof. Proposition 2.5. [START_REF] Micale | Order bases of subalgebras of k X , Commutative rings[END_REF] Let R be a ring of our type. Then R contains every element

f ∈ K x of order o(f ) ≥ c(o(R)). Proof. Use Proposition 2.2 with R 1 = R and R 2 = R + x c(o(R)) K x .
This later result allows to work with polynomials instead of series. Let f 1 , . . . , f s be in R * . Let R = K f 1 , . . . , f s be a subalgebra of K x as above, that is, the integral closure of R in its quotient field is R = K x and λ R ( R/R) < ∞.

Under these hypotheses on R, we have that o(R) is a numerical semigroup (Proposition 2.4). We say that the set {f 1 , . . . ,

f s } ⊂ R * is a basis of R if o(R) = o(f 1 ), . . . , o(f s ) . The set {f 1 , . . . , f s } is a basis of R if and only if M o (R) = K[M o (f 1 ), . . . , M o (f s )].
Proposition 2.6. Let the notations be as above. Given f (x) ∈ K x , there exist g(x) ∈ R and r(x) ∈ K x such that the following conditions hold.

(i)

f (x) = g(x) + r(x) = α c α f α 1 1 • • • f αs s + r(x). (ii) If g(x) = 0 (respectively r(x) = 0), then o(g) ≥ o(f ) (respectively o(r) ≥ o(f )). (iii) Either r(x) = 0 or supp(r(x)) ⊆ N \ o(f 1 ), . . . , o(f s ) . Proof. The assertion is clear if f ∈ K. Suppose that f / ∈ K and let f (x) = i≥p c i x i with p = o(f ) ≥ 0.
(1) If p / ∈ o(f 1 ), . . . , o(f s ) , then we set g 1 = 0, r 1 = c p x p and f 1 = f -c p x p .

(

) If p ∈ o(f 1 ), . . . , o(f s ) , then c p x p = c θ M 0 (f 1 ) θ 1 • • • M 0 (f s ) θs . We set g 1 = c θ f θ 1 1 1 • • • f θ 1 s s , r 1 = 0 and f 1 = f -g 1 . 2 
In such a way that f = f 1 + g 1 + r 1 , g 1 ∈ R, either r 1 = 0 or supp(r 1 ) ⊆ N \ o(f 1 ), . . . , o(f s ) , and if f 1 = 0, then o(f 1 ) > o(f ) = p. Then we restart with f 1 . We construct in this way sequences

(f k ) k≥1 , (g k ) k≥1 , (r k ) k≥1 such that for all k ≥ 1, f = f k + k i=1 g i + k i=1 r i , and o(f ) < o(f 1 ) < • • • < o(f k ), k i=1 g i ∈ R, supp( k i=1 r i ) ∈ N\ o(f 1 ), . . . , o(f s
) and for all i < j ≤ k, if g i = 0 = g j (respectively

r i = 0 = r j ), then o(f ) ≤ o(g i ) < o(g j ) (respectively o(f ) ≤ o(r i ) < o(r j )). Clearly lim k-→+∞ f k = 0.
Hence, if g = lim k-→+∞ k i=1 g i and r = lim k-→+∞ k i=1 r i , then f = g + r and g, r satisfy the conditions above.

We denote the series r(x) of the proposition above by R o (f, {f 1 , . . . , f s }). This series depend strongly on step (2) of the proof of Proposition 2.6. Let for example 11 . We shall see that r(x) becomes unique if f 1 , . . . , f s is a basis of R (see Proposition 2.8).

f 1 = x 6 , f 2 = x 4 + x 5 , f 3 = x 2 + x 5 , and let f = x 4 . We have f = f 2 -x 5 = f 2 3 -f 1 f 2 -2x 7 + x
Proposition 2.7. The set {f 1 , . . . , f s } is a basis of R if and only if R o (f, {f 1 , . . . , f s }) = 0 for all f ∈ R.

Proof. Suppose that {f 1 , . . . , f s } is a basis of R and let f ∈ R. Let r(x) = R o (f, {f 1 , . . . , f s }). Then r(x) ∈ R. If r = 0, then o(r) ∈ o(f 1 ), . . . , o(f s ) , which is a contradiction.

Conversely, suppose that {f 1 , . . . , f s } is not a basis of R and let 0 = f ∈ R such that o(f ) / ∈ o(f 1 ), . . . , o(f s ) . We have R o (f, {f 1 , . . . , f s }) = 0, which contradicts the hypothesis.

Proposition 2.8. If {f 1 , . . . , f s } is a basis of R then for all f ∈ K x , R o (f, {f 1 , . . . , f s }) is unique.
Proof. Suppose that f = g 1 (x) + r 1 (x) = g 2 (x) + r 2 (x) where g 1 (x), g 2 (x), r 1 (x), r 2 (x) satisfy conditions (i), (ii), (iii) of Proposition 2.6. We have

r 1 (x) -r 2 (x) = g 2 (x) -g 1 (x) ∈ R. If r 1 (x) -r 2 (x) = 0 then o(r 1 (x) -r 2 (x)) /
∈ o(f 1 ), . . . , o(f s ) . This contradicts the hypothesis.

Let, as above, R = K f 1 , . . . , f s . We shall suppose that f i is monic for all 1 ≤ i ≤ s. Define

φ : K[X 1 , . . . , X s ] -→ K[x], φ(X i ) = M o (f i ) for all i ∈ {1, . . . , s}.
Let {F 1 , . . . , F r } be a generating system of the kernel of φ. We can choose all of them to be binomials.

If F i = X α i 1 1 • • • X α i s s -X β i 1 1 • • • X β i s s , we set S i = f α i 1 1 • • • f α i s s -f β i 1 1 • • • f β i s s . Note that if p = s k=1 α i k o(f k ) = s k=1 β i k o(f k ), then o(S i ) > p.
Theorem 2.9. The system {f 1 , . . . , f s } is a basis of R if and only if R o (S i , {f 1 , . . . , f s }) = 0 for all i ∈ {1, . . . , r}.

Proof. Suppose that {f 1 , . . . , f s } is a basis of R. Since S i ∈ R for all i ∈ {1, . . . , r}, then, by Proposition 2.7, R o (S i , {f 1 , . . . , f s }) = 0.

For the sufficiency assume to the contrary that {f 1 , . . . , f s } is not a basis of R. Then there exists

f ∈ R such that o(f ) ∈ o(f 1 ), . . . , o(f s ) . Write f = θ c θ f θ 1 1 • • • f θs s .
For all θ, if c θ = 0, we set

p θ = s i=1 θ i o(f i ) = o(f θ 1 1 • • • f θs s ). Let p = min{p θ | c θ = 0}
and let {θ 1 , . . . , θ l } be such that p = o(f Algorithm 2.10. Let the notations be as above.

1. If R o (S k , {f 1 , . . . , f s }) = 0 for all k ∈ {1, . . . , r}, then {f 1 , . . . , f s } is a basis of R. 2. If r(x) = R o (S k , {f 1 , . . . , f s }) = 0
for some k ∈ {1, . . . , r}, and if M o (r(x)) = ax q , then we set f s+1 = 1 a r(x), and we restart with {f 1 , . . . , f s+1 }. Note that in this case,

o(f 1 ), . . . , o(f s ) o(f 1 ), . . . , o(f s ), o(f s+1 ) ⊆ o(R).
This process will stop, giving a basis of R, because the complement of o(R) in N is finite. Observe that r(x) is not in general a polynomial. So we must use a trick to compute it, or at least the relevant part of it. This is accomplished by using Proposition 2.5. If in the current step of the algorithm o(f 1 ), . . . , o(f s ) is a numerical semigroup, then we compute its conductor, say c. Then c ≥ c(o(R)). To compute R o (f, {f 1 , . . . , f s }) we do the following. Let p = o(f ). 1. If p ≥ c, then return 0. We implicitly assume that x a is in our generating set for a ∈ c + N (though we do not store them).

2. If p ∈ o(f 1 ), . . . , o(f s ) , then M o (f ) = θ c θ M o (f 1 ) θ 1 • • • M o (f s ) θs . Set f = f -θ c θ f θ 1 1 • • • f θs s
, and call recursively R o (f, {f 1 , . . . , f s }) (the process will stop because the order of the new f is larger, and eventually will become bigger than c after a finite number of steps).

3. If p ∈ o(f 1 ), . . . , o(f s ) , then return f . If o(f 1 ), . . . , o(f s ) is not a numerical semigroup, let d be its greatest common divisor. Set c = dc( o(f 1 ), . . . , o(f s ) /d).
In this case we proceed as follows. 1. If p ≥ c, then return f . We cannot ensure here that f will be reduced to zero, so we add it just in case.

If

p ∈ o(f 1 ), . . . , o(f s ) , then M o (f ) = θ c θ M o (f 1 ) θ 1 • • • M o (f s ) θs . Set f = f -θ c θ f θ 1 1 • • • f θs s , and call recursively R o (f, {f 1 , . . . , f s }). 3. If p ∈ o(f 1 ), . . . , o(f s ) , then return f . One might check first if d does not divide p, because in this case for sure p ∈ o(f 1 ), . . . , o(f s ) .
Observe that by adding the conditions p ≥ c, we are avoiding entering in an eventual infinite loop.

Suppose that {f 1 , . . . , f s } is a basis of R. Also suppose that for all i ∈ {1, . . . , s}, f i is monic. We say that {f 1 , . . . ,

f s } is a minimal basis of R if o(f 1 ), . . . , o(f s ) generate minimally the semigroup o(R). We say that {f 1 , . . . , f s } is a reduced basis of R if supp(f i (x) -M 0 (f i )) ⊆ N \ o(R). Let i ∈ {1, . . . , s}. If o(f i ) ∈ o(f 1 ), . . . , o(f i-1 ), o(f i+1 ), . . . , o(f s ) , then {f 1 , . . . , f i-1 , f i+1 , . . . , f s } is also a basis of R. Furthermore,
by applying the division process of Proposition 2.6 to f i -M o (f i ), we can always construct a reduced basis of R.

Corollary 2.11. The algebra R has a unique minimal reduced basis.

Proof. Let {f 1 , . . . , f s } and {g 1 , . . . , g s } be two minimal reduced bases of R. Hence s is the embedding dimension of o(R), and the same holds for s ; whence they are equal. Let i = 1. There exists j 1 such that o(f 1 ) = o(g j 1 ), because minimal generating systems of numerical semigroups are unique. If

f 1 -g j 1 = 0, then o(f 1 -g j 1 ) / ∈ o(R) (the basis is reduced), which is a contradiction because f 1 -g j 1 ∈ R. The same argument shows that {f 1 , . . . , f s } = {g 1 , . . . , g s } Remark 2.12. Let R = K f 1 , . . . , f s and assume that f i is monic for all 1 ≤ i ≤ s. Also assume that o(f 1 ) ≤ o(f 2 ) ≤ . . . ≤ o(f s ). Set n = o(f 1 ) and let f 1 = x n + i>n c 1 i x i
. By an analytic change of variables, we may assume that f 1 = x n , hence, up to an analytic isomorphism, we may assume that R = K x n , f 2 , . . . , f s . In particular, we may assume that R has a minimal reduced basis of the form x n , g 2 (x), . . . , g s (x).

Example 2.13. Let R = K x 4 + x 5 , x 6 , x 15 + x 16 + n≥20 x n , with K a field of characteristic zero. Then R is a one-dimensional ring. Since the conductor of 4, 6, 15 is 18, we have that λ R (K X /R) < ∞ and we know by Propsition 2.5 that R = K x 4 + x 5 , x 6 , x 15 + x 16 . Let us denote x 4 + x 5 by f 1 , x 6 by f 2 and

x 15 + x 16 by f 3 . The kernel of φ : K[X 1 , X 2 , X 3 ] -→ K[x], φ(X 1 ) = x 4 , φ(X 2 ) = x 6 and φ(X 3 ) = x 15 is generated by X 3 1 -X 2 2 , X 2 3 -X 5 2
, hence we get S 1 = x 13 +x 14 + 1 3 x 15 and S 2 = x 31 + 1 2 x 32 . As 13 ∈ 4, 6, 15 , we add it as f 4 = S 1 . We do not care about S 2 , because the conductor of 4, 6, 15 is 18. Now, the conductor of 4, 6, 13, 15 is 12. If we compute a system of generators of the kernel of 15 and φ(X 4 ) = x 13 , then all the elements S i have orders greater than 12, and so the algorithm ends. We conclude that o(R) = 4, 6, 13, 15 .

ϕ : K[X 1 , X 2 , X 3 , X 4 ] -→ K[x], φ(X 1 ) = x 4 , φ(X 2 ) = x 6 , φ(X 3 ) = x
We have implemented this algorithm in the numericalsgps ( [START_REF] Delgado | NumericalSgps", A GAP package for numerical semigroups[END_REF]) GAP ( [START_REF]GAP -Groups, Algorithms, and Programming[END_REF]) package. Next we illustrate how to compute this semigroup with the functions we have implemented (that will be available in the next release of the package). Proposition 1]). The integer λ R ( R/R) is the degree of singularity of R, and this is why the genus of o(R) is called by some authors the degree of singularity of the semigroup (see [START_REF] Barucci | Properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains[END_REF][START_REF] Matsuoka | On the degree of singularity of one-dimensional analytically irreducible noetherian local rings[END_REF]). In the setting of Weirstrass numerical semigroups the genus coincides with the geometrical genus of the curve used to define the semigroup ( [START_REF] Del Centina | Weierstrass points and their impact in the study of algebraic curves: a historical account from the "Lückensatz" to the 1970s[END_REF]).

(R) is 12. The conductor of R in R is precisely (x c(o(R)) ) ([3]). We have that λ R ( R/R) = |[0, c(o(R)) -1] ∩ (N \ o(R))| = 7 counts the number of gaps of o(R) ([13,
The number of sporadic elements of o Example 2.15. Let R = K x 4 , x 6 + x 7 , x 13 + a 14 x 14 + a 15 x 15 + . . . with K a field. Using the same argument as in the Example 2.13, we find that if char K = 2, we have that if a 15 -a 14 + 1/2 = 0, then {x 4 , x 6 + x 7 , x 13 } is the reduced basis of R. Furthermore, since 4, 6, 13 is a symmetric numerical semigroup (the number of nonnegative integers not in the semigroup equals the conductor divided by two), then, by [START_REF] Kunz | The value-semigroup of a one-dimensional Gorenstein ring[END_REF], R is Gorenstein. Finally λ R ( R/R) = 8. Otherwise if a 15 -a 14 + 1/2 = 0, then {x 4 , x 6 + x 7 , x 13 , x 15 } is the reduced basis of R with R a non Gorenstein ring. Furthermore λ R ( R/R) = 7.

(R) is λ R (R/(R : R)) = |[0, c(o(R)) -1] ∩ o(R)| = 5
Otherwise, if char K = 2, then the reduced basis of R is {x 4 , x 6 + x 7 , x Remark 2.18. We do not know a priori if R = K[[x]] and we do not have a general procedure to check it. If the algorithm is called with such an R, it will eventually not stop.

Deformation to a toric ideal

Let the notations be as in Section 2. Given

f (x) = i≥p c i x i ∈ K x , we set H f (u, x) = i≥p c i u i-p x i . In particular, if we consider the linear form L : N 2 -→ N, L(a, b) = b -a, then H f is L-homogeneous of order p, that is, L(i -p, i) = p for all i ∈ supp(f ). We set H R = K u, H f | f ∈ R .
With these notations we have the following.

Proposition 3.1. The set {f 1 , . . . , f s } is a basis of R if and only if H R = K u, H f 1 , . . . , H fs . Proof. Note first that if H g ∈ H R for some g ∈ K x , then g ∈ R. Suppose that {f 1 , . . . , f s } is a basis of R and let f (x) ∈ R. Write H f (u, x) = i≥p c i u i-p x i . We have M o (f ) = c p x p = c p s i=1 M o (f i ) p k i , hence H f -c p s i=1 H p k i f i = u q H f 1
with f 1 ∈ R and either f 1 = 0, or o(f 1 ) > p. In the second case we restart with f 1 . A similar argument as in Proposition 2.6 proves our assertion. Conversely, suppose that H R = K u, H f 1 , . . . , H fs and let f ∈ R. Let P (X 0 , X 1 , . . . , X s ) ∈ K X 0 , X 1 , . . . , X s such that H f = P (u, H f 1 , . . . , H fs ). Setting u = 0, we get that M o (f

) = P (M o (f 1 ), . . . , M o (f s )) ∈ K M o (f 1 ), . . . , M o (f s ) . Hence M o (f ) ∈ K[M o (f 1 ), . . . , M o (f s )]. Suppose that {f 1 , . . . , f s } is a basis of R. Then T = K u H f 1 , . . . , H fs is a K u -module. When u = 1 (respectively u = 0), we get T | u=1 = R (respectively T | u=0 = K M (f 1 ), . . . , M (f s ) ). Hence we get a deformation from R to K M o (f 1 ), . . . , M o (f s ) . More precisely let ψ : K X 1 , . . . , X s -→ R = K f 1 , . . . , f s and H ψ : K u X 1 , . . . , X s -→ T = K u H f 1 , .
. . , H fs be the morphisms of rings such that H ψ (u) = u, ψ(X i ) = f i and H ψ (X i ) = H f i for all i ∈ {1, . . . , s}. Let, as in Section 2,

S i = f α i 1 1 • • • f α i s s -f β i 1 1 • • • f β i s s = θ i c i θ i f θ i 1 1 • • • f θ i s s , 1 ≤ i ≤ r with o(f θ i 1 1 • • • f θ i s s ) = D i θ i > s k=1 α i k o(f k ) = s k=1 β i k o(f k ) = p i . Let I (respectively J) be the ideal generated by (G i = X α i 1 1 • • • X α i s s -X β i 1 1 • • • X β i s s -θ i c i θ i X θ i 1 1 • • • X θ i s s ) 1≤i≤r (respectively (H i = X α i 1 1 • • • X α i s s - X β i 1 1 • • • X β i s s -θ i u D i θ i -p i c i θ i X θ i 1 1 • • • X θ i s s ) 1≤i≤r ) in K X 1 , . . . , X s (respectively K u X 1 , . . . , X s ). Well shall consider on N s (respectively, N s+1 ) the linear form O(θ 1 , . . . , θ s ) = s i=1 θ i o(f i ) (respectively O h (θ 0 , θ 1 , . . . , θ s ) = -θ 0 + s i=1 θ i o(f i )). Given a monomial X θ 1 1 • • • X θs s (respectively u θ 0 X θ 1 1 • • • X θs s ), we set O(X θ 1 1 • • • X θs s ) = O(θ 1 , . . . , θ s ) (respectively O h (u θ 0 X θ 1 1 • • • X θs s ) = O h (θ 0 , θ 1 , . . . , θ s )). For G = θ c θ X θ 1 1 • • • X θs s (respectively H = θ c θ u θ 0 X θ 1 1 • • • X θs s ), we say that G (respectively H) is O-homogeneous of order a (respectively O h -homogeneous of order b) if O(θ 1 , . . . , θ s ) = a (respectively O h (θ 0 , θ 1 , . . . , θ s ) = b
) for all (θ 1 , . . . , θ s ) (respectively (θ 0 , θ 1 , . . . , θ s )) such that c θ = 0. More generally let G = k≥0 G p k where p 0 < p 1 < • • • and G p k is O-homogeneous of order p k . We set O(G) = p 0 . We also set in(G) = G p 0 and we call it the initial form of G.

We finally set O(0) = +∞, and we recall that O(G) = +∞ if and only if G = 0.

Lemma 3.2. With the standing notations and hypothesis, the kernel of ψ is generated by I.

Proof. Let, as in Section 2, F 1 , . . . , F r be a generating system of the kernel of the morphism

φ : K X 1 , . . . , X s -→ K x , φ(X i ) = M o (f i )
for all i ∈ {1, . . . , s}. In particular F i is O-homogeneous of order o(f i ) for all i ∈ {1, . . . , s}, and

K X 1 , . . . , X s /(F 1 , . . . , F r ) K M o (f 1 ), . . . , M o (f s ) .
For all i ∈ {1, . . . , r}, ψ(G i ) = 0. Hence I ⊆ ker(ψ).

For the other inclusion, let

G = θ c θ X θ 1 1 • • • X θs s ∈ ker(ψ). Write G = k≥0 c θ k X k,O(θ k )=O(θ 0 ) c θ k f θ k 1 1 • • • f θ k s s = r i=1 λ 0 i (f 1 , . . . , f s )S i . Let G 1 = G -r i=1 λ 0 i G i . We have G 1 ∈ ker(ψ). If G 1 = 0, then O(G) < O(G 1
). Then we restart with G 1 . We construct in the same way G 2 , and λ 1 1 , . . . , λ 1 r such that

G 1 = G 2 + r j=1 λ 1 j G j with O(G) < O(G 1 ) < O(G 2 ), λ 1 i O-homogeneous and O(λ 0 i ) < O(λ 1 i
) for all i ∈ {1, . . . , r}. If we continue in this way, we get that for all k ≥ 0,

G = G k+1 + r i=1 (λ 0 i + λ 1 i + . . . + λ k i )G i , with O(G) < O(G 1 ) < . . . < O(G k+1 ), λ j i O-homogeneous, and O(λ 0 i ) < O(λ 1 i ) < • • • < O(λ k i
) for all i ∈ {1, . . . , r} and for all j ∈ {1, . . . , k}. If G k = 0 for some k, then we are done. Otherwise, let λ i = ∞ k=0 λ k i , and let Ḡ = lim k→+∞ G k . We have Ḡ = 0 and G = r i=1 λ i G i . This proves our assertion.

Let the notations be as above. Let

G = θ c θ X θ 1 1 • • • X θs s ∈ K X 1 , . . . , X s and write G = i≥0 G p i with p 0 < p 1 < • • • and G p i O-homogeneous. We set H G = i≥0 u p i -p 0 G p i , in such a way that H G is O h -homogeneous of order p 0 . Given an ideal S of K X 1 , . . . , X s , we set in(S) = (in(G) | G ∈ S \ {0}).
We also denote by

H S = (H G | G ∈ S \ {0})K u, X 1 , . . . , X s .
With these notations we have in(S i ) = F i and H G i = H i for all i ∈ {1, . . . , r}. Lemma 3.3. Let the notations be as above. We have in(I) = (F 1 , . . . , F r ), and

H I = (H 1 , . . . , H r ) = J.
Proof. The first assertion follows from the proof of Lemma 3.2. To prove the second assertion, let H ∈ H I and assume that H is O h -homogeneous. We have

G = H(1, X 1 , . . . , H s ) ∈ I. Furthermore, H = u e H G for some e ≥ 0. Write H G = in(G) + H 1 where H 1 (0, X 1 , . . . , X s ) = 0. We have in(G) = r i=1 λ i F i where λ i is O-homogeneous of order p 0 -O(F i ). Let H G 1 = H G -r i=1 λ i H G i = H G -r i=1 λ i H i . Then H G 1 ∈ H I is O h -homogeneous and O h (H G ) < O h (H G 1 ). Now we restart with H G 1 . We prove in this way that H ∈ (H 1 , . . . , H r ). Let H = θ c θ u θ X θ 1 1 • • • X θs s ∈ ker(H ψ ). Write H = k H k , where H k is O h -homogeneous. For all k, we have H ψ (H k ) = 0. Setting G k = H k (1, X 1 , .
. . , X s ), we have ψ(G k ) = 0. This implies that G k ∈ I. Hence H G k ∈ (H 1 , . . . , H r ) by Lemma 3.3. But H k = u e k H G k for some e k ∈ N. Consequently H k ∈ (H 1 , . . . , H r ). Finally H ∈ (H 1 , . . . , H r ), which proves that ker(H ψ ) ⊆ J. As the inclusion J ⊆ ker(H ψ ) is obvious, we conclude that J = ker(H ψ ). Now the morphism K u -→ K u X 1 , . . . , X s /J is flat because u is not a zero divisor. Hence we get a family of formal space curves parametrized by u that gives us a deformation from K X 1 , . . . , X r /I to K X 1 , . . . , X r /(F 1 , . . . , F r ).

In particular we get the following.

Theorem 3.4. Every formal space curve of K l , parametrized by Y 1 = g 1 (x), . . . , Y l = g l (x) has a deformation into a formal monomial curve of K r for some positive integer r.

Basis of K f (x), g(x)

In this section we study the particular case of a subalgebra R of K[[x]] generated by two elements, and see that a different approach can be considered to study o(R), with some interesting applications.

Let f (x) = i≥n a i x i and g(x) = j≥m b j x j be two elements of K x and suppose, without loss of generality, that the following conditions hold:

(1)

a n = b m = 1, (2) n ≤ m, (3) 
the greatest common divisor of supp(f (x)) ∪ supp(g(x)) is equal to 1 (in particular for all d > 1, f (x), g(x) / ∈ K x d ). Let the notations be as in Section 2, in particular R = K f, g . By the analytic change of variables f (x) = xn , we may assume that R = K x n , g(x) . Let F (X, Y ) be the x-resultant of X -x n , Y -g(x), that is, F (X, Y ) is the generator of the kernel of the map ρ : K X, Y -→ K x , ρ(X) = x n and ρ(Y ) = g(x).

Since K f, g = K f, g -f k for all k ≥ 1, then we shall assume that n < m and also that n does not divide m. Given a nonzero element G(X, Y ) / ∈ (F (X, Y ))K X, Y , we set int(F, G) = o(G(f (x), g(x))). Condition (3) implies that the set of int(F, G), G(X, Y ) / ∈ (F (X, Y ))K X, Y , is a numerical semigroup. We denote it by Γ(F ). We have the following.

Proposition 4.1. o(R) = Γ(F ).

Proof. We have a ∈ Γ(F ) if and only if a = o(G(f (x), g(x))) for some G(X, Y ) ∈ K X, Y if and only if a ∈ o(R).

Suppose that K is algebraically closed with characteristic zero, and let 

d 1 = n, m 1 = inf{i ∈ supp(g) | d 1 i}, that is, m 1 = m,
≤ k ≤ h, r k = r k-1 e k-1 + m k -m k-1 .
With these notations we have the following (see [START_REF] Abhyankar | On the semigroup of a meromorphic plane curve, Part I[END_REF]).

(1) Γ(F ) = o(R) is generated by {r 0 , r 1 , . . . , r h }.

(2) r k d k < r k+1 d k+1 for all k ∈ {1, . . . , h -1}.

(3) Γ(F ) = o(R) is free with respect to the arrangement (r 0 , . . . , r h ). More precisely, let 

e k = d k d k+1 for all k ∈ {1, . . . , h}. Then e k r k ∈ r 0 , . . . , r k-1 . (4) C = h k=1 k -1)r k -n + 1 is the conductor of Γ(F ) = o(R). Example 4.2. Let f = x 7 and g = x 4 + x 2 . The above resultant is then F = y 7 -7x 2 y 3 -x 4 -14x 2 y 2 - 7x 2 y -x 2 . Then Γ(F ) = o(R) = 2,
k ≥ 2, let G k (X, Y ) ∈ K X, Y such that o(G k (x n , g(x))) = r k . It follows from [1] that deg Y G k = n d k . If g k (x) = G k (x n , g(x)
), then we have the following. Proposition 4.3. The set {x n , g, g 2 , . . . , g h } is a basis of R, that is, R = K x n , g, g 2 , . . . , g h and M o (R) = K x n , x m , x r 2 , . . . , x r h . Note that, by a similar argument as in Section 2, we may assume that f = x n , g = x m + i∈G(Γ(F )) c 1 i x i , and for all k ≥ 2,

g k = x r k + i∈G(Γ(F )) c k i x i , where G(Γ(F )) = {j ∈ N | j / ∈ Γ(F )} is the set of gaps of Γ(F ).
Let the notations be as in Section 3. The morphism

D : K u -→ T = K u H f , H g , H g 2 , . . . , H g h gives us a deformation of T | u=1 = R = K f (x), g(x), g 2 (x), . . . , g h (x) to T | u=0 = K x n , x m , x r 2 , . . . , x r h .
Note that, since n, m, r 2 , . . . , r h is free with respect to the given arrangement, then it is a complete intersection (see for instance [START_REF] Rosales | Numerical semigroups[END_REF]). For all k ∈ {1, . . . , h}, write

e k r k = k-1 i=0 θ k i r i with 0 ≤ θ k i < e i for all i ∈ {1, . . . , k -1}. If B is the ideal of K[X 0 , X 1 , . . . , X h ] generated by {X e 2 1 -X m d 2 0 , X e 2 2 -X θ 2 0 0 X θ 2 1 1 , . . . , X e h h -X θ h 0 0 X θ h 1 1 . . . X θ h h-1 h-1 } then K x n , x m , x r 2 , . . . , x r h K X 0 , X 1 , . . . , X h /B.
Let F (X, Y ) be the x-resultant of X -x n , y -g(x). By hypothesis, F (X, Y ) is a polynomial. Furthermore,

F (X, Y ) = Y n + a 1 (X)Y n-1 + . . . + a n (X) with o(a i (X)) > i for all 2 ≤ i ≤ n. Set G h+1 = F and for all k ≥ 1, let G k+1 = G e k k -X θ k 0 k-1 i=1 G θ k i i + α k c k α k X α k 0 G α k 1 1 • • • G α k k k ,
where the following conditions hold:

(1) for all i ∈ {1, . . . , k -1}, 0 ≤ θ k i < e i ; (2) for all α k , if c k α k = 0, then for all i ∈ {1, . . . , k}, 0

≤ α k i < e i ; (3) for all α k , if c k α k = 0, then α k 0 n + k i=1 α k i r i = D k i > e k r k = θ k 0 r 0 + k-1 i=1 θ k i r i . It follows from Section 3. that if I (respectively is the ideal generated by (X e k k -X θ k 0 0 k-1 i=1 X θ k i i + α k c k α k X α k 0 0 X α k 1 1 • • • X α k k k ) 1≤k≤h (respectively (X e k k -X θ k 0 0 k-1 i=1 X θ k i i + α k c k α k u D k i -e k r k X α k 0 0 X α k 1 1 • • • X α k k k ) 1≤k≤h ) in K X 0 , . . . , X h (respec- tively K u X 0 , . . . , X h ), then R = K x n , g(x), g 2 (x), . . . , g h (x) K X 0 , X 1 , . . . , X h /I and K u x n , H g , H g 2 , . . . , H g h K u X 0 , X 1 , . . . , X h /J. Furthermore, K u X 0 , X 1 , . . . , X h /J is a flat K u -module.
This gives us a family of formal space curves parametrized by u which is a deformation from K X 0 , X 1 , . . . , X h /I to the formal toric variety K X 0 , X 1 , . . . , X h /B. The later being a complete intersection, we get the following. Theorem 4.4. Every irreducible singularity of a plane curve X = f (x), Y = g(x) of K 2 has a deformation into a formal monomial complete intersection curve of K h+1 for some h ≥ 1.

Example 4.5. Let f (x) = x 4 , g(x) = x 6 + x 7 . The minimal polynomial of (f (x), g(x)) is given by:

F (X, Y ) = Y 4 -2X 3 Y 2 + X 6 -4X 5 Y -X 7 = (Y 2 -X 3 ) 2 -4X 5 Y -X 7 Let r 0 = 4 = d 1 , r 1 = 6 = m 1 and G 1 = Y . We have d 2 = gcd(6, 4) = 2, hence m 2 = 7. It follows that r 2 = 13. Note that if G 2 = Y 2 -X 3 , then g 2 (x) = G 2 (f (x), g(x)) = 2x 13 + x 14 . Hence Γ(F ) = o(R) = 4, 6, 13 and {f (x), g(x), g 2 (x)} is a basis of R. Let us double check it. gap> SemigroupOfValuesOfCurve_Local([x^4,x^6+x^7],"basis"); [ x^4, x^7+x^6, -1/2*x^15+x^13 ]
(Observe that the output is different, since this is a reduced basis: we change 2x 13 + x 4 with x 13 + 1 2 x 14 , and then using that 14 = 2 × 4 + 6, we replace this last polynomial with x 13 -1 2 x 15 .) Consequently, H R = K u, x 4 , x 6 + ux 7 , 2x 13 + ux 14 . With the notations above,

e 1 = 3, e 2 = 2, hence K x 4 , x 6 , x 13 T = K X 0 , X 1 , X 2 /(X 2 1 -X 3 0 , X 2 2 -X 5 0 X 1 ), and K u -→ K u X 0 , X 1 , X 2 /(X 2 1 -X 3 0 , X 2 2 -4X 5 0 X 1 -u 2 X 7 0 )
gives us a deformation from R to T (we can also change X 2 with 1 2 X 2 , and then

B = (X 2 1 -X 3 0 , X 2 2 - 4X 4 0 X 1 )).

Semigroup of a polynomial curve

Let K be a field and let f 1 (x), . . . , f s (x) be s polynomials of K

[x]. Let A = K[f 1 , . . . , f s ] be a subalgebra of K[x],
and assume, without loss of generality, that f i is monic for all i ∈ {1, . . . , s}. Given f (x) = p i=0 c i x i ∈ A, with c p = 0, we set d(f ) = p and M(f ) = c p x p , the degree and leading monomial, respectively. We also define supp

(f ) = {i | c i = 0}. The set d(A) = {d(f ) | f ∈ A} is a submonoid of N. We shall assume that λ A (K[x]/A) < ∞. In particular d(A) is a numerical semigroup. We say that {f 1 , . . . , f s } is a basis of A if {d(f 1 ), . . . , d(f s )} generates d(A). Clearly, {f 1 , . . . , f s } is a basis of A if and only if K[M (f ), f ∈ A] = K[M (f 1 ), . . . , M (f s )].
For several variables, these basis are known in the literature as SAGBI basis ( [START_REF] Robbiano | Subalgebra bases[END_REF][START_REF] Bravo | Some facts about canonical subalgebra bases[END_REF]). Since there are already algorithms in the literature to calculate a basis of A, we will not include the procedure here.

We would like just mention that if we follow a similar argument to the one used in Section 2, the sequences of degrees decrease, and thus the finiteness conditions are easier to deduce. In this setting a basis for A is unique up to constants.

Deformation to a toric ideal

Let the notations be as in Section 5. Given

f (x) = p i=0 c i x i ∈ K[x], we set h f (u, x) = p i=0 c i u p-i x i , in particular, if we consider the linear form L h : N 2 -→ N, L(a, b) = a + b, then h f is L h -homogeneous of degree p, that is, L h (i, p -i) = p for all i ∈ Supp(f ) . We set h A = K[u, h f | f ∈ A].
With these notations we have the following result, and its proof is similar to that of Proposition 3.1.

Proposition 6.1. The set {f 1 , . . . , f r } is a basis of A if and only if h A = K[u, h f 1 , . . . , h fs ].
Suppose that {f 1 , . . . , f s } is a basis of A. By the inclusion morphism of rings D :

K[u] -→ B = K[u, h f 1 , . . . , h fs ], B is a K[u]-module. When u = 1 (respectively u = 0), we get B | u=1 = A (respec- tively B | u=0 = K[M(f 1 ), . . . , M(f s )]). Hence we get a deformation from A to K[M(f 1 ), . . . , M(f s )]. More precisely let ψ : K[X 1 , . . . , X s ] -→ K[f 1 , . . . , f s ] and h ψ : K[u][X 1 , . . . , X s ] -→ K[u][h f 1 , . . . , h fs ]
be the morphisms of rings such that h ψ (u) = u, ψ(X i ) = f i and h ψ (X i ) = h f i for all i = 1, . . . , s. For all i = 1, . . . , r, let

S i = f α i 1 1 • • • f α i s s -f β i 1 1 • • • f β i s s = θ i c i θ i f θ i 1 1 • • • f θ i s s with d(f θ i 1 1 • • • f θ i s s ) = D i θ i > s k=1 α i k d(f k ) = s k=1 β i k d(f k ) = p i . Let I (respectively J) be the ideal generated by (G i = X α i 1 1 • • • X α i s s -X β i 1 1 • • • X β i s s -θ i c i θ i X θ i 1 1 • • • X θ i s s ) 1≤i≤r (respectively (H i = X α i 1 1 • • • X α i s s - X β i 1 1 • • • X β i s s -θ i u p i -D i θ i c i θ i X θ i 1 1 • • • X θ i s s ) 1≤i≤r ) in K[X 1 , . . . , X s ] (respectively K[u][X 1 , . . . , X s ]
). Well shall consider on N s (respectively, N s+1 ) the linear form

D(θ 1 , . . . , θ s ) = s i=1 θ i d(f i ) (respectively D h (θ 0 , θ 1 , . . . , θ s ) = θ 0 + s i=1 θ i d(f i )). Given a monomial X θ 1 1 • • • X θs s (respectively u θ 0 X θ 1 1 • • • X θs s ), we set D(X θ 1 1 • • • X θs s ) = D(θ 1 , . . . , θ s ) (respectively D h (u θ 0 X θ 1 1 • • • X θs s ) = D h (θ 0 , θ 1 , . . . , θ s )). For G = θ c θ X θ 1 1 • • • X θs s (respectively H = θ c θ u θ 0 X θ 1 1 • • • X θs s )
, we say that G (respectively H) is D-homogeneous of degree a (respectively D h -homogeneous of degree b) if D(θ 1 , . . . , θ s ) = a (respectively D h (θ 0 , θ 1 , . . . , θ s ) = b) for all (θ 1 , . . . , θ s ) (respectively (θ 0 , θ 1 , . . . , θ s )) such that c θ = 0. More generally let G = m k=0 G p k where p 0 > p 1 > • • • > p m and G p k is D-homogeneous of degree p k . We set D(G) = p 0 . We also set In(G) = G p 0 and we call it the initial form of G. Lemma 6.2. With the standing notations and hypothesis, the kernel of ψ is generated by I.

Proof. Let F 1 , . . . , F r be a generating system of the kernel of the morphism

φ : K[X 1 , . . . , X s ] -→ K[x], φ(X i ) = M(f i )
for all i ∈ {1, . . . , s}. In particular F i is D-homogeneous of degree d(f i ) for all i ∈ {1, . . . , s}, and

K[X 1 , . . . , X s ]/(F 1 , . . . , F r ) K[M(f 1 ), . . . , M(f s )].
For all i ∈ {1, . . . , r}, ψ(G i ) = 0. Hence I ⊆ ker(ψ). For the other inclusion, let G

= θ c θ X θ 1 1 • • • X θs s ∈ ker(ψ). Write G = m k=0 c θ k X Let G 1 = G -r i=1 λ 0 i G i . It follows that G 1 ∈ ker(ψ). If G 1 = 0, then D(G) > D(G 1
). Then we restart with G 1 . We construct in the same way G 2 , and λ 1 1 , . . . , λ 1 r such that

G 1 = G 2 + r j=1 λ 1 j G j with D(G) > D(G 1 ) > D(G 2 ), λ 1
i D-homogeneous and D(λ 0 i ) > D(λ 1 i ) for all i ∈ {1, . . . , r}. If we continue in this way, we get that for all k ≥ 0,

G = G k+1 + r i=1 (λ 0 i + λ 1 i + . . . + λ k i )G i , with D(G) > D(G 1 ) > • • • > D(G k+1 ), λ j i D-homogeneous, and D(λ 0 i ) > D(λ 1 i ) > • • • > D(λ k i
) for all i ∈ {1, . . . , r} and for all j ∈ {1, . . . , k}. Thus, there exists l such that G l+1 = 0. Hence G = r i=1 (λ 0 i + λ 1 i + . . . + λ l i )G i . This proves our assertion. Let the notations be as above.

Let G = θ c θ X θ 1 1 • • • X θs s ∈ K[X 1 , .
. . , X s and write G = m i=0 G p i with p 0 > p 1 > • • • > p m and G p i D-homogeneous. We set H G = m i=0 u p 0 -p i G p i , in such a way that H G is D h -homogeneous of degree p 0 . Given an ideal S of K[X 1 , . . . , X s ], we set In(S) = (In(G) | G ∈ S \ {0}). We also denote by

H S = (H G | G ∈ S \ {0})K[u, X 1 , . . . , X s ].
With these notations we have In(S i ) = F i and H G i = H i for all i ∈ {1, . . . , r}. Lemma 6.3. Let the notations be as above. We have In(I) = (F 1 , . . . , F r ), and H I = (H 1 , . . . , H r ) = J.

Proof. The first assertion follows from the proof of Lemma 6.2.

To prove the second assertion, let H ∈ H I and assume that H is D h -homogeneous. We have

G = H(1, X 1 , . . . , H s ) ∈ I. Furthermore, H = u e H G for some e ≥ 0. Write H G = In(G) + H 1 where H 1 (0, X 1 , . . . , X s ) = 0. We have In(G) = r i=1 λ i F i where λ i is D-homogeneous of degree D(G) -D(F i ). Let H G 1 = H G -r i=1 λ i H G i = H G -r i=1 λ i H i . Then H G 1 ∈ H I is D h -homogeneous and D h (H G ) > D h (H G 1
). Now we restart with H G 1 . In this way we show that H ∈ (H 1 , . . . , H r ).

Let H = θ c θ u θ X θ 1 1 • • • X θs s ∈ ker(h ψ ). Write H = n k=0 H k where H k is D h -homogeneous. For all k, we have h ψ (H k ) = 0. Setting G k = H k (1, X 1 , . . . , X s ), we have ψ(G k ) = 0. This implies that G k ∈ I, and thus H G k ∈ (H 1 , . . . , H r ) by Proposition 6.3. But H k = u e k H G k for some e k ∈ N, whence H k ∈ (H 1 , . . . , H r )
. Finally H ∈ (H 1 , . . . , H r ), which proves that ker(h ψ ) ⊆ J. The inclusion J ⊆ ker(h ψ ) is obvious, and we can conclude that J = ker(h ψ ). Now the morphism

K[u] -→ K[u][X 1 , .
. . , X r ]/J is flat (because p(u) is not a zero divisor for all p(u) ∈ K[u]). Hence we get a family of polynomial space curves parametrized by u which gives us a deformation from K[X 1 , . . . , X r ]/I to K[X 1 , . . . , X r ]/(F 1 , . . . , F r ).

In particular, we get the following analogue to Theorem 3.4, which can be seen as a a geometric reinterpretation of [START_REF] Sturmfels | Gröbner bases and convex polytopes[END_REF]Corollary 11.6] (also [4, Corollary 6.1]). Proof. If gcd(n, m) = 1, then Γ(F ) = d(A) = n, m . Hence {f (x), g(x)} is a basis of A. Lemma 7.5. Suppose that gcd(n, m) = p 1 • • • p l where p i is a positive prime number for all i ∈ {1, . . . , l} (and the p i 's are not necessarily distinct). The set {f (x), g(x)} is not a basis of A. Furthermore, if c is the cardinality of a basis of A, then 2 ≤ c ≤ l + 2. In particular, if gcd(n, m) is a prime number p > 1, then a basis of A has either two or three elements. 

d 1 > d 2 > . . . > d h+1 = 1; (2) r k d k > r k-1 d k-1 for all k ∈ {1, . . . , h}; (3) e k r k ∈< r 0 , . . . , r k-1 > for all k = 1, . . . , h.
Such a sequence is called a δ-sequence and it is well known (see [START_REF] Abhyankar | On the semigroup of a meromorphic plane curve, Part I[END_REF]) that there exists a polynomial F (X, Y ) with one place at infinity such that the semigroup {rank K K[X, Y ]/( F , G), G / ∈ (F )} is generated by r. It follows from Theorem 7.1. that a polynomial curve has one place at infinity. The converse is not true in general. Abhyankar asked whether every semigroup generated by a δ-sequence (hence the semigroup of a curve with one place at infinity) is the semigroup of a polynomial curve (for example, the δ-sequence [START_REF]GAP -Groups, Algorithms, and Programming[END_REF][START_REF] Bravo | Some facts about canonical subalgebra bases[END_REF][START_REF] Castellanos | Algorithm for the Semigroup of a Space Curve Singularity[END_REF] generates the semigroup 4, 5 which is the semigroup of the polynomial curve A = K[x 4 , x 5 ]). It has been proved recently that the answer is no ( [START_REF] Fujimoto | On polynomial curves in the affine plane[END_REF]). It would be nice to see which supplementary conditions a δ-sequence should satisfy in order to generate the semigroup of a polynomial curve. Remark 7.7. Let f (x) and g(x) be as above, and let A = K[f (x), g(x)]. Let also F (X, Y ) be the xresultant of X -f (x) and Y -g(x). Let r 0 = n, r 1 = m, r 2 , . . . , r h be the generators of Γ(F ) calculated as above. Let 1 ≤ k ≤ h and let G k (X, Y ) = App(F, d k ). We have d(G k (f (x), g(x)) = r k , but G k is not the unique polynomial with this condition (for example, d((G k + λ)(f (x), g(x))) = r k for all λ = 0). Hence it is natural to ask the following: is there a polynomial G(X, Y ) (of degree < n in Y ) such that G is parametrized by polynomials in x such that d(G(f (x), g(x)) = r k ? Such a polynomial, if it exists, should be of degree n d k and should have the contact with F at a characteristic exponent of F (see [START_REF] Abhyankar | On the semigroup of a meromorphic plane curve, Part I[END_REF] for the definition of the characteristic exponents of a curve with one place at infinity and the notion of contact). Hence the existence of such a polynomial implies that a polynomial curve can be approximated by polynomial curves.

Let the notations be as above, in particular

F (X, Y ) = Y n + c 1 (X)Y n-1 + • • • + c n (X) is the x- resultant of (X -f (x), Y -g(x)). Let G 1 = Y, G 2 , .
. . , G h be the set of approximate roots of F (X, Y ) constructed algorithmically as above. In particular r 0 = n, r 1 = m, r 2 = int(F, G 2 ), . . . , r h = int(F, G h ) generate d(A). For all k = 2, . . . , h, let g k (x) = G k (f (x), g(x)) and let M(g k ) = b r k x r k . We have A = K[f (x), g(x), g 2 (x), . . . , g h (x)]. Furthermore, the map

D : K[u] -→ B = K[u][h f , h g , h g 2 , . . . , h g h ]
introduced in Section 6. gives us a deformation of the polynomial curve B | u=1 = A into B | u=0 = K[t n , t m , t r 2 , . . . , t r h ]. Note that, since n, m, r 2 , . . . , r h is free with respect to the given arrangement, then it is a complete intersection. For all k ∈ {1, . . . , h}, write e k r k = k-1 i=0 θ k i r i with 0 ≤ θ k i < e i for every i ∈ {1, . . . , k -1}. With the notations above, if T is the ideal of K[X 0 , X 1 , . . . , X h ] generated by Set G h+1 = F and for all k ≥ 1, let

G k+1 = G e k k -X θ k 0 k-1 i=1 G θ k i i + α k c k α k X α k 0 .G α k 1 1 • • • G α k k k ,
where the following conditions hold:

(1) for all i ∈ {1, . . . , k -1}, 0 ≤ θ k i < e i ; (2) for all α k , if c k α k = 0, then for all i ∈ {1, . . . , k}, 0 ≤ α k i < e i , (3) for all α k , if c k α k = 0, then α k 0 n + k i=1 α k i r i = D k i < e k r k = θ k 0 r 0 + k-1 i=1 θ k i r i .

It follows from Section 6 that if I (respectively J) is the ideal generated by (X e k k -X

θ k 0 0 k-1 i=1 X θ k i i + α k c k α k X α k 0 0 .X α k 1 1 • • • X α k k k ) 1≤k≤h (respectively (X e k k -X θ k 0 0 k-1 i=1 X θ k i i + α k c k α k u e k r k -D k i X α k 0 0 .X α k 1 1 • • • X α k k k ) 1≤k≤h
) in K[X 0 , . . . , X h ] (respectively K[u][X 0 , . . . , X h ]), then A = K[x n , g(x), g 2 (x), . . . , g h (x)] K[X 0 , X 1 , . . . , X h ]/I and K[u][x n , h g(x) , h g 2 (x) , . . . , h g h (x) ] K[u][X 0 , X 1 , . . . , X h ]/J. Furthermore, K[u][X 0 , X 1 , . . . , X h ]/J is a flat K[u]-module. This gives us a family of space curves parametrized by u which is a deformation from K[X 0 , X 1 , . . . , X h ]/I to the toric variety K[X 0 , X 1 , . . . , X h ]/T . The later being a complete intersection, we get the following result.

Theorem 7.8. Every polynomial curve X = f (x), Y = g(x) of K 2 has a deformation into a monomial complete intersection curve of K h+1 for some positive integer h. Example 7.9. Let f (x) = x 6 + x 3 , g(X) = x 4 . The minimal polynomial of (f (x), g(x)) is given by:

F (X, Y ) = Y 6 -2X 2 Y 3 -4XY 3 -Y 3 + X 4 .
Let r 0 = 6 = d 1 , r 1 = 4 and G 1 = Y . We have d 2 = gcd(6, 4) = 2, and G 2 = App(F, 2) = Y 3 -X 2 -2X -1 2 . Since g 2 (x) = G 2 (f (x), g(x)) = -2x 9 -3x 6 -2x 3 -1 2 , then r 2 = 9 and d 3 = 1, hence Γ(F ) = d(A) = 6, 4, 9 and {f (x), g(x), -g 2 (x) =} is a basis of A. Consequently, h A = K[u, x 6 + u 3 x 3 , x 4 , 2x 9 + 3u 3 x 6 + 2u 6 x 3 + 1 2 u 9 ]. Note that, with the notations above, e 1 = 3, e 2 = 2, hence K[x 6 , x 4 , 2x 9 ] K[X 0 , X 1 , X 2 ]/(X 3 1 -X 2 0 , X 2 2 -4X 3 0 ) = K[X 0 , X 1 , X 2 ]/T , K[x 6 + x 3 , x 4 , 2x 9 -3x 6 -2x 3 -

1 2 ] K[X 0 , X 1 , X 2 ]/(X 3 1 -X 2 0 -2X 0 -1 2 , X 2 2 -4X 3 0 -5X 2 0 -2X 0 -1 4
), and

K[u] -→ K[u][X 0 , X 1 , X 2 ]/(X 3 1 -X 2 0 -2u 6 X 0 - 1 2 u 9 , X 2 2 -4X 3 0 -5u 6 X 2 0 -2u 12 X 0 - 1 4 u 18 )
gives us a deformation from A to K[X 0 , X 1 , X 2 ]/T . The computation of the approximate roots and of Γ(F ) can be performed with the algorithm presented in [START_REF] Assi | Algorithms for curves with one place at infinity[END_REF]. gap> f:=y^6-2*x^2*y^3-4*x*y^3-y^3+x^4;; gap> SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity(f); <Numerical semigroup with 3 generators> gap> MinimalGeneratingSystem(last); [START_REF] Bravo | Some facts about canonical subalgebra bases[END_REF][START_REF] Del Centina | Weierstrass points and their impact in the study of algebraic curves: a historical account from the "Lückensatz" to the 1970s[END_REF][START_REF] Fujimoto | On polynomial curves in the affine plane[END_REF] gap> SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity(f); [ [START_REF] Del Centina | Weierstrass points and their impact in the study of algebraic curves: a historical account from the "Lückensatz" to the 1970s[END_REF][START_REF] Bravo | Some facts about canonical subalgebra bases[END_REF][START_REF] Fujimoto | On polynomial curves in the affine plane[END_REF], [ y, y^3-x^2-2*x-1/2 ] ] Example 7.10. Let f (x) = x 6 + x, g(x) = x 4 . The minimal polynomial of (f (x), g(x)) is given by:

F (X, Y ) = Y 6 -2X 2 Y 3 -4XY 2 -Y + X 4 .
Let r 0 = 6 = d 1 , r 1 = 4 and G 1 = Y . We have d 2 = gcd(6, 4) = 2, and G 2 = App(F, 2) = Y 3 -X 2 . Since g 2 (x) = G 2 (f (x), g(x)) = -2x 7 -x 2 , then r 2 = 7 and d 3 = 1, hence Γ(F ) = d(A) = 6, 4, 7 and {f (x), g(x), -g 2 (x)} is a basis of A. Consequently, h A = K[u, x 6 + u 5 x, x 4 , 2x 7 + u 5 x 2 ]. Note that,

  gap> x:=X(Rationals,"x");; gap> l:=[x^4+x^5,x^6,x^15+x^16];; gap> s:=SemigroupOfValuesOfCurve_Local(l);; gap> MinimalGeneratingSystem(s); [ 4, 6, 13, 15 ] gap> SemigroupOfValuesOfCurve_Local(l,13); x^13 Remark 2.14. It is known (cf. [3, Section II.1]) that there exist relations between algebraic characteristics and invariants of the semigroup o(R) and the ring R. Hence, in the Example 2.13, from o(R) = 4, 6, 13, 15 = {0, 4, 6, 8, 10, 12, -→}, we deduce that the conductor of o

  . The ring R is Cohen-Macaulay and its type is less than or equal to #T(o(R)) = 3, where for a numerical semigroup Γ, T(Γ) = {x ∈ Z \ Γ | x + Γ * ⊆ Γ} ([3, Proposition II.1.16]). According also to [3, Proposition II.1.16], equality holds if and only if o(R : m) = T(o(R)). However T(o(R)) = {2, 9, 11} and 2 ∈ o(R : m). So in our example we get an strict inequality.

and d 2

 2 = gcd(n, m 1 ). For all k ≥ 2 we set m k = inf{i ∈ supp(g) | d k i} and d k+1 = gcd(d k , m k ). It follows that there exists h ≥ 1 such that d h+1 = 1. The set {m 1 , . . . , m h } is called the set of Newton-Puiseux exponents of F (X, Y ). Let e k = d k d k+1 for all 1 ≤ k ≤ h and define the sequence (r k ) 0≤k≤h as follows: r 0 = n, r 1 = m, and for all 2

7 .

 7 gap> Resultant(x-t^7, y-t^4-t^2,t); y^7-7*x^2*y^3-x^4-14*x^2*y^2-7*x^2*y-x^2 gap> s:=SemigroupOfValuesOfCurve_Local([t^7,t^4+t^2]); <Modular numerical semigroup satisfying 7x mod 14 <= x > gap> MinimalGeneratingSystem(last); [ 2, 7 ] gap> IsFreeNumericalSemigroup(s); true Let the notations be as above. For all

Lemma 7 . 4 .

 74 [START_REF] Torstensson | Canonical bases for subalgebras on two generators in the univariate polynomial ring[END_REF] Theorem 2] If gcd(n, m) = 1, then {f (x), g(x)} is a basis of A.

Proof.Remark 7 . 6 .

 76 Since gcd(n, m) > 1, then the first assertion is clear. On the other hand, sinced 2 = gcd(n, m) = p 1 • • • p r , we have A = K[x], and h ≤ l + 1. Hence Γ(F ) = d(A) has at most l + 2 generators. The result now follows. Let r = (r 0 = n, r 1 = m, r 2 , . . . , r h ) be a sequence of integers and for all k ≥ 1, letd k = gcd(r 0 , • • • , r k-1) and e k = d k d k+1 . Assume that the following conditions hold:[START_REF] Abhyankar | On the semigroup of a meromorphic plane curve, Part I[END_REF] 

  13 , x15 } and R is not a Gorenstein ring. Here, λ R ( R/R) = 7.Example 2.16. Let R = K x 8 , x 12 + x 14 + x 15 , with K a field of characteristic zero. Using the same argument as in the Example 2.13, we have that {x 8 , x 12 + x 14 + x 15 , x 26 + x 27 + x 29 -Example 2.17. The following battery of examples was provided by Lance Bryant as a test for our algorithm.

	1 2	x 31 ,												
	x 53 +	1 2	x 55 -	1 2	x 57 -	1 8	x 63 +	25 8	x 67 -	95 32	x 71 -	15 16	x 75 -	135 32	x 83 }
	is the reduced basis of the Gorenstein ring R. Furthermore, we have λ R ( R/R) = 42.			
	gap> l:=[x^8,x^12+x^14+x^15];;														
	gap> SemigroupOfValuesOfCurve_Local(l,"basis");									
	[ x^8, x^15+x^14+x^12, -1/2*x^31+x^29+x^27+x^26,									
	-135/32*x^83-15/16*x^75-95/32*x^71+25/8*x^67-1/8*x^63-1/2*x^57+1/2*x^55+x^53 ]	
	gap> l:=[ [ x^6,x^8+x^9,x^19], [x^7,x^9+x^10,x^19,x^31], [x^7,x^21+x^28+x^33],	
	[x^4,x^6+x^7,x^13], [x^6,x^8+x^11,x^10+2*x^13,x^21], [x^5,-x^18-x^21,-x^23,-x^26],
	[x^5,-x^18-x^21,-x^26], [x^5,-x^18-x^21,x^23-x^26], [x^6,x^9+x^10,x^19],		
	[x^7,x^9+x^10,x^19], [x^8,x^9+x^10,x^19], [x^7,x^9+x^10,x^17,x^19] ] ;;			
	gap> List(l, i->MinimalGeneratingSystem(SemigroupOfValuesOfCurve_Local(i)));	
	[ [ 6, 8, 19, 29 ], [ 7, 9, 19, 29, 31 ], [ 7, 33 ], [ 4, 6, 13, 15 ],			
	[ 6, 8, 10, 21, 23, 25 ], [ 5, 18, 26, 39, 47 ], [ 5, 18, 26, 39, 47 ],		
	[ 5, 18, 26, 39, 47 ], [ 6, 9, 19, 20 ], [ 7, 9, 19, 29 ], [ 8, 9, 19, 30 ],	
	[ 7, 9, 17, 19, 29 ] ]														
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Theorem 6.4. Every polynomial space curve of K l , parametrized by Y 1 = g 1 (x), . . . , Y l = g l (x) has a deformation into a monomial curve of K r for some positive integer r.

Basis of K[f (x), g(x)]

In [START_REF] Torstensson | Canonical bases for subalgebras on two generators in the univariate polynomial ring[END_REF], the case when a subalgebra A of K[x] has a (SAGBI) basis with two elements is treated. Here we study subalgebras generated by two elements of K[x], and see how a basis can be obtained by using a different approach to that of the general case, as we already did for K [[x]] in Section 4.

Let f (x) = n i=1 a i x i and g(x) = m j=1 b j x j be two polynomials of K[x] and suppose, without loss of generality, that the following conditions hold:

(1)

the greatest common divisor of supp(f (x)) ∪ supp(g(x)) is equal to 1 (in particular for all d > 1,

). Let the notations be as in Section 5, in particular

). Assume that K is algebraically closed with characteristic zero. Let d be a divisor of n, and let G be a monic polynomial in K

We say that G is a dth approximate root of F if α 1 = 0. There is a unique dth approximate root of F . We denote it by App(F, d). The following results can be found in [START_REF] Abhyankar | On the semigroup of a meromorphic plane curve, Part I[END_REF].

Theorem 7.1. Under the standing hypothesis.

(1) F (X, Y ) has one place at infinity, that is the affine curve F (X, Y ) = 0 has one point at infinity, and the projective closure of this curve in P 2 K is analytically irreducible at this point. Proof. In fact, h(x) ∈ A if and only if h(x) = P (f (x), g(x)) for some

be as above, and assume, after a possible change of variables X = X, Y = Y + c 1 n , that c 1 (X, Y ) = 0 (note that this does not change A). In particular App(F, n) = Y . A system of generators of Γ(F ) can be found algorithmically in the following way.

Let

, and d 2 = gcd(r 0 , r 1 ). We set

), and d 3 = gcd(r 3 , d 2 ), and so on. . . With these notations we have the following:

(1) d 1 > d 2 > . . . and there exists h ≥ 1 such that d h+1 = 1;

(2) Γ(F ) = d(A) is generated by {r 0 , r 1 , . . . , r h };

(3) with the notations above, e 1 = 3, e 2 = 2, hence K[x 6 , x 4 , x 7 ] K[X 0 , X 1 , X 2 ]/(X 3 1 -X 2 0 , X 2 2 -X 0 X 2 1 ) = K[X 0 , X 1 , X 2 ]/T , and

1 -X 2 0 , X 2 2 -4X 0 X 2 1 -u 10 X 1 ) gives us a deformation from A to K[X 0 , X 1 , X 2 ]/T (we can also change X 2 with 1 2 X 2 , and then we get (X 3 1 -X 2 0 , X 2 2 -X 0 X 2 1 -1 4 u 10 X 1 ) instead).