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Abstract

We investigate the energy-delay tradeoff in multi-class
queues in which the server can regulate its speed ac-
cording to the load of the system. Assuming that the
queue is initially congested, we investigate the rate al-
location to the classes that drains out the queue with
minimum total energy and delay cost. We propose
to solve this stochastic problem using a deterministic
fluid approximation. We show that the optimal-fluid
solution follows the well-known cµ rule and obtain an
explicit expression for the optimal speed. Numerical
results show the utility and the applicability of the
fluid-optimal policy.

1 Introduction

The main question that we investigate is the follow-
ing: assuming that a single server queue is initially
in a congested state (e.g., due to flash-crowd), how to
share the available bandwidth between multiple traf-
fic classes in order to drain out the congestion with
minimum total cost which comprises of the mean re-
sponse times experienced by traffic classes as well as
the energy consumption. Although the optimal speed-
scaling policy taking into account the energy-delay
trade-off is known for a single server and single class of
traffic (see, e.g., [2]), there is no corresponding result
for the multi-class problem studied in this paper.

2 Stochastic and fluid control
problems

2.1 Stochastic control problem

We consider a single server queue shared by a set F
of N classes of jobs. Class-i jobs arrive according to
a Poisson process at rate λi and have exponentially
distributed sizes of mean 1/µi, i ∈ F . In the fol-
lowing, we define X(t) = (X1(t), X2(t), . . . , XN (t)) as

the state of the system, where Xi(t) is the number of
class-i jobs in the system at time t.

For simplicity, we assume that the server can be
operated at any speed in the interval [0,∞). We let
ui(x) be the capacity allocated to class i when the
system is in state x, and denote by u(x) the vector
(u1(x),u2(x), . . . ,uN (x)). We further assume that
all class-i jobs share the capacity allocated to the class
according to the PS discipline. The power required to
operate the server at rate

∑
i ui(x) is assumed to be

proportional to (
∑
i ui(x))γ where γ > 1 [2].

We note that for any given stationary policy u, the
queue state X(t) is a multi-dimensional birth-and-
death process. We shall assume that at time 0 the
queue finds itself in a congestion state x(0)� 0. The
goal is to find the capacity allocation policy that will
bring the queue to the state where all classes have zero
jobs while minimizing the total cost incurred. For-
mally, we aim to find u∗ : INN → IRN

+ solving the
following problem:

Minimize Ex(0)

{∫ T

0

f (X(t),u(X(t))) dt

}
, (1)

where T is the first time the queue is empty, i.e.,
X(T ) = 0, and f(x,u) represents the cost rate in
state x when a control u is applied, that is,

f(x,u) =
∑
i∈F

cixi + κ

(∑
i∈F

ui

)γ
. (2)

In (2), κ is a parameter controlling the relative
weights of energy consumption and delay, whereas c
is a vector giving the relative weights of the delays of
the classes. Note that the cost comprises of two con-
flicting components: one for the holding cost of the
jobs and the other for the energy consumption of the
server. Intuitively, to lower the holding cost of jobs,
one has to increase the speed of the server which then
increases the energy consumption, and vice versa.
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2.2 Fluid control problem

Problem (1) can be cast as a Markov decision process
which proves to be both analytically and computation-
ally challenging. Our approach is to analyze an asso-
ciated fluid model which can be interpreted as a de-
terministic approximation of the stochastic problem.
Let xi(t) represent the quantity of fluid associated to
class i at time t and ui(t) be the rate allocated to this
class at that time. The fluid control problem is then
to find the rate allocation that drains out the queue
with minimum total cost. Formally, the problem can
be stated as

minimize J(u;x0) =

∫ T

0

f(x(t),u(t))dt (OPT)

subject to

ẋi(t) = λi − µiui(t), i ∈ F , (3)

−x(t) ≤ 0, , (4)

−u(t) ≤ 0, (5)

x(0) = x0, x(T ) = 0, (6)

where T denote the first time when the total amount of
fluid in the network reaches 0. Note that the horizon
T is not fixed, and it is also a part of the solution.

Using Pontryagin’s Maximum Principle, we can
show the following result.

Theorem 2.1. At any time t > 0, ui(t) > 0 if
and only if either xi(t) = 0 or i = arg max{cjµj :
jsuch that xj(t) > 0}. If xi(t) = 0, then ui(t) = ρi.

The result says that amongst the classes with non-
zero fluid, it is optimal to only serve the class with
the largest value of cjµj . This is the same as the
cµ rule when energy costs are not taken into ac-
count [4]. A direct consequence is that there exist
τ1 = 0 < τ2 < . . . < τN+1 = T such that, in the opti-
mal policy, class k receives a non-zero service rate in
the interval [τk, τk+1) and a service rate of ρk in the in-
terval [τk+1, T ). The Pontryagin’s Maximum Principle
can be used to solve for T and to establish the speed at
which class k is served in the interval [τk, τk+1). Due
to the lack of space, we are not able to describe the
details of the solution. We however mention that in
the optimal policy the total server speed is decreasing

as a function of time and scales as (T − t)
1

γ−1 .

3 Numerical results

In order to illustrate the utility and the applicability
of the fluid-optimal policy, we compare below the opti-
mal stochastic policy obtained by solving a stochastic
shortest path problem with the fluid policy obtained
analytically, as well as with Bocop, an open source

toolbox for optimal control problems [1]. In order to
convert the fluid-optimal policy to the stochastic set-
ting, we use a version of the Discrete-review method
proposed in [3]. The idea is to periodically apply the
fluid-optimal policy with the initial state as the state
of the stochastic system sampled at review instants.
In the scenario we consider, we assume that κ=1 and
γ=3. The other parameters are as follows: ρ0=0.2,
ρ1=0.1, ρ2=0.3, µ0c0=5, µ1c1=6 and µ2c2=4. In Fig-
ure 1, we compare the optimal fluid rates allocated to
each class with those that would be obtained under
the optimal stochastic policy when the initial state is
x(0) = (10, 11, 12). The fluid rates of each traffic class
closely matches its stochastic rates and follows the cµ
rule.
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Figure 1: Optimal fluid speed vs. optimal stochastic
speed for x0(0)=10, x1(0)=11 and x2(0)=12.
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