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BASES OF SUBALGEBRAS OF KJxK AND K[x]

A. ASSI, P. A. GARCÍA-SÁNCHEZ, AND V. MICALE

Abstract. Let f1, . . . , fs be formal power series (respectively polynomials) in the variable x. We study the
semigroup of orders of the formal series in the algebra KJf1, . . . , fsK ⊆ KJxK (respectively the semigroup
of degrees of polynomials in K[f1, . . . , fs] ⊆ K[x]). We give procedures to compute these semigroups and
several applications.

1. Introduction

Let K be a field and let KJxK (respectively K[x]) be the ring of formal power series (respectively
the ring of polynomials) over K. Let f1(x), . . . , fs(x) be s elements of KJxK (respectively K[x]) and
let R = KJf1, . . . , fsK (respectively A = K[f1, . . . , fs]) be the subalgebra of KJxK (respectively K[x]).
Given f ∈ R (respectively A), let o(f)(respectively d(f)) the order (respectively the degree) of f . The
set {o(f), f ∈ R} (respectively {d(f), f ∈ A}) is a submonoid o(R) (respectively d(A)) of N, and the
knowledge of a system of generators of this monoid is important for the understanding of the subalgebra
R (respectively A). When furthermore KJxK (respectively K[x]) is an R-module (respectively A-module)
of finite length, then o(R) (respectively d(A)) is a numerical semigroup.

A numerical semigroup S is a submonoid of the set of nonnegative integers under addition such that
the N \ S is finite, or equivalently, gcd(S) = 1 (the greatest common divisor of the elements of S), see for
instance [15]. In this case, there exists a minimum c ∈ S such that c + N ⊆ S. We call this element the
conductor of S, and denote it by c(S) (the motivation of this name and others coming from Algebraic
Geometry is explained in [3, 7]).

Assume that fi is a monomial xai for every i ∈ {1, . . . , s}. Then o(R) (respectively d(A)) is generated
by a1, . . . , as. In this case, R ≃ KJX1, . . . ,XsK/T (respectively A ≃ K[X1, . . . ,Xs]/T ), where T is a
binomial ideal (equivalently V(T ) is a toric variety).

Given a subalgebra R = K[[f1, . . . , fs]] (respectively A = K[f1, . . . , fs]), the main objective of this
paper is to describe an algorithm that calculates a generating system of o(R) (respectively d(A)). The
algorithm we present here allows us, by using the technique of homogenization, to construct a flat KJuK-
module (respectively K[u]-module) which is a deformation of R (respectively A) to a binomial ideal. This
technique is well known when R = KJf1, f2K and K is algebraically closed field of characteristic zero
(see [10] and [18]). It turns out that the same holds wherever we can associate a semigroup to the local
subalgebra, and also that the same technique can be adapted to the global setting. As a particular case
we prove that a plane polynomial curve has a deformation into a complete intersection monomial space
curve.

The paper is organized as follows. In Section 2 we focus on the local case, namely the case of a
subalgebra R of KJxK. We introduce the notion of basis of R and we show how to construct such a basis.
We also show that if o(R) is a numerical semigroup, then every element of a reduced basis is a polynomial.
In Section 3 we show how to construct a deformation from R to a toric ideal (or a formal toric variety)
by using the technique of homogenization. In Section 4 we focus on the case when R = K[[f(x), g(x)]]
and K is algebraically closed field of characteristic zero. The existence in this case of the theory of
Newton-Puiseux allows us to precise the results of Sections 2 and 3. The difference with the procedure
presented in Section 2 is that it does not rely in the computation of successive kernels. Then in Sections
5 and 6 we adapt the local results to the case of a subalgebra A of K[x]. When A = K[f(x), g(x)] and
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K is algebraically closed field of characteristic zero, a basis of A can be obtained by using the theory of
approximate roots of the resultant of X− f(x), Y − g(x), which is a polynomial with one place at infinity.

The procedures presented here have been implemented in GAP ([9]) and will be part of the forthcoming
stable release of the package numericalsgps ([6]).

1.1. Some notation. We denote by 〈A〉 the monoid generated by A, A ⊆ N, that is, the set {n1x1 +
· · · + nmxm | m ∈ N, ni ∈ N, xi ∈ A for all i ∈ {1, . . . ,m}}.

Associated to each numerical semigroup S we can define a natural partial ordering ≤S, where for two
elements s and r in S we have s ≤S r if there exists u ∈ S such that r = s + u. The set gi of minimal
elements in S \ {0} with this ordering is called a minimal set of generators for S. The set of minimal
generators is finite since for any s ∈ S \ {0}, we have x 6≡ y (mod s) if x 6= y are minimal elements with
respect to ≤S . The cardinality of the minimal generating system is known as the embedding dimension
of S.

2. Semigroup of a formal space curve

Let K be a field. In this section we will consider rings R that are subalgebras of KJxK and such that, if
we denote the integral closure of R in its quotient field by R̄, then R̄ = KJxK and λR(R̄/R) < ∞ where
λR(·) is the length as R-module. Part of the results of this section are inspired in [14] and in [13]. An
alternative procedure (implemented in Maple) is provided in [5]. The main different with our approach
is that we do not rely on the multiplicity sequence, and thus we do not need to perform blow-ups. Also
we take intrinsic advantage in our implementation of the GAP package numericalsgps ([9, 6]).

Let f =
∑

i cix
i ∈ R̄∗ = R̄ \ {0}. Define supp(f) = {i, ci 6= 0}. We call min supp(f) the order of f and

we denote it by o(f). We also set Mo(f) = co(f)x
o(f). If Mo(f) = xo(f), then we shall say, by abuse of

notation, that f is monic. We set o(0) = +∞.
We denote by o(R) the set of orders of elements in R∗ = R \ {0}, that is, o(R) = {o(f) | f ∈ R∗}. We

finally set Mo(R) = K[Mo(f), f ∈ R∗].

Proposition 2.1. Let f1, f2 be elements of R̄∗ and let a = min{o(f1), o(f2)}.

(i) a ≤ o(f1 + f2).
(ii) If o(f1) 6= o(f2) then a = o(f1 + f2).
(iii) o(f1f2) = o(f1) + o(f2).

Proof. This follows easily from the definition of order. �

Proposition 2.2. [12, Lemma 3, p.486] Let R1 and R2 be rings of our type such that R1 ⊆ R2 and
o(R1) = o(R2). Then R1 = R2.

Proposition 2.3. [12, Proposition 1, p.488] Let R be a ring of our type. Then λR(R̄/R) = |N \ o(R)|.

The following two results appear in [14], and since this paper is very hard to find, we include the proofs
for sake of completeness.

Proposition 2.4. [14] Let R be a ring of our type. Then o(R) is a numerical semigroup.

Proof. Since R is a ring and by (iii) of Proposition 2.1, we have that o(R) is a subsemigroup of N. By
λR(R̄/R) <∞ and Proposition 2.3, we have the proof. �

Proposition 2.5. [14] Let R be a ring of our type. Then R contains every element f ∈ KJxK of order
o(f) ≥ c(o(R)).

Proof. Use Proposition 2.2 with R1 = R and R2 = R+ xc(o(R))KJxK. �

This later result allows to work with polynomials instead of series.
Let f1, . . . , fs be in R̄∗. Let R = KJf1, . . . , fsK be a subalgebra of KJxK as above, that is, the integral

closure of R in its quotient field is R̄ = KJxK and λR(R̄/R) <∞.
Under the hypotheses on R, we have that o(R) is a numerical semigroup (Proposition 2.4).
We say that the set {f1, . . . , fs} ⊂ R∗ is a basis of R if R = KJf1, . . . , fsK and o(R) = 〈o(f1), . . . , o(fs)〉.

The set {f1, . . . , fs} is a basis of R if and only if Mo(R) = K[Mo(f1), . . . ,Mo(fs)].
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Proposition 2.6. Let the notations be as above. Given f(x) ∈ KJxK, there exist g(x) ∈ R and r(x) ∈ KJxK
such that the following conditions hold.

(i) f(x) = g(x) + r(x) =
∑

α cαf
α1

1 · · · fαs

s + r(x).

(ii) If g(x) 6= 0 (respectively r(x) 6= 0), then o(g) ≥ o(f) (respectively o(r) ≥ o(f)).
(iii) Either r(x) = 0 or supp(r(x)) ⊆ N \ 〈o(f1), . . . , o(fs)〉.

Proof. The assertion is clear if f ∈ K. Suppose that f /∈ K and let f(x) =
∑

i≥p cix
i with p = o(f) ≥ 0.

(1) If p /∈ 〈o(f1), . . . , o(fs)〉, then we set g1 = 0, r1 = cpx
p and f1 = f − cpx

p.

(2) If p ∈ 〈o(f1), . . . , o(fs)〉, then cpx
p = cθM(f1)

θ1 · · ·M(fs)
θs . We set g1 = cθf

θ1
1

1 · · · f
θ1s
s , r1 = 0 and

f1 = f − g1.

In such a way that f = f1 + g1 + r1, g1 ∈ R, either r1 = 0 or supp(r1) ⊆ N \ 〈o(f1), . . . , o(fs)〉, and
if f1 6= 0, then o(f1) > o(f) = p. Then we restart with f1. We construct in this way sequences

(fk)k≥1, (g
k)k≥1, (r

k)k≥1 such that for all k ≥ 1, f = fk +
∑k

i=1 g
i +

∑k
i=1 r

i, and o(f) < o(f1) < · · · <

o(fk),
∑k

i=1 g
i ∈ R, supp(

∑k
i=1 r

i) ∈ N\〈o(f1), . . . , o(fs)〉 and for all i < j ≤ k, if gi 6= 0 6= gj (respectively

ri 6= 0 6= rj), then o(f) ≤ o(gi) < o(gj) (respectively o(f) ≤ o(ri) < o(rj)). Clearly limk−→+∞ fk = 0.

Hence, if g = limk−→+∞

∑k
i=1 g

i and r = limk−→+∞

∑k
i=1 r

i, then f = g+r and g, r satisfy the conditions
above. �

We call the series r(x) of the result above the remainder of f with respect to {f1, . . . , fs} and we denote
it by Ro(f, {f1, . . . , fs}).

Proposition 2.7. The set {f1, . . . , fs} is a basis of R if and only if Ro(f, {f1, . . . , fs}) = 0 for all f ∈ R.

Proof. Suppose that {f1, . . . , fs} is a basis of R and let f ∈ R. Let r(x) = Ro(f, {f1, . . . , fs}). Then
r(x) ∈ R. If r 6= 0, then o(r) ∈ 〈o(f1), . . . , o(fs)〉, which is a contradiction.

Conversely, given 0 6= f ∈ R, if o(f) /∈ 〈o(f1), . . . , o(fs)〉, then Ro(f, {f1, . . . , fs}) 6= 0, which is a
contradiction. �

Let, as above, R = KJf1, . . . , fsK. We shall suppose that fi is monic for all 1 ≤ i ≤ s. Define

φ : K[X1, . . . ,Xs] −→ K[x], φ(Xi) = Mo(fi) for all i ∈ {1, . . . , s}.

Let {F1, . . . , Fr} be a generating system of the kernel of φ. Clearly for all i ∈ {1, . . . , r}, Fi is a binomial.

If Fi = X
αi
1

1 · · ·X
αi
s

s −X
βi
1

1 · · ·X
βi
s

s , we set Si = f
αi
1

1 · · · f
αi
s

s − f
βi
1

1 · · · f
βi
s

s . Note that if p =
∑s

k=1 α
i
ko(fk) =∑s

k=1 β
i
ko(fk), then o(Si) > p.

Theorem 2.8. The system {f1, . . . , fs} is a basis of R if and only if Ro(Si, {f1, . . . , fs}) = 0 for all
i ∈ {1, . . . , r}.

Proof. Suppose that {f1, . . . , fs} is a basis of R. Since Si ∈ R for all i ∈ {1, . . . , r}, then, by Proposition
2.7, Ro(Si, {f1, . . . , fs}) = 0.

For the sufficiency assume to the contrary that {f1, . . . , fs} is not a basis of R. Then there exists f ∈ R
such that o(f) 6∈ 〈o(f1), . . . , o(fs)〉. Write

f =
∑

θ

cθf
θ1
1 · · · f θss .

For all θ, if cθ 6= 0, we set pθ =
∑s

i=1 θio(fi) = o(f θ11 · · · f θss ). Let p = min{pθ | cθ 6= 0} and let {θ1, . . . , θl}

be such that p = o(f
θi
1

1 · · · f
θis
s ) for all i ∈ {1, . . . , l} (such a set is clearly finite). Also p ≤ o(f) <∞.

If
∑l

i=1 cθiMo(f
θi
1

1 · · · f
θis
s ) 6= 0, then p = o(f) ∈ 〈o(f1), . . . , o(fs)〉. But this is imposible. Hence,

∑l
i=1 cθiMo(f

θi1
1 · · · f

θis
s ) = 0, and then

∑l
i=1 cθiX

θi1
1 · · ·X

θis
s ∈ ker(φ). Hence

l∑

i=1

cθiX
θi
1

1 · · ·Xθis
s =

r∑

k=1

λkFk
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with λk ∈ K[X1, . . . ,Xs] for all k ∈ {1, . . . , r} (recall that F1, . . . , Fr are binomials generating ker(φ)).
This implies that

l∑

i=1

cθif
θi1
1 · · · f θ

i
s
s =

r∑

k=1

λk(f1, . . . , fs)Sk.

From the hypothesis Ro(Sk, {f1, . . . , fs}) = 0. Hence there is an expression of Sk of the form Sk =
∑

βk cβkf
βk

1

1 · · · f
βk
s

s with o(f
βk

1

1 · · · f
βk
s

s ) ≥ o(Sk).

So by replacing
∑l

i=1 cθif
θi
1

1 · · · f
θis
s with

∑r
k=1 λk(f1, . . . , fs)

∑
βk cβkf

βk

1

1 · · · f
βk
s

s in the expression of f ,

we can rewrite f as f =
∑

θ′ cθ′f
θ′
1

1 · · · f
θ′s
s with min{o(f

θ′
1

1 · · · f
θ′s
s ) | cθ′ 6= 0} > p.

Since o(f) < +∞, this process will stop, yielding a contradiction. �

Algorithm 2.9. Let the notations be as above.

1. If Ro(Sk, {f1, . . . , fs}) = 0 for all k ∈ {1, . . . , r}, then {f1, . . . , fs} is a basis of R.
2. If r(x) = Ro(Sk, {f1, . . . , fs}) 6= 0 for some k ∈ {1, . . . , r}, and if Mo(r(x)) = axq, then we set
fs+1 =

1
a
r(x), and we restart with {f1, . . . , fs+1}. Note that in this case,

〈o(f1), . . . , o(fs)〉 ( 〈o(f1), . . . , o(fs), o(fs+1)〉 ⊆ o(R).

This process will stop, giving a basis of R, because the complement of o(R) in N is finite.
Observe that r(x) is not in general a polynomial. So we must use a trick to compute it, or at least the

relevant part of it. This is accomplished by using Proposition 2.5. If in the current step of the algorithm
〈o(f1), . . . , o(fs)〉 is a numerical semigroup, then we compute its conductor, say c. Then c ≥ c(o(R)). To
compute Ro(f, {f1, . . . , fs}) we do the following. Let p = o(f).

1. If p ≥ c, then return 0. We implicitly assume that xa is in our generating set for a ∈ c+N (though we
do not store them).

2. If p ∈ 〈o(f1), . . . , o(fs)〉, then Mo(f) =
∑

θ cθMo(f1)
θ1 · · ·Mo(fs)

θs . Set f = f −
∑

θ cθf
θ1
1 · · · f θss , and

call recursively Ro(f, {f1, . . . , fs}) (the process will stop because the order of the new f is larger, and
eventually will become bigger than c after a finite number of steps).

3. If p 6∈ 〈o(f1), . . . , o(fs)〉, then return f .

If 〈o(f1), . . . , o(fs)〉 is not a numerical semigroup, let d be its greatest common divisor. Set c =
dc(〈o(f1), . . . , o(fs)〉/d). In this case we proceed as follows.

1. If p ≥ c, then return f . We cannot ensure here that f will be reduced to zero, so we add it just in case.
2. If p ∈ 〈o(f1), . . . , o(fs)〉, then Mo(f) =

∑
θ cθMo(f1)

θ1 · · ·Mo(fs)
θs . Set f = f −

∑
θ cθf

θ1
1 · · · f θss , and

call recursively Ro(f, {f1, . . . , fs}).
3. If p 6∈ 〈o(f1), . . . , o(fs)〉, then return f . One might check first if d does not divide p, because in this

case for sure p 6∈ 〈o(f1), . . . , o(fs)〉.

Observe that by adding the conditions p ≥ c, we are avoiding entering in an eventual infinite loop.

Suppose that {f1, . . . , fs} is a basis of R. Also suppose that for all i ∈ {1, . . . , s}, fi is monic. We say
that {f1, . . . , fs} is a minimal basis of R if o(f1), . . . , o(fs) generate minimally the semigroup o(R). We say
that {f1, . . . , fs} is a reduced basis of R if supp(fi(x)−M0(fi)) ⊆ N \ o(R). Let i ∈ {1, . . . , s}. If o(fi) ∈
〈o(f1), . . . , o(fi−1), o(fi+1), . . . , o(fs)〉, then {f1, . . . , fi−1, fi+1, . . . , fs} is also a basis of R. Furthermore,
by applying the division process of Proposition 2.6 to fi − Mo(fi), we can always construct a reduced
basis of R.

Corollary 2.10. The algebra R has a unique minimal reduced basis.

Proof. Let {f1, . . . , fs} and {g1, . . . , gs′} be two minimal reduced bases of R. Hence s is the embedding
dimension of o(R), and the same holds for s′; whence they are equal. Let i = 1. There exists j1 such that
o(f1) = o(gj1), because minimal generating systems of numerical semigroups are unique. If f1 − gj1 6= 0,
then o(f1 − gj1) /∈ o(R) (the basis is reduced), which is a contradiction because f1 − gj1 ∈ R. The same
argument shows that {f1, . . . , fs} = {g1, . . . , gs} �
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Remark 2.11. Let R = KJf1, . . . , fsK and assume that fi is monic for all 1 ≤ i ≤ s. Also assume that
o(f1) ≤ o(f2) ≤ . . . ≤ o(fs). Set n = o(f1) and let f1 = xn +

∑
i>n c

1
i x
i. By an analytic change of

variables, we may assume that f1 = xn, hence, up to an analytic isomorphism, we may assume that
R = KJxn, f2, . . . , fsK. In particular, we may assume that R has a minimal reduced basis of the form
xn, g2(x), . . . , gs′(x).

Example 2.12. Let R = KJx4 + x5, x6, x15 + x16K, with K a field of characteristic zero. Then R is a
one-dimensional ring and we will show that λR(KJXK/R) <∞. Let us denote x4+x5 by f1, x

6 by f2 and
x15 + x16 by f3. After computing the kernel of φ : K[X1,X2,X3] −→ K[x], φ(X1) = x4, φ(X2) = x6 and
φ(X3) = x15, we get S1 =

1
3x

15 + x14 + x13 and S2 =
1
2x

32 + x31. As 13 6∈ 〈4, 6, 15〉, we add it as f4 = S1.
We do not care about S2, because the conductor of 〈4, 6, 15〉 is 18.

Now, the conductor of 〈4, 6, 13, 15〉 is 12. If we compute the kernel of ϕ : K[X1,X2,X3,X4] −→ K[x],
φ(X1) = x4, φ(X2) = x6, φ(X3) = x15 and φ(X4) = x13, then all the elements Si have orders greater than
12, and so the algorithm ends. We conclude that o(R) = 〈4, 6, 13, 15〉.

We have implemented this algorithm in the numericalsgps ([6]) GAP ([9]) package. Next we illustrate
how to compute this semigroup with the functions we have implemented (that will be available in the
next release of the package).

gap> x:=X(Rationals,"x");;

gap> l:=[x^4+x^5,x^6,x^15+x^16];;

gap> s:=SemigroupOfValuesOfCurve_Local(l);;

gap> MinimalGeneratingSystem(s);

[ 4, 6, 13, 15 ]

gap> SemigroupOfValuesOfCurve_Local(l,13);

x^13

Remark 2.13. It is known (cf. [3, Section II.1]) that there exist relations between algebraic characters and
invariants of the semigroup o(R) and the ring R. Hence, in the Example 2.12, from o(R) = 〈4, 6, 13, 15〉 =
{0, 4, 6, 8, 10, 12,−→}, we have that λR(R̄/R) = |[0, c(o(R)) − 1] ∩ (N \ o(R))| = 7, λR(R/(R : R̄)) =
|[0, c(o(R)) − 1] ∩ o(R)| = 5, t(R) ≤ t(o(R)) = 3, where t(R) is the type of the ring R.

Example 2.14. Let R = KJx4, x6 + x7, x13 + a14x
14 + a15x

15 + . . .K with K a field. Using the same
argument as in the Example 2.12, we find that if char K 6= 2, we have that if a15 − a14 + 1/2 = 0,
then {x4, x6 + x7, x13} is the reduced basis of R. Furthermore, since 〈4, 6, 13〉 is a symmetric numerical
semigroup (the number of nonnegative integers not in the semigroup equals the conductor divided by
two), then, by [11], R is Gorenstein. Finally λR(R̄/R) = 8. Otherwise if a15 − a14 + 1/2 6= 0, then
{x4, x6+x7, x13, x15} is the reduced basis of R with R a non Gorenstein ring. Furthermore λR(R̄/R) = 7.

Otherwise, if char K = 2, then the reduced basis of R is {x4, x6+x7, x13, x15} and R is not a Gorenstein
ring. Here, λR(R̄/R) = 7.

Example 2.15. Let R = KJx8, x12 + x14 + x15K, with K a field of characteristic zero. Using the same
argument as in the Example 2.12, we have that

{x8, x12 + x14 + x15, x26 + x27 + x29 −
1

2
x31,

x53 +
1

2
x55 −

1

2
x57 −

1

8
x63 +

25

8
x67 −

95

32
x71 −

15

16
x75 −

135

32
x83}

is the reduced basis of the Gorenstein ring R. Furthermore, we have λR(R̄/R) = 42.

gap> l:=[x^8,x^12+x^14+x^15];;

gap> SemigroupOfValuesOfCurve_Local(l,"basis");

[ x^8, x^15+x^14+x^12, -1/2*x^31+x^29+x^27+x^26,

-135/32*x^83-15/16*x^75-95/32*x^71+25/8*x^67-1/8*x^63-1/2*x^57+1/2*x^55+x^53 ]

Example 2.16. The following battery of examples was provided by Lance Bryant as a test for our
algorithm.
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gap> l:=[ [ x^6,x^8+x^9,x^19], [x^7,x^9+x^10,x^19,x^31], [x^7,x^21+x^28+x^33],

[x^4,x^6+x^7,x^13], [x^6,x^8+x^11,x^10+2*x^13,x^21], [x^5,-x^18-x^21,-x^23,-x^26],

[x^5,-x^18-x^21,-x^26], [x^5,-x^18-x^21,x^23-x^26], [x^6,x^9+x^10,x^19],

[x^7,x^9+x^10,x^19], [x^8,x^9+x^10,x^19], [x^7,x^9+x^10,x^17,x^19] ] ;;

gap> List(l, i->MinimalGeneratingSystem(SemigroupOfValuesOfCurve_Local(i)));

[ [ 6, 8, 19, 29 ], [ 7, 9, 19, 29, 31 ], [ 7, 33 ], [ 4, 6, 13, 15 ],

[ 6, 8, 10, 21, 23, 25 ], [ 5, 18, 26, 39, 47 ], [ 5, 18, 26, 39, 47 ],

[ 5, 18, 26, 39, 47 ], [ 6, 9, 19, 20 ], [ 7, 9, 19, 29 ], [ 8, 9, 19, 30 ],

[ 7, 9, 17, 19, 29 ] ]

3. Deformation to a toric ideal

Let the notations be as in Section 2. Given f(x) =
∑

i≥p cix
i ∈ KJxK, we set Hf (u, x) =

∑
i≥p ciu

i−pxi.

In particular, if we consider the linear form L : N2 −→ N, L(a, b) = b− a, then Hf is L-homogeneous of
degree p, that is, L(i − p, i) = p for all i ∈ supp(f). We set HR = KJHf , f ∈ RK. With these notations
we have the following.

Proposition 3.1. The set {f1, . . . , fs} is a basis of R if and only if HR = KJHf1 , . . . ,HfsK.

Proof. Suppose that {f1, . . . , fs} is a basis of R and let f(x) ∈ R. Write Hf (u, x) =
∑

i≥p ciu
i−pxi. We

have Mo(f) = cpx
p = cp

∏s
i=1Mo(fi)

pk
i , hence

Hf − cp

s∏

i=1

H
pk
i

fi
= uqHf1

with f1 ∈ R and either f1 = 0, or o(f1) > p. In the second case we restart with f1. A similar argument
as in Proposition 2.6. proves our assertion.
Conversely, suppose that HR = KJHf1 , . . . ,HfsK and let f ∈ R. Let P (X1, . . . ,Xs) ∈ KJX1, . . . ,XsK such
that Hf = P (Hf1 , . . . ,Hfs). If u = 0, then Mo(f) = P (Mo(f1), . . . ,Mo(fs)) ∈ KJMo(f1), . . . ,Mo(fs)K,
hence Mo(f) ∈ K[Mo(f1), . . . ,Mo(fs)]. �

Remark 3.2. Suppose that {f1, . . . , fr} is a basis of R. Then T = KJuKJHf1, . . . ,HfsK is a KJuK-module.
When u = 1 (respectively u = 0), we get T |u=1= R (respectively T |u=0= KJM(f1), . . . ,M(fs)K). Hence
we get a deformation from R to KJMo(f1), . . . ,Mo(fs)K. More precisely let

ψ : KJX1, . . . ,XsK −→ R = KJf1, . . . , fsK

and

Hψ : KJuKJX1, . . . ,XsK −→ T = KJuKJHf1, . . . ,HfsK

be the morphisms of rings such that Hψ(u) = u, ψ(Xi) = fi and Hψ(Xi) = Hfi for all i ∈ {1, . . . , s}. For
all i ∈ {1, . . . , r}, let

Si = f
αi
1

1 · · · fα
i
s

s − f
βi
1

1 · · · fβ
i
s

s =
∑

θi

ci
θi
f
θi1
1 · · · f θ

i
s
s

with o(f
θi1
1 · · · f

θis
s ) = Di

θi
>

∑s
k=1 α

i
ko(fk) =

∑s
k=1 β

i
ko(fk) = pi. Let I (respectively J) be the ideal gener-

ated by (X
αi
1

1 · · ·X
αi
s

s −X
βi
1

1 · · ·X
βi
s

s −
∑

θi c
i
θi
X
θi1
1 · · ·X

θis
s )1≤i≤r (respectively (X

αi
1

1 · · ·X
αi
s

s −X
βi
1

1 · · ·X
βi
s

s −
∑

θi u
Di

θi
−pi

ci
θi
X
θi
1

1 · · ·X
θis
s )1≤i≤r) in KJX1, . . . ,XsK (respectively KJuKJX1, . . . ,XsK).

Since {f1, . . . , fs} is a basis of R, the kernel of ψ (respectively H(ψ)) is generated by I (respectively
J). Now the morphism

KJuK −→ KJuKJX1, . . . ,XsK/J

is flat because u is not a zero divisor. Hence we get a family of formal space curves parametrized by u
which gives us a deformation from KJX1, . . . ,XrK/I to KJX1, . . . ,XrK/(F1, . . . , Fr).

In particular we get the following.
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Theorem 3.3. Every formal space curve of Kl, parametrized by Y1 = g1(x), . . . , Yl = gl(x) has a defor-
mation into a formal monomial curve of Kr for some positive integer r.

4. Basis of KJf(x), g(x)K

In [19] the case of finding an algebra basis for K[f(x), g(x)] with f and g polynomials is treated. Here
we will do the analogue for K[[f(x), g(x)]].

Let f(x) =
∑

i≥n aix
i and g(x) =

∑
j≥m bjx

j be two elements of KJxK and suppose, without loss of
generality, that the following conditions hold:

(1) an = bm = 1.
(2) n ≤ m.
(3) For all d > 1, f(x), g(x) /∈ KJxdK (i.e. the gcd of supp(f(x)) ∪ supp(g(x)) = 1).

Let the notations be as in Section 2, in particular R = KJf, gK. By the analytic change of variables
f(x) = x̃n, we may assume that R = KJxn, g(x)K. Let F (X,Y ) be the x-resultant of X−xn, Y −g(x), that
is, F (X,Y ) is the generator of the kernel of the map ρ : KJX,Y K −→ KJxK, ρ(X) = xn and ρ(Y ) = g(x).
Since KJf, gK = KJf, g − fkK for all k ≥ 1, then we shall assume that n < m and also that n does not
divide m. Given a nonzero element G(X,Y ) /∈ (F (X,Y ))KJX,Y K, we set int(F,G) = o(G(f(x), g(x))).
The set of int(F,G), G(X,Y ) /∈ (F (X,Y ))KJX,Y K, is a numerical semigroup. We denote it by Γ(F ). We
have the following.

Proposition 4.1. o(R) = Γ(F ).

Proof. We have a ∈ Γ(F ) if and only if a = o(G(f(x), g(x))) for some G(X,Y ) ∈ KJX,Y K if and only if
a ∈ o(R). �

Suppose that K is algebraically closed with characteristic zero, and let d1 = n, m1 = inf{i ∈ supp(g) |
d1 ∤ i}, that is, m1 = m, and d2 = gcd(n,m1). For all k ≥ 2 we set mk = inf{i ∈ supp(g) | dk ∤ i} and
dk+1 = gcd(dk,mk). It follows that there exists h ≥ 1 such that dh+1 = 1. The set {m1, . . . ,mh} is called

the set of Newton-Puiseux exponents of F (X,Y ). Let ek =
dk
dk+1

for all 1 ≤ k ≤ h and define the sequence

(rk)0≤k≤h as follows: r0 = n, r1 = m, and for all 2 ≤ k ≤ h, rk = rk−1ek−1 + mk − mk−1. With these
notations we have the following:

(1) Γ(F ) = o(R) is generated by {r0, r1, . . . , rh}.
(2) rkdk < rk+1dk+1 for all k ∈ {1, . . . , h− 1}.

(3) Γ(F ) = o(R) is free with respect to the arrangement (r0, . . . , rh). More precisely, let ek = dk
dk+1

for all k ∈ {1, . . . , h}. Then ekrk ∈ 〈r0, . . . , rk−1〉.

(4) C =
∑h

k=1(ek − 1)rk − n+ 1 is the conductor of Γ(F ) = o(R).

Example 4.2. Let f = x7 and g = x4 + x2. The above resultant is then F = y7 − 7x2y3 − x4 − 14x2y2 −
7x2y − x2. Then Γ(F ) = o(R) = 〈2, 7〉.

gap> Resultant(x-t^7, y-t^4-t^2,t);

y^7-7*x^2*y^3-x^4-14*x^2*y^2-7*x^2*y-x^2

gap> s:=SemigroupOfValuesOfCurve_Local([t^7,t^4+t^2]);

<Modular numerical semigroup satisfying 7x mod 14 <= x >

gap> MinimalGeneratingSystem(last);

[ 2, 7 ]

gap> IsFreeNumericalSemigroup(s);

true

Let the notations be as above. For all k ≥ 2, let Gk(X,Y ) ∈ KJX,Y K such that o(Gk(x
n, g(x))) = rk.

It follows from [1] that degYGk =
n
dk
. If gk(x) = Gk(x

n, g(x)), then we have the following.

Proposition 4.3. The set {xn, g, g2, . . . , gh} is a basis of R, that is, R = KJxn, g, g2, . . . , ghK and Mo(R) =
KJxn, xm, xr2 , . . . , xrhK.
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Note that, by a similar argument as in Section 2, we may assume that f = xn, g = xm +
∑

i∈G(Γ(F )) c
1
i x
i,

and for all k ≥ 2, gk = xrk +
∑

i∈G(Γ(F )) c
k
i x

i, where G(Γ(F )) = {j ∈ N | j /∈ Γ(F )} is the set of gaps of

Γ(F ).
Let the notations be as in Section 3. The morphism

D : KJuK −→ T = KJuKJHf ,Hg,Hg2 , . . . ,HghK

gives us a deformation of T |u=1= R = KJf(x), g(x), g2(x), . . . , gh(x)K to T |u=0= KJxn, xm, xr2 , . . . , xrhK.
Note that, since 〈n,m, r2, . . . , rh〉 is free with respect to the given arrangement, then it is a complete

intersection (see for instance [15]). For all k ∈ {1, . . . , h}, write ekrk =
∑k−1

i=0 θ
k
i ri with 0 ≤ θki < ei for all

i ∈ {1, . . . , k − 1}. If B is the ideal of K[X0,X1, . . . ,Xh] generated by

{Xe2
1 −X

m

d2

0 ,Xe2
2 −X

θ2
0

0 X
θ2
1

1 , . . . ,X
eh
h −X

θh
0

0 X
θh
1

1 . . . X
θh
h−1

h−1 }

then

KJxn, xm, xr2 , . . . , xrhK ≃ KJX0,X1, . . . ,XhK/B.

Let F̄ (X,Y ) be the x-resultant of X−xn, y−g(x). By hypothesis, F̄ (X,Y ) is a polynomial. Furthermore,
F̄ (X,Y ) = Y n + a1(X)Y n−1 + . . .+ an(X) with o(ai(X)) > i for all 2 ≤ i ≤ n. Set Gh+1 = F̄ and for all
k ≥ 1, let

Gk+1 = Gekk −Xθk0

k−1∏

i=1

G
θk
i

i +
∑

αk

ck
αkX

αk
0G

αk
1

1 · · ·G
αk

k

k ,

where the following conditions hold:

(1) for all i ∈ {0, . . . , k − 1}, 0 ≤ θki < ei;
(2) for all αk, if ck

αk 6= 0, then for all i ∈ {1, . . . , k}, 0 ≤ αki < ei;

(3) for all αk, if ck
αk 6= 0, then αk0n+

∑k
i=1 α

k
i ri = Dk

i > ekrk = θk0r0 +
∑k−1

i=1 θ
k
i ri.

It follows from Section 3. that if I (respectively J) is the ideal generated by

(Xek
k −X

θk
0

0

k−1∏

i=1

X
θk
i

i +
∑

αk

ck
αkX

αk
0

0 X
αk
1

1 · · ·X
αk

k

k )1≤k≤h

(respectively (Xek
k −X

θk
0

0

∏k−1
i=1 X

θk
i

i +
∑

αk ckαku
Dk

i
−ekrkX

αk
0

0 X
αk
1

1 · · ·X
αk

k

k )1≤k≤h) in KJX0, . . . ,XhK (respec-

tively KJuKJX0, . . . ,XhK), then

R = KJxn, g(x), g2(x), . . . , gh(x)K ≃ KJX0,X1, . . . ,XhK/I

and

KJuKJxn,Hg,Hg2 , . . . ,HghK ≃ KJuKJX0,X1, . . . ,XhK/J.

Furthermore, KJuKJX0,X1, . . . ,XhK/J is a flat KJuK-module. This gives us a family of formal space
curves parametrized by u which is a deformation from KJX0,X1, . . . ,XhK/I to the formal toric variety
KJX0,X1, . . . ,XhK/B. The later being a complete intersection, we get the following.

Theorem 4.4. Every irreducible singularity of a plane curve X = f(x), Y = g(x) of K2 has a deformation
into a formal monomial complete intersection curve of Kh+1 for some h ≥ 1.

Example 4.5. Let f(x) = x4, g(x) = x6 + x7. The minimal polynomial of (f(x), g(x)) is given by:

F (X,Y ) = Y 4 − 2X3Y 2 +X6 − 4X5Y −X7 = (Y 2 −X3)2 − 4X5Y −X7

Let r0 = 4 = d1, r1 = 6 = m1 and G1 = Y . We have d2 = gcd(6, 4) = 2, hence m2 = 7. It follows that
r2 = 13. Note that if G2 = Y 2 −X3, then g2(x) = G2(f(x), g(x)) = 2x13 + x14. Hence Γ(F ) = o(R) =
〈4, 6, 13〉 and {f(x), g(x), g2(x)} is a basis of R. Let us double check it.

gap> SemigroupOfValuesOfCurve_Local([x^4,x^6+x^7],"basis");

[ x^4, x^7+x^6, -1/2*x^15+x^13 ]
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(Observe that the output is different, since this is a reduced basis: we change 2x13 + x4 with x13 + 1
2x

14,

and then using that 14 = 2× 4 + 6, we replace this last polynomial with x13 − 1
2x

15.)

Consequently, HR = KJx4, x6 +ux7, 2x13 +ux14, u4, u6, u13K. With the notations above, e1 = 3, e2 = 2,
hence KJx4, x6, x13K ≃ T = KJX0,X1,X2K/(X

2
1 −X3

0 ,X
2
2 −X5

0X1), and

KJuK −→ KJuKJX0,X1,X2K/(X
2
1 −X3

0 ,X
2
2 − 4X5

0X1 − u2X7
0 )

gives us a deformation from R to T (we can also change X2 with 1
2X2, and then B = (X2

1 − X3
0 ,X

2
2 −

4X4
0X1)).

5. Semigroup of a polynomial curve

Let K be a field and let f1(x), . . . , fs(x) be s polynomials of K[x]. Let A = K[f1, . . . , fs] be a subalgebra
of K[x], and assume, without loss of generality, that fi is monic for all i ∈ {1, . . . , s}. Given f(x) =∑p

i=0 cix
i ∈ A, with cp 6= 0, we set d(f) = p and M(f) = cpx

p, the degree and leading monomial,
respectively. We also define supp(f) = {i | ci 6= 0}. The set d(A) = {d(f) | f ∈ A} is a submonoid of
N. We shall assume that λA(K[x]/A) < ∞. In particular d(A) is a numerical semigroup. We say that
{f1, . . . , fs} is a basis of A if {d(f1), . . . ,d(fs)} generates d(A). Clearly, {f1, . . . , fs} is a basis of A if
and only if K[M(f), f ∈ A] = K[M(f1), . . . ,M(fs)]. For several variables, these basis are known in the
literature as SAGBI basis ([16, 4]).

The following result is the analogue to Proposition 2.6. Actually, in this section we follow a similar
argument to the one used in Section 2, with the advantage that sequences of degrees decrease, and thus
the finiteness conditions are easier to deduce.

Proposition 5.1. Given f(x) ∈ K[x], there exist g(x) ∈ A and r(x) ∈ K[x] such that the following
conditions hold:

(1) f(x) = g(x) + r(x) =
∑

α cαf
α1

1 · · · fαs

s + r(x),

(2) if g(x) 6= 0 (respectively r(x) 6= 0), then d(g) ≤ d(f) (respectively d(r) ≤ d(f)),
(3) supp(r(x)) ⊆ N \ 〈d(f1), . . . ,d(fs)〉.

Proof. The assertion is clear if f ∈ K. Suppose that f /∈ K and let f(x) =
∑p

i=0 cix
i with p = d(f) > 0.

(1) If p /∈ 〈d(f1), . . . ,d(fs)〉, then we set g1 = 0, r1 = cpx
p and f1 = f − cpx

p.

(2) If p ∈ 〈d(f1), . . . ,d(fs)〉, then cpx
p = cθM(f1)

θ1 · · ·M(fs)
θs . We set g1 = cθf

θ1
1 · · · f θss , r1 = 0 and

f1 = f − g1.

In this way, f = f1 + g1 + r1, g1 ∈ A, supp(r1) ⊆ N \ 〈d(f1), . . . ,d(fs)〉, and if f1 /∈ K, then d(f1) <
d(f) = p. Then we restart with f1. Clearly there is k ≥ 1 such that fk ∈ K. We set g = g1+ · · ·+ gk+ fk

and r = r1 + · · ·+ rk. �

We call the polynomial r(x) of the theorem above the remainder of f with respect to {f1, . . . , fs} and
we denote it by R(f, {f1, . . . , fs}). This is an adaptation of the procedure called subduction in [16], with
the difference that we are adding fk to g, and thus whenever the subduction process produces a constant,
the remainder is zero.

The following characterization of basis is analogous to that given in Proposition 2.7 for formal space
curves; we omit the proof since it is roughly the same.

Proposition 5.2. The set {f1, . . . , fs} is a basis of A if and only if R(f, {f1, . . . , fs}) = 0 for all f ∈ A.

Let the notations be as above and let

φ : K[X1, . . . ,Xs] −→ K[x], φ(Xi) = M(fi), for all i ∈ {1, . . . , s}.

Let {F1, . . . , Fr} be a generating system of the kernel of φ. Clearly for all i = 1, . . . , r, Fi is a binomial. If

Fi = X
αi
1

1 · · ·X
αi
s

s −X
βi
1

1 · · ·X
βi
s

s , we set Si = f
αi
1

1 · · · f
αi
s

s −f
βi
1

1 · · · f
βi
s

s . Observe that if d =
∑s

k=1 α
i
kd(fk) =∑s

k=1 β
i
kd(fk), then d(Si) < d. With this we obtain the following particular case of [17, Corollary 11.5]

(taking into account that the subduction process is not exactly our remainder).

Theorem 5.3. The set {f1, . . . , fs} is a basis of A if and only if R(Si, {f1, . . . , fs}) = 0 for all i ∈
{1, . . . , r}.
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Proof. The proof goes as in Theorem 2.8, but now the inequalities are reversed and p is defined as a
maximum instead of a minimum. �

Algorithm 5.4. Let the notations be as above.

(1) If R(Sk(f1, . . . , fs), {f1, . . . , fs}) = 0 for all k = 1, . . . , r, then {f1, . . . , fs} is a basis of A.
(2) If r(x) = R(Sk(f1, . . . , fs), {f1, . . . , fs}) 6= 0 for some 1 ≤ k ≤ r, and if M(r) = axq, then we

set fs+1 =
1
a
r(x), and we restart with {f1, . . . , fs+1}. Note that in this case, 〈d(f1), . . . ,d(fs)〉 (

〈d(f1), . . . ,d(fs),d(fs+1)〉.

This process will stop, giving a basis of A.

Suppose that {f1, . . . , fs} is a basis of A. Also suppose that fi is monic for all i ∈ {1, . . . , s}. We say
that {f1, . . . , fr} is a minimal basis of A if {d(f1), . . . ,d(fs)} minimally generates the semigroup d(A).
We say that {f1, . . . , fr} is a reduced basis of A if supp(fi(x)−M(fi)) ∈ N \ d(A).

Let i ∈ {1, . . . , s}. If d(fi) ∈ 〈d(f1), . . . ,d(fi−1),d(fi+1), . . . ,d(fs)〉, then {f1, . . . , fi−1, fi+1, . . . , fs} is
also a basis of A. Furthermore, by applying the division process of Proposition 5.1 to fi −M(fi), we can
always construct a reduced basis of A. Minimal reduced basis are not unique as in the formal space curve
case, but “almost” unique.

Corollary 5.5. Up to constants, the algebra A has a unique minimal reduced basis.

Proof. Let {f1, . . . , fs} and {g1, . . . , gs′} be two minimal reduced bases of A. Clearly s = s′. Let i = 1.
There exists j1 such that d(f1) = d(gj1). If f1−gj1 /∈ K, then d(f1−gj1) /∈ Γ(A), which is a contradiction
because f1−gj1 ∈ A. The same agrument shows that for all i ≥ 2, there exists ji such that fi−gji ∈ K. �

Corollary 5.6. Let {f1, . . . , fs} be a reduced basis of A. For all i ∈ {1, . . . , s}, supp(fi−M(fi)) ⊆ G(ΓA).

Example 5.7. We compute d(R) for R = K[x6+x3, x4+x2]; f1 = x6+x3 and f2 = x4+x2. We start by
computing the kernel of φ : K[X1,X2] → K[x], with φ(X1) = x6 and φ(X2) = x4. This kernel is generated
by F1 = X2

1 −X3
2 . Hence S1 = −3x10 + 2x9 − 3x8. Since 10 ∈ 〈4, 6〉, R(S1, {f1, f2}) =

−2
3 x

9 − x7 − x5.

We add f3 = x9 + 3
2x

7 + 3
2x

5 to our generating set.

In the next step φ : K[X1,X2,X3] → K[x], with φ(X1) = x6, φ(X2) = x4 and φ(X3) = x9; ker φ =
(X2

1 −X
3
2 ,X

3
1 −X

2
3 ), whence S1 = x16−x15+ 7

4x
14+ 1

2x
12+ 3

4x
10− 1

3x
9 and S2 = x10− 2

3x
9+x8. It turns

out that R(S1, {f1, f2, f3}) = 0 = R(S2, {f1, f2, f3}), and consequently {f1, f2, f3} is a (reduced minimal)
basis of R. Also d(R) = 〈4, 6, 9〉.

Example 5.8. Let us compute K[x7, x9 + x10, x17, x19] with our implementation.

gap> MinimalGeneratingSystem(SemigroupOfValuesOfCurve_Global(

[x^7,x^9+x^10,x^17,x^19]);

[ 7, 10, 16, 19, 25 ]

6. Deformation to a toric ideal

Let the notations be as in Section 5. Given f(x) =
∑p

i=0 cix
i ∈ K[x], we set hf (u, x) =

∑p
i=0 ciu

p−ixi.
We set hA = K[hf | f ∈ A]. With these notations we have the following result, and its proof is similar to
that of Proposition 3.1.

Proposition 6.1. The set {f1, . . . , fr} is a basis of A if and only if hA = K[hf1 , . . . , hfs , u
d(f1), . . . , xd(fs)].

Remark 6.2. Suppose that {f1, . . . , fs} is a basis of A. By the inclusion morphism of rings D : K[u] −→
B = K[u, hf1 , . . . , hfs ], B is a K[u]-module. When u = 1 (respectively u = 0), we get B |u=1= A
(respectively B |u=0= K[M(f1), . . . ,M(fs)]). Hence we get a deformation from A to K[M(f1), . . . ,M(fs)].
More precisely let

ψ : K[X1, . . . ,Xs] −→ K[f1, . . . , fs]

and

hψ : K[u][X1, . . . ,Xs] −→ K[u][hf1 , . . . , hfs ]
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be the morphisms of rings such that hψ(u) = u, ψ(Xi) = fi and hψ(Xi) = hfi for all i = 1, . . . , s. For all
i = 1, . . . , r, let

Si = f
αi
1

1 · · · fα
i
s

s − f
βi
1

1 · · · fβ
i
s

s =
∑

θi

ci
θi
f
θi
1

1 · · · f θ
i
s
s

with d(f
θi1
1 · · · f

θis
s ) = Di

θi
<

∑s
k=1 α

i
kd(fk) =

∑s
k=1 β

i
kd(fk) = pi. Let I (respectively J) be the ideal gen-

erated by (X
αi
1

1 · · ·X
αi
s

s −X
βi
1

1 · · ·X
βi
s

s −
∑

θi c
i
θi
X
θi1
1 · · ·X

θis
s )1≤i≤r (respectively (X

αi
1

1 · · ·X
αi
s

s −X
βi
1

1 · · ·X
βi
s

s −
∑

θi u
pi−D

i

θi ci
θi
X
θi
1

1 · · ·X
θis
s )1≤i≤r) in K[X1, . . . ,Xs] (respectively K[u][X1, . . . ,Xs]).

Since {f1, . . . , fs} is a basis of A, then the kernel of ψ (respectively hψ) is generated by I (respectively
J). Now the morphism

K[u] −→ K[u][X1, . . . ,Xr]/J

is flat (because p(u) is not a zero divisor for all p(u) ∈ K[u]. Hence we get a family of polynomial space
curves parametrized by u which gives us a deformation fromK[X1, . . . ,Xr]/I toK[X1, . . . ,Xr]/(F1, . . . , Fr).

In particular we get the following analogue to Theorem 3.3.

Theorem 6.3. Every polynomial space curve of Kl, parametrized by Y1 = g1(x), . . . , Yl = gl(x) has a
deformation into a monomial curve of Kr for some positive integer r.

7. Basis of K[f(x), g(x)]

Let f(x) =
∑n

i=1 aix
i and g(x) =

∑m
j=1 bjx

j be two polynomials of K[x] and suppose, without loss of
generality, that the following conditions hold:

(1) an = bm = 1.
(2) n ≥ m,
(3) for all d > 1, f(x), g(x) /∈ K[xd] (that is, the gcd of supp(f(x)) ∪ supp(g(x)) = 1).

Let the notations be as in Section 5, in particular A = K[f, g]. Let also F (X,Y ) be the x-resultant
of X − f(x), Y − g(x), that is, F (X,Y ) is the generator of the kernel of the map ψ : K[X,Y ] −→
K[x], ψ(X) = f(x) and ψ(Y ) = g(x). Since K[f, g] = K[f, g − f ], then we shall assume that n > m.
Write F (X,Y ) = Y n + c1(X)Y n−1 + · · · + cn(X). Given a polynomial G(X,Y ) /∈ (F (X,Y ))K[X,Y ],
we set int(F,G) = degxG(f(x), g(x)). Assume that K is algebraically closed with characteristic zero.
Let d be a divisor of n, and let G be a monic polynomial in K[X][Y ] of degree n

d
in Y . Write F =

Gd + α1(X,Y )Gd−1 + · · · + αd(X,Y ) where for all k ∈ {1, . . . , d}, if αk 6= 0, then degY αk <
n
d
. We say

that G is a dth approximate root of F if α1 = 0. There is a unique dth approximate root of F . We denote
it by App(F, d). The following results can be found in [1].

Theorem 7.1. Under the standing hypothesis.

(1) F (X,Y ) has one place at infinity, that is, for all k ∈ {1, . . . , n}, if ck(X) 6= 0, then degXck(X) < k.
(2) {int(F,G) | G ∈ K[X,Y ] \ (F )} is a numerical semigroup.
(3) Let D(n) be the set of divisors of n. The set {int(F,App(F, d)) | d ∈ D(n)} generates Γ(F ).

We call {int(F,G) | G ∈ K[X,Y ] \ (F )} the semigroup of F , and we denote it by Γ(F ).

Corollary 7.2. Let the notations be as above. We have d(A) = Γ(F ).

Proof. In fact, h(x) ∈ A if and only if h(x) = P (f(x), g(x)) for some P (X,Y ) ∈ K[X,Y ]. Hence a ∈ d(A)
if and only if a = int(F,P ), P ∈ K[X,Y ] which means that a ∈ Γ(F ). �

Let F (X,Y ) = Y n+c1(X)Y n−1+· · ·+cn(X) be as above, and assume, after a possible change of variables
X ′ = X,Y ′ = Y + c1

n
, that c1(X,Y ) = 0 (note that this does not change A). In particular App(F, n) = Y .

A system of generators of Γ(F ) can be found algorithmically in the following way.
Let r0 = d1 = n = int(F,X), r1 = degXan(X) = int(F,App(F, n)), and d2 = gcd(r0, r1). We set

G2 = App(F, d2), r2 = int(F,G2) = degxG2(f(x), g(x)), and d3 = gcd(r3, d2), and so on. . .With these
notations we have the following:
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(1) d1 > d2 > . . . and there exists h ≥ 1 such that dh+1 = 1;
(2) Γ(F ) = d(A) is generated by {r0, r1, . . . , rh};
(3) rkdk > rk−1dk−1 for all k ∈ {1, . . . , h};

(4) Γ(F ) = d(A) is free with respect to the arrangement (r0, . . . , rh). More precisely, let ek = dk
dk+1

for all k ∈ {1, . . . , h}. Then ekrk ∈ 〈r0, . . . , rk−1〉;

(5) C =
∑h

k=1(ek − 1)rk − n+ 1 is the conductor of Γ(F ) = d(A).

Lemma 7.3. If A = K[x], then rk = dk+1 for all k = 1, . . . , h. In particular degxGh(f(x), g(x)) = 1 and
m divides n.

Proof. If A = K[x] then C = 0, hence
∑h

k=1(ek−1)rk = n−1. Since rk ≥ dk+1, then
∑h

k=1(ek−1)rk ≥ n−1
with equality if and only if rk = dk+1 for all k = 1, . . . , h. Since m = r1 = d2 = gcd(n,m), then m divides
n. �

Lemma 7.4. [19, Theorem 2] If gcd(n,m) = 1, then {f(x), g(x)} is a basis of A.

Proof. If gcd(n,m) = 1, then Γ(F ) = d(A) = 〈n,m〉. Hence {f(x), g(x)} is a basis of A. �

Lemma 7.5. Suppose that gcd(n,m) = p1 · · · pl where pi is a positive prime number for all i ∈ {1, . . . , l}
(and the pi’s are not necessarily distinct). The set {f(x), g(x)} is not a basis of A. Furthermore, if c is
the cardinality of a basis of A, then 2 ≤ c ≤ l + 2. In particular, if gcd(n,m) is a prime number p > 1,
then a basis of A has either two or three elements.

Proof. Since gcd(n,m) > 1, then the first assertion is clear. On the other hand, since d2 = gcd(n,m) =
p1 · · · pr, we have A 6= K[x], and h ≤ l + 1. Hence Γ(F ) = d(A) has at most l + 2 generators. The result
now follows. �

Remark 7.6. Let r = (r0 = n, r1 = m, r2, . . . , rh) be a sequence of integers and for all k ≥ 1, let

dk = gcd(r0, · · · , rk−1) and ek =
dk
dk+1

. Assume that the following conditions hold:

(1) d1 > d2 > . . . > dh+1 = 1;
(2) rkdk > rk−1dk−1 for all k ∈ {1, . . . , h};
(3) ekrk ∈< r0, . . . , rk−1 > for all k = 1, . . . , h.

Such a sequence is called a δ-sequence and it is well known (see [1]) that there exists a polynomial F̃ (X,Y )

with one place at infinity such that the semigroup {rankKK[X,Y ]/(F̃ , G), G /∈ (F )} is generated by r.
Abhyankar asked whether every semigroup generated by a δ-sequence is the semigroup of a polynomial

curve (for example, the δ-sequence (10, 4, 5) generates the semigroup 〈4, 5〉 which is the semigroup of the
polynomial curve A = K[x4, x5]). It has been proved recently that the answer is no ([8]). It would be nice
to see which supplementary conditions a δ-sequence should satisfy in order to generate the semigroup of
a polynomial curve.

Remark 7.7. Let f(x) and g(x) be as above, and let A = K[f(x), g(x)]. Let also F (X,Y ) be the x-
resultant of X − f(x) and Y − g(x). Let r0 = n, r1 = m, r2, . . . , rh be the generators of Γ(F ) calculated
as above. Let 1 ≤ k ≤ h and let Gk(X,Y ) = App(F, dk). We have d(Gk(f(x), g(x)) = rk, but Gk is
not the unique polynomial with this condition (for example, d((Gk + λ)(f(x), g(x))) = rk for all λ 6= 0).
Hence it is natural to ask the following: is there a polynomial G(X,Y ) (of degree < n in Y ) such that G
is parametrized by polynomials in x? Such a polynomial, if it exists, should be of degree n

dk
and should

have the contact with F at a characteristic exponent of F (see [1] for the definition of the characteristic
exponents of a curve with one place at infinity). Hence the existence of such a polynomial implies that a
polynomial curve can be approximated by polynomial curves.

Let the notations be as above, in particular F (X,Y ) = Y n + c1(X)Y n−1 + · · · + cn(X) is the x-
resultant of (X − f(x), Y − g(x)). Let G1 = Y,G2, . . . , Gh be the set of approximate roots of F (X,Y )
constructed algorithmically as above. In particular r0 = n, r1 = m, r2 = int(F,G2), . . . , rh = int(F,Gh)
generate d(A). For all k = 2, . . . , h, let gk(x) = Gk(f(x), g(x)) and let M(gk) = brkx

rk . We have
A = K[f(x), g(x), g2(x), . . . , gh(x)]. Furthermore, the map

D : K[u] −→ B = K[u][hf , hg, hg2 , . . . , hgh ]
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introduced in Remark 6.2 gives us a deformation of the polynomial curve B |u=1= A into B |u=0=
K[tn, tm, tr2 , . . . , trh ]. Note that, since 〈n,m, r2, . . . , rh〉 is free with respect to the given arragement, then

it is a complete intersection. For all k ∈ {1, . . . , h}, write ekrk =
∑k−1

i=0 θ
k
i ri with 0 ≤ θki < ei for every

i ∈ {1, . . . , k − 1}. With the notations above, if T is the ideal of K[X0,X1, . . . ,Xh] generated by

{Xe2
1 −X

m

d2

0 ,Xe2
2 −X

θ2
0

0 X
θ2
1

1 , . . . ,X
eh
h −X

θh
0

0 X
θh
1

1 . . . X
θh
h−1

h−1 },

then
K[xn, xm, xr2 , . . . , xrh ] ≃ K[X0,X1, . . . ,Xh]/T.

Set Gh+1 = F and for all k ≥ 1, let

Gk+1 = Gekk −Xθk
0

k−1∏

i=1

G
θk
i

i +
∑

αk

ckαkX
αk
0 .G

αk

1

1 · · ·G
αk

k

k ,

where the following conditions hold:

(1) for all i ∈ {0, . . . , k − 1}, 0 ≤ θki < ei;
(2) for all αk, if ck

αk 6= 0, then for all i ∈ {1, . . . , k}, 0 ≤ αki < ei,

(3) for all αk, if ck
αk 6= 0, then αk0n+

∑k
i=1 α

k
i ri = Dk

i < ekrk = θk0r0 +
∑k

i=1 θ
k
i ri.

It follows from Section 6 that if I (respectively J) is the ideal generated by (Xek
k − X

θk
0

0

∏k−1
i=1 X

θk
i

i +
∑

αk ckαkX
αk
0

0 .X
αk
1

1 · · ·X
αk

k

k )1≤k≤h (respectively (Xek
k −X

θk
0

0

∏k−1
i=1 X

θk
i

i +
∑

αk ckαku
ekrk−D

k

i X
αk
0

0 .X
αk
1

1 · · ·X
αk

k

k )1≤k≤h)

in K[X0, . . . ,Xh] (respectively K[u][X0, . . . ,Xh]), then

A = K[xn, g(x), g2(x), . . . , gh(x)] ≃ K[X0,X1, . . . ,Xh]/I

and
K[u][xn, hg(x), hg2(x), . . . , hgh(x)] ≃ K[u][X0,X1, . . . ,Xh]/J.

Furthermore, K[u][X0,X1, . . . ,Xh]/J is a flatK[u]-module. This gives us a family of space curve parametrized
by u which is a deformation from K[X0,X1, . . . ,Xh]/I to the toric variety K[X0,X1, . . . ,Xh]/T . The later
being a complete intersection, we get the following result.

Theorem 7.8. Every polynomial curve X = f(x), Y = g(x) of K2 has a deformation into a monomial
complete intersection curve of Kh+1 for some positive integer h.

Example 7.9. Let f(x) = x6 + x3, g(X) = x4. The minimal polynomial of (f(x), g(x)) is given by:

F (X,Y ) = Y 6 − 2X2Y 3 − 4XY 3 − Y 3 +X4.

Let r0 = 6 = d1, r1 = 4 and G1 = Y . We have d2 = gcd(6, 4) = 2, and G2 = App(F, 2) =
Y 3 − X2 − 2X − 1

2 . Since g2(x) = G2(f(x), g(x)) = −2x9 − 3x6 − 2x3 − 1
2 , then r2 = 9 and d3 = 1,

hence Γ(F ) = d(A) = 〈6, 4, 9〉 and {f(x), g(x), g2(x)} is a basis of A. Consequently, hA = K[x6 +
u3x3, x4, 2x9+3u3x6+2u6x3+ 1

2u
9, u6, u4, u9]. Note that, with the notations above, e1 = 3, e2 = 2, hence

K[x6, x4, 2x9] ≃ K[X0,X1,X2]/(X
3
1 −X2

0 ,X
2
2 − 4X3

0 ) = K[X0,X1,X2]/T , K[x6+x3, x4, 2x9−3x6−2x3−
1
2 ] ≃ K[X0,X1,X2]/(X

3
1 −X2

0 − 2X0 −
1
2 ,X

2
2 − 4X3

0 − 5X2
0 − 2X0 −

1
4 ), and

K[u] −→ K[u][X0,X1,X2]/(X
3
1 −X2

0 − 2u6X0 −
1

2
u9,X2

2 − 4X3
0 − 5u6X2

0 − 2u12X0 −
1

4
u18)

gives us a deformation from A to K[X0,X1,X2]/T .
The computation of the approximate roots and of Γ(F ) can be performed with the algorithm presented

in [2].

gap> f:=y^6-2*x^2*y^3-4*x*y^3-y^3+x^4;;

gap> SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity(f);

<Numerical semigroup with 3 generators>

gap> MinimalGeneratingSystem(last);

[ 4, 6, 9 ]

gap>SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity(f);
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[ [ 6, 4, 9 ], [ y, y^3-x^2-2*x-1/2 ] ]

Example 7.10. Let f(x) = x6 + x, g(x) = x4. The minimal polynomial of (f(x), g(x)) is given by:

F (X,Y ) = Y 6 − 2X2Y 3 − 4XY 2 − Y +X4.

Let r0 = 6 = d1, r1 = 4 and G1 = Y . We have d2 = gcd(6, 4) = 2, and G2 = App(F, 2) = Y 3 − X2.
Since g2(x) = G2(f(x), g(x)) = −2x7 − x2, then r2 = 7 and d3 = 1, hence Γ(F ) = d(A) = 〈6, 4, 7〉 and
{f(x), g(x), g2(x)} is a basis of A. Consequently, hA = K[x6 + u5x, x4, 2x7 + u5x2, u6, u4, u7]. Note that,
with the notations above, e1 = 3, e2 = 2, hence K[x6, x4, x7] ≃ K[X0,X1,X2]/(X

3
1 −X2

0 ,X
2
2 −X0X

2
1 ) =

K[X0,X1,X2]/T , and

K[u] −→ K[u][X0,X1,X2]/(X
3
1 −X2

0 ,X
2
2 − 4X0X

2
1 − u10X1)

gives us a deformation from A to K[X0,X1,X2]/T (we can also change X2 with 1
2X2, and then T =

(X3
1 −X2

0 ,X
2
2 − 4X0X

2
1 )).
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