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BASES OF SUBALGEBRAS OF K[z] AND K]z]

A. ASSIL P. A. GARCIA-SANCHEZ, AND V. MICALE

ABSTRACT. Let f1,..., fs be formal power series (respectively polynomials) in the variable z. We study the
semigroup of orders of the formal series in the algebra K[fi,..., fs] C K[z] (respectively the semigroup
of degrees of polynomials in K[f1,..., fs] C K[z]). We give procedures to compute these semigroups and
several applications. We prove in particular that the space curve parametrized by fi,..., fs has a flat
deformation into a monomial curve.

1. INTRODUCTION

Let K be a field and let K[z] be the ring of formal power series over K. Let fi(x),..., fs(x) be s
elements of K[z] and let R = K[fi,..., fs] be the subalgebra of K[z] generated by fi,..., fs. Given
[ € R, let o(f) the order of f. The set o(R) = {o(f) | f € R} is a submonoid of N, and the knowledge
of a system of generators of this monoid is important for the understanding of the subalgebra R. When
furthermore K[z] is an R-module of finite length, then o(R) is a numerical semigroup.

A similar construction can be made in the ring of polynomials K[z]. More precisely let fi(z),..., fs(x)
be s elements of K[z] and let A = K[f1,..., fs] be the subalgebra of K[z] generated by fi,..., fs. Given
f € A, let d(f) the degree of f. The set d(A) = {d(f) | f € A} is a submonoid d(A) of N, and the
knowledge of a system of generators of this monoid is important for the understanding of the subalgebra
A. When furthermore K[z] is an A-module of finite length, then d(A) is a numerical semigroup.

A numerical semigroup S is a submonoid of the set of nonnegative integers under addition such that
the N'\ S is finite, or equivalently, gcd(S) = 1 (the greatest common divisor of the elements of S), see for
instance [16]. In this case, there exists a minimum ¢ € S such that ¢ + N C S. We call this element the
conductor of S, and denote it by ¢(S) (the motivation of this name and others coming from Algebraic
Geometry is explained in [3, 8]).

Assume that f; is a monomial z% for every i € {1,...,s}. Then o(R) (respectively d(A)) is generated
by ai,...,as. In this case, R ~ K[X7,..., Xs]/T (respectively A ~ K[X},..., X,]|/T), where T is a prime
binomial ideal and, thus, V(T') is a toric variety.

Given a subalgebra R = K[f1,..., fs] (respectively A = K|[fi,..., fs]), the main objective of this
paper is to describe an algorithm that calculates a generating system of o(R) (respectively d(A)). The
algorithm we present here allows us, by using the technique of homogenization, to construct a flat Kfu]-
module (respectively K[u]-module) which is a deformation of R (respectively A) to a binomial ideal. This
technique is well known when R = K[fi, fo] and K is algebraically closed field of characteristic zero
(see [11] and [19]). It turns out that the same holds wherever we can associate a semigroup to the local
subalgebra, and also that the same technique can be adapted to the global setting. As a particular case
we prove that a plane polynomial curve has a deformation into a complete intersection monomial space
curve.

The paper is organized as follows. In Section 2 we focus on the local case, namely the case of a
subalgebra R of K[z]. We introduce the notion of basis of R and we show how to construct such a basis.
We also show that if o(R) is a numerical semigroup, then every element of a reduced basis is a polynomial.
In Section 3 we show how to construct a deformation from R to a toric ideal (or a formal toric variety)
by using the technique of homogenization. In Section 4 we focus on the case when R = K[f(x), g(x)]
and K is an algebraically closed field of characteristic zero. The existence in this case of the theory of
Newton-Puiseux allows us to precise the results of Sections 2 and 3. The difference with the procedure
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presented in Section 2 is that it does not rely in the computation of successive kernels. Then in Sections
5 and 6 we adapt the local results to the case of a subalgebra A of K[z]. When A = K[f(z), g(x)] and
K is algebraically closed field of characteristic zero, a basis of A can be obtained by using the theory of
approximate roots of the resultant of X — f(x),Y — g(x), which is a polynomial with one place at infinity.

The procedures presented here have been implemented in GAP ([10]) and will be part of the forthcoming
stable release of the package numericalsgps ([7]).

1.1. Some notation. We denote by (A) the monoid generated by A, A C N, that is, the set {nyz; +
o Ny [ mEN N €Nz € Aforalli € {1,...,m}}.

Associated to each numerical semigroup S we can define a natural partial ordering <g, where for two
elements s and r in S we have s <g r if there exists u € S such that » = s + u. The set g; of minimal
elements in S\ {0} with this ordering is called a minimal set of generators for S. The set of minimal
generators is finite since for any s € S\ {0}, we have z # y (mod s) if x # y are minimal elements with

respect to <g. The cardinality of the minimal generating system is known as the embedding dimension
of S.

2. SEMIGROUP OF A FORMAL SPACE CURVE

Let K be a field. In this section we will consider rings R that are subalgebras of K[z] and such that, if
we denote the integral closure of R in its quotient field by R, then R = K[z] and Ag(R/R) < co where
Ar(+) is the length as R-module. Part of the results of this section are inspired in [15] and in [14]. An
alternative procedure (implemented in Maple) is provided in [5]. The main difference with our approach
is that we do not rely on the multiplicity sequence, and thus we do not need to perform blow-ups. Also
we take intrinsic advantage in our implementation of the GAP package numericalsgps ([10, 7]).

Let f =Y, ciz' € R* = R\ {0}. Define supp(f) = {i,c; # 0}. We call minsupp(f) the order of f and
we denote it by o(f). We also set My(f) = co(f)xo(f). If My(f) = 2°U), then we shall say, by abuse of
notation, that f is monic. We set o(0) = 4o0.

We denote by o(R) the set of orders of elements in R* = R\ {0}, that is, o(R) = {o(f) | f € R*}. We
finally set Mo(R) = K[M,(f) | f € R*].

Proposition 2.1. Let f1, fo be elements of R* and let a = min{o(f1),0(f2)}.

(i) a <o(f1+ f2).
(ii) If o(f1) # o(f2) then a = o(f1 + fa).
(i) o(f1f2) = o(f1) +o(f2).

Proof. This follows easily from the definition of order. O

Proposition 2.2. [13, Lemma 3, p.486] Let Ry and Ry be rings of our type such that Ry C R and
O(Rl) = O(Rg). Then R1 = RQ.

Proposition 2.3. [13, Proposition 1, p.488] Let R be a ring of our type. Then Ag(R/R) = [N\ o(R)|.

The following two results appear in [15], and since this paper is very hard to find, we include the proofs
for sake of completeness.

Proposition 2.4. [15] Let R be a ring of our type. Then o(R) is a numerical semigroup.

Proof. Since R is a ring and by (iii) of Proposition 2.1, we have that o(R) is a subsemigroup of N. By
Ar(R/R) < oo and Proposition 2.3, we have the proof. O

Proposition 2.5. [15] Let R be a ring of our type. Then R contains every element f € K[z] of order

o(f) = c(o(R)).

Proof. Use Proposition 2.2 with Ry = R and Ry = R + 2°CK[z]. O
This later result allows to work with polynomials instead of series.

Let fi,...,fs bein R*. Let R = K[ f1,..., fs] be a subalgebra of K[z] as above, that is, the integral
closure of R in its quotient field is R = K[z]] and Ar(R/R) < oc.
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Under these hypotheses on R, we have that o(R) is a numerical semigroup (Proposition 2.4).
We say that the set {f1,..., fs} C R* is a basis of R if o(R) = (o(f1),...,0(fs)). The set {f1,..., fs}
is a basis of R if and only if M,(R) = K[M,(f1),- .., Mo(fs)]-

Proposition 2.6. Let the notations be as above. Given f(z) € K[z], there exist g(x) € R and r(x) € K[z]
such that the following conditions hold.

(i) f(2) = g(x) +r(z) = X0 Caft" - & + ().
(i) If g(z) # 0 (respectively r(x) # 0), then o(g) > o(f) (respectively o(r) > o(f)).
(i13) Either r(z) =0 or supp(r(x)) C N\ (o(f1),...,0(fs))-
Proof. The assertion is clear if f € K. Suppose that f ¢ K and let f(z) =), c;wt with p = o(f) > 0.
(1) If p ¢ (o(f1),...,0(fs)), then we set g' = 0,7! = c,2? and f! = f — c,aP.
1
(2) If p € (o(f1),--.,0(fs)), then c,@P = cpMq(f1)% -+ Mo(fs)%. We set g' = chfl ,,.f§§’ rt=0
and f'' = f —g".
In such a way that f = f1 + ¢! + 7!, ¢! € R, either r! = 0 or supp(r!) C N\ (o(f1),...,0(fs)), and
if f1 # 0, then o(f!) > o(f) = p. Then we restart with fl. We construct in this way sequences
(f*)iz1, (0%)kz1, (rF)i=1 such that for all k > 1, f = fF+ 38 g"+ 320 7f, and o(f) < o(f1) < -+ <
o(f*), Zle J' € R, s.upp(z:?:1 rt) € N\(o(f1),...,0(fs)) and for alli < j < k, if g* # 0 # ¢’ (respectively
rt # 0 # r7), then o(f) < o(g") < o(g?) (respectively o(f) < o(r?) < o(r?)). Clearly limj__, o f¥ = 0.
Hence, if g = limg— 1 o Zle g'and r = limj,__, | o Zle r’, then f = g+r and g, r satisfy the conditions
above. 0

We denote the series r(z) of the proposition above by Ro(f,{f1,..., fs}). This series depend strongly
on step (2) of the proof of Proposition 2.6. Let for example f; = 2%, fo = 2* + 25, f3 = 22 + 2°, and let
f=a% Wehave f = fo—2° = f2 — f1fo — 227 + 2''. We shall see that r(z) becomes unique if fi,..., fs
is a basis of R (see Proposition 2.8).

Proposition 2.7. The set {fi,..., fs} is a basis of R if and only if Ro(f,{f1,..., fs}) =0 for all f € R.

Proof. Suppose that {fi,..., fs} is a basis of R and let f € R. Let r(x) = Ro(f,{f1,.-.,fs}). Then
r(z) € R. If r # 0, then o(r) € (o(f1),...,0(fs)), which is a contradiction.

Conversely, suppose that {fi,..., fs} is not a basis of R and let 0 # f € R such that o(f) ¢
(o(f1),...,0(fs)). We have Ro(f,{f1,--.,fs}) # 0, which contradicts the hypothesis. O

Proposition 2.8. If {fi,..., fs} is a basis of R then for all f € K[z], Ro(f,{f1,..., fs}) is unique.

Proof. Suppose that f = gi1(x) + r1(z) = g2(z) + r2(x) where g1(z), g2(x), r1(x), r2(x) satisfy conditions
(1), (ii), (iii) of Proposition 2.6. We have r1(z) — ra(z) = g2(x) — g1(x) € R. If ri(x) — r2(z) # 0 then
o(ri(z) —re(x)) ¢ (o(f1),...,0(fs)). This contradicts the hypothesis. O

Let, as above, R = K[ f1,..., fs]. We shall suppose that f; is monic for all 1 <14 < s. Define
¢ :K[X1,...,Xs] — Klz], ¢(X;) =My(f;) forallie {1,...,s}.
Let {F1,..., F.} be a generating system of the kernel of ¢. We can choose all of them to be binomials.
If 7= X0 X0 X XD weset S = i pot - )t p Note that if p = Y3, do(fi) =
> 11 Bro(fx), then o(S;) > p.
Theorem 2.9. The system {fi,..., fs} is a basis of R if and only if Ro(Si, {f1,...,fs}) = 0 for all
ie{l,...,r}.

Proof. Suppose that {f1,..., fs} is a basis of R. Since S; € R for all i € {1,...,r}, then, by Proposition

2'7) RO(S’U {f17 cee 7f8}) =0.
For the sufficiency assume to the contrary that {f1,..., fs} is not a basis of R. Then there exists f € R

such that o(f) & (o(f1),...,0(fs)). Write
F= cofit-- 2.
(%)
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For all §, if cp # 0, we set pg = S5, B;0(fi) = o(f7* -~ f%%). Let p = min{py | cg # 0} and let {6, ..., 6"}
be such that p = o(flmi e fseé) for all i € {1,...,1} (such a set is clearly finite). Also p < o(f) < oc.

If Zi’:l chMo(ffi -"ffé) # 0, then p = o(f) € (o(f1),...,0(fs)). But this is impossible. Hence,
S chMo(flazi e fseé) =0, and then 3, CQinei - -Xseé € ker(¢). Hence

l ) r
0% i
D ep Xyt X8 =N
i=1 k=1
with A\ € K[Xy,...,X;] for all k € {1,...,r} (recall that Fi,..., F, are binomials generating ker(¢)).
This implies that

l r
07 i
chifll - fses = Z Ak(fl) ceey fs)Sk
i=1 k=1

From the hypothesis Ro(Sk, {f1,-..,fs}) = 0. Hence there is an expression of Sy of the form Sy =
k k k &
g cgefy o f27 with o( £ f27) > o(Sy).
T i i K
So by replacing 22:1 cgiffl e ffs with Y p  Ae(fi,- 00 fs) Zék Cgkfigl = -f§§ in the expression of f,

we can rewrite fas f =), Cglflel ~--f§i" with min{o(ff1 ~--f§i") | cg # 0} > p.
Since o f) < 400, this process will stop, yielding a contradiction. O

Algorithm 2.10. Let the notations be as above.

1. If Ro(Sk, {f1,.--, fs}) =0for all k € {1,...,7}, then {f1,..., fs} is a basis of R.
2. If r(z) = Ro(Sk,{f1,---,fs}) # 0 for some k € {1,...,r}, and if My(r(x)) = azx?, then we set

fsr1 = %r(a:), and we restart with {f1,..., fs+1}. Note that in this case,

(0(f1),---,0(fs)) & (o(f1), -+ -, 0(fs),0(fs1)) € o(R).

This process will stop, giving a basis of R, because the complement of o(R) in N is finite.

Observe that r(x) is not in general a polynomial. So we must use a trick to compute it, or at least the
relevant part of it. This is accomplished by using Proposition 2.5. If in the current step of the algorithm
(o(f1),...,0(fs)) is a numerical semigroup, then we compute its conductor, say c. Then ¢ > c(o(R)). To
compute Ro(f, {f1,.--,fs}) we do the following. Let p = o(f).

1. If p > ¢, then return 0. We implicitly assume that z* is in our generating set for a € ¢+ N (though we
do not store them).

2.1 p € (0(f1),---,0(fs)), then Mo(f) = 3op caMo(f1) -+ Mo(fs)%. Set f = f =D gcof -+ ff, and
call recursively Ro(f, {f1,-.., fs}) (the process will stop because the order of the new f is larger, and
eventually will become bigger than c after a finite number of steps).

3. If p & (o(f1),...,0(fs)), then return f.

If (o(f1),...,0(fs)) is not a numerical semigroup, let d be its greatest common divisor. Set ¢ =
de({o(f1),...,0(fs))/d). In this case we proceed as follows.

1. If p > ¢, then return f. We cannot ensure here that f will be reduced to zero, so we add it just in case.
2. pr € <O(f1)7 cee ,O(f5)>, then Mo(f) = ZQCQMO(fl)Gl te ‘Mo(fs)es' Set f = f - chﬂflel U sesa and

call recursively Ro(f,{f1,-.-, fs})-
3. If p &€ (o(f1),...,0(fs)), then return f. One might check first if d does not divide p, because in this

case for sure p & (o(f1),...,0(fs)).
Observe that by adding the conditions p > ¢, we are avoiding entering in an eventual infinite loop.

Suppose that {f1,..., fs} is a basis of R. Also suppose that for all i € {1,...,s}, f; is monic. We say
that {f1,..., fs} is a minimal basis of R if o(f1),...,0(fs) generate minimally the semigroup o(R). We say
that {f1,..., fs} is a reduced basis of R if supp(fi(z) —Mo(fi)) CN\o(R). Let i € {1,...,s}. If o(f;) €
(o(f1),...,0(fiz1),0(fi+1),---,0(fs)), then {f1,..., fi—1, fix1,..., fs} is also a basis of R. Furthermore,
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by applying the division process of Proposition 2.6 to f; — M(f;), we can always construct a reduced
basis of R.

Corollary 2.11. The algebra R has a unique minimal reduced basis.

Proof. Let {f1,...,fs} and {g1,...,9s} be two minimal reduced bases of R. Hence s is the embedding
dimension of o(R), and the same holds for s’; whence they are equal. Let ¢ = 1. There exists j; such that
o(f1) = o(gj,), because minimal generating systems of numerical semigroups are unique. If f; — g;; # 0,
then o(fi1 — gj,) ¢ o(R) (the basis is reduced), which is a contradiction because f; — g;; € R. The same
argument shows that {f1,..., fs} ={g1,...,9s} O

Remark 2.12. Let R = K[[fi,..., fs] and assume that f; is monic for all 1 < i < s. Also assume that
o(f1) < o(f2) < ... <o(fs). Set n =o(f1)and let fi = 2™ + Y, ctz’. By an analytic change of
variables, we may assume that f; = z”, hence, up to an analytic isomorphism, we may assume that
R = K[z", fa,..., fs]. In particular, we may assume that R has a minimal reduced basis of the form

" ga(x),. .., g¢(x).

Example 2.13. Let R = K[z* + 2%, 25,21 + 26+ _, 2], with K a field of characteristic zero. Then
R is a one-dimensional ring. Since the conductor of (4,6, 15) is 18, we have that Ag(K[X]/R) < oo and
we know by Propsition 2.5 that R = K[z* + 2°, 2%, 2% 4+ 216]. Let us denote 2* + 2% by f1, 2% by f» and
x1® + 216 by f3. The kernel of ¢ : K[X1, Xo, X3] — K[z], ¢(X1) = 2, ¢(X2) = 2% and ¢(X3) = 2° is
generated by X7 — X2, X3 — X3, hence we get S1 = x13+x14+%x15 and So = x31—|—%3:32. As 13 & (4,6,15),
we add it as fy = S;. We do not care about Sa, because the conductor of (4,6, 15) is 18.

Now, the conductor of (4,6,13,15) is 12. If we compute a system of generators of the kernel of
¢ K[X1, X2, X3, X4] — K[z], ¢(X1) = 2*, ¢(X2) = 25 ¢(X3) = 2'® and ¢(Xy) = 2'3, then all the
elements S; have orders greater than 12, and so the algorithm ends. We conclude that o(R) = (4,6, 13, 15).

We have implemented this algorithm in the numericalsgps ([7]) GAP ([10]) package. Next we illustrate
how to compute this semigroup with the functions we have implemented (that will be available in the
next release of the package).
gap> x:=X(Rationals,"x");;
gap> 1:=[x"4+x"5,x"6,x"15+x~16];;
gap> s:=Semigroup0fValues0fCurve_Local(l);;
gap> MinimalGeneratingSystem(s);

[ 4, 6, 13, 15 ]
gap> SemigroupOfValuesOfCurve_Local(l,13);
x~13

Remark 2.14. It is known (cf. [3, Section II.1]) that there exist relations between algebraic char-
acteristics and invariants of the semigroup o(R) and the ring R. Hence, in the Example 2.13, from
o(R) = (4,6,13,15) = {0,4,6,8,10,12, —}, we deduce that the conductor of o(R) is 12. The conductor
of R in R is precisely (z°(°(F)) ([3]). We have that Agr(R/R) = |[0,c(o(R)) — 1] N (N \ o(R))| = 7 counts
the number of gaps of o(R) ([13, Proposition 1]). The integer Ag(R/R) is the degree of singularity of R,
and this is why the genus of o(R) is called by some authors the degree of singularity of the semigroup
(see [3, 13]). In the setting of Weirstrass numerical semigroups the genus coincides with the geometrical
genus of the curve used to define the semigroup ([6]).

The number of sporadic elements of o(R) is Ag(R/(R: R)) = |[0,c(o(R)) — 1] No(R)| = 5.

The ring R is Cohen-Macaulay and its type is less than or equal to #T(o(R)) = 3, where for a numerical
semigroup I', T(T") = {x € Z\T' | . +T* C T'} ([3, Proposition I1.1.16]). According also to [3, Proposition
I1.1.16], equality holds if and only if o(R : m) = T(o(R)). However T(o(R)) = {2,9,11} and 2 & o(R : m).
So in our example we get an strict inequality.

Example 2.15. Let R = K[z*, 2% + 27, 213 + ay42' + a152"° + ...] with K a field. Using the same
argument as in the Example 2.13, we find that if char K # 2, we have that if a;5 — a4 + 1/2 = 0,
then {z* 2% + 27, 2'3} is the reduced basis of R. Furthermore, since (4,6,13) is a symmetric numerical
semigroup (the number of nonnegative integers not in the semigroup equals the conductor divided by
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two), then, by [12], R is Gorenstein. Finally Ag(R/R) = 8. Otherwise if aj5 — ai4 + 1/2 # 0, then
{x*, 2% + 27, 213 217} is the reduced basis of R with R a non Gorenstein ring. Furthermore Ag(R/R) = T.

Otherwise, if char K = 2, then the reduced basis of R is {24, 25 +27, 2!3, 2!5} and R is not a Gorenstein
ring. Here, Ag(R/R) = T.

Example 2.16. Let R = K[z8 2'? + 2 + 2!°], with K a field of characteristic zero. Using the same
argument as in the Example 2.13, we have that

1
(28,212 ¢ o144 215, 226 4 22T 4 220 5;331,
2% 4 19355 _ 19357 _ }x63 + %xm _ %xﬂ _ Ex% — @x%}
2 2 8 8 32 16 32

is the reduced basis of the Gorenstein ring R. Furthermore, we have Ag(R/R) = 42.

gap> 1:=[x"8,x"12+x"14+x715] ;;

gap> SemigroupOfValuesOfCurve_Local(l,"basis");

[ x°8, x"15+x"14+x712, -1/2*x"31+x"29+x"27+x"26,
-135/32%x783-15/16%x"75-95/32*x"71+25/8*x"67-1/8%x~63-1/2%x"57+1/2*%x"55+x"53 ]

Example 2.17. The following battery of examples was provided by Lance Bryant as a test for our
algorithm.

gap> 1:=[ [ x76,x"8+x79,x"19], [x77,x"9+x710,x719,x"31], [x77,x"21+x728+x~33],
[x74,x"6+x"7,x"13], [x76,x"8+x711,x710+2*x~13,x"21], [x"5,-x"18-x"21,-x"23,-x"26],
[x°5,-x"18-x"21,-x"26], [x"5,-x"18-x721,x723-x"26], [x76,x"9+x710,x719],
[x~7,x"9+x710,x719], [x°8,x"9+x~10,x~19], [x"7,x"9+x~10,x~17,x~19] 1 ;;

gap> List(l, i->MinimalGeneratingSystem(Semigroup0fValuesO0fCurve_Local(i)));
(f(e,8,19, 291, [ 7,9, 19, 29,311, [ 7,331, [4, 6, 13, 151,

(6,8, 10, 21, 23, 26 ], [ 5, 18, 26, 39, 47 1, [ 5, 18, 26, 39, 47 1],
[ 5, 18, 26, 39, 471, [ 6, 9, 19, 201, [ 7, 9, 19, 291, [ 8, 9, 19, 30 1],
L 7,9, 17, 19, 29 1 ]

Remark 2.18. We do not know a priori if R # K[z] and we do not have a general procedure to check
it. If the algorithm is called with such an R, it will eventually not stop.

3. DEFORMATION TO A TORIC IDEAL

Let the notations be as in Section 2. Given f(z) = Y~ ¢z’ € K[z], we set Hy(u,z) = disp
In particular, if we consider the linear form L : N> — N, L(a,b) = b — a, then Hy is L-homogeneous of

order p, that is, L(i — p,i) = p for all i € supp(f). We set Hp = K[u, Hy | f € R]. With these notations
we have the following.

0 t—D Al
i>p cuPxt.

Proposition 3.1. The set {fi,..., fs} is a basis of R if and only if Hgp = Ku, Hy,, ..., Hy.].

Proof. Note first that if H, € Hp for some g € K[z], then g € R. Suppose that {fi,..., fs} is a basis of
R and let f(z) € R. Write Hp(u,z) =}, ciu'Pz'. We have Mo (f) = cpa? = ¢, [[5; M, (f;)?%, hence
5 k
Hy—c, |[Hf =u'Hp
i=1

with f! € R and either f' =0, or o(f!) > p. In the second case we restart with f!. A similar argument
as in Proposition 2.6 proves our assertion.

Conversely, suppose that Hp = K[u, Hy,, ..., Hg ] and let f € R. Let P(Xo, X1,...,X,) € K[Xo, X1,..., X]
such that Hy = P(u,Hy,,...,Hy,). Setting u = 0, we get that Mo(f) = P(Mo(f1),...,Mo(fs)) €
K[Mo(f1),-.-, Mo(fs)]. Hence My (f) € K[Mo(f1), ..., Mo(fs)]- O
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Suppose that {fi,..., fs} is a basis of R. Then T' = K[u][Hy,,...,Hy] is a K[u]-module. When
u =1 (respectively u = 0), we get T' |,=1= R (respectively T |,—o= K[M(f1),..., M(fs)]). Hence we get
a deformation from R to K[My(f1),. .., Mo(fs)]. More precisely let

@D : K[[Xl,...,XS]] — R:Kﬂfl,...,fs]]
and
Hy : Ku][X1,..., Xs] — T =K[u][Hy,, ..., Hy]

be the morphisms of rings such that Hy(u) = u, ¥(X;) = f; and Hy(X;) = Hy, for alli € {1,...,s}. Let,
as in Section 2,

Si= St R =Y <<
ei

with o(flei --'fseé) = Déi > >0 a};o(fk) S ore 1ﬁko(fk) = p;. Let I (respectively J) be the ideal
generated by (G; = Xlazl e X?é —Xlﬁi . Z@z cer X62)1<Z<,, (respectively (H; = XO‘1 ~X§‘é—

Xlﬁi . -Xfi' -2 uDéi_picgini . -Xg Ji<i<r) in K[X7, ..., X] (respectively K[u][X, ..., Xs]).
Well shall consider on N* (respectively, N**1) the linear form

O(b1, ..., 0 Zeofz

(respectively Op(6o,01,...,05) = =0 + > i, 0;0(fi)).

Given a monomial X% ... X% (respectively u® X% ... X%) we set O(X? ... X%) = O(6y,...,0;)
(respectively Oh(ueoXle1 - X9%) = 04(00,01,...,0)).

For G = Y, co X ... X0 (respectively H = 3, cou® X% ... X0 we say that G (respectively H) is
O-homogeneous of order a (respectively Op-homogeneous of order b) if O(6y,...,0s) = a (respectively
On(6o,01,...,05) =b) for all (61,...,0s) (respectively (6o, b1,...,05s)) such that ¢y # 0. More generally
let G =) ,~0Gp, where py < p1 < --- and Gp, is O-homogeneous of order p;. We set O(G) = py. We
also set in(G) = Gy, and we call it the initial form of G.

We finally set O(0) = 400, and we recall that O(G) = +oo if and only if G = 0.

Lemma 3.2. With the standing notations and hypothesis, the kernel of 1 is generated by I.

Proof. Let, as in Section 2, F1, ..., F, be a generating system of the kernel of the morphism

¢ K[Xy,..., Xs] — K[z], ¢(Xi) = Mo(fi)
for all i« € {1,...,s}. In particular F; is O-homogeneous of order o(f;) for all ¢ € {1,...,s}, and

K[[Xl, .. .,XS]]/(Fl, ‘e ,Fr) ~ K[[Mo(fl), ‘e ,Mo(fs)]].
For alli e {1,...,r},¥(G;) = 0. Hence I C ker(¢)).

k
For the other inclusion, let G = ), X% ... X% € ker(y). Write G = > k>0 cgkal --~X§§ where
0(69,...,09) <O(0],...,0!) <---. Since ¥(G) = 0, we have that

ok ok
Sl gt -

k>0

k
In particular } - 5 gr)—o(g0) cor Mo (f1)01 -+ M, (f5)% = 0, and consequently 2 k,0(6%)=0(6%) celeel - ‘Xg]; €

ker(¢). This implies that
T
k
3 cgkal...Xg’“:Z)\gFi
k,0(0%)=0(6°) i=1
for some A € K[X1,..., X,], i € {1,...,r}, with A\? is O-homogeneous of order O(G) — O(F}). Hence

Z Cgkflglf' Z)\O fl,...,fs

k,0(6%)=0(60)
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Let G! = G — >I_; MG;. We have G € ker(y). If G! # 0, then O(G) < O(G'). Then we restart
with G'. We construct in the same way G2, and Al,..., Al such that G! = G? + Z;Zl )\}Gj with
O(G) < O(GY) < O(G?), A\l O-homogeneous and O(A) < O(A}) for all i € {1,...,7}. If we continue in
this way, we get that for all £ > 0,

G=GHT 1Y "\ + N +...+ )G,
i=1
with O(G) < O(G1) < ... < O(GF*Y), /\g O-homogeneous, and O(\?) < O(A}) < --- < O(\¥) for
all i € {1,...,r} and for all j € {1,...,k}. If Gk = 0 for some k, then we are done. Otherwise,
let Ai = > 02, A and let G = limg_ 400 G¥. We have G = 0 and G = >.7_, \;G;. This proves our
assertion. O

Let the notations be as above. Let G = ), 09)(191 - X% € K[X1,...,Xs] and write G = 3,5 Gy,
with pg < p1 < --- and G)p, O-homogeneous. We set Hg = > .-, uP* P°G,,, in such a way that Hg is
Op-homogeneous of order py. Given an ideal S of K[X1,..., X,], we set in(S) = (in(G) | G € S\ {0}).
We also denote by Hg = (Hg | G € S\ {0})K[u, X1, ..., Xs]. With these notations we have in(S;) = F;
and Hg, = H; for all i € {1,...,r}.

Lemma 3.3. Let the notations be as above. We have in(I) = (Fi,...,F,), and Hy = (Hy,...,H,) = J.

Proof. The first assertion follows from the proof of Lemma 3.2. To prove the second assertion, let H € Hy
and assume that H is Op-homogeneous. We have G = H(1, X4,...,H,) € I. Furthermore, H = u“Hg
for some e > 0. Write Hg = in(G) + H* where H(0, X1,...,X5) = 0. We have in(G) = Y.i_; MiF}
where )\; is O-homogeneous of order py — O(F;). Let Hon = Hg — > ;i MiHa, = Hg — >,y A\iH;. Then
Hgi € Hy is Op-homogeneous and Oy (Hg) < Op(Hgi). Now we restart with Hgi. We prove in this way
that H € (Hy,...,H,). O

Let H = Y cou’ X% ... X0 ¢ ker(Hy). Write H = Y, H*, where H* is Op-homogeneous. For
all k, we have Hy(H*) = 0. Setting G, = H*(1,X1,...,Xs), we have ¢)(Gy) = 0. This implies that
Gy € I. Hence Hg, € (Hi,...,H,) by Lemma 3.3. But HF = u* Hg, for some e, € N. Consequently
H* € (Hy,...,H,). Finally H € (Hy,...,H,), which proves that ker(Hy) C J. As the inclusion
J C ker(Hy) is obvious, we conclude that J = ker(Hy).

Now the morphism

Klu] — K[u][X1,...,X]/J
is flat because u is not a zero divisor. Hence we get a family of formal space curves parametrized by u
that gives us a deformation from K[X1,..., X,]/I to K[Xy,...,X,]/(F1,...,E).

In particular we get the following.

Theorem 3.4. Every formal space curve of K, parametrized by Y1 = g1(x),...,Y; = g/(x) has a defor-
mation into a formal monomial curve of K" for some positive integer r.

4. Basis oF K[f(x), g(z)]

In this section we study the particular case of a subalgebra R of K[z] generated by two elements, and
see that a different approach can be considered to study o(R), with some interesting applications.
Let f(z) = 3,5, a;iz’ and g(x) = 2ism bjz? be two elements of K[z] and suppose, without loss of
generality, that the following conditions hold:
(1) ap =by =1,
(2) n <m,
(3) the greatest common divisor of supp(f(z)) Usupp(g(z)) is equal to 1 (in particular for all d > 1,
f(@),9(z) ¢ K[2]).
Let the notations be as in Section 2, in particular R = K[f,¢]. By the analytic change of variables
f(z) = 2", we may assume that R = K[z", g(z)]. Let F(X,Y) be the z-resultant of X —z",Y —g(z), that
is, F(X,Y) is the generator of the kernel of the map p : K[X,Y] — K[z], p(X) = 2™ and p(Y') = g(z).
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Since K[f,g] = K[f,g — f*] for all k£ > 1, then we shall assume that n < m and also that n does not
divide m. Given a nonzero element G(X,Y) ¢ (F(X,Y))K[X, Y], we set int(F,G) = o(G(f(x),g(x))).
Condition (3) implies that the set of int(F,G),G(X,Y) ¢ (F(X,Y))K[X,Y], is a numerical semigroup.
We denote it by I'(F"). We have the following.

Proposition 4.1. o(R) =I'(F).

Proof. We have a € T'(F) if and only if a = o(G(f(z), g(z))) for some G(X,Y) € K[X,Y] if and only if
a € o(R). O

Suppose that K is algebraically closed with characteristic zero, and let dy = n, m; = inf{i € supp(g) |
dy 11}, that is, m; = m, and ds = ged(n,my). For all k > 2 we set my, = inf{i € supp(g) | di 1 i} and
di+1 = ged(dg, my). It follows that there exists h > 1 such that d.1 = 1. The set {my,...,m;} is called

the set of Newton-Puiseuz exponents of F(X,Y). Let e = diku for all 1 < k < h and define the sequence

(rk)o<k<n as follows: ro = n,r1 = m, and for all 2 < k < h,ry = rp_1ex—1 + mp — my—_1. With these
notations we have the following (see [1]).
(1) T'(F) = o(R) is generated by {ro,r1,...,7n}
(2) rrd < rgy1dgyq for all ke {1,...,h —1}.
(3) I'(F) = o(R) is free with respect to the arrangement (rg,...,r,). More precisely, let e, = dﬁl
for all k € {1,...,h}. Then egry € (ro,..., k1)
4) C= Zzzl(ek — 1)ry, —n+ 1 is the conductor of I'(F') = o(R).

Example 4.2. Let f = 27 and g = 2* + 2. The above resultant is then F = y7 — 722%y? — 2% — 1422y? —
72%y — 2. Then T'(F) = o(R) = (2,7).

gap> Resultant(x-t"7, y-t"4-t"2,t);

yoT-T*x" 2%y " 3-x"4-14%x" 2%y " 2-7T*x"2%y-x"2

gap> s:=Semigroup0fValues0fCurve_Local([t"7,t"4+t"2]);

<Modular numerical semigroup satisfying 7x mod 14 <= x >

gap> MinimalGeneratingSystem(last);

[2, 7]

gap> IsFreeNumericalSemigroup(s);

true

Let the notations be as above. For all £ > 2, let Gi(X,Y) € K[X,Y] such that o(Gg(z", g())) = rg.

It follows from [1] that degy Gy = 7-. If gi(z) = Gk(2", g(2)), then we have the following.

Proposition 4.3. The set {z",g,92,...,gn} is a basis of R, that is, R = K[z", g, g2, ..., gn] and My(R) =
K[a™, ™, a2, ... x"].
Note that, by a similar argument as in Section 2, we may assume that f = 2", g = 2™ + ZieG(F(F)) clat,
and for all k > 2, gi = 2™ + 3, cqr(r)) cFal, where G(T'(F)) = {j € N| j ¢ T(F)} is the set of gaps of
['(F).
Let the notations be as in Section 3. The morphism

D :K[u] — T =K[u][Hf, Hy, Hy,, ..., Hg,]
gives us a deformation of T' |,—1= R = K[f(x), g(z), g2(z), ..., gn(z)] to T |y=o= K[z", 2™, 2", ... z"™].
Note that, since (n,m,ro,...,7) is free with respect to the given arrangement, then it is a complete
intersection (see for instance [16]). For all k € {1,..., h}, write exry = Zi:ol 0kr; with 0 < 05 < e; for all
i€{l,...,k—1}. If B is the ideal of K[X(, X1, ..., X}] generated by

(xe —xi xe - xBx%  xe o x%x%  x%
1 0 »<*2 0 1 29 “*h 0 1 " “*h-1

then
K[z", 2™, 2™, ..., 2"™] ~ K[Xo, X1, ..., Xp]/B.
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Let F(X,Y) be the z-resultant of X —2",y—g(x). By hypothesis, F/(X,Y) is a polynomial. Furthermore,
FX,Y)=Y"+a;(X)Y" L 4+... 4+ a,(X) with o(a;(X)) > for all 2 < i < n. Set Gj41 = F and for all
k>1, let

k—1
k k k
G =G — XU TG + 3 choxobait - gy,
i=1 ok
where the following conditions hold:
(1) foralli e {1,...,k—1},0 < 0F < ¢;;
(2) for all o, if cZk # 0, then for all i € {1,...,k}, 0 < oF < ¢;;
(3) for all oF, if c’;k # 0, then afn + Zle afr; = DF > epry, = 0krg + Zk 'Ok,
It follows from Section 3. that if I (respectively J) is the ideal generated by

(X" = HX +Z X X X g
k
(respectively (X% — H X +Zak ck cubs emXaoX - X ¥ 1<k<n) in K[Xo, . . ., Xp] (respec-

tively K[u][Xo, ... ,Xh]]), then

R =K[z", g(z), g2(x), ..., gn(z)] ~ K[Xo, X1,...,Xp]/]
and
Ku[z", Hy, Hyy, . .., Hy ] ~ K[u][Xo, X1, .., Xp]/J.
Furthermore, K[u][Xo,X1,...,X]/J is a flat K[u]-module. This gives us a family of formal space

curves parametrized by w which is a deformation from K[Xg, X1,..., X3]/I to the formal toric variety
K[Xo, X1,...,Xn]/B. The later being a complete intersection, we get the following.

Theorem 4.4. Every irreducible singularity of a plane curve X = f(x),Y = g(x) of K? has a deformation
into a formal monomial complete intersection curve of KM for some h > 1.
Example 4.5. Let f(z) = 2*, g(z) = 2% + 7. The minimal polynomial of (f(z), g(x)) is given by:
F(X,Y)=Y*-2X3Y? 4+ X® —4X°Y - X" = (Y? - X3)? —4X°Y — X"

Let 1o =4 =dj,r1 =6 = my and G; =Y. We have ds = ged(6,4) = 2, hence my = 7. It follows that
r9 = 13. Note that if Go = Y2 — X3, then go(x) = Go(f(z),g(z)) = 2213 + z'*. Hence I'(F) = o(R) =
(4,6,13) and {f(x),g(z),g2(x)} is a basis of R. Let us double check it.
gap> SemigroupOfValues0fCurve_Local([x"4,x"6+x"7],"basis");
[ x4, x°7+x"6, -1/2*%x"15+x"13 ]
(Observe that the output is different, since this is a reduced basis: we change 2x'3 + 2* with '3 + %3314’
and then using that 14 = 2 x 4 + 6, we replace this last polynomial with 23 — %xw.)

Consequently, Hg = K[u, z*, 2% + ux”, 22" + uz!4]. With the notations above, e; = 3, e = 2, hence
K[z, 2%, 23] ~ T = K[ Xo, X1, X2] /(X? — X3, X3 — X3 X1), and

Ku] — K[u][Xo, X1, Xa]/(X? — X3, X3 — 4X5 X1 — u*X{)

gives us a deformation from R to T' (we can also change X9 with %Xg, and then B = (X? — X3, X2 —
4X5X1)).

5. SEMIGROUP OF A POLYNOMIAL CURVE

Let K be a field and let fi(z),..., fs(z) be s polynomials of K[z]. Let A = K|[f1,..., fs] be a subalgebra
of K[z], and assume, without loss of generality, that f; is monic for all i € {1,...,s}. Given f(x) =

P izt € A, with ¢, # 0, we set d(f) = p and M(f) = c,2P, the degree and leading monomial,
respectively. We also define supp(f) = {i | ¢; # 0}. The set d(A) = {d(f) | f € A} is a submonoid of
N. We shall assume that As(K[z]/A) < oco. In particular d(A) is a numerical semigroup. We say that
{f1,..., fs} is a basis of A if {d(f1),...,d(fs)} generates d(A). Clearly, {f1,...,fs} is a basis of A if
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and only if K[M(f),f € A] = K[M(f1),...,M(fs)]. For several variables, these basis are known in the
literature as SAGBI basis ([17, 4]). Since there are already algorithms in the literature to calculate a
basis of A, we will not include the procedure here.

We would like just mention that if we follow a similar argument to the one used in Section 2, the
sequences of degrees decrease, and thus the finiteness conditions are easier to deduce. In this setting a
basis for A is unique up to constants.

6. DEFORMATION TO A TORIC IDEAL
Let the notations be as in Section 5. Given f(z) = > c;a’ € K[z], we set hy(u,z) = YL couP~'a’,
in particular, if we consider the linear form Ly, : N —— N, L(a,b) = a + b, then hy is Ly-homogeneous of
degree p, that is, Ly (i,p—1) = p for all i € Supp(f) . We set ha = K[u, hy | f € A]. With these notations
we have the following result, and its proof is similar to that of Proposition 3.1.

Proposition 6.1. The set {fi,..., fr} is a basis of A if and only if ha = Ku, hy,, ..., hy].

Suppose that {f1,..., fs} is a basis of A. By the inclusion morphism of rings D : K[u] — B =
Klu, hyf,,...,hs], B is a Klu]-module. When u = 1 (respectively v = 0), we get B |,—1= A (respec-
tively B |y=0= K[M(f1),...,M(fs)]). Hence we get a deformation from A to K[M(f1),...,M(fs)]. More
precisely let

G KX, Xs] — Kf1, ..., fi]
and
hy  Klu)[ X1, ..., Xs] — Klu][hg, ..., by
be the morphisms of rings such that hy(u) = u, ¥(X;) = fi; and hy(X;) = hy, for alli=1,...,s. For all
1=1,...,7, let

ot i B i .9 9t
Sy= fire fos — 11"‘fsﬁS:ZCZQif11"'fss
Qi

with d(f19§ -"ffé) = Déi > S abd(fy) = Yiq Bid(fx) = pi. Let I (respectively J) be the ideal
o '

generated by (G; = Xlazl : -~X§lé—X15i . "XE;—ZQi céinei . ¢

Xlﬁi ---Xsﬂg - upi_[)éicéi)('fi . -Xgé)lgigr) in K[X7,..., X;] (respectively Klu][X1, ..., X]).

Well shall consider on N*® (respectively, N*+1) the linear form

*)1<i<r (respectively (H; = Xloéz1 X

D(fr,....00) = 6:d(f:)
i=1

(respectively Dy, (6,01, ...,0s) = 0o+ > i1 0;d(fi)).

Given a monomial X101 -+ XY (respectively ueOXf1 c X)) we set D(Xla1 - X%) = D(by,...,05)
(respectively Dy (u% X% ... X%) = Dy (09, 061,...,05)).

For G =), 09X191 -+ XY (respectively H = >, ceuaonl - X9%), we say that G (respectively H) is
D-homogeneous of degree a (respectively Dp-homogeneous of degree b) if D(61,...,05) = a (respectively
Dy (6o,01,...,0s) = b) for all (61,...,0s) (respectively (6, 01,...,05)) such that ¢y # 0. More generally
let G =>"}" Gp, where pg > p; > -+ > py, and G, is D-homogeneous of degree p;. We set D(G) = po.
We also set In(G) = G, and we call it the initial form of G.

Lemma 6.2. With the standing notations and hypothesis, the kernel of 1 is generated by I.
Proof. Let Fy, ..., F, be a generating system of the kernel of the morphism
¢ K[Xy,..., Xs] — K[z, ¢(Xi) =M(fi)

for all ¢ € {1,...,s}. In particular F; is D-homogeneous of degree d(f;) for all i € {1,...,s}, and
K[X1,...,Xs|/(F1,..., F) ~KM(f1),...,M(fs)]-
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Forallie {1,...,r},4(G;) = 0. Hence I C ker(¢). For the other inclusion, let G = > cp X' - X0 ¢
k
ker(¢)). Write G = >/, cgkal ---Xg§ where D(6°) > D(6') > --- > D(6™). Since (G) = 0, we have

that
> gyt £ =0,
k=0

k 9k

In particular, > pgr)=p(e0) cng(fl)elf e 1\/[(]“8)95@c = 0, and consequently ;. 5 gr)=p(0) cgkal - Xt €

ker(¢). This implies that
T
k
S X X% =3 N
k,D(6%)=D(60) i=1
for some A0 € K[X1,..., X4, i € {1,...,7}, with A\ is D-homogeneous of degree D(G) — D(F;). Hence

ST ef 1 =Y N S
1=1

k,D(0%)=D(6°)

Let G' = G — Y I_ \VG;. Tt follows that G' € ker(y). If G! # 0, then D(G) > D(G'). Then we
restart with G1. We construct in the same way G2, and A}, ..., Al such that G = G? + > et )\}Gj with
D(G) > D(G') > D(G?), A} D-homogeneous and D(AY) > D(\}) for all i € {1,...,7}. If we continue in
this way, we get that for all £ > 0,

G=G"" Y N+ +...+ )G,
=1

with D(G) > D(G') > --- > D(GF), )\g D-homogeneous, and D(A\?) > D(A!) > --- > D(\F) for
all i € {1,...,r} and for all j € {1,...,k}. Thus, there exists [ such that G*! = 0. Hence G =
S A+ AL+ ..+ AD)G;. This proves our assertion. O

Let the notations be as above. Let G = ), C@Xlel - X0 € K[Xy,...,X;s and write G = Y ) Gy,
with po > p1 > -+ > pp, and G, D-homogeneous. We set Hg = > " uP°~PiG),, in such a way that Hg
is Dj-homogeneous of degree pg. Given an ideal S of K[X1,. .., X;], we set In(S) = (In(G) | G € S\ {0}).
We also denote by Hs = (Hg | G € S\ {0})K[u, X1, ..., X;]. With these notations we have In(S;) = F;
and Hg, = H; for all i € {1,...,7}.

Lemma 6.3. Let the notations be as above. We have In(I) = (Fy,...,F,), and Hy = (Hy,...,H,) = J.

Proof. The first assertion follows from the proof of Lemma 6.2.

To prove the second assertion, let H € H; and assume that H is Dj-homogeneous. We have G =
H(1,Xy,...,Hs) € I. Furthermore, H = u®Hg for some e > 0. Write Hg = In(G) + H' where
HY(0,X1,...,X5) =0. We have In(G) = Y_I_, \;F; where ); is D-homogeneous of degree D(G) — D(Fj).
Let Hpn = Hg — Y.,y MiHg, = Hg — Y _;_; \iH;. Then Hg € Hy is Dp-homogeneous and Dy, (Hg) >
Dyp(Hg). Now we restart with Hgi. In this way we show that H € (Hy,..., H,). O

Let H = Y coul X% ... X% € ker(hy). Write H = > p_o H* where H* is Dj-homogeneous. For
all k, we have hy(H*) = 0. Setting G, = H*(1,X1,...,Xs), we have ¢(Gy) = 0. This implies that
Gy € I, and thus Hg, € (Hi,...,H,) by Proposition 6.3. But HF = u Hg, for some e, € N, whence
H* € (Hy,...,H,). Finally H € (Hy, ..., H,), which proves that ker(hy) C J. The inclusion J C ker(hy)
is obvious, and we can conclude that J = ker(hy).

Now the morphism

Klu] — Klu][X1,...,X,]/J
is flat (because p(u) is not a zero divisor for all p(u) € K[u]). Hence we get a family of polynomial space
curves parametrized by u which gives us a deformation from K[ X1, ..., X,]/I to K[Xy,..., X, |/(F1,..., F}).

In particular, we get the following analogue to Theorem 3.4, which can be seen as a a geometric

reinterpretation of [18, Corollary 11.6] (also [4, Corollary 6.1}).



BASES OF SUBALGEBRAS OF K[z] AND K]z] 13

Theorem 6.4. Every polynomial space curve of K!, parametrized by Y1 = g1(z),...,Y; = g/(z) has a
deformation into a monomial curve of K" for some positive integer r.

7. Basis oF K[f(z),g(z)]

In [20], the case when a subalgebra A of K[z] has a (SAGBI) basis with two elements is treated. Here
we study subalgebras generated by two elements of K[z], and see how a basis can be obtained by using a
different approach to that of the general case, as we already did for K[z] in Section 4.

Let f(z) = > i a;z" and g(z) = >_j=1bjz’ be two polynomials of K[z] and suppose, without loss of
generality, that the following conditions hold

(1) ap = by, =1,

(2) n=m,

(3) the greatest common divisor of supp(f(z)) Usupp(g(x)) is equal to 1 (in particular for all d > 1,

f(@), (=) ¢ Klz9)).

Let the notations be as in Section 5, in particular A = K][f,g]. Let also FI(X,Y) be the z-resultant
of X — f(z),Y — g(x), that is, F(X,Y) is the generator of the kernel of the map ¢ : K[X,Y] —
Klz],¥(X) = f(z) and ¥(Y) = g(x). Since K[f,g] = K[f,g — f], then we shall assume that n > m.
Write F(X,Y) = Y™ + ¢ (X)Y" 1 + ... + ¢,(X). Given a polynomial G(X,Y) ¢ (F(X,Y))K[X,Y],
we set int(F,G) = deg,G(f(x),g(x)). Assume that K is algebraically closed with characteristic zero.
Let d be a divisor of n, and let G be a monic polynomial in K[X][Y] of degree 5 in Y. Write F' =
G+ oq(X,Y)G¥ 4 -+ + ag(X,Y) where for all k € {1,...,d}, if aj, # 0, then degyoy, < 2. We say
that G is a dth approzimate root of F if oy = 0. There is a unique dth approximate root of F'. We denote
it by App(F,d). The following results can be found in [1].

Theorem 7.1. Under the standing hypothesis.
(1) F(X,Y) has one place at infinity, that is the affine curve F(X,Y) = 0 has one point at infinity,
and the projective closure of this curve in IP’]?< s analytically irreducible at this point.
(2) {int(F,G) | G € K[X, Y]\ (F)} is a numerical semigroup.
(8) Let D(n) be the set of divisors of n. The set {int(F, App(F,d)) | d € D(n)} generates T'(F).

We call {int(F,G) | G € K[X,Y]\ (F)} the semigroup of F, and we denote it by I'(F).
Corollary 7.2. Let the notations be as above. We have d(A) = T'(F).

Proof. In fact, h(z) € A if and only if h(z) = P(f(z),g(x)) for some P(X,Y) € K[X,Y]. Hence a € d(A)
if and only if a = int(F, P), P € K[X, Y] which means that a € I'(F). O

Let F(X,Y)=Y"+c;(X)Y" 1 4...+¢,(X) be as above, and assume, after a possible change of variables
X'=X,Y' =Y+, that ¢,(X,Y) = 0 (note that this does not change A). In particular App(F,n) =Y.
A system of generators of I'(F') can be found algorithmically in the following way.

Let ro = di = n = int(F, X),r; = degxan(X) = int(F, App(F,n)), and do = ged(rg,r1). We set
G2 = App(F,d2),r2 = int(F,G2) = deg,Ga2(f(x),g(z)), and d3 = gcd(rs,ds), and so on... With these
notations we have the following:

(1) dy > dg > ... and there exists h > 1 such that d1 = 1;
(2) T'(F) =d(A) is generated by {ro,r1,...,rs};
(3) dek > T 1dk 1 for all k € {1 h};
(4) T'(F) = d(A) is free with respect to the arrangement (rg,...,7,). More precisely, let e =
for all k € {1,...,h}. Then exry € (ro,...,Tk—1);
(5) C = Zzzl(ek — 1)rg —n+ 1 is the conductor of I'(F) = d(A).
Lemma 7.3. If A =K[z], then ry = di41 for all k =1,...,h. In particular deg, G (f(z),g(x)) =1 and
m divides n.
Proof. If A = K][z] then C = 0, hence Zzzl(ek—l)rk = n—1. Since ry > dj41, then Zzzl(ek—l)rk >n—1

with equality if and only if rp = di4q for all k = 1,..., h. Since m = r; = do = ged(n, m), then m divides
n. O

di
di41
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Lemma 7.4. [20, Theorem 2] If gcd(n,m) = 1, then {f(z),g(x)} is a basis of A.
Proof. If ged(n,m) = 1, then I'(F') = d(A) = (n,m). Hence {f(z),g(x)} is a basis of A. O

Lemma 7.5. Suppose that gcd(n, m) = p1 - --p; where p; is a positive prime number for all i € {1,...,1}
(and the p;’s are not necessarily distinct). The set {f(x),g(x)} is not a basis of A. Furthermore, if ¢ is
the cardinality of a basis of A, then 2 < ¢ <1+ 2. In particular, if gcd(n,m) is a prime number p > 1,
then a basis of A has either two or three elements.

Proof. Since ged(n, m) > 1, then the first assertion is clear. On the other hand, since dy = ged(n,m) =
p1- - pr, we have A # K|z], and h < 1+ 1. Hence I'(F') = d(A) has at most [ + 2 generators. The result

now follows. U
Remark 7.6. Let r = (r9p = n,r1 = m,re,...,r) be a sequence of integers and for all £ > 1, let
dp, = ged(rg, -+ ,7—1) and e = de - Assume that the following conditions hold:

di41

(1) dq >d2>...>dh+1 =1;
(2) redy > rp_1d_q for all k € {1, Ce ,h};
(3) exr €< 710y... 71 > forall k=1,... h.

Such a sequence is called a §-sequence and it is well known (see [1]) that there exists a polynomial F'(X,Y)
with one place at infinity such that the semigroup {rankgK[X,Y]/(F,G),G ¢ (F)} is generated by 7.

It follows from Theorem 7.1. that a polynomial curve has one place at infinity. The converse is not true
in general. Abhyankar asked whether every semigroup generated by a d-sequence (hence the semigroup
of a curve with one place at infinity) is the semigroup of a polynomial curve (for example, the d-sequence
(10,4,5) generates the semigroup (4,5) which is the semigroup of the polynomial curve A = K[z?, 2°]).
It has been proved recently that the answer is no ([9]). It would be nice to see which supplementary
conditions a §-sequence should satisfy in order to generate the semigroup of a polynomial curve.

Remark 7.7. Let f(z) and g(z) be as above, and let A = K[f(z),g(x)]. Let also F(X,Y) be the z-
resultant of X — f(z) and Y — g(z). Let ro = n,r1 = m,ra,...,r, be the generators of I'(F') calculated
as above. Let 1 < k < h and let Gx(X,Y) = App(F,dy). We have d(Gy(f(x),g(z)) = rg, but G is
not the unique polynomial with this condition (for example, d((Gr + A)(f(z), g(x))) = rg for all A # 0).
Hence it is natural to ask the following: is there a polynomial G(X,Y) (of degree < n in Y') such that
G is parametrized by polynomials in x such that d(G(f(x),g(x)) = rx? Such a polynomial, if it exists,
should be of degree i and should have the contact with F' at a characteristic exponent of F (see [1]
for the definition of the characteristic exponents of a curve with one place at infinity and the notion of
contact). Hence the existence of such a polynomial implies that a polynomial curve can be approximated

by polynomial curves.

Let the notations be as above, in particular F(X,Y) = Y™ 4 ¢;(X)Y" ! 4+ .- + ¢,(X) is the a-
resultant of (X — f(x),Y — g(z)). Let G; = Y,Ga,...,G} be the set of approximate roots of F(X,Y)
constructed algorithmically as above. In particular g = n,r; = m,re = int(F, Gs),...,r, = int(F, Gp)
generate d(A4). For all k = 2,...,h, let gx(z) = Gi(f(x),9(x)) and let M(gy) = by, z™. We have
A=K[f(z),g9(x),g2(x),...,gn(z)]. Furthermore, the map

D :Klu| — B =Klu][hs, hg, hgy, ..., hg,]

introduced in Section 6. gives us a deformation of the polynomial curve B |,—1= A into B |,—0=
K[¢™, ¢™, ¢, ... t"™]. Note that, since (n,m,rq,...,ry) is free with respect to the given arrangement,
then it is a complete intersection. For all k € {1,...,h}, write exr = Zf:_ol 0%r; with 0 < 0F < e; for
every i € {1,...,k — 1}. With the notations above, if T" is the ideal of K[Xy, X1, ..., X}] generated by
n 2 2 h h oh
(X0 = X2, X2 — X0OXJ . xe - X xH X ,
then
K[z", 2™, 2™, ... 2" ~ K[Xo, X1,..., Xp]/T.



BASES OF SUBALGEBRAS OF K[z] AND K]z] 15

Set Gp+1 = F and for all £ > 1, let

Gry1 = G}F —x% HGZ +ZC L X0 Gal Gt
=1 ak
where the following conditions hold:
(1) foralli € {1,...,k—1}, 0 <0F < ¢;;
(2) for all o, if czk # 0, then for all i € {1,...,k}, 0 < oF < ¢,
(3) for all o, if c];k # 0, then afn + Zle afr; = DF < epry, = 0kro + Zk ! Okr;

k
It follows from Section 6 that if I (respectively J ) is the ideal generated by (X* ng Hk_l Xf L
k

k k k
Dok cZngo.Xlal -+ X *)1<p<p (vespectively (X H X +Zak cruckTE = DkXOlO XOé1 o X M) 1<k<n)
in K[Xy,...,Xy] (respectively K[u][Xo, ... ,Xh]), then

A =K[z",g(x), g2(), ..., gn(z)] ~ K[ X0, X1,..., Xp]/I
and
Klu][2", hg(z), hgy(z)s - - - s Pg )] = Klu)[Xo, X1, ..., Xu]/J.
Furthermore, K[u][Xo, X1,...,Xp]/J is a flat K[u]-module. This gives us a family of space curves

parametrized by u which is a deformation from K[ X, X1, ..., X]/I to the toric variety K[ Xo, X1, ..., Xn]/T.
The later being a complete intersection, we get the following result.

Theorem 7.8. Every polynomial curve X = f(x),Y = g(x) of K? has a deformation into a monomial
complete intersection curve of KM for some positive integer h.

Example 7.9. Let f(z) = 2% + 23, g(X) = 2*. The minimal polynomial of (f(z), g(x)) is given by:
F(X,Y)=Y%—2Xx?y3 —4XxY3 - V3 + X%

Let 1 = 6 = di,711 = 4 and G; = Y. We have dy = ged(6,4) = 2, and G2 = App(F,2) =
Y3 — X2 —2X — L. Since go(z) = Go(f(2),9(z)) = —22° —3$6—2x—fthenr2 9 and d3 =
1, hence T'(F) = d(A) = (6 4,9) and {f(:c) g(x),—ga(x) =} is a basis of A. Consequently, hy =
K[u T +u3x3 x*, 229 + 3udxb + 20823 + u ] Note that with the notations above, 61 = 3,e2 = 2, hence
K([z8, 24, 229] ~ K[Xo,Xl,Xg}/(X?’ XO,X2 4X0) K[XO,Xl,XQ]/T K[z8 + 23, 24, 209 — 326 — 223 —
1] ~ K[Xo,Xl,Xg]/(Xf’ — X2 —2Xo— 5, X3 —4X3 —5X2 —2X,— 1), and

1
K[u] — Ku][Xo, X1, Xo] /(X — X2 — 2u®X( — §u9, X2 —4X3 - 5u° X2 — 2uM? Xy — 1ulg)

gives us a deformation from A to K[Xy, X1, Xs]/T.
The computation of the approximate roots and of I'(F') can be performed with the algorithm presented
in [2].
gap> f:=y 6-2%x" 2%y 3-4*xx*xy~3-y~3+x74;;
gap> SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity(f);
<Numerical semigroup with 3 generators>
gap> MinimalGeneratingSystem(last);
[ 4, 6, 91
gap> SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity(f);
[ [6,4, 91, [y, yo3-x"2-2%x-1/2 ] ]

Example 7.10. Let f(x) = 25 + z, g(z) = 2*. The minimal polynomial of (f(z), g(x)) is given by:
F(X,Y)=Y%—2X%y3 —4XxY? -y 4+ X%

Let ro = 6 = dj,r1 = 4 and G; =Y. We have dy = ged(6,4) = 2, and G2 = App(F,2) = - X2
Since ga(z) = Gao(f(z),9(x)) = —227 — 22, then ro = 7 and d3 = 1, hence F( ) = d(A) <6 4,7)
and {f(z),g(x),—g2(z)} is a basis of A. Consequently, h4 = K[u, 2% + u’z, z* 227 + u52?]. Note that,
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with the notations above, e; = 3,e3 = 2, hence K[z%, 24, 27| ~ K[Xo, X1, Xo] /(X3 — X3, X3 — X X?) =
K[Xo, Xl, XQ]/T, and

Ku] — Ku][Xo, X1, Xo] /(X7 — X3, X3 — 4XoX? — u'0X))
gives us a deformation from A to K[Xo, X1, Xo]/T (we can also change X, with £ X5, and then we get
1
(X3 — X2, X2 — XoX? — Zuloxl) instead).
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