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BASES OF SUBALGEBRAS OF K[z] AND K]z]

A. ASSI, P. A. GARCIA-SANCHEZ, AND V. MICALE

ABSTRACT. Let f1,..., fs be formal power series (respectively polynomials) in the variable x. We study the
semigroup of orders of the formal series in the algebra K[f1,..., fs] C K[z] (respectively the semigroup
of degrees of polynomials in K[f1,..., fs] C K[z]). We give procedures to compute these semigroups and
several applications.

1. INTRODUCTION

Let K be a field and let K[z] (respectively K[z]) be the ring of formal power series (respectively
the ring of polynomials) over K. Let fi(z),..., fs(z) be s elements of K[z] (respectively K[z]) and
let R = K[f1,...,fs] (respectively A = K[fi,..., fs]) be the subalgebra of K[z] (respectively Kz]).
Given f € R (respectively A), let o(f)(respectively d(f)) the order (respectively the degree) of f. The
set {o(f),f € R} (respectively {d(f),f € A}) is a submonoid o(R) (respectively d(A4)) of N, and the
knowledge of a system of generators of this monoid is important for the understanding of the subalgebra
R (respectively A). When furthermore K[z] (respectively K[z]) is an R-module (respectively A-module)
of finite length, then o(R) (respectively d(A)) is a numerical semigroup.

A numerical semigroup S is a submonoid of the set of nonnegative integers under addition such that
the N'\ S is finite, or equivalently, ged(S) = 1 (the greatest common divisor of the elements of S), see for
instance [15]. In this case, there exists a minimum ¢ € S such that ¢ + N C S. We call this element the
conductor of S, and denote it by c¢(S) (the motivation of this name and others coming from Algebraic
Geometry is explained in [3, 7]).

Assume that f; is a monomial z% for every i € {1,...,s}. Then o(R) (respectively d(A)) is generated
by ai,...,as. In this case, R ~ K[Xq,...,X]/T (respectively A ~ K[X3,...,X;]/T), where T is a
binomial ideal (equivalently V(T') is a toric variety).

Given a subalgebra R = K][[f1,..., fs]] (respectively A = K[f1,..., fs]), the main objective of this
paper is to describe an algorithm that calculates a generating system of o(R) (respectively d(A)). The
algorithm we present here allows us, by using the technique of homogenization, to construct a flat Ku]-
module (respectively K[u]-module) which is a deformation of R (respectively A) to a binomial ideal. This
technique is well known when R = K[f, f2] and K is algebraically closed field of characteristic zero
(see [10] and [18]). It turns out that the same holds wherever we can associate a semigroup to the local
subalgebra, and also that the same technique can be adapted to the global setting. As a particular case
we prove that a plane polynomial curve has a deformation into a complete intersection monomial space
curve.

The paper is organized as follows. In Section 2 we focus on the local case, namely the case of a
subalgebra R of K[z]. We introduce the notion of basis of R and we show how to construct such a basis.
We also show that if o(R) is a numerical semigroup, then every element of a reduced basis is a polynomial.
In Section 3 we show how to construct a deformation from R to a toric ideal (or a formal toric variety)
by using the technique of homogenization. In Section 4 we focus on the case when R = K[[f(z), g(x)]]
and K is algebraically closed field of characteristic zero. The existence in this case of the theory of
Newton-Puiseux allows us to precise the results of Sections 2 and 3. The difference with the procedure
presented in Section 2 is that it does not rely in the computation of successive kernels. Then in Sections
5 and 6 we adapt the local results to the case of a subalgebra A of K[z]. When A = K[f(z),¢(x)] and
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K is algebraically closed field of characteristic zero, a basis of A can be obtained by using the theory of
approximate roots of the resultant of X — f(z),Y — g(z), which is a polynomial with one place at infinity.

The procedures presented here have been implemented in GAP ([9]) and will be part of the forthcoming
stable release of the package numericalsgps ([6]).

1.1. Some notation. We denote by (A) the monoid generated by A, A C N, that is, the set {njz; +
s Ty, [ meNn; € Ny € Aforalli € {1,...,m}}.

Associated to each numerical semigroup S we can define a natural partial ordering <g, where for two
elements s and r in S we have s <g r if there exists u € S such that r = s + u. The set g; of minimal
elements in S\ {0} with this ordering is called a minimal set of generators for S. The set of minimal
generators is finite since for any s € S\ {0}, we have  Z y (mod s) if x # y are minimal elements with
respect to <g. The cardinality of the minimal generating system is known as the embedding dimension

of S.

2. SEMIGROUP OF A FORMAL SPACE CURVE

Let K be a field. In this section we will consider rings R that are subalgebras of K[z] and such that, if
we denote the integral closure of R in its quotient field by R, then R = K[x] and Ag(R/R) < oo where
Agr(+) is the length as R-module. Part of the results of this section are inspired in [14] and in [13]. An
alternative procedure (implemented in Maple) is provided in [5]. The main different with our approach
is that we do not rely on the multiplicity sequence, and thus we do not need to perform blow-ups. Also
we take intrinsic advantage in our implementation of the GAP package numericalsgps (]9, 6]).

Let f =), ciz' € R* = R\ {0}. Define supp(f) = {i,c; # 0}. We call minsupp(f) the order of f and
we denote it by o(f). We also set My (f) = co(f)xo(f). If My(f) = 2°U), then we shall say, by abuse of
notation, that f is monic. We set o(0) = +o0.

We denote by o(R) the set of orders of elements in R* = R\ {0}, that is, o(R) = {o(f) | f € R*}. We
finally set My(R) = K[Mo(f), f € R*].

Proposition 2.1. Let f1, fo be elements of R* and let a = min{o(f1),0(f2)}.

(i) a <o(fi+ f2).
(it) If o(f1) # o(f2) then a = o(f1 + f2).
(11i) o(f1f2) = o(f1) + o(f2).
Proof. This follows easily from the definition of order. ]

Proposition 2.2. [12, Lemma 3, p.486] Let Ry and Ry be rings of our type such that Ry C R and
O(Rl) = O(Rg). Then Rl = RQ.

Proposition 2.3. [12, Proposition 1, p.488] Let R be a ring of our type. Then Ag(R/R) = |N\ o(R)|.
The following two results appear in [14], and since this paper is very hard to find, we include the proofs
for sake of completeness.

Proposition 2.4. [14] Let R be a ring of our type. Then o(R) is a numerical semigroup.

Proof. Since R is a ring and by (iii) of Proposition 2.1, we have that o(R) is a subsemigroup of N. By
Ar(R/R) < oo and Proposition 2.3, we have the proof. O

Proposition 2.5. [14] Let R be a ring of our type. Then R contains every element f € K[z] of order
o(f) = c(o(R)).
Proof. Use Proposition 2.2 with R = R and Ry = R + z°CHK[z]. O

This later result allows to work with polynomials instead of series.

Let f1,...,fs bein R*. Let R = K[fi1,..., fs] be a subalgebra of K[z] as above, that is, the integral
closure of R in its quotient field is R = K[z] and Ag(R/R) < co.

Under the hypotheses on R, we have that o(R) is a numerical semigroup (Proposition 2.4).

We say that the set {f1,..., fs} C R*is a basis of R if R = K[f1,..., fs] and o(R) = (o(f1),...,0(fs)).
The set {f1,..., fs} is a basis of R if and only if M(R) = K[My(f1),..., Mo(fs)].
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Proposition 2.6. Let the notations be as above. Given f(z) € K[x], there exist g(x) € R and r(x) € K[z]
such that the following conditions hold.

(i) f(x) =g(x) +r(x) =2, cafi" [ +r(2).
(ii) If g(x) # 0 (respectively r(x) # 0), then o(g) > o(f) (respectively o(r) > o(f)).
(iii) FEither r(x) =0 or supp(r(z)) C N\ (o(f1),...,0(fs))-
Proof. The assertion is clear if f € K. Suppose that f ¢ K and let f(z) =}, ciz® with p = o(f) > 0.
(1) If p ¢ (o(f1),---,0(fs)), then we set g' = 0,7! = c,2? and f! = f — c,aP.
1
(2) If p € (o(f1),--.,0(fs)), then cpaP = cgM(f1)% - M(fs)%. We set g' = chfl e ffg, r!' =0 and
fr=r-g"
In such a way that f = f! + g' +r!, ¢' € R, either ' = 0 or supp(r!) € N\ (o(f1),...,0(fs)), and
if f1' # 0, then o(f') > o(f) = p. Then we restart with f!. We construct in this way sequences
(%=1, (6%)k>1, (rF)k>1 such that for all k > 1, f = f* + Zle g+ Zleri, and o(f) < o(f}) < --- <
o( f¥), Zle ¢’ € R, Supp(E:fZ1 ") € N\{(o(f1),...,0(fs)) and for all i < j <k, if g # 0 # ¢’ (respectively
rt £ 0 # r7), then o(f) < o(g') < o(¢g?) (respectively o(f) < o(r?) < o(r?)). Clearly limj__, o f*¥ = 0.
Hence, if g = limy,_, 1 Zle g and 7 = limp,__, o Zle ri, then f = g+r and g, satisfy the conditions
above. g

We call the series r(x) of the result above the remainder of f with respect to {f1,..., fs} and we denote

it by R'O(f7 {flv"' 7fs})‘
Proposition 2.7. The set {f1,..., fs} is a basis of R if and only if Ro(f, {f1,---, fs}) =0 for all f € R.

Proof. Suppose that {fi,..., fs} is a basis of R and let f € R. Let r(x) = Ro(f,{f1,-..,fs}). Then
r(z) € R. If r # 0, then o(r) € (o(f1),...,0(fs)), which is a contradiction.
Conversely, given 0 # f € R, if o(f) ¢ (o(f1),...,0(fs)), then Ro(f,{f1,...,fs}) # 0, which is a

contradiction. O

Let, as above, R = K[f1,..., fs]. We shall suppose that f; is monic for all 1 < i < s. Define
¢ K[X1,...,Xs] — Klz], ¢(X;) =My(f;) foralli e {1,...,s}.
Let {F1,..., F}} be a generating system of the kernel of ¢. Clearly for all i € {1,...,r}, F; is a binomial.
If F; :Xféll XS —Xli---XSB;, we set S; = féll---ffé —fli'--fsﬁ;. Note that if p =7 _; alo(fx) =
> i1 Bro(fx), then o(S;) > p.

Theorem 2.8. The system {f1,...,fs} is a basis of R if and only if Ro(Si,{f1,.-.,fs}) = 0 for all
ie{l,...,r}.

Proof. Suppose that {f1,..., fs} is a basis of R. Since S; € R for all i € {1,...,r}, then, by Proposition

2'77 RO(Sia {f17 ey fs}) = 0.
For the sufficiency assume to the contrary that {fi,..., fs} is not a basis of R. Then there exists f € R

such that o(f) & (o(f1),...,0(fs)). Write
F=Y cflt 1l
(%)

For all 0, if ¢y # 0, we set pg = > 7, 0;0(f;) = o 01 f0). Let p = min{pg | cg # 0} and let {#',...,0'}
be such that p = o(ffli e ffé) for all i € {1,...,1} (such a set is clearly finite). Also p < o(f) < oc.

If 22:1 chMO(ffi---ffé) # 0, then p = o(f) € (o(f1),...,0(fs)). But this is imposible. Hence,
Zi’:l cgi Mo fi e fseé) = 0, and then 22:1 chXfi e Xgé € ker(¢). Hence

l ) r
03 i
E CQinl"'ng = E )\ka
1=1 k=1
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with A\ € K[X,...,X] for all £ € {1,...,r} (recall that F,..., F, are binomials generating ker(¢)).
This implies that

l _ . r
St =3 N £ S
=1 k=1

From the hypothesis Ro(Sk,{f1,...,fs}) = 0. Hence there is an expression of Sy of the form Sj =
k k k k
Sk o fi oo fO with o1 - f£7) > o(Sp).
- - i i k ;
So by replacing 22:1 CQiflel e fgs with > Ae(frs--- fs) Zﬁk Cékflﬁl ffé in the expression of f,

we can rewrite f as f =), chflel . ~fseg with min{o(fle1 'ufse;) | ¢ # 0} > p.
Since o( f) < +o0, this process will stop, yielding a contradiction. O

Algorithm 2.9. Let the notations be as above.

1. ¥ Ro(Sk, {f1,---,fs}) =0forall k€ {1,... 7}, then {f1,..., fs} is a basis of R.
2. If r(x) = Ro(Sk,{f1,---,fs}) # 0 for some k € {1,...,r}, and if My(r(z)) = az9, then we set
fsi1 = %r(az), and we restart with {f1,..., fs4+1}. Note that in this case,

<O(f1)7 s 7O(f8)> g <0(f1)7 s 70(f8)70(fs+1)> - O(R)

This process will stop, giving a basis of R, because the complement of o(R) in N is finite.

Observe that r(x) is not in general a polynomial. So we must use a trick to compute it, or at least the
relevant part of it. This is accomplished by using Proposition 2.5. If in the current step of the algorithm
(0(f1),-.-,0(fs)) is a numerical semigroup, then we compute its conductor, say c. Then ¢ > c¢(o(R)). To
compute Ro(f, {f1,--.,fs}) we do the following. Let p = o(f).

1. If p > ¢, then return 0. We implicitly assume that z is in our generating set for a € ¢+ N (though we
do not store them).

2. If pE <0(f1)7 e 70(fs)>7 then Mo(f) = ZQCQMO(fl)Gl e Mo(fs)es' Set f = f - chﬂflel e 8957 and
call recursively Ro(f,{f1,..-,fs}) (the process will stop because the order of the new f is larger, and
eventually will become bigger than ¢ after a finite number of steps).

3. If p & (o(f1),...,0(fs)), then return f.

If (o(f1),...,0(fs)) is not a numerical semigroup, let d be its greatest common divisor. Set ¢ =
de({o(f1),--.,0(fs))/d). In this case we proceed as follows.

1. If p > ¢, then return f. We cannot ensure here that f will be reduced to zero, so we add it just in case.

2. 1 p € (0(f1), -, 0(£s)), then Mo(f) =Yg cgMo(f1)" --- Mo(fo)?*. St f = f — Ygeafft--- f&, and
call recursively Ro(f,{f1,-.-, fs})-

3. If p & (o(f1),.-.,0(fs)), then return f. One might check first if d does not divide p, because in this

case for sure p & (o(f1),...,0(fs)).
Observe that by adding the conditions p > ¢, we are avoiding entering in an eventual infinite loop.

Suppose that {fi,..., fs} is a basis of R. Also suppose that for all i € {1,...,s}, f; is monic. We say
that {f1,..., fs} is a minimal basis of Rif o(f1),...,0(fs) generate minimally the semigroup o(R). We say
that {f1,..., fs} is a reduced basis of R if supp(fi(x) — Mo(fi)) C N\ o(R). Let i € {1,...,s}. If o(f;) €
(o(f1),.--,0(fiz1)s0(fix1)s---,0(fs)), then {f1,..., fi—1, fix1,.-., fs} is also a basis of R. Furthermore,
by applying the division process of Proposition 2.6 to f; — M(f;), we can always construct a reduced
basis of R.

Corollary 2.10. The algebra R has a unique minimal reduced basis.

Proof. Let {f1,...,fs} and {g1,...,9s} be two minimal reduced bases of R. Hence s is the embedding
dimension of o(R), and the same holds for s’; whence they are equal. Let i = 1. There exists j; such that
o(f1) = o(gj, ), because minimal generating systems of numerical semigroups are unique. If f; — g;; # 0,
then o(fi — gj,) ¢ o(R) (the basis is reduced), which is a contradiction because f; — g;, € R. The same
argument shows that {f1,..., fs} ={g1,.-.,9s} O
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Remark 2.11. Let R = K[f1,..., fs] and assume that f; is monic for all 1 <4 < s. Also assume that
o(fi) < o(f2) < ... <o(fs). Set n =o(f1) and let f; = 2™ + Y, ciz’. By an analytic change of
variables, we may assume that f; = x”, hence, up to an analytic isomorphism, we may assume that

R = K[z", fa,..., fs]. In particular, we may assume that R has a minimal reduced basis of the form
" ga(z), ..., gs ().

Example 2.12. Let R = K[z* + 2°, 2%, 21° + 2'6], with K a field of characteristic zero. Then R is a
one-dimensional ring and we will show that Ag(K[X]/R) < cc. Let us denote z* +z° by f1, 2% by f2 and
x'% + 216 by f3. After computing the kernel of ¢ : K[ X1, X2, X3] — K[z], ¢(X1) = 2*, ¢(X3) = 2% and
#(X3) = 215, we get S1 = %:El‘f’ + a4+ 213 and Sy = %ZE32 + 231, As 13 & (4,6,15), we add it as f4 = Sy.
We do not care about Sy, because the conductor of (4,6, 15) is 18.

Now, the conductor of (4,6,13,15) is 12. If we compute the kernel of ¢ : K[ X7, X2, X3, Xy — K][z],
H(X1) = 2*, p(X2) = 28, ¢(X3) = 2'° and ¢(X4) = '3, then all the elements S; have orders greater than
12, and so the algorithm ends. We conclude that o(R) = (4,6, 13, 15).

We have implemented this algorithm in the numericalsgps ([6]) GAP ([9]) package. Next we illustrate
how to compute this semigroup with the functions we have implemented (that will be available in the
next release of the package).

gap> x:=X(Rationals,"x");;

gap> 1l:=[x"4+x"5,x"6,x"15+x"16];;

gap> s:=Semigroup0fValuesOfCurve_Local(l);;
gap> MinimalGeneratingSystem(s);

[ 4, 6, 13, 15 ]

gap> Semigroup0fValuesOfCurve_Local(l,13);
x"13

Remark 2.13. It is known (cf. [3, Section II.1]) that there exist relations between algebraic characters and
invariants of the semigroup o(R) and the ring R. Hence, in the Example 2.12, from o(R) = (4,6,13,15) =
{0,4,6,8,10,12, —}, we have that Ag(R/R) = |[0,c(o(R)) — 1] N (N\ o(R))| = 7, Ar(R/(R : R)) =
[[0,c(o(R)) — 1] No(R)| =5, t(R) < t(o(R)) = 3, where t(R) is the type of the ring R.

Example 2.14. Let R = K[[w4,x6 + 27, 2B + apat® 4+ ajsxl® + ...] with K a field. Using the same
argument as in the Example 2.12, we find that if char K # 2, we have that if a;5 — a14 + 1/2 = 0,
then {2% 26 + 337,9513} is the reduced basis of R. Furthermore, since (4,6,13) is a symmetric numerical
semigroup (the number of nonnegative integers not in the semigroup equals the conductor divided by
two), then, by [11], R is Gorenstein. Finally Ag(R/R) = 8. Otherwise if ai5 — a14 + 1/2 # 0, then
{2*, 254+ 27,213, 215} is the reduced basis of R with R a non Gorenstein ring. Furthermore Ar(R/R) = 7.

Otherwise, if char K = 2, then the reduced basis of R is {z*, 5+ 27, 2!3, 2%} and R is not a Gorenstein
ring. Here, Ag(R/R) = 7.

Example 2.15. Let R = K[% 2'? + 2 + 2'°], with K a field of characteristic zero. Using the same
argument as in the Example 2.12, we have that

(28,212 + 214 4 215 %6 4 27 4 % lxsl
) ) 2 )
1 1 1 25 95 15 135
53 55 57 63 67 71 75 83
x -z — -z’ — —x —z' - —z"" — —z" - —=x
- 2 2 8 8 32 16 32 }
is the reduced basis of the Gorenstein ring R. Furthermore, we have A\g(R/R) = 42.
gap> 1:=[x"8,x"12+x"14+x"15] ;;
gap> Semigroup0fValuesOfCurve_Local(l,"basis");
[ x78, x"15+x714+x712, -1/2%x"31+x"29+x"27+x"26,
-135/32%x783-15/16*x"75-95/32*x"71+25/8%x"~67-1/8*x"63-1/2%x"57+1/2*x"55+x"53 ]

Example 2.16. The following battery of examples was provided by Lance Bryant as a test for our
algorithm.
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gap> 1:=[ [ x°6,x"8+x79,x"19], [x"7,x"9+x"10,x719,x"31], [x"7,x"21+x"28+x"33],
[x"4,x"6+x"7,x"13], [x76,x"8+x"11,x"10+2*x~13,x"21], [x"5,-x"18-x"21,-x"23,-x"26],
[x"5,-x"18-x"21,-x"26], [x"5,-x"18-x"21,x"23-x"26], [x"6,x"9+x~10,x"19],
[x"7,x"9+x710,x719], [x"8,x"9+x~10,x~19], [x"7,x"9+x~10,x~17,x~19]1 1 ;;
gap> List(1l, i->MinimalGeneratingSystem(SemigroupOfValues0OfCurve_Local(i)));
[[6, 8, 19,291, [ 7, 9, 19, 29, 311, [ 7, 331, [ 4, 6, 13, 151,

[6, 8 10, 21, 23, 251, [ 5, 18, 26, 39, 47 1, [ 5, 18, 26, 39, 47 1],

[ 5, 18, 26, 39, 471, [ 6, 9, 19, 201, [ 7, 9, 19, 29 ], [ 8, 9, 19, 30 1],

L 7,9, 17, 19, 29 ] 1]

3. DEFORMATION TO A TORIC IDEAL

Let the notations be as in Section 2. Given f(z) = >".o ¢z’ € K[z], we set Hy(u,z) = disp ciut Pt
In particular, if we consider the linear form L : N> — N, L(a,b) = b — a, then H ¢ is L-homogeneous of
degree p, that is, L(i — p,i) = p for all i € supp(f). We set Hr = K[Hy, f € R]. With these notations
we have the following.

Proposition 3.1. The set {fi,..., fs} is a basis of R if and only if Hp = K[Hy,,..., Hy].

Proof. Suppose that {f1,..., fs} is a basis of R and let f(x) € R. Write Hy(u,z) = Zin
have Mo (f) = ¢paP = ¢, [ 121 Mo (f:)P", hence

i>p

c;u Pz, We

5 k
Hy—c, [[ Hy =u'Hp
i=1

with f! € R and either f' =0, or o(f!) > p. In the second case we restart with f!. A similar argument
as in Proposition 2.6. proves our assertion.

Conversely, suppose that Hgr = K[Hy,,...,Hy ] and let f € R. Let P(X1,...,X,) € K[X1,...,X,] such
that Hf = P(Hy,,...,Hy,). If u =0, then My(f) = P(My(f1),..., Mo(fs)) € K[Mo(f1),..., Mo(fs)],
hence My (f) € K[Ms(f1),-.., My(fs)]. O
Remark 3.2. Suppose that {f1,..., f.} is a basis of R. Then T'= K[u][Hy,, ..., Hy,] is a K[u]-module.
When u = 1 (respectively u = 0), we get T' |,=1= R (respectively T |,—o= K[M(f1),...,M(fs)]). Hence
we get a deformation from R to K[My(f1),. .., Mo(fs)]. More precisely let

Y K[Xy,..., Xs] — R=K[f1,..., fs]
and
Hy : Ku][X1,..., Xs] — T =K[u][Hyf, ..., H]
be the morphisms of rings such that Hy(u) = u, ¥(X;) = f; and Hy(X;) = Hy, for alli € {1,...,s}. For
all i € {1,...,r}, let

at i i
S R fsé Zcelfl . o

with o(f fS ) = éi > > abo(fi) = Zk L Bio(fi) = pi- Let I (respectively J) be the ideal gener-

ated by (X 1---X S—Xlﬁi-"ng—Zez cein Xgl)1<2<r (respectively (X i X?é—Xlﬁi---XSB;—

pIPY P plc X1 Xgé)lggr) in K[Xy,...,X] (respectively K[u][X7, ..., X]).

Since {f1,..., fs} is a basis of R, the kernel of ¢ (respectively H(:)) is generated by I (respectively
J). Now the morphism

Klu] — Ku][ Xy, ..., X]/J
is flat because u is not a zero divisor. Hence we get a family of formal space curves parametrized by u
which gives us a deformation from K[X1,..., X,]/I to K[Xq,...,X,]/(F1,..., F.).

In particular we get the following.
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Theorem 3.3. Every formal space curve of K!, parametrized by Y1 = g1(x),...,Y; = gi(x) has a defor-
mation into a formal monomial curve of K" for some positive integer r.

4. Basis oF K[f(z),g(z)]

In [19] the case of finding an algebra basis for K[f(z), g(x)] with f and ¢ polynomials is treated. Here
we will do the analogue for K[[f(z), g(z)]].
Let f(z) = 3,5, a;iz’ and g(z) = > ism bjz? be two elements of K[z] and suppose, without loss of
generality, that the following conditions hold:
(1) ap =by, = 1.
(2) n < m.
(3) For all d > 1, f(x),g(z) ¢ K[z?] (i.e. the ged of supp(f(z)) Usupp(g(x)) = 1).
Let the notations be as in Section 2, in particular R = K[f,g]. By the analytic change of variables
f(z) = 2", we may assume that R = K[2", g(x)]. Let F(X,Y) be the z-resultant of X —z™,Y —g(z), that
is, F(X,Y) is the generator of the kernel of the map p: K[X,Y] — K[z], p(X) = 2™ and p(Y) = g(x).
Since K[f,g] = K[f,g — f¥] for all k£ > 1, then we shall assume that n < m and also that n does not
divide m. Given a nonzero element G(X,Y) ¢ (F(X,Y))K[X,Y], we set int(F,G) = o(G(f(x),g(x))).
The set of int(F,G),G(X,Y) ¢ (F(X,Y))K[X,Y], is a numerical semigroup. We denote it by I'(F'). We
have the following.

Proposition 4.1. o(R) =I'(F).

Proof. We have a € T'(F) if and only if a = o(G(f(x),g(x))) for some G(X,Y) € K[X,Y] if and only if
a € o(R). O

Suppose that K is algebraically closed with characteristic zero, and let dy = n, m; = inf{i € supp(g) |
di 1 i}, that is, m; = m, and dy = ged(n,my). For all k > 2 we set my, = inf{i € supp(g) | di 1 ¢} and
dg+1 = ged(dg, my). Tt follows that there exists h > 1 such that dpy1 = 1. The set {mq,...,m;} is called
the set of Newton-Puiseuzr exponents of F(X,Y). Let e} = de_ for all 1 < k < h and define the sequence

d

(rk)o<k<n as follows: 79 = n,r;1 = m, and for all 2 < k < Ii?,lrk = Tp_1€k_1 + mp — mp_1. With these
notations we have the following:

(1) T'(F) = o(R) is generated by {ro,r1,...,7n}

(2) rrd < rgy1dgyq for all k€ {1,...,h —1}.

(3) I'(F) = o(R) is free with respect to the arrangement (ro,...,r,). More precisely, let e =

for all k € {1,...,h}. Then exry € (ro,...,7k—1).
4) C= Zzzl(ek — 1)ry —n+ 1 is the conductor of T'(F) = o(R).

d
dk41

Example 4.2. Let f = 27 and g = 2* + 2. The above resultant is then ' = y7 — 7z%y3 — 2% — 14229 —
72?y — . Then I'(F) = o(R) = (2,7).

gap> Resultant(x-t~7, y-t"4-t"2,t);

yoT-T*x7™2%y " 3-x"4-14%x" 2%y~ 2-T*x " 2%y-x"2

gap> s:=Semigroup0fValuesOfCurve_Local([t"7,t"4+t"2]);

<Modular numerical semigroup satisfying 7x mod 14 <= x >

gap> MinimalGeneratingSystem(last);

[2,7]

gap> IsFreeNumericalSemigroup(s) ;

true

Let the notations be as above. For all k > 2, let Gi(X,Y) € K[X,Y] such that o(G(z", g(z))) = rg.
It follows from [1] that degy Gy = 7-. If gx(z) = Gi(2", g(x)), then we have the following.

Proposition 4.3. The set {z",g,92,...,9n} is a basis of R, that is, R = K[2", g, 92, ..., gr] and My(R) =
K[z™, 2™, ", ... z"™].
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Note that, by a similar argument as in Section 2, we may assume that f = 2™, g = 2™ + Zieg(F(F)) cat,
and for all k > 2,gr = 2™ + 3, cqrim)) cFal, where G(I'(F)) = {j € N | j ¢ T(F)} is the set of gaps of
L(F).

Let the notations be as in Section 3. The morphism

D :K[u] — T = K[u][Hy, Hy, Hy,, ..., Hy, |

gives us a deformation of T' |,—1= R = K[f(z), g(x), g2(2), ..., gn(2)] to T |y=o= K[z, 2™ ;™ ].
Note that, since (n,m,rq,...,ry) is free with respect to the given arrangement, then 1t is a complete
intersection (see for instance [15]). For all k € {1,...,h}, write exry = Zf:_ol 0kr; with 0 < 0¥ < e; for all

i€ {l,...,k—1}. If B is the ideal of K[Xy, X1, ..., X}] generated by

(xe - xi xe - xBx%  xen o x%x%  xU
1 0 »“*2 0 1 2 “Yh 0 1 " “*h-1

K[z", 2™, 2™, ... 2™] ~ K[Xo, X1, ..., Xs]/B.

i et F(X,Y) be the z-resultant of X —2", y—g(z). By hypothesis, F/(X,Y) is a polynomial. Furthermore,
F(X Y)=Y"+a(X)Y" 1+ ... 4 a,(X) with o(a;(X)) > i for all 2 <i < n. Set G,+1 = F and for all
k>1,let

k—1
k k ak
G =G — XB [ 6+ o xobayr - G,
i=1 ok
where the following conditions hold:
(1) for all i € {0,...,k— 1}, 0 < 0F < ¢;;
(2) for all o, if c];k # 0, then for all i € {1,...,k}, 0 < oF < ¢;;
(3) for all oF, if c';k # 0, then algn + Zle afri = Df > epry = 0F 0T0 + Zk ! Hk
It follows from Section 3. that if I (respectively J) is the ideal generated by
e B ook ak ok
(X" — 0 HX "’Z ok Xo ' X" Xy P )1<k<n
. en 06“ k—1 9? k  DF_e.r a§ o/f aﬁ .
(respectlvely (Xk‘ — XO HiZI XZ + ng Cgku i k kXO Xl . Xk‘ )lgkgh) in K[[X()a . 7Xh]] (respec-
tively K[u][Xo, ..., Xz]), then
R =K[z",g(),92(2), ..., gn(z)] = K[Xo, X1,..., Xp]/I
and
Klu][z", Hg, Hgy, ..., Hy, ] ~ K[u][Xo, X1,..., Xp]/J.

Furthermore, K[u][Xo, X1,...,Xs]/J is a flat K[u]-module. This gives us a family of formal space
curves parametrized by w which is a deformation from K[Xg, X7,..., X3]/I to the formal toric variety
K[Xo, X1,...,X,]/B. The later being a complete intersection, we get the following.

Theorem 4.4. Every irreducible singularity of a plane curve X = f(x),Y = g(x) of K? has a deformation

into a formal monomial complete intersection curve of KMt for some h > 1.

Example 4.5. Let f(z) = 2*, g(2) = 2% 4+ 27. The minimal polynomial of (f(z), g(x)) is given by:
F(X,Y)=Y*-2X3Y? + X0 —4X°Y — X" = (Y? - X3)? —4X°Y — X7

Let 1o =4 =dy,r1 =6 = my and G; =Y. We have ds = ged(6,4) = 2, hence my = 7. It follows that

ry = 13. Note that if Go = Y2 — X3, then go(z) = Gao(f(z),g9(x)) = 22'3 4+ 2'4. Hence I'(F) = o(R) =
(4,6,13) and {f(z),g(x),g2(x)} is a basis of R. Let us double check it.

gap> SemigroupO0fValuesOfCurve_Local([x"4,x"6+x"7],"basis");
[ x4, x"7+x°6, -1/2%x"15+x"13 ]
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(Observe that the output is different, since this is a reduced basis: we change 22'3 + 2* with 2! + %azm,
and then using that 14 = 2 x 4 + 6, we replace this last polynomial with z'3 — %xl‘r’.)
Consequently, Hr = K[z?, 26 +ux’, 2213 + uxt, ut, ub, u'3]. With the notations above, e; = 3, es = 2,
hence K[z4, 25, 213] ~ T = K[Xo, X1, Xo]/(X? — X3, X3 — X3 X;), and
K[ul — K[u][Xo, X1, Xal /(X2 — X3, X3 — 4X3X; — u?X])
gives us a deformation from R to T' (we can also change X5 with %Xg, and then B = (X? — X3, X3 —
4X5X1)).

5. SEMIGROUP OF A POLYNOMIAL CURVE

Let K be a field and let fi(z),..., fs(z) be s polynomials of K[z]. Let A = K[f1,..., fs] be a subalgebra
of K[z], and assume, without loss of generality, that f; is monic for all i € {1,...,s}. Given f(x) =

P it € A, with ¢, # 0, we set d(f) = p and M(f) = c,aP, the degree and leading monomial,
respectively. We also define supp(f) = {i | ¢; # 0}. The set d(A) = {d(f) | f € A} is a submonoid of
N. We shall assume that As(K[z]/A) < co. In particular d(A) is a numerical semigroup. We say that
{fi,.--, fs} is a basis of A if {d(f1),...,d(fs)} generates d(A). Clearly, {f1,..., fs} is a basis of A if
and only if K[M(f), f € A] = K[M(f1),...,M(fs)]. For several variables, these basis are known in the
literature as SAGBI basis ([16, 4]).

The following result is the analogue to Proposition 2.6. Actually, in this section we follow a similar
argument to the one used in Section 2, with the advantage that sequences of degrees decrease, and thus
the finiteness conditions are easier to deduce.

Proposition 5.1. Given f(z) € K[z|, there exist g(z) € A and r(x) € Kz] such that the following
conditions hold:
(1) flx) =g(@) +r(@) =2 cafi - [& +r(2),
(2) if g(x) # 0 (respectively r(x) # 0), then d(g) < d(f) (respectively d(r) < d(f)),
(3) supp(r(x)) € N\ (d(f1),...,d(fs))-
Proof. The assertion is clear if f € K. Suppose that f ¢ K and let f(z) = >F_, ¢;z* with p = d(f) > 0.
(1) If p ¢ (d(f1),...,d(fs)), then we set g' = 0,7! = c,2P and f! = f — c,2P.
(2) I p € (d(f1),.-.,d(fs)), then c,aP = cgM(f1)% --- M(f5)%. We set g' = chlel oo f9 1 =0 and
fl=r-4g"
In this way, f = fl +g' +71, g' € A, supp(r') € N\ (d(f1),...,d(fs)), and if f! ¢ K, then d(f!) <
d(f) = p. Then we restart with f'. Clearly there is & > 1 such that f* € K. Weset g = g' +---+g* + f¥
and r =l 4 ... 40k O
We call the polynomial r(x) of the theorem above the remainder of f with respect to {f1,..., fs} and
we denote it by R(f,{f1,..., fs}). This is an adaptation of the procedure called subduction in [16], with
the difference that we are adding f* to ¢, and thus whenever the subduction process produces a constant,
the remainder is zero.
The following characterization of basis is analogous to that given in Proposition 2.7 for formal space
curves; we omit the proof since it is roughly the same.

Proposition 5.2. The set {f1,..., fs} is a basis of A if and only if R(f,{f1,...,fs}) =0 for all f € A.
Let the notations be as above and let
¢ :K[Xy,...,Xs] — K[z], ¢(X;) =M(f;), forallie{l,...,s}.
Let {Fy,..., F.} be a generating system of the kernel of ¢. Clearly for all i = 1,...,r, F; is a binomial. If
F; :Xféli "'X?é —Xli--'ng, we set S; = féi---ffé—fli---ffg. Observe that if d = Y7 _; atd(fi) =
> or—1 Brd(fr), then d(S;) < d. With this we obtain the following particular case of [17, Corollary 11.5]

(taking into account that the subduction process is not exactly our remainder).

Theorem 5.3. The set {fi,...,fs} is a basis of A if and only if R(Si, {f1,.--,fs}) = 0 for all i €
{1,...,r}.
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Proof. The proof goes as in Theorem 2.8, but now the inequalities are reversed and p is defined as a
maximum instead of a minimum. O

Algorithm 5.4. Let the notations be as above.

(1) ¥ R(Sk(f1,---, fs), {f1,---, fs}) =0forall k=1,...,r, then {fi,..., fs} is a basis of A.

(2) If r(z) = R(Sk(f1,---s fs)s {f1,---, fs}) # 0 for some 1 < k < r, and if M(r) = ax?, then we
set fop1 = Lr(z), and we restart with {fi,..., fs41}. Note that in this case, (d(f1),...,d(fs)) €
<d(f1)7"'7d(fs)7d(fs+1)>-

This process will stop, giving a basis of A.

Suppose that {fi,..., fs} is a basis of A. Also suppose that f; is monic for all ¢ € {1,...,s}. We say
that {f1,..., fr} is a minimal basis of A if {d(f1),...,d(fs)} minimally generates the semigroup d(A).
We say that {f1,..., fr} is a reduced basis of A if supp(fi(z) —M(f;)) € N\ d(A).

Let i € {17 ce 73}' It d(fl) S <d(fl)7 cet 7d(fi—l)7d(fi+1)7 cet 7d(fs)>7 then {f17 cee 7fi—17 fi-i-ly cee 7fs} is
also a basis of A. Furthermore, by applying the division process of Proposition 5.1 to f; — M(f;), we can
always construct a reduced basis of A. Minimal reduced basis are not unique as in the formal space curve
case, but “almost” unique.

Corollary 5.5. Up to constants, the algebra A has a unique minimal reduced basis.

Proof. Let {f1,..., fs} and {g1,...,9+} be two minimal reduced bases of A. Clearly s = s’. Let i = 1.
There exists j; such that d(f1) = d(g;,). If f1 —g; ¢ K, then d(f1 —g;,) ¢ I'(A), which is a contradiction
because fi1—gj, € A. The same agrument shows that for all ¢ > 2, there exists j; such that f;—g;, € K. [

Corollary 5.6. Let {f1,..., fs} be a reduced basis of A. For alli € {1,...,s}, supp(fi—M(f;)) C G(T'A).

Example 5.7. We compute d(R) for R = K[z6 + 23, 2* + 2?]; fi = 254 23 and fo = 2* + 2. We start by
computing the kernel of ¢ : K[X1, Xo] — K[z], with ¢(X1) = 2% and ¢(X3) = x*. This kernel is generated
by Fi = X? — X3. Hence S; = —3z'0 4 229 — 328, Since 10 € (4,6), R(S1, {f1, f2}) = _szg )
We add f3 = z° + %x7 + %:175 to our generating set.

In the next step ¢ : K[X1, Xo, X3] — K[z], with ¢(X1) = 25, ¢(X2) = 2* and ¢(X3) = 2%; ker¢p =
(X?— X3, X} — X3), whence Sy = 216 — 215 4 Ip1 4 14124 3510 129 and S = 210 — 229 + 28, It turns
out that R(S1, {f1, f2, f3}) = 0 = R(S2, {f1, f2, f3}), and consequently {fi, fa2, f3} is a (reduced minimal)
basis of R. Also d(R) = (4,6,9).

Example 5.8. Let us compute K[z7, 2% + 210 217 !9 with our implementation.
gap> MinimalGeneratingSystem(SemigroupOfValuesOfCurve_Global (
[x~7,x"9+x~10,x~17,x~19]);

[ 7, 10, 16, 19, 25 ]

6. DEFORMATION TO A TORIC IDEAL

Let the notations be as in Section 5. Given f(z) = >__, ¢;a’ € K[z], we set hy(u,z) = YL, ciuP~'a’.

We set hy = K[hy | f € A]. With these notations we have the following result, and its proof is similar to
that of Proposition 3.1.

Proposition 6.1. The set {fi,..., fr} is a basis of A if and only if hy = Khy,, ... ,hfs,ud(fl), o zdls)],

Remark 6.2. Suppose that {f1,..., fs} is a basis of A. By the inclusion morphism of rings D : K[u] —
B = Klu,hy,,...,hy,], B is a Klu]-module. When u = 1 (respectively u = 0), we get B [,—1= A
(respectively B |,—o= K[M(f1),...,M(fs)]). Hence we get a deformation from A to K[M(f1),...,M(fs)].
More precisely let
1)[) : K[le"'va] —>K[f17---7fs]
and
hy - Klu|[Xq,. .., Xs] — Klul[hy,, ..., hys]
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be the morphisms of rings such that hy(u) = u, ¥(X;) = f; and hy(X;) = hy, for all i =1,...,s. For all
i=1,...,r, let

S’i: 11fsas_ 11...fsﬁs:ZcZQifll...fss
Qi

with d( fi - ffé) = Déi <Sop_qahd(fi) =Y i Bid(fr) = pi- Let I (respectively J) be the ideal gen-

erated by (Xfﬂ1 "'X?é —Xlﬁi . --XSB; —Zgi céini . --Xgé)lgigr (respectively (Xf‘zl . --Xsals —XIBi . --ng—

pIPY upi_Déicéinei . Xﬁi)lggr) in K[X1,...,X] (respectively K[u][X1,...,Xs]).

Since {f1, L fs} is a basis of A, then the kernel of v (respectively h,) is generated by I (respectively
J). Now the morphism
Klu] — K[u][X1,..., X,]/J
is flat (because p(u) is not a zero divisor for all p(u) € K[u]. Hence we get a family of polynomial space
curves parametrized by u which gives us a deformation from K[ X1, ..., X,]/I to K[X1,..., X, ]/(F1,..., F}).

In particular we get the following analogue to Theorem 3.3.

Theorem 6.3. Every polynomial space curve of K!, parametrized by Y1 = g1(x),...,Y; = g/(z) has a
deformation into a monomial curve of K" for some positive integer r.

7. Basis oF K[f(z), g(x)]

Let f(z) = Y1 a;z" and g(x) = >y bjz’ be two polynomials of K[z] and suppose, without loss of
generality, that the following conditions hold:

(1) ap =by, = 1.

(2) n>m,

(3) for all d > 1, f(z),g(x) ¢ K[z? (that is, the ged of supp(f(z)) Usupp(g(x)) = 1).
Let the notations be as in Section 5, in particular A = K[f,g]. Let also F(X,Y) be the z-resultant
of X — f(z),Y — g(x), that is, F(X,Y) is the generator of the kernel of the map ¢ : K[X,Y] —
Kz],¥(X) = f(z) and ¥(Y) = g(x). Since K[f,g] = K[f,g — f], then we shall assume that n > m.
Write F(X,Y) = Y™ + ¢ (X)Y" 1 + ... + ¢,(X). Given a polynomial G(X,Y) ¢ (F(X,Y))K[X,Y],
we set int(F,G) = deg,G(f(x),g(x)). Assume that K is algebraically closed with characteristic zero.
Let d be a divisor of n, and let G be a monic polynomial in K[X][Y] of degree 5 in Y. Write F' =
G+ a1 (X, Y)G ! + - 4+ ag(X,Y) where for all k € {1,...,d}, if ay # 0, then degy oy < 7. We say
that G is a dth approximate root of F if ay = 0. There is a unique dth approximate root of F'. We denote
it by App(F,d). The following results can be found in [1].

Theorem 7.1. Under the standing hypothesis.
(1) F(X,Y) has one place at infinity, that is, for allk € {1,...,n}, if ¢ (X) # 0, then degxcp(X) < k.
(2) {int(F,G) | G € K[X, Y]\ (F)} is a numerical semigroup.
(8) Let D(n) be the set of divisors of n. The set {int(F, App(F,d)) | d € D(n)} generates I'(F).

We call {int(F,G) | G € K[X,Y]\ (F)} the semigroup of F', and we denote it by I'(F).
Corollary 7.2. Let the notations be as above. We have d(A) = I'(F).

Proof. In fact, h(x) € A if and only if h(z) = P(f(z),g(z)) for some P(X,Y) € K[X,Y]. Hence a € d(A)
if and only if a = int(F, P), P € K[X, Y] which means that a € I'(F). O

Let F(X,Y) = Y"+c1(X)Y" 1 4. . 4¢,(X) be as above, and assume, after a possible change of variables
X'=XY' =Y+ that ¢;(X,Y) = 0 (note that this does not change A). In particular App(F,n) =Y.
A system of generators of I'(F') can be found algorithmically in the following way.

Let 1o = di = n = int(F, X),r1 = degya,(X) = int(F,App(F,n)), and do = ged(rp,m1). We set
Gy = App(F,ds), o = int(F,Gy) = deg,Ga2(f(x),g(x)), and d3 = ged(rs,ds), and so on...With these
notations we have the following:
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) di > dy > ... and there exists h > 1 such that d+1 = 1;
) T(F) = (A) is generated by {ro,71,...,71};
) rrdp > rp_1di_q1 for all k € {1 h};

) T'(F) = d(A) is free with respect to the arrangement (rg,...,7,). More precisely, let e, =

for all k € {1,...,h}. Then exry € (ro,...,Tk—1);
(5) C = Zzzl(ek — 1)ry —n+ 1 is the conductor of I'(F) = d(A).

Lemma 7.3. If A =K[z], then ry = di11 for all k =1,...,h. In particular deg, G (f(z),g(x)) =1 and
m divides n.

Proof. It A = K][z] then C' = 0, hence ZZ 1 (e ) =n—1. Since ry > dg41, then zzzl(ek—l)rk >n—1
with equality if and only if ry = di4q for all k = 1,... h. Since m = r; = dy = ged(n, m), then m divides

(1
2
(3
(

4 i

dk41

n. O
Lemma 7.4. [19, Theorem 2] If gcd(n,m) =1, then {f(z),g(x)} is a basis of A.
Proof. If ged(n,m) = 1, then I'(F') = d(A) = (n,m). Hence {f(z),g(x)} is a basis of A. O

Lemma 7.5. Suppose that ged(n,m) = py - - - p; where p; is a positive prime number for all i € {1,...,1}
(and the p;’s are not necessarily distinct). The set {f(x),g(x)} is not a basis of A. Furthermore, if c is
the cardinality of a basis of A, then 2 < c¢ <1+ 2. In particular, if gcd(n,m) is a prime number p > 1,
then a basis of A has either two or three elements.

Proof. Since ged(n,m) > 1, then the first assertion is clear. On the other hand, since do = ged(n,m) =
p1---pr, we have A # K(z|, and h < [+ 1. Hence I'(F') = d(A) has at most [ + 2 generators. The result

now follows. O
Remark 7.6. Let r = (r9p = n,r1 = m,re,...,r) be a sequence of integers and for all k£ > 1, let
dy = ged(ro, -+ ,75—1) and e, = 7=

(1) diy >do > ... >dh+1 =1;
(2) redg > ri_1di_q for all k € {1,...,h};
(3) exry €<1ry...,rp—1 > forall k=1,..., h.

Such a sequence is called a §-sequence and it is well known (see [1]) that there exists a polynomial F/(X,Y")
with one place at infinity such that the semigroup {rankgK[X,Y]/(F,G),G ¢ (F)} is generated by r.

Abhyankar asked whether every semigroup generated by a d-sequence is the semigroup of a polynomial
curve (for example, the d-sequence (10,4,5) generates the semigroup (4, 5) which is the semigroup of the
polynomial curve A = K[z*, 2°]). It has been proved recently that the answer is no ([8]). It would be nice
to see which supplementary conditions a d-sequence should satisfy in order to generate the semigroup of
a polynomial curve.

Remark 7.7. Let f(z) and g(z) be as above, and let A = K[f(z),g(x)]. Let also F(X,Y) be the a-
resultant of X — f(x) and Y — g(x). Let ro = n,71 = m,r9,...,7, be the generators of I'(F') calculated
as above. Let 1 < k < h and let Gx(X,Y) = App(F,dr). We have d(Gr(f(z),g(x)) = 7k, but Gy is
not the unique polynomial with this condition (for example, d((Gy + N\)(f(x), g(x))) = ri for all X #£ 0).
Hence it is natural to ask the following: is there a polynomial G(X,Y") (of degree < n in Y') such that G
is parametrized by polynomials in 7 Such a polynomial, if it exists, should be of degree dﬂk and should
have the contact with F' at a characteristic exponent of F' (see [1] for the definition of the characteristic
exponents of a curve with one place at infinity). Hence the existence of such a polynomial implies that a

polynomial curve can be approximated by polynomial curves.

Let the notations be as above, in particular F(X,Y) = Y™ 4 ¢;(X)Y" ! + .- + ¢, (X) is the a-
resultant of (X — f(x),Y — g(x)). Let Gy = Y,Ga,...,G} be the set of approximate roots of F(X,Y")
constructed algorithmically as above. In particular rg = n,r; = m,re = int(F,Gs),...,r, = int(F, Gy)
generate d(A). For all k = 2,...,h, let gx(z) = Gi(f(x),9(x)) and let M(gy) = by, z™. We have
A =K][f(z),g9(z),g2(x),...,gn(x)]. Furthermore, the map

D : Klu| — B =Klul[hf, hg,hgy, ..., hg,]
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introduced in Remark 6.2 gives us a deformation of the polynomial curve B |,—1= A into B |,—0=

K[¢™, t™, t™2, ... t"™]. Note that, since (n,m,ry,...,rp) is free with respect to the given arragement, then
it is a complete intersection. For all k € {1,... h}, write exry = Zf:_ol 0kr; with 0 < 6% < e; for every
i€ {l,...,k—1}. With the notations above, if T is the ideal of K[Xy, X1, ..., X}] generated by
n 2 2 h h oh
(X0 - X2, X2 — XX xe - X xT X
then

K[z", 2™, 2™, ... 2" ~ K[ X0, X1,..., Xp]/T.
Set Gpy1 = F and for all k£ > 1, let
k—1
k k Oék
Grer =G — XU ] G + 3" chuxebalt - g,
i=1 ok
where the following conditions hold:
(1) for all i € {0,...,k— 1}, 0 < 0F < ¢;;
(2) for all a*, if ¢, 0, then for all i € {1,...,k}, 0 < of <¢,

(3) for all o, if cgk # 0, then algn + Zle afri = Df < epry = 9'57’0 + Zle 957‘,-.

k k
It follows from Section 6 that if I (respectively J) is the ideal generated by (X.* — Xgo Hfz_ll Xf i+

k
A

k k k k k k k
> ok cZngo.Xfl - X ¥)1<p<n (respectively (Xg’“—Xgo Hfz_ll Xfi Dk cgkuek’"k_DfXgo.Xlal XY i <h<n)
in K[Xo, ..., Xy] (respectively K[u][ Xy, ..., X}p]), then
A =K[2",g(z), g2(), ..., gn(2)] = K[Xo, X1,..., Xp]/I

and

K[u] [l‘n, hg(:c)v hgz(:c)v ey hgh(x)] >~ K[u] [X(], Xl, PN ,Xh]/J
Furthermore, K[u][Xo, X1, ..., X}p]/J is a flat K[u]-module. This gives us a family of space curve parametrized
by u which is a deformation from K[Xg, X1, ..., X}]/I to the toric variety K[Xo, X1,..., X,]/T. The later

being a complete intersection, we get the following result.

Theorem 7.8. Every polynomial curve X = f(x),Y = g(x) of K® has a deformation into a monomial
complete intersection curve of KM for some positive integer h.

Example 7.9. Let f(x) = 2% + 23, g(X) = 2*. The minimal polynomial of (f(x), g(x)) is given by:
F(X,Y)=Y%—2x2y3 —4xy3 —v3 4+ X%

Let /9 = 6 = di,7r1 = 4 and G; = Y. We have dy = ged(6,4) = 2, and Gy = App(F,2) =
Y3 — X2 —2X — 1. Since go(z) = Ga(f(x),9(z)) = —22° — 32° — 223 — J, then roy = 9 and d3 = 1,
hence I'(F) = d(A4) = (6,4,9) and {f(x),g(x),g2(x)} is a basis of A. Consequently, hy = K[zb +
udzd, xt, 22 4+ 3ulzb 4+ 2ub23 + %ug, u8, u* u®]. Note that, with the notations above, e; = 3, e3 = 2, hence
K[z, 2,229 ~ K[Xq, X1, Xo] /(X3 — X8, X3 — 4X3) = K[Xo, X1, Xo]/T, K[x6 + 23, 2, 229 — 320 — 223 —
3] ~ K[Xo, X1, Xo] /(X3 — XZ — 2Xo — 5, X5 — 4X3 — 5X3 — 2X( — 1), and

1 1
K[u] — Ku][Xo, X1, Xo] /(X3 — X7 — 2u8 Xy — §u9,X§ —4X3 —5u8XE — 2u'? X, — Zu18)

gives us a deformation from A to K[Xy, X1, X2]/T.
The computation of the approximate roots and of I'(F") can be performed with the algorithm presented
in [2].
gap> f:=y"6-2*x" 2%y 3-4*xx*xy~3-y " 3+x74;;
gap> Semigroup0fValuesOfPlaneCurveWithSinglePlaceAtInfinity(f);
<Numerical semigroup with 3 generators>
gap> MinimalGeneratingSystem(last);
[ 4,6, 9]
gap>SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity(£f);
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L [6,4, 91, [y, y'3-x"2-2%x-1/2 ] ]

Example 7.10. Let f(z) = 2% + 2, g(z) = 2*. The minimal polynomial of (f(x), g(x)) is given by:
F(X,)Y)=Y%—2Xx?y3 —4XxY? Y + X%

Let rg = 6 = dl,rl =4 and G; =Y. We have dy = ged(6,4) = 2, and Gy = App(F,2) = - X2
Since ga(z) = Ga(f(z),g(x)) = —227 — 22, then 75 = 7 and d3 = 1, hence I'(F) = d(4 ) = ( > and
{f(x),g(x),g2(x)} is a basis of A. Consequently, ha = K[zb + udz, 24, 227 + vP2? ub, ut,u ] Note that,
with the notations above, e; = 3,es = 2, hence K[z%, 2%, 27] ~ K[Xo,Xl,Xg]/(Xf’ XO,X2 XoX3) =
K[X(),Xl,Xg]/T, and

K[u] — Ku][Xo, X1, Xo] /(X3 — X2, X3 — 4XX? —u'X))

gives us a deformation from A to K[Xy, X7, X2]/T (we can also change Xo with %Xg, and then T =
(X7 — X3, X3 — 4Xo X7)).
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