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Abstract

Inspired by speed-scaling techniques used in servers, we investigate the energy-delay tradeoff in bandwidth-
sharing networks in which nodes can regulate their speed according to the load of the system. Assuming
that the network is initially congested, we investigate the rate allocation to the classes that drains out the
network with minimum total energy and delay cost. We formulate this optimal resource allocation problem
as a Markov decision process which proves to be both analytically and computationally challenging. We
propose to solve this stochastic problem using a deterministic fluid approximation. For the case of a linear
network with two links, we provide numerical evidences in the support of the fluid model as a good ap-
proximation to the stochastic control problem. For a single link shared by an arbitrary number of classes,
using Pontryagin’s Maximum Principle we show that the optimal-fluid solution follows the well-known cµ
rule and give an explicit expression for the optimal speed.

1 Introduction

Optimizing energy consumption has become an important issue in recent years. One of the solutions for
reducing energy consumption, called dynamic speed-scaling, involves regulating the speed of the processor as
a function of the the load. The optimal speed-scaling policy taking into account the energy-delay trade-off
was computed for a single node in [25, 7]. Our main contribution is to generalize the application of this
energy-saving technique to bandwidth-sharing networks which were introduced in [17] to model the dynamics
of network flows in the Internet. Our model is thus a transposition of speed-scaling to bandwidth-sharing
networks in which nodes will be able to regulate their speed in order to minimize a given peformance metric.

The main question that we investigate in this paper is the following: assuming that the network is initially
in a congested state, how to share the available bandwidth in order to drain out the congestion with minimum
total cost which comprises of the mean response times experienced by flows as well as the energy consumption
of the network.

The optimal resource-allocation problem in a bandwidth-sharing network can be cast as a Markov decision
process with dimension equal to the number of classes of flows in the network. Even without energy costs the
computation of closed-form optimal policy has proven to be quite challenging for general networks. Optimal
allocations are known only for a few special network topologies such as single node [20, 19], linear networks
[23] and star networks [21]. In most cases, the optimal policy is a priority rule that serves classes that do not
use competing resources.

When the option of speed-scaling is introduced in a bandwidth-sharing network, a second level of complexity
gets added to the computation of the optimal policy. In addition to knowing which classes of traffic to serve,
one needs to determine the speed at which each node must operate. This makes the speed-scaling policy for
bandwidth-sharing networks even more challenging.

While, in theory, the optimal policy can be computed by value-iteration, in practice, the numerical com-
putation becomes quickly prohibitive due to the exponential relation between the number of states and the
number of classes. For example, a network with 5 classes and at most 100 flows per class will result in a
Markov chain of with 1015 states.

Our approach to this problem is to analyze an associated fluid model in the spirit of Avram, Bertsimas,
and Richard [5] which can be interpreted as a deterministic approximation of the stochastic problem. This
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technique has been applied in various problems of optimal control of high-dimensional Markov chains [18]. In
the context of the bandwidth-sharing networks, which is the focus of this paper, the utility of this technique
was demonstrated in [23].

The fluid approach involves approximating the dynamics of the Markov chain using a set of differential
equations, and then computing the optimal control policy for this set of differential equations. The utility of
this technqiue lies its ability to reduce the complexity of the problem to one for which numerical solutions can
be efficiently calculated. This feature will be illustrated later when we compare the times required to compute
the stochastic as well as the fluid optimal policies.

Other than the relative ease with which it can be computed, it has been shown in [8, 24, 12] that the fluid
control is asymptotically optimal when the state of the system is large. These results are especially relevant
in the context of this paper. The large state can be interpreted as a congested state of the network caused by
a flash-crowd or a momentaneous arrival of a large number of flows. Thus, one can expect the fluid-optimal
policy for draining a network from a congested state to be close to the stochastic-optimal policy.

One of the recurrent questions in this type of approximations is how to convert the fluid-optimal policy to
the stochastic setting. We shall use a version of the Discrete-review method proposed in [16]. The idea is to
periodically apply the fluid-optimal policy with the initial state as the state of the stochastic system sampled
at review instants.

In addition to a network, we investigate the canonical case of a single link shared by multiple classes of
flows, the so called multi-class queue. The aim is to characterize and compute the policy that minimizes the
total cost in delay and energy consumption for the single link case. The single-link case is the basic model to
study resource allocation problems and has been widely studied in several related works [19, 4].

Without energy costs, for a single-node, the optimality of the well-known cµ rule has been shown in various
ways(see, [19] and references therein) Speed-scaling policies for a single server and single class of traffic was
analyzed in [2] but for multi-class queues such an analysis has been lacking.

Another related work on energy-aware bandwidth-sharing networks is [3] in which the authors find approx-
imation algorithms for a routing problem. In our model, the routes for the flows are fixed and we use a fluid
model to determine the optimal speed profile.

1.1 Contributions and Organization of the paper

In the next section, we shall describe the bandwidth-sharing model with speed-scaling and formulate the related
fluid optimal control problem. We shall first illustrate the utility of the fluid approximation on a two-node
linear network by comparing the costs and the trajectories of the stochastic-optimal and the fluid-optimal
policies with discrete-review type updates. It turns out that the analytical computation of the fluid-optimal
policy even in the case of the two-node network becomes cumbersome due to the fact that one has to compute
the speed of each of the nodes.

In section 3, we shall focus on the single node case. The bulk of our the analytical results for the fluid-
optimal policies are available only for this scenario. Using Pontryagin’s Maximum Principle, we show the
optimality of the well-known cµ rule, that is, to serve the classes in decreasing order of priority according to
the product ciµi, where ci is the delay cost of class-i and µi denotes the mean rate of flows of class-i. We
also shall give analytical expressions for the optimal server speed as a function of time. The utility and the
applicability of the fluid-optimal policies will be shown using several numerical examples.

Finally, in section 4, we present the conclusions and future work in this direction.

2 Model description

2.1 Stochastic model

We consider a network of a set of L links shared by a set F of classes of flows with N being the number of
classes. We denote by C = {Cl}l∈L the vector of links capacity. Class-i flows arrive according to a Poisson
process at rate λi and have exponentially distributed sizes of mean 1/µi, i ∈ F . We denote by ρi = λi/µi the

traffic load of class i, and the total traffic load by ρ =
∑N
i=1, ρi. In the following, we let also Xi(t) be the

number of class-i flows in the system at time t. We define X(t) = (X1(t), X2(t), . . . , XN (t)) as the state of
the system at time t, and note that the state belongs to INN . A holding cost rate of ci is associated with flows
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of class-i. Let pi ⊂ L denote the set of links used by flows of class i, and let P be the F ×L incidence matrix
in which the entry (i, j) is 1 is class i uses link j and is 0 otherwise.

Link l, l ∈ L can be operated at an speed in the interval [0, Cl]. We shall assume that the maximum speed
Cl >

∑
i ρipi,l, in order to ensure stability of the system, and that the speed of a link can be changed when

the number of flows in the system changes. We let ui(x) be the capacity allocated to class i when the system
is in state x. We further assume that all class-i flows share the capacity allocated to the class according to
the PS discipline. In the following, we denote by u(x) the vector (u1(x),u2(x), . . . ,uN (x)), and note that
this vector belongs to the following set

U =
{
u ∈ IRN

+ : uP ≤ C
}

(1)

The power required to operate a link at rate x is assumed to be proportional to xγ where γ > 1, see for
example [2]. The total power comsumption of the rate allocation vector u is then

∑
l∈L

∑
j∈F

uiPi,j

γ

. (2)

For any given stationary policy u, the network state X(t) is a Markov process (a multi-dimensional birth-
and-death process) with transition rates

q(x,y) =

{
λi if y = x+ ei, i ∈ F
µi ui(x) if y = x− ei, i ∈ F

Let S denote the set of states which correspond to the ideal operating point of the network. This could
be the set of states within which the network operator would like the number of flows to be so that each flow
could receive a given quality of service. We shall assume that at time 0 the network finds itself in a state x(0)
which is far away from this S. This could happen due to unseen circumstances such as flash-crowds or events
which attract a large number of users at the same time (a major sports event, or some unexpected news event.

x(0)

x(T )

x2

x1

S

Figure 1: Illustration of the optimal control problem with 2 classes.

The goal of the operator is to find the capacity allocation policy that will bring the network to a state
within S (or the operating region) while minimizing the total cost incurred (see Figure 1). This cost comprises
of two conflicting components: one for the holding the flows in the network and the other for the energy
consumption in the network. Intuitively, to lower the holding cost of flows, the operator has to increase the
speed of the links which then increases the energy consumption of the network, and vice versa. Formally, we
aim to find u∗ : INN → U solving the following problem:

Minimize Ex(0)

{∫ T

0

f (X(t),u(X(t))) dt

}
, (3)

where T is the first time the process enters the set S, that is

T = inf{t : X(t) ∈ S|X(0) = x(0)},
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and f(x,u) represents the cost rate in state x when a control u is applied, that is,

f(x,u) =
∑
i∈F

cixi + κ
∑
j∈L

(∑
i∈F

uiPi,j

)γ
. (4)

In (4), κ is a parameter controlling the relative weights of energy consumption and delay, whereas c is a
vector giving the relative weights of the delays of the classes .

Remark 1. The above problem is equivalent to a stochastic shortest path problem (cf. [9]) in which the cost
in the states belonging to S is 0 and the rate of transition from these states to any other state is 0 as well.
The horizon of the problem now becomes infinite. We shall use this infinite horizon formulation from here on.

Remark 2. To simplify the analysis, we shall take S = {0}, that is the state where all classes have zero flows.

Problem (3) can be transformed into an equivalent discrete-time problem by uniformizing this CTMC. The
sojourn time in state x is exponentially distributed with parameter ν(x) =

∑
i λi+

∑
i µi ui(x). We note that

ν(x) ≤ ν for all x ∈ INN , where

ν =
∑
i

λi + max
l∈L

(Cl)
∑
i

µi. (5)

The uniformized version of the CTMC is a DTMC with state space INN and transition probabilities

p(x,y) =


λi
ν if y = x+ ei, i ∈ F
µi
ν ui(x) if y = x− ei, i ∈ F
1
ν [ν −∑i(λi + µi ui(x))] if y = x.

The equivalent discrete-time problem is as follows:

Minimize Jφ(x(0)) =
1

ν
E

{ ∞∑
k=0

f(x(k),u(x(k)))

}
. (6)

In theory, the optimal policy can then be computed using the value-iteration algorithm [9], that is by
iterating over

J (k+1)(x) =
1

ν
min
u∈U

[
f(x,u) +

∑
y

p(x,y)J (k)(y)

]
, (7)

for all x ∈ INN and for k = 0, 1, 2, . . . In practice however, this approach, that requires computing at each
step k the optimal cost-to-go J (k)(x) for each possible initial state x, suffers from the curse of dimensionality.
If truncation of the state space INN is feasible in light traffic regimes, the above technique is prohibitively
expensive when either the number of flow classes or the traffic intensities get large.

2.2 Fluid model

As is often done when one is confronted with a computationally hard stochastic control problem (3), we resort
to its fluid analog that has deterministic dynamics given by the following set of differential equations:

ẋ(t) = λ− µ · u,
where xi(t) represents the quantity of fluid associated to class i at time t, ui(t) is the rate allocated to this class
at that time and· stands for componentwise multiplication. We describe below the associated fluid optimal
control problem.

Let T denote1 the first time when the total amount of fluid in the network reaches 0, that is,

T = inf{t : x(t) ∈ S = 0|X(0) = x(0)},
1With slight abuse of notation, we use T to denote the first time to enter the set S in both the stochastic and fluid models.
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We note that the horizon T is not fixed, and it is also a part of the solution. It is the first time that the process
enters the set S = {0}.

The fluid control problem is then to find the rate allocation that drains out the queue with minimum total
cost. Formally, the problem can be stated as

minimize J(u;x0) =

∫ T

0

f(x(t),u(t))dt (OPT)

subject to

ẋi(t) = λi − µiui(t), i ∈ F , (8)

−xi(t) ≤ 0, i ∈ F , (9)

u(t) ∈ U , (10)

x(0) = x0, x(T ) = 0. (11)

2.3 Implementation of the fluid policy

In this section, we discuss how to use the control policy u(t) minimizing (OPT) in order to define an imple-
mentable rule for the stochastic network. Roughly speaking, the problem is that the stochastic process can
significantly deviate from its fluid limit. Hence, applying the open-loop fluid control law without taking into
consideration the state of the network is not an appropriate approach. In recent years, several approaches
have been proposed for translating the solution of the associated fluid control problem into an implementable
policy for the original stochastic network. In this work, we shall consider the family of so-called discrete-review
policies [14, 16]. Those policies step through time in large intervals within which a deterministic control rule
is employed. More precisely, network state is reviewed at discrete points in time. At each review instant, the
controller formulates a plan for the period of time until the next review instant in order to best track what
the fluid control policy would do starting at that point. In [16], Maglaras proposes a discrete-review policy
for scheduling stochastic networks that achieves asymptotically optimal performances under fluid scaling, and
guarantees stability if the traffic intensity is less than one at each station. See also [10, 6, 22, 13] for related
approaches.

In our work, we have used discrete-review policies in their simplest form. Let tk = k∆T for k = 0, 1, 2, . . .
be the review instants. At time tk, we compute the fluid control policy using as initial state the current state
of the stochastic network. Dividing the review period in m steps, we allocate the rate ui(tk + n

m∆T ) to class
i in the time interval

[
tk + n

m∆T, tk + n+1
m ∆T

)
.

In order to illustrate the benefits that can be expected from such an approach, consider the simple 2 links
and 3 classes linear network shown in Figure 2. The link capacities are C1 = 10 and C2 = 20. We assume that
κ=1 and γ=3 and consider two scenarios:

• Scenario 1: ρ0 = 0.2, ρ1 = 0.3, ρ2 = 0.1, c0 = 1, c1 = 2 and c2 = 2.

• Scenario 2: ρ0 = 0.4, ρ1 = 0.1, ρ2 = 0.5, c0 = 2, c1 = 1, c2 = 6.

ρ0

ρ1 ρ2

C1 C2

Figure 2: Line Lot network.

Given a sample path for the flow arrival process as well as a sample path of the stochastic process governing
flow sizes, one can compute the sample trajectories that would be obtained under the optimal stochastic policy
and under the fluid policy reviewed at discrete times. The optimal stochastic policy is easily computed using
well-known techniques such as value-iteration or policy-iteration [9]. In our case, we have used the former
technique. The fluid control problem can be solved using an optimal control solver. In our case, we have used
Bocop, an open source toolbox for optimal control problems [1]. We note that, as clearly demonstrated by
Tables 1 and 2, the time required for solving the fluid control problem is much lower than the time required
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Scenario Computing time (s)

1 780s
2 1020s

Table 1: Time required to solve for the optimal stochastic policy using value iteration (relative precision on
optimal cost-to-go is 10−3).

Scenario Initial State Computing time (s)

1 (3,5,5) 16 s
2 (4,5,3) 10 s

Table 2: Time required to solve for the optimal fluid policy using Bocop.

to compute the optimal stochastic policy. In other words, whereas computing the optimal stochastic policy is
out of reach for large networks, the computation of the optimal fluid control law requires a relatively modest
effort.

Figure 3 (left) compares sample trajectories obtained for the 3 classes under the optimal stochastic policy
and under the optimal fluid control applied using the discrete review method in the first scenario and for
x(0) = (3, 5, 5) as initial state. Figure 3 (right) provides a similar comparison in the second scenario for
x(0) = (4, 5, 3) as initial state. It is apparent from these two examples that the sample trajectories obtained
under the fluid policy match very well those obtained under the optimal stochastic policy.
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Figure 3: Sample trajectories obtained under the optimal stochastic policy and under the fluid policy for
x0(0)=4, x1(0)=5 and x2(0)=3 (left) and for x0(0)=3, x1(0)=5 and x2(0)=5 (right).

3 The Single Link Case

In this section, we consider the case of a single node in the network with multiple classes. For this case
Pi,j = 1,∀i. We wish to compute the policy that minimizes the total cost and compute the optimal policy.
Without energy costs, this problem was solved in [5]. It was shown that giving full priority to the non-empty
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class with the largest cµ is optimal. We shall investigate how energy costs affect the priority rule and how the
speed varies as a function of the fluid. We first show that in the original stochastic model, the optimal policy
is a priority discipline. However given the complexity of the stochastic setting, we were not able to determine
the priority criterion. Using the fluid model we show the optimality of the cµ rule, that is to give priority to
the class i with the highest ciµi. Solving the optimal stochastic control problem numerically we observe the
optimal policy coincides with the cµ rule.

3.1 Stochastic model

In the following, we denote by J(x) the optimal cost, that is the cost of an optimal policy u∗ : INN → U
minimizing (6). In the case of a single server, Bellman’s equation takes the form

J(x) =
1

ν

[∑
i

cixi + νJ(x) +
∑
i

λi∆x+ei(i)

+ min
u∈U

[
κ

(∑
i

ui

)γ
−
∑
i

µi ui∆x(i)

]]
, (12)

where ∆x(i) = J(x)−J(x−ei) is the optimal cost differential in state x. An optimal policy is to use at state
x the vector u that minimizes

κ

(∑
i

ui

)γ
−
∑
i

µi ui∆x(i)

Letting s be such that
∑
i ui = s, the optimal choice is to maximize

∑
i µi ui∆x(i), and the optimal solution

is clearly uk = s for k such that for all i we have µk∆x(k) ≥ µi∆x(i), whereas ui = 0 for i 6= k. We thus
conclude that an optimal policy can be obtained by giving full priority to only one class.

It is difficult to obtain more precise results on the optimal speed and the priority-rule for the above described
stochastic optimal control problem. Therefore, in the next section we propose to solve the related fluid control
model as an approximation to the stochastic-optimal policy.

3.2 Fluid model

For the single node case, the problem (OPT) takes the following form

minimize

∫ T

0

f(y,u)dt (OPT-R)

subject to

ẏi(t) = ρi − ui(t), i ∈ F , (13)

−yi(t) ≤ 0, i ∈ F , (14)

u(t) ∈ U , (15)

y(T ) = y(0), (16)

y(T ) = 0, (17)

where we have made the transformation yi = xi
µi

and f has been redefined as

f(y,u) =
∑
i∈F

c̃iyi + κ
∑
j∈L

(∑
i∈F

uiPi,j

)γ
, (18)

with c̃i = ciµi for all i ∈ F .
The problem (OPT-R) has pure state constraints which makes the problem more difficult than the ones

without state constraints. We will solve using the direct method or the direct adjoining approach [15] which
consists of relaxing the pure state constraint and then finding the appropriate value of the Lagrange multiplier.
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Ignoring for the moment the constraint on the sum of rates2, the Lagrangian (or the augmented Hamilto-
nian) for this problem is defined as

L(y,u,θ,η,β) = f(y, u) +
∑
i

(θi(ρi − ui)− ηiyi − βiui),

where θi is the adjoint state for class i, ηi is the multiplier for to the pure state constraint yi ≥ 0, and βi is
multiplier for the constraint ui ≥ 0.

The necessary conditions for the optimality of u are

θ̇i(t) = −L̇yi (19)

ẏi(t) = L̇θi (20)

u(t) = arg max
u∈U
L (21)

ηiyi = 0, η ≥ 0, (22)

βiui = 0, β ≥ 0, (23)

In addition, due to the pure state constraints there can be jumps in the trajectories of the adjoint variables
at points on the boundary of the state space. Let tk be the time when one of the state constraints, say of class
k, is satisfied with equality. Then,

θk(tk+) = θk(tk−)− νk
From [15], one infers that the adjoint variables are continuous if the boundary is reached non-tangentially,

that is ẏi(tk−) 6= 0 when yi reaches the boundary. We shall assume that this is indeed the case.

Assumption 3.1. For all k, the adjoint variable θk(t) are continuous in t.

Using the exact form of the cost rate given in (4) , the necessary condition of the optimality of the control
(21) (or, equivalently L̇u = 0) becomes

κγ

(∑
i

ui(t)

)γ−1
− (θk(t) + βk(t)) = 0, ∀k ∈ P. (24)

3.2.1 Optimality of the cµ rule

Let P(t) = {i : yi(t) > 0}, i.e., it is the set of non-empty classes at time t.

Theorem 3.1. At any time t > 0,

1. ui(t) > 0 iff either yi(t) = 0 or i = arg max{c̃j : j ∈ P(t)};

2. if yi(t) = 0, then ui(t) = ρi.

The result says that amongst the classes with non-zero fluid, it is optimal to only serve the class with the
largest c̃. This is the same as the cµ rule when energy costs are not taken into account.

The proof of this theorem will be based on the following intermediate result which states that only one
class in P can have a non-zero service rate. The rest of the proof then consists of starting at the end time T
and determining the class that receives service at time t.

Proposition 3.1. In any interval [t1, t2] such that P(t) = P(t1), ∀t ∈ [t1, t2], ui(t)uj(t) = 0, except on a
finite number of time instants.

Proof. For any class k ∈ P(t), the complementarity conditions (22) imply that ηk(t) = 0. Combining this with
(19), one obtains the dynamics of the adjoint variable as

θ̇k(t) = −c̃k,∀k ∈ P(t),

2We shall first give the solution for the infinite capacity case, and later say how to include a finite capacity constraint in the
solution.
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which upon integration gives
θk(t) = −c̃kt+ dk,∀k ∈ P(t),∀t ∈ [t1, t2], (25)

where dk are constants of integration.
Let i and j be two classes in P(t) which in addition also satisty ui(t) > 0 and uj(t) > 0. From the

complemenarity conditions (23), it then follows that βi(t) = βj(t) = 0. Substituting this in the necessary
conditions for the optimal control (24), we get

θi(t) = θj(t). (26)

From (25) θi and θj are linear functions on [t1, t2] with different slopes, and thus, they can intersect at most in
one point within this interval. Therefore, any pair of classes can have non-zero rate simulataneously at most
one point in [t1, t2]. Since there are finite number of pairs, the desired result follows.

Corollary 1. There exists a τN such that for all t ∈ [τN , T ] there is only one class in P(t).

Proof. At T all classes reach 0, and before T two classes with non-zero fluid cannot be served simulatenously.
Hence, the only way all the classes can be at 0 at T is that all classes except one were at 0 in some interval
before T .

The above result says that in any interval with the same set of non-empty classes, only one class within
this set is served at any given time except possibly for a finite number of time instants. Morevoer, the interval
[0, T ] can be divided into intervals during which only one non-empty class is served.

Proof of Theorem 3.1. Let the class be ordered so that c̃1 > c̃2 > . . . > c̃N . We will start at time T and roll
the time backwards. The proof will rely on the dynamics of the adjoint variables and the complementarity
conditions.

From corollary 1, there exists a τN such that only one class has non-zero fluid in [τN , T ]. Also, for any
k /∈ P(t), ui = ρi, so that all classes are served at a positive rate in [τN , T ]. From (24) and the complementarity
conditions (23),

θi(t)− θj(t) = 0,∀i, j and ∀t ∈ [τN , T ], (27)

that is
θ̇i(t)− θ̇j(t) = 0,∀i, j and ∀t ∈ (τN , T ), (28)

From (19) and (22),

θ̇i = −c̃i + ηi(t), i /∈ P(t), and ηi ≥ 0, (29)

θ̇i = −c̃i, i ∈ P(t). (30)

The only way (28), (29), and (30) can be satisfied is if ηN = 0. Thus, class N , which has the smallest c̃, is the
last one to finish.

We can take τN to be the last time one of the other N − 1 was non-zero. Then there is some τN−1 such
that there are two classes with non-zero fluid in the interval [τN−1, τN ). Let us call one of these two classes i
and the other one j. One of these is class N , and we now show that the other is class N − 1.

Let i be the class that is served and j be the class that is idle. From (30), for t ∈ [τN−1, τN ),

θi(t) = c̃i(τN − t) + di, (31)

θj(t) = c̃j(τN − t) + dj . (32)

From Assumption 3.1, which gives us the continuity of θi and θj , and (27), which tells us that θi(τN ) = θj(τN ),
we can conclude that di = dj . Thus,

θi(t)− θj(t) = (c̃i − c̃j)t. (33)

Further, from (23) and (24),
θi(t) = θj(t) + βj(t), t ∈ [τN−1, τN ).

Since βj(t) ≥ 0, the above equality is possible only if c̃i > c̃j . This shows that j = N , that is, the class that is
not served is class N .
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In order to determine class i, we use the argument used in the beginning of this proof to determine the
class that is last to be served. Consider all classes except class N . For these classes, (23) and by consequence
(28) will be applicable in the interval [τN−1, τN ). Moreover, (29) and (30) also have to be satisfied. This can
occur only if the class with the smallest c̃ has the corresponding η = 0, which implies that ηN−1 = 0, and that
class i is class N − 1.

The above arguments can be recursively applied to show that within P(t) the class with the largest c̃ is
the only one that receives non-zero service rate.

Theorem 3.1 gives the structure of the optimal policy. It shows that it is optimal to allocate uk(t) = ρi
for those classes k with yk(t) = 0, and to follow the cµ rule for the classes with non-zero fluid. That is, for
classes with non-zero fluid, it is optimal to serve only the class with the largest value of c̃i, and that this class
is served until it reaches 0.

We denote by τk the first time when class k starts service. The interval [0, T ] can be divided into sub-
intervals [τk, τk+1), k = 1, 2, . . . , N with τ1 = 0, and τN+1 = T . In the optimal policy, class k receives a
non-zero service rate in the interval from [τk, T ) and a service rate of ρk in the interval [τk+1, T ).

In order to completely characterize the optimal policy, we need to determine the speed at which class k is
served in the interval [τk, τk+1), which we do next.

3.2.2 Optimal speed

In the interval [τk, τk+1), βk(t) = 0 since uk(t) > 0, and hence from (24) we have

uk(t) =

(
θk(t)

κγ

) 1
γ−1

−
∑
i/∈P(t)

ρi, (34)

so that, according to Theorem 3.1, we can write the optimal rate allocation as follows

ui(t) =


(
θk(t)
κγ

) 1
γ−1 −∑j /∈P(t) ρj if i = k

0 if i ∈ P(t) \ {k}
ρi if i 6∈ P(t)

(35)

In order to determine an optimal control law (u(t), T ) we therefore need to solve for the state trajectory
y(t), the vector of adjoint variables θ(t) and the final time T . We observe that (19)-(20) provides 2N differential
equations, so that the vectors y(t) and θ(t) are known at each time instant t up to a constant. Including the
final time T , there are thus 2N + 1 constants to be determined. Observe that if we can determine one of the
constants, the values of the other 2N constants can be inferred from the 2N boundary conditions yi(0) and
yi(T ) = 0, i = 1, . . . , N . The remaining equation is given by the the transversal condition [11]:

L(y(T ),u(T ),θ(T ),η(T ),β(T )) = 0, (36)

from which the value of θN (T ) can be obtained.
Since yi(T ) = 0 for all i and ui(T ) = ρi for all i 6= N , (36) yields

κ

∑
i 6=N

ρi + uN (T )

γ + θN (T ) [ρN − uN (T )] = 0. (37)

Using (34) to replace θN (T ) in the above equation, we get

κ

∑
i 6=N

ρi + uN (T )

γ + κγ

∑
i6=N

ρi + uN (T )

γ−1 [ρN − uN (T )] = 0, (38)

from which it follows that

uN (T ) =

∑
i 6=N ρi + γρN

γ − 1
. (39)
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We note that uN (T ) is independent of T and the initial conditions, and depends only on the traffic intensities
of the classes and γ. The next result gives the relations to compute the optimal speeds at other time instants.

From (37) and (39), we obtain the value of θN (T ) as

θN (T ) = κγ

(
γ

γ − 1

∑
i

ρi

)γ−1
. (40)

Define for convenience α = 1/(γ − 1), and note that τN+1 = T .

Proposition 3.2. For a fixed T and with θN (τN+1) given in (40),

1. provided that τk+1 > 0, the service rate of class k, for k = 1, . . . , N , is given by

uk(t) =

(
c̃k(τk+1 − t) + θk(τk+1)

κγ

) 1
γ−1

−
∑
i/∈P(t)

ρi, t ∈ [τk, τk+1) , (41)

where τk is the unique solution of

yk(0) + ρkτk+1 +
∑
i/∈P(t)

ρi(τk+1 − τk) =
κγ

(α+ 1)c̃k

((
c̃k(τk+1 − τk) + θk(τk+1)

κγ

)α+1

−
(
θk(τk+1)

κγ

)α+1
)

(42)

in the interval (−∞, τk+1).

2. For k = 2, . . . , N , it holds that

θk−1(τk) = θk(τk+1) + c̃k(τk+1 − τk). (43)

3. For k = 1, 2, . . . , N , τk is an increasing function of T .

4. T is the unique solution of τ1 = 0.

The proof appears in Appendix A. Here, we explain how to recursively compute the optimal speeds. The
recursion moves down from N to 1. Since θN (τN+1) is given, it allows us to compute τN and uN (t), t ∈
[τN , τN+1). Using (43), one then computes θN−1(τN ), which then allows us to compute τN−1 and uN−1(t), t ∈
[τN−1, τN). This procedure is repeated until we arrive at k = 1. Finally, we have to compute the value of T
which gives τ1 = 0. This is done by repeatedly computing the τ until the right value of T is found.

Remark 3 (Properties of the optimal policy). Define the function Θ(t) =
∑
k 1t∈[τk,τk+1)θk(t). From (34),

the total server speed at time t, u(t), is given by

u(t) =

(
Θ(t)

κγ

) 1
γ−1

.

From analysis similar to the one done in Theorem 3.1 (see (31)), it can be shown that Θ(t) is a piece-wise
linear and decreasing function. Hence, in the optimal policy the total server speed is decreasing as a function

of time and scales as (T − t) 1
γ−1 .

Remark 4 (Finite capacity constraint). The above analysis assumed that there was no constraint on the
capacity. In case of a finite capacity constraint, a similar analysis can be done. The same equations as in
Proposition 3.2 will hold until the time

∑
k uk(t) = Cl or the initial conditions are satisfied. Between this time

and 0 the server will be serving at the maximum speed Cl.
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3.3 Numerical results

We now describe the numerical results for the single-link case. In this section, we present one scenario. A
second one is available in Appendix B. We shall compare the optimal stochastic policy obtained by solving a
stochastic shortest path problem with the fluid policy obtained analytically in Proposition 3.2 as well as with
Bocop.

We shall assume that κ=1 and γ=3. The parameters of the traffic classes are as follows: ρ0=0.2, ρ1=0.1,
ρ1=0.3, µ0c0=5, µ1c1=6 and µ2c2=4. In Figure 4, we compare the optimal fluid rates allocated to each
class with those that would be obtained under the optimal stochastic policy when the initial state is x(0) =
(10, 11, 12). The fluid rates of each traffic class closely matches its stochastic rates and follows the cµ rule. We
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Figure 4: Optimal fluid speed vs. optimal stochastic speed in Scenario 1 for x0(0)=10, x1(0)=11 and x2(0)=12.

compare sample trajectories obtained under the optimal stochastic policy and under the optimal fluid control
applied using the discrete-review method in Figure 5 when the initial state is x(0) = (10, 11, 12).
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Figure 5: Sample trajectories obtained under the optimal stochastic policy and under the analytical fluid
policy (left) and fluid policy from Bocop (right) for x0(0)=10, x1(0)=11 and x2(0)=12.

4 Conclusion

In this paper, we modeled the energy-delay tradeoff in bandwidth-sharing networks with speed-scaling. Our
objective was to determine the policy minimizing the total cost to drain the network. For the case of a
linear network with two links, it was shown via numerical experiments that the fluid model together with
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discrete-review provides a good approximation to the stochastic control problem. For a single link shared by
an arbitrary number of classes, using Pontryagin’s Maximum Principle we completely characterized the fluid
optimal control policy. In particular, we established that the optimal fluid policy behaves according to the
cµ rule. Future work include the extension of the results obtained here for a single link to a linear network
topology.
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A Proof of Proposition 3.2

Proof. 1. Let k < N . For t ∈ [τk, τk+1) the arguments used to obtain (31) and (32) are applicable not only
to classes N −1 and N but also to any classes k and k+ 1, where k is the highest priority non-zero class.
Similarly, the continuity assumption and (27) can be applied to obtain dk = dk+1 = θk+1(τk+1). Thus,

θk(t) = c̃k(τk+1 − t) + θk+1(τk+1), t ∈ [τk, τk+1). (44)

The relation (41) now follows from (34) and the above equation.

For k = N , from (30) and the given value of θN (τN+1), we get

θN (t) = c̃N (τN+1 − t) + θN (τN+1), t ∈ [τN , τN+1).

For (42), first we use the dynamics (13) of yk and the boundary condition yk(τk+1) = 0, that is,

yk(τk+1) = yk(0) + ρk τk+1 −
∫ τk+1

τk

uk(t) dt,= 0.

which when when combined with (41) gives (42).

We now show that τk is the unique solution of (42). For a fixed τk+1, let ∆k = τk+1−τk. We can rewrite
(42) as

g(∆) = yk(0) + ρkτk+1,

where g is defined using the remaining terms in (42). Note that the right-hand side of the above
equation is strictly positive whereas g(0) = 0. Also, g′(∆) = uk(τk) > 0 for any ∆ > 0. Therefore,
g is an increasing function in the interval [0,∞) and there is a unique value of ∆ satisfying the above
equation. This shows that there is a unique τk ∈ (−∞, τk+1).
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2. Integrating (30), we get θk(τk) = c̃k(τk+1− τk) + θk(τk+1), where θk(τk+1) is well defined by Assumption
3.1. Using k − 1 instead of k in (44) and combining with the previous equality, we get

θk−1(τk) = θk(τk+1) + c̃k(τk+1 − τk).

3. We shall show this property using recursion. Consider a k < N and assume that τi is increasing for
i > k. For convenience, define ρ−i =

∑
j<i ρi. Our starting point is (42) which defines τk. Note that τi

and θi, ∀i are function of T . We differentiate (42) with respect to T to obtain

ρkτ
′
k+1 + ρ−k(τ ′k+1 − τ ′k) = u(τk)(τ ′k+1 − τ ′k) +

u(τk)− u(τk+1)

c̃k
θ′k,

where u(t) =
∑
i ui(t) is the total server speed at time t. Upon rearranging the above equation we get

τ ′k = τ ′k+1 + (u(τk)− ρ−k)−1
[
−ρkτ ′k+1 +

u(τk)− u(τk+1)

c̃k
θ′k

]
. (45)

Our base case is k = N . Note that θN (T ) is a constant independent of T , and that τk+1 = T . Hence,
(45) simplifies to

τ ′k = 1− (u(τk)− ρ−k)−1ρk.

Now, u(τk) − ρ−k is the speed at which class k is served in the interval [τk, τk+1). This speed is larger
than ρk, and hence the right-hand side of the above equation is positive. This concludes the base case.

For k < N , we first investigate the term θ′k in (45). Developing the recursion (43), we obtain

θk(τk+1) = c̃NT − c̃k+1τk+1 +

N∑
j=k+2

(c̃j−1 − c̃j)τj ,

which upon differentiation gives

θk(τk+1)′ = c̃N − c̃kτ ′k+1 +

N∑
j=k+2

(c̃j−1 − c̃j)τ ′j ,

Since c̃j−1 − c̃j > 0 and τ ′j are also positive (by induction hypothesis), θ′k > −c̃k+1τ
′
k+1 > −c̃kτ ′k+1.

Substituting this inequality in (45), we get

τ ′k > τ ′k+1 + (u(τk)− ρ−k)−1 [−ρk − u(τk) + u(τk+1)] τk+1′
= τ ′k+1 + (u(τk)− ρ−k)−1

[
−(u(τk)− ρ−k) + u(τk+1)− ρ−(k+1))

]
τk+1′

= (u(τk)− ρ−k)−1
[
u(τk+1)− ρ−(k+1))

]
τk+1′

> 0 (since u(τk+1)− ρ−(k+1) = uk+1(τk+1) > 0).

4. Since τ1 is an increasing function of T , there is a unique T such that τ1 = 0.

B A second numerical experiment

As a second scenario, we again consider the case of three classes, (the value of κ (resp γ) is still 0.5 (1 resp)).
The parameters of the traffic classes are as follows: ρ0=0.5, ρ1=0.6, ρ1=0.6, µ0c0=4, µ1c1=2 and µ2c2=8.

In Figure 6, we compare the optimal fluid rates allocated to each class with those that would be obtained
under the optimal stochastic policy when the initial state is x(0) = (11, 12, 13). The fluid rates of each traffic
class closely matches its stochastic rates and follows the cµ rule.

Figure 7, 8 show a sample path of class 1, 2 and 3 under the optimal fluid control when the initial state is
x(0) = (11, 12, 13).

In figure 9, 10, we compare a sample path of the three classes for x0(0)=9, x1(0)=6 and x2(0) = 5.
Again, we note that these trajectories closely match those obtained under the optimal stochastic policy,

and that both policies follow the cµ rule. Indeed, they both give priority to class-2 which has a higher value
of ciµi (c2 µ2 = 8 > 4 = c0 µ0 > 2 = c1 µ1).
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Figure 6: Optimal fluid speed vs. optimal stochastic speed in Scenario 2 for x0(0)=11, x1(0)=12 and x1(0)=13.
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Figure 7: Sample trajectories obtained under the optimal stochastic policy and under the fluid policy (obtained
in section 3)for x0(0)=11, x1(0)=12 and x2(0) = 13.
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Figure 8: Sample trajectories obtained under the optimal stochastic policy and under the fluid policy (bocop)
for x0(0)=11, x1(0)=12 and x2(0) = 13.

16



s
ta

te

time

Fluid and stochastic controls

Stochastic -class 0

Stochastic -class 1 

Stochastic-class 2

Fluid-class 0 

Fluid-class 1 

Fluid-class 2 

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.5  1  1.5  2  2.5

Figure 9: Sample trajectories obtained under the optimal stochastic policy and under the fluid policy (obtained
in section 3)for x0(0)=9, x1(0)=6 and x2(0) = 5.
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Figure 10: Sample trajectories obtained under the optimal stochastic policy and under the fluid policy (bocop)
for x0(0)=9, x1(0)=6 and x2(0) = 5.
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