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Abstract

For a given note, the maker of woodwind instruments can choose between
different sizes for the toneholes under the condition that the location is appro-
priate. The present paper aims at analyzing the consequences of this choice
on the power radiated by a hole, which depends on the coupling between
the acoustic resonator and the excitation mechanism of the self-sustained
oscillation, thus on the blowing pressure. For that purpose a simplified reed
instrument is investigated, with a cylindrical pipe and a unique orifice at the
pipe termination. The orifice diameter was varied between the pipe diame-
ter and a size such that the instrument did not play. The pipe length was
in each case adjusted to keep the resonance frequency constant. A simple
analytical model predicts that, for a given mouth pressure of the instrumen-
talist, the radiated power does not depend on the size of the hole if it is
wide enough and if resonator losses are ignored. Numerical solution of a
model including losses confirms this result: the difference in radiated power
between two diaphragm sizes remains smaller than the difference obtained if
the radiated power would be proportional to the orifice cross section area.
This is confirmed by experiments using an artificial mouth, but the results
show that the linear losses are underestimated, and that significant nonlin-
ear losses occur. The measurements are limited to the acoustic pressure at
a given distance of the orifice. Experiments also show that rounding edges
of the orifice reduces nonlinear losses resulting in an increase of the power
radiated and of the extinction threshold, and resulting in a larger dynamical
range.
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1. Introduction

When designing a woodwind instrument, for a given note, the maker can
choose between a large range of sizes and locations for the toneholes. If the
choice is a very wide hole, the effect is close to that of cutting the pipe at the
hole location, at least at low frequencies. However it is also possible to choose
a narrower hole with a location chosen closer to the pipe inlet than a wider
hole, because for a narrow hole the influence of the downstream portion of
the main pipe is large.

The present paper aims to investigate whether the above mentioned choice
is important for the amplitude of the radiated acoustic power. Obviously
if the hole has a vanishing size, the acoustic power radiated by this hole
approaches zero. But what happens when the size of the hole increases?
To our knowledge, this question has not yet been treated in the literature.
Models and measurements for toneholes and tonehole radiation can be found
in several papers (see, e.g.,[1, 2, 3, 4]). However the power radiated by wind
instruments in functioning, i.e., including the effect of the nonlinear coupling
with an excitor, has rarely been treated in the literature (see [5]). Preliminary
results of our study were described in a conference paper [6].

The answer to the above question is are necessarily intuitive, because at
low frequencies the real part of the radiation acoustic impedance (which is
defined as the ratio of acoustic pressure to acoustic flow) does not depend on
the size of the hole (see e.g. [7]).

In the present paper we consider a simplified reed instrument: a cylin-
drical pipe terminated in only an orifice, and excited by a clarinet-like reed
(with mouthpiece). The dependency of the radiated acoustic power on the
blowing pressure is investigated. The effect of this simplification is discussed
in Section 2.4. The scope of this paper is limited to the case of the notes
corresponding to the first register, i.e., when the playing frequency is close
to that of the first impedance peak.

The geometry is shown in Fig. 1. The radius of the pipe corresponds to
the usual value of the output of a clarinet mouthpiece, a = 7.45 mm. The
termination of the pipe is a cylindrical diaphragm of length `d = 5 mm, which
is approximately equal to the wall thickness of a clarinet, and of radius b,
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Figure 1: Geometry of the tube with diaphragm. The length ` depends on the diaphragm
radius b, with a fixed first resonance frequency f1 = 250 Hz.

which is chosen among the following values: b = 7.45, 6, 5, 4, 3, 2 mm (The
first value corresponds to b = a, a pipe without diaphragm). For a clarinet,
the tonehole radius varies from 2.5 mm in the higher part of the instrument
to 6 mm for the hole which is close to the bell. The length ` of the pipe
is chosen in order to keep the first resonance frequency independent of the
diaphragm radius and equal to 250 Hz. Thus ` depends on the diaphragm
radius. Without diaphragm, if the sound velocity in free space at 20◦C is
c = 343.4 ms−1, ` is equal to 328 mm. With a diaphragm, the length ` is
equal to 323, 317, 306, 286, 237 mm for the widest to the narrowest radius,
respectively (see Section 2.2). The pipe wall thickness is w = 7.55 mm (thus
the external pipe radius is a+ w = 15 mm).

In Section 2, a simplified model is proposed. Because losses are ignored,
and the pressure signal is assumed to be mostly monochromatic, a simple
result is obtained: under certain conditions imposed on the hole radius b,
the radiated power is independent of this radius. In Section 3, losses are
introduced, resulting in a slight modification of the simple result. Then in
Section 4, numerical simulation of the sound production and radiation is
carried out with an ab initio model, in order to obtain better precision. Fi-
nally experiments are presented in Section 5 and compared to the theoretical
results.

2. Elementary theoretical analysis

2.1. Simplified linear model of the resonator

For the calculation of the radiated power, two transfer functions of the
resonator have to be determined in the frequency domain: the transfer ad-
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mittance between the output flow rate Uout and the input pressure Pin (in
the mouthpiece) for the radiation, and the input impedance Zin = Pin/Uin

for the coupling with the excitation mechanism. For these transfer functions,
the simplest model of the present section is based on standard formulas. It
ignores the resonator losses. Assuming, however, that at low frequencies
kb << 1, (k is the wave number) and therefore that the diaphragm radiates
into infinite space as a monopole, the mean radiation power can be deduced
from the knowledge of the flow rate Uout, calculated when ignoring losses:

Pr =
1

2
Re(Zr)|Uout|2, (1)

where Zr is the radiation impedance of a monopole:

Re(Zr) =
k2ρc

4π
. (2)

c is the speed of sound and ρ is the air density. The cross-section areas of the
pipe and diaphragm are denoted S = πa2 and Sd = πb2, respectively. The
model is based on the following transfer matrix relationship:(

Pin

Uin

)
= T

(
1 jω(Md+Mdisc)
0 1

)(
Pout

Uout

)
(3)

where T =

(
cos(k`) jZcsin(k`)

jZ−1c sin(k`) cos(k`)

)
. (4)

ω is the angular frequency, Zc = ρc/S is the characteristic impedance, and
j2 = −1. The compressibility effect inside the diaphragm is ignored; this
implies k`d << 1. The values of the acoustic masses Md,, Mdisc are discussed
in the Appendix, as well as the radiation contribution, which is that of an
acoustic mass Mr: Pout = jωMrUout (no radiation losses are considered).
Therefore it can be checked that Eq. (3) implies:(

Pin

Uin

)
= T

(
1 jωMt

0 1

)(
0
Uout

)
(5)

whereMt = Md+Mdisc+Mr. In this low-frequency analysis, ωMt/Zc increases
when b decreases.
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2.2. Input impedance and transfer admittance of the resonator

If both visco-thermal and radiation losses are ignored, the input impedance
can be deduced from Eq. (5). Let us define a length equivalent to the di-
aphragm as:

k`eq
def
= arctan

[
ωMt

Zc

]
. (6)

Eq. (5) can be rewritten as:(
Pin

Uin

)
=

(
cos(k`) jZc sin [k(`+ `eq)] / cos(k`eq)

jZ−1c sin(k`) cos [k(`+ `eq)] / cos(k`eq)

)(
0
Uout

)
. (7)

Therefore the input impedance and the transfer admittance are found to be:

Zin = jZc tan [k(`+ `eq)] ; (8)

Uout

Pin

=
−j

Zc

cos(k`eq)

sin [k(`+ `eq)]
. (9)

The equivalent length `eq is frequency dependent: it decreases when the fre-
quency increases, therefore the diaphragms generate positive inharmonicity
for the resonance frequencies of the pipe (“positive” means that the resonance
frequencies above the first resonance frequency are higher than exact multiple
of it). For the case without diaphragm b = a, the choice of the total length
`+`d implies that the first resonance frequency is given by f1 = c/4/(`+`eq),
where `eq = `d + δda (δd ' 0.7, see the Appendix). For the other cases the
same resonance frequency is chosen, then the equivalent length `eq is given
by Eq. (6) and the length ` is deduced from Eq. (8), with an infinitely large
input impedance Zin:

` =
π

2k1
− `eq. (10)

(k1 = ω1/c with ω1 = 2πf1). At lower frequencies, the transfer admittance
simplifies to the constant value (−j/Zc). This is valid if the following condi-
tion is fulfilled:

k1`eq << 1 or ω1Mt << Zc. (11)

It follows that if the diaphragm is not too narrow, Eq. (2) implies that
the diaphragm radius has no effect on the radiated power for a given input
pressure Pin. For instance, if

k1`eq < 0.3, (12)
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the discrepancy induced by the approximation of the cosine function in Eq.
(9) is less than 0.4dB. Furthermore the radius should be larger than 3 mm.
It can be shown that these conditions are satisfied by most toneholes of a
clarinet.

2.3. Reed and mouthpiece coupled to the resonator

In order to analyze the relationship between the radiated power and the
instrumentalist mouth pressure pm, it is necessary to take into account the
excitation mechanism. For this purpose, the model proposed by Wilson and
Beavers [8] is acceptable. It can be simplified by ignoring the reed dynamics.
This results in a quasi-static nonlinear characteristic uin = F (pin), where
pin(t) and uin(t) are the inverse Fourier transform of Pin(ω) and Uin(ω),
respectively:

uin = F (pin) = uA [1−∆p/pM ]
√
|∆p| /pMsign(∆p). (13)

pM is the closure pressure, proportional to the reed stiffness, ∆p = pm− pin,
where pm is the mouth pressure, assumed to be constant, uA is proportional to
the maximum flow rate entering the instrument (see [8, 9]). The analytical
model used here considers the case of negative flow rate, whose possible
occurrence should be taken into account within the digital simulations that
use a truncated modal series of the impedance. However for clarinet-like
instrument, a negative flow rate is usually not encountered (see Ref. [10]).
The simplest control parameters that can be defined with such a model are
the mouth pressure pm and the reed channel opening area Sc at rest. Using
dimensionless quantities, p̃in = pin/pM and ũin = uinZc/pM , Eq. (13) can be
written in dimensionless quantities:

ũin = ζ(1− γ + p̃in)
√
γ − p̃in, (14)

where γ = pm/pM and ζ = ZcSc

√
2/(ρpM), (see [8]). These equations hold

for a non-beating reed (this implies approximately γ < 1/2), and a Taylor
expansion can be derived for Eq. (14) around pin = 0. For the following, we
need the values of the polynomial coefficients up to order 3 [11]:

A = ζ
3γ − 1

2
√
γ

; B = −ζ(3γ + 1)

8γ3/2
; C = −ζ γ + 1

16γ5/2
. (15)

When no diaphragm is present the resulting pressure signal pin(t) is a
square signal, because resonator losses are ignored. Then it is easily shown
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that assuming the validity of Eq.(2) the radiated pressure is the derivative
of a square signal. At this point a problem occurs: a signal such as the
one discussed above would correspond to an infinite power. The reason is
that Eq.(2) is not valid at higher frequencies. The model without losses
corresponds to the degenerate case studied in Ref. [12]. For an elementary
analysis we use the approximation of the first harmonic, which approximate
the square wave function by its first Fourier component. We will refine the
calculation in Section 4. This difficulty is probably not encountered with
diaphragms, because inharmonicity occurs (see Eq.(6)) and the fundamental
frequency is dominant, but the comparison with the tube without diaphragm
would be meaningless. The following relationship has been found for the first
Fourier component [12, 11]:

Pin(ω1) = pM

√
Y1 − A

3C
(16)

Yn = Zc/Zin(nω1) is the dimensionless input admittance. Eq. (16) implies
that Y1 is real [12], and therefore the value of the operating frequency can
be calculated. Because the resonator losses are ignored, Y1 = 0, thus the
playing frequency is f1 and the input pressure Pin(ω1) at frequency f1 does
not depend on the radius of the diaphragm; this is also true for the output
flow rate Uout(ω1), as well as for the radiated power. To summarize the
assumptions of this result: the diaphragm is wide enough (condition (11));
no resonator losses are considered; and the input acoustic pressure is reduced
to a quasi-sinusoidal signal. The value of the power is therefore:

Pr =
k21ρc

8π

1

Z2
c

p2M

∣∣∣∣−A3C

∣∣∣∣ . (17)

Notice that when losses are ignored the oscillation threshold γ = 1/3 (A = 0)
is also independent of the diaphragm opening.

2.4. Generalization to a side tonehole

It is possible to generalize this elementary approach to the case of a unique
side hole, with some restrictive hypotheses, since it is impossible to treat the
general case of a complete lattice of toneholes in a simple way. Obviously,
the difference in flow can be important, but it is ignored in this discussion,
which remains very elementary. Consider a pipe of total length L, and one
tonehole located at distances `down and ` from the pipe output and input,
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respectively. When it is closed, the frequency is c/(4L), and when it is open,
it is c/(4L1), with L = ` + `down and L1 = ` + `eq. We suppose here that
there is one semi-tone between the two frequencies, i.e., L1 ' 0.94L. At low
frequencies, the pipe portion downstream the hole can be considered as an
acoustic mass, ρ`down/S, in parallel with the acoustic mass of the hole Mh

and that of the pipe. Consequently we can use the model given by Eq. (3),
replacing the mass Mt by Mdh given by:

1

Mdh

=
1

Mh

+
S

ρ`down

(18)

In order to use the same analysis as is used for a diaphragm, Mdh needs to
be small; more specifically M−1

dh > M−1
h , therefore if the acoustic mass of the

hole is sufficiently small, the analysis applies. Moreover the flow rate Uout

entering the mass Mdh is the sum of the flow rates going out of the hole and
of the pipe. If the distance `down is smaller than a wavelength, the total flow
rate radiates as a single monopole in the far field, and Eq. (1) remains valid.
Therefore the elementary analysis remains valid if the hole is wide enough.

3. Improved analytical model (non-beating reed)

The above analysis remains largely qualitative. In order to improve the
model, visco-thermal effects (losses and dispersion) are considered by using
the standard formula of transmission lines for both the pipe and the di-
aphragm. The wavenumber k and characteristic impedances are calculated
at the second order of the Stokes number [13]. The computation of the in-
put impedance shows that: i) the peaks of the input impedance decrease
when the diaphragm radius decreases: this means that the losses inside the
diaphragm increase and compensate for the diminution of the losses inside
the pipe due to the length decrease (for the two extreme cases of b = a and
b = 2 mm, the difference is 3.5 dB); ii) inharmonicity between the two first
peaks increases when the diaphragm radius decreases, as noticed in Section
2.2.

The effect of the losses is a diminution of the power for the first harmonic,
due to the decrease of the numerator in Eq. (17), the coefficient A being
replaced by A− Y1. Losses increase when the radius decreases, and, because
Re [Y1] is positive, the oscillation threshold also increases (see Eq.(16)): it is
the reason why the radiated power is strongly modified near the oscillation
threshold.
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Figure 2: Calculated results from analytical formulas (16) and (19), for the 3 first har-
monics below the beating reed regime (γ = 1/2). Dashed and plain lines correspond to
the calculation with and without losses, respectively. The line shading is proportional to
the diaphragm radius. Notice that losses produce both a shift of threshold and a decrease
of the power.

The calculation is limited to the sum of the 3 first harmonics and to
the range γ < 1/2; it is done for ζ = 0.43, a reasonable value for clarinet
mouthpiece and reed. The calculation of the amplitude of the harmonics 2
and 3 have been done by using the results of the variable truncation method
[11]:

P3

P1

' −1

3

A− Y1
A− Y1 + Y3 − Y1

and
P2

P1

' B(P 2
1 + 2P3P1)

Y2
. (19)

The results for the total power of the 3 harmonics are shown in Fig. 2,
and compared to the results of the simplest approximation (a single Fourier
component) when losses are ignored. The value of the radiated power, re-
duced by the reference power P0 = 10−12 W.m−2, is drawn with respect to
the dimensionless excitation pressure γ. Different values of diaphragm ra-
dius, with and without losses, are considered, and the closure pressure is
pM = 5 kPa (see Eq. (17)). It appears that between the radii b = 5 mm and
b = a the difference is less than 1 dB above γ = 0.4, while if the power ratio
were proportional to the hole area, the difference would be 3.5 dB. Between
the two extreme cases, the difference is 4 dB instead of 11.5 dB.

Notice that the 2nd and 3rd harmonics do not increase drastically the
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total power, as shown in Fig. 3: the first harmonic is dominant.

4. Numerical simulation

With the help of the numerical tool developed by Guillemain et al. [14],
a sound synthesis can be realized for both the non-beating and beating reed
regimes. It is based again on the model by Wilson and Beavers, but takes
the reed dynamics into account (as a single one-degree-of-freedom oscillator).
Plausible values are fr = 2341 Hz for the reed natural frequency and and
Qr = 1/0.8 for the quality factor. The simulation uses the computed input
impedance, from which a modal expansion is determined. The number of
resonator modes is fixed to 4, corresponding to contributions below approxi-
mately 3 kHz. The numerical solution is derived from that developed in [14],
where each impedance mode is described as a second order IIR digital filter.
In the discrete domain, the solving of the nonlinear characteristic equation
remains analytical since the reed displacement discretization scheme leads
to a one-sample delay between the reed displacement and the acoustic pres-
sure (x at sample n does not depend on p at sample n but at sample n-1).
This requires to solve simply a second order nonlinear equation instead of a
multi-valued third order equation.

In order to reach the steady-state regime for different values of the ex-
citation pressure γ, the computation implements a step function for γ(t).
The simulation provides the spectrum of the input pressure pin, then the
transfer functions are calculated by using Eq. (8) (with a complex wavenum-
ber). The difference of the model for the transfer admittance and that for
the input impedance (a truncated modal expansion) is not important here
because of the weakness of the higher harmonics. The number of harmonics
considered here is only limited by the Nyquist frequency (Fe/2 = 22050 Hz).
Obviously the model of the resonator is not suitable at very high frequencies,
but the contribution of the highest harmonics to the radiated power is very
small. For the tube with diaphragm, the playing frequency globally increases
when the pressure γ increases, about 30 cents between the oscillation and ex-
tinction thresholds. The increase is monotonous and slightly depends on the
diaphragm radius. For narrow radii, the increase is much larger at low levels,
because of inharmonicity. This frequency shift modifies the real part of the
radiation impedance but has a negligible influence: a shift of 40 cents adds
0.2 dB on the radiated power.
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Fig. 3 shows a comparison of analytical and numerical results for the three
first harmonics and the total power (limited to 3 harmonics for the analytical
results), when γ = 0.45. This figure shows that the radiated power does not
depend on the opening size when the radius is sufficiently large. Also, the
amplitude of the harmonics is over-estimated by the analytical formulas, but
the two sums are nearly equal because the analytical result is not complete.
Notice that because of inharmonicity the harmonic 2 becomes larger than
the harmonic 3 for narrow diaphragms.

Fig. 4 shows the result for the different radii of diaphragms. In the
beating reed regime and before extinction, the radiated power ratio between
the 2 extreme configurations doesn’t exceed 3 dB for a sound power level
that approaches 95 dB.

5. Experiment

5.1. Input impedance measurement

In order to evaluate the linear losses, the input impedance has been mea-
sured. The device used was built in Le Mans [15]. The pressure in the back
cavity of the sound source is measured by a microphone, which gives an
estimation of the flow rate. The source is a piezoelectric buzzer.

Six diaphragms were built in plastic (using a 3D printer device) and
inserted in a wooden pipe, according to the details given in the introduction.
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Figure 5 shows the experimental results for the input impedance. As it
was expected, the first resonance frequency is independent of the diaphragm
radius. The mean deviation between resonance frequencies doesn’t exceed
the sensor precision evaluated to be 4 cents.

Experimental results were compared to theoretical results. For the pipe
without diaphragm, the extrema of the impedance modulus are very well
predicted by the calculation (the order of magnitude of the discrepancy is
1 dB, equal to the precision of the sensor). However, the prediction of the
extrema is less satisfactory for the pipe with diaphragm. For the case b = 2
mm, there is a discrepancy of 2.8 dB for the first peak, and the difference is
slightly higher for the first dip and the second peak. To verify that this it
not due to nonlinear dissipative phenomena, like vortex shedding, the pipe
is excited at two different levels. This discrepancy is concluded to be the
consequence of the underestimation of linear losses, which can be due to the
edges of the diaphragm, or to the wall porosity and roughness (for the 3D
printer used, the latter is Ra = 6.4 µm). Overall, the experiment shows a
difference of 3.5 + 2.8 dB (3.5 dB is the theoretical result, see Section 3)
between the two extreme cases for the first impedance peak.

5.2. External pressure measurement with an artificial mouth

Experiments were carried out in order to compare the power emitted by
all the tubes coupled to a composite reeds with a low stiffness and a mouth-
piece. The radiated sound was measured with a microphone at a well defined
distance away (50 cm), along the axis of the tubes. In order to ensure a good
repeatability (during a measurement session) an artificial blowing machine
was used. A study at realistic pressure levels was carried out for the in-
strument under playing conditions. Conversely, concerning reproducibility,
a certain time variability of the set-up (latex lips - reed - mouthpiece cou-
pling), is encountered. A similar in-vivo study on a musician would be less
reproducible and also even less repeatable as the lip configuration changes
constantly. The machine is a static-pressure controlled device provided with
artificial lips [16]. The measurement of the static pressure in the down-
ward cavity of the mouthpiece is performed with an Endevco piezoresistive
pressure transducer 8507C-5. Data acquisition was carried out at a 20kHz
sampling frequency for a fixed 2-minute duration. Our interest is focused on
the relative values between the different cases, not on a quantitative com-
parison between theory and experiment which implies a determination of the
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parameters of the mouthpiece and reed (and lips). This difficulty is some-
what overshadowed by the fact that the whole apparatus can be set in a
position that allows running the self-oscillation on the first mode of the pipe
only (i.e., not supported by other modes of the reed or the pipe). In this way,
discrepancies concerning the radiated pressure do not exceed 1 dB on its sta-
ble part and 100 Pa for the thresholds (onset of the oscillation an extinction
at high pressure) in a time interval corresponding to a measurement session.
It was not possible to obtain a sound with the 2 mm diaphragm. For such
a narrow diaphragm, the opening is comparable to the reed opening, a high
steady flow velocity can be reached and strong convective sound absorption
will occur [20]; moreover Wijnands and Hirschberg [21] have shown that for a
single reed coupled to a tube with a narrow constriction, the nonlinear char-
acteristic and consequently the extinction threshold can be strongly modified
by the constriction.

The power is not measured in an anechoic room but during acoustic
pressure measurements, the primary reflecting surfaces were covered with
acoustic foam to minimize reflections. If the radiation is assumed to be
that of a monopole, the pressure at a fixed distance from the orifice is a
measure of the radiated power (the measurement was done in the axis of the
tube). The external pressure sensor is a half-inch B&K type 2669 linked to
a nexus amplifier. The RMS sound pressure level is extracted with a 50 ms
integration time. A slight change in the location of the microphone does not
affect results, as expected.

The results are presented in two different graphs: for small and large ex-
citation pressures, using a decreasing and an increasing linear pressure ramp,
respectively. In order to obtain results for a wide range of excitation pres-
sures, the force acting on the reed was changed between the measurements
corresponding to the two experiments. For small blowing pressures (see Fig.
6), a weak slope of 3 kPa/minute was chosen, and the acquisition was limited
to 4 kPa. This allows the measurements to approach the oscillation thresh-
old and reduces the phenomenon of bifurcation delay, as observed by Bergeot
et al. for strong excitation-pressure slopes [17]. Conversely, if an increasing
ramp was used, a jump at threshold would be observed. For the same reason
only the decreasing ramps are represented in the figure.

Fig. 6 shows that for the two higher values of the diaphragm radius,
b = 5 and 6 mm, the difference in radiated pressure with that of the pipe
without diaphragm is less than 3 dB. It is much more important for narrower
diaphragms, around 15 dB between for b = 3 mm. This difference is slightly

15



Figure 6: Measured sound pressure level radiated at a distance of 50 cm from the di-
aphragms. Sounds are produced by an artificial mouth with controlled static pressure.
Only the results with a slowly decreasing pressure ramp (3 kPa/minute) are represented
in order to focus around the threshold region. The line shading is proportional to the
diaphragm radius. No sound could be emitted with the 2 mm diaphragm.

larger than that found by calculation. Experiment confirms (Figs. 6 and 7)
that the distance between the oscillation threshold, which tends to increase
and the extinction one, which tends to decrease, is reduced when the orifice
radius is decreased.

The cause of both features may lie in the underestimation of losses. Notice
that losses can be either linear or nonlinear. In section 5.1, we remarked,
for the measurement of the input impedance in a linear functioning, that
linear losses in small holes are underestimated. However another phenomenon
occurs: the nonlinear losses due to flow separation at the sharp edges of the
orifice. This subject was investigated by Dalmont et al. for a tonehole [3]
and for a bifurcation scheme of a cylindrical tube [9, 22].

5.3. Experiments with diaphragms with round edges.

In order to validate this assumption, we rounded the edges of the di-
aphragms. Figure 7 shows evidence for this effect on both the amplitude
and the extinction threshold for two diaphragm radii. It is noticeable that
for b = 5 mm the diaphragm with round edges radiates almost the same
amplitude as when b = a. The curvature radius of the edges is 1.5 mm, and
both the internal and external sides are rounded. It has been checked that
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Figure 7: Measured sound pressure level radiated, for an increasing ramp, in conditions
similar to Fig. 6, for diaphragms without and with rounded edges. Nonlinear losses are
reduced by the round edges. In order to reach the highest extinction threshold for a pipe
without diaphragm (just below 11.5 kPa) the increasing ramp of the excitation pressure
is set to 11 kPa/min. Notice that the abscissa range differs from that of Fig. 6. Solid
lines: diaphragms with sharp edges. Dotted lines correspond to diaphragms with rounded
edges.

with a smaller curvature radius (0.7 mm), the extinction threshold decrease
to intermediate values. When applying a curvature on one side only, the
nonlinear effects are larger than when applying on both sides. When apply-
ing a round edge on one side (either internal or external), the reduction of
nonlinear losses seems to be independent of the side. However a curvature
of 0.7 mm on both sides is more effective than a curvature of r = 1.5 mm on
one side.

6. Conclusion

The present work aimed to study the power radiated by reed woodwinds
through holes of different diameters. The determination of the acoustic power
based on a pressure measurement leads to interesting results for the compar-
ison of the relative effect of the diaphragms. This does however not provide
a quantitative comparison between the power measured and calculated. The
use of cylindrical tubes with a reed-mouthpiece excitation allows considering
a decreasing spectrum, with a dominant first harmonic.
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The following items can be concluded: i) For rather wide holes on cylindri-
cal tubes, under the condition (11), the radiated power depends only weakly
on the hole radius. The difference in radiated power remains much smaller
than the difference obtained if the power ratio were proportional to the ratio
in orifice cross-section areas; ii) The difference in power is mainly due to
losses, either linear or nonlinear. If losses are taken into account, the condi-
tion (12) is not strict enough; iii) If nonlinear losses are reduced by rounding
of the hole edges, the difference in power is largely reduced, and the extinc-
tion threshold significantly increases. As a consequence the distance between
oscillation and extinction thresholds increases, and the dynamical range (be-
tween the onset of oscillation and the extinction pressure) is significantly
increased; iv) Inharmonicity also plays a role in the total difference in power.

Qualitatively, the results might be extended to the case of some holes at
the end of a cylindrical tube. However losses in side holes, especially when
they are nonlinear, can have a different behavior, and can modify the sound
production itself (e.g., the bifurcation curve). Moreover a supplementary
difficulty occurs for a large number of holes. The interferences between dif-
ferent orifices as well as the existence of a cutoff frequency would require a
measurement of the complete power radiated. It is known that a lattice of
wide toneholes imply a high cutoff frequency [18, 19], but the effect of this
cutoff frequency on radiation is not fully understood.
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Appendix A. Model of the diaphragm

Junction of the pipe and the diaphragm

The diaphragm has a very short thickness, `d, of the same order of mag-
nitude as that of the pipe wall, therefore it can be considered as a lumped
element. Moreover, for the planar mode, the compliance, proportional to the
volume, is very small and can be ignored. The acoustic mass of the planar
mode inside the diaphragm isMd = ρ`d/Sd. The interaction of the evanescent
modes inside the diaphragm [23] is assumed to be extremely weak, therefore
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on the left side, they act as a supplementary acoustic mass Mdisc, while on
the right side, the diaphragm radiates into infinite space as a semi-infinite
pipe. The abrupt change in cross-section area was studied for a cylindrical
duct [24] and the added mass was found to be:

Mdisc =
ρ

b

4ε2

π2
K, where (A.1)

K = −0.49198ln(ε) + 0.50349

−0.376246ε2 − 0.852222ε2ln(ε)

with ε = 1 − b/a. This formula is valid for b/a > 0.55. The frequency
dependence of the mass is ignored. A complementary expression is also
available [24] for stronger discontinuities. Compared to Md and Mr, which
are defined below Mdisc is small.

Radiation impedance of the diaphragm

The diaphragm wall presents a certain thickness corresponding to a+w−b
(see Fig. 1). This mainly affects the reactive part of the radiation impedance
[25]. A fit formula for the imaginary part can be used for the intermediate
cases, as follows:

Im(Zr) = ωMr =
ρc

Sd

kδd, where (A.2)

δd = δ∞ + µ(δ0 − δ∞) + 0.057µ
[
1− µ5

]
b.

µ = b/(a + w), and δ∞ = 0.8216b and δ0 = 0.6133b correspond to the ex-
treme cases, i.e. infinite flange and no flange, respectively, at low frequencies.
Notice that δ∞ and δ0 are frequency dependent [26]. For the low frequency
approximation (kb << 1), Eq.(A.2) is accurate enough. At higher frequen-
cies wave reflections on the flange’s edge have a noticeable influence (see [25],
Eq.(42). Ignoring the frequency dependence, we can write the total value of
the acoustic mass:

Mt = Md +Mdisc +Mr. (A.3)

Finally, the real part of Zr can be well approximated at low frequencies by
the unflanged case Eq. (2).
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[9] J.-P. Dalmont, C. Frappé, Oscillation and extinction thresholds of the
clarinet: Comparison of analytical results and experiments, Journal of
the Acoustical Society of America 122 (2007) 1173–1179.

[10] P.-A. Taillard, J. Kergomard, F. Laloë, Iterated maps for clarinet-like
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