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Abstract

Inspired by speed-scaling techniques used in servers, we investigate the energy-delay
tradeoff in bandwidth-sharing networks in which nodes can regulate their speed according
to the load of the system. Assuming that the network is initially congested, we investigate
the rate allocation to the classes that drains out the network with minimum total energy
and delay cost. We formulate this optimal resource allocation problem as a Markov decision
process which proves to be both analytically and computationally challenging. We propose
to solve this stochastic problem using a deterministic fluid approximation. For the case of a
linear network with two links, we provides numerical evidences in the support of the fluid
model as a good approximation to the stochastic control problem. For a single link shared
by an arbitrary number of classes, using Pontryagin’s Maximum Principle we show that the
optimal-fluid solution follows the well-known cµ rule and give an explicit expression for the
optimal speed.

I. INTRODUCTION

Internet traffic is expected to increase to 1 zettabyte per year in 2015 according to [2]. In

order to support such a large volume of traffic, network operators are forced to continuously

increase network resources which consequently increases the overall network cost and energy

consumption. Thus solutions (e.g., optimal share of resources) that achieve a good trade-off

between energy consumption and network performance become of utmost importance.

One of the solutions for reducing energy consumption, called dynamic speed-scaling,

involves regulating the speed of the processor as a function of the the load. The optimal

speed-scaling policy taking into account the energy-delay trade-off was computed for a

single node in [3], [7]. Our main contribution is to generalize the application of this energy-

saving technique to bandwidth-sharing networks which were introduced in [19] to model the

dynamics of network flows in the Internet. Our model is thus a transposition of speed-scaling

to bandwidth-sharing networks in which nodes will be able to regulate their speed in order

to minimize a given peformance metric.

The main question that we investigate in this paper is the following: assuming that the

network is initially in a congested state, how to share the available bandwidth in order to

drain out the congestion with minimum total cost which comprises of the mean response

times experienced by flows as well as the energy consumption of the network.
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The optimal resource-allocation problem in a bandwidth-sharing network can be cast as

a Markov decision process with dimension equal to the number of classes of flows in the

network. Even without energy costs the computation of closed-form optimal policy has proven

to be quite challenging for general networks. Optimal allocations are known only for a few

special network topologies such as single node [22], [21], linear networks [25] and star

networks [23]. In most cases, the optimal policy is a priority rule that serves classes that do

not use competing resources.

When the option of speed-scaling is introduced in a bandwidth-sharing network, a second

level of complexity gets added to the computation of the optimal policy. In addition to knowing

which classes of traffic to serve, one needs to determine the speed at which each node

must operate. This makes the speed-scaling policy for bandwidth-sharing networks even more

challenging.

While, in theory, the optimal policy can be computed by value-iteration, in practice, the

numerical computation becomes quickly prohibitive due to the exponential relation between

the number of states and the number of classes. For example, a network with 5 classes and

at most 100 flows per class will result in a Markov chain of with 1015 states.

Our approach to this problem is to analyze an associated fluid model in the spirit of Avram,

Bertsimas, and Richard [5] which can be interpreted as a deterministic approximation of the

stochastic problem. This technique has been applied in various problems of optimal control

of high-dimensional Markov chains [20]. In the context of the bandwidth-sharing networks,

which is the focus of this paper, the utility of this technique was demonstrated in [25].

The fluid approach involves approximating the dynamics of the Markov chain using a

set of differential equations, and then computing the optimal control policy for this set of

differential equations. The utility of this technqiue lies its ability to reduce the complexity of

the problem to one for which numerical solutions can be efficiently calculated. This feature

will be illustrated later when we compare the times required to compute the stochastic as

well as the fluid optimal policies.

In addition to the relative ease with which it can be computed, it has been shown in [8],

[26], [14] that the fluid control is asymptotically optimal when the state of the system is

large. These results are especially relevant in the context of this paper. The large state can be

interpreted as a congested state of the network caused by a flash-crowd or a momentaneous

arrival of a large number of flows. Thus, one can expect the fluid-optimal policy for draining

a network from a congested state to be close to the stochastic-optimal policy.

One of the recurrent questions in this type of approximations is how to convert the fluid-

optimal policy to the stochastic setting. We shall use a version of the Discrete-review method

proposed in [18]. The idea is to periodically apply the fluid-optimal policy with the initial

state as the state of the stochastic system sampled at review instants.

In addition to a network, we investigate the canonical case of a single link shared by

multiple classes of flows, the so called multi-class queue. The aim is to characterize and

compute the policy that minimizes the total cost in delay and energy consumption for the

single link case. The single-link case is the basic model to study resource allocation problems

and has been widely studied in several related works [21], [13], [4].
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Without energy costs, for a single-node, the optimality of the well-known cµ rule has been

shown in various ways [22], [21], [11]. Speed-scaling policies for a single server and single

class of traffic was analyzed in [3] but for multi-class queues such an analysis has been

lacking.

A. Contributions and Orgranization of the paper

In the next section, we shall describe the bandwidth-sharing model with speed-scaling and

formulate the related fluid optimal control problem. We shall first illustrate the utility of the

fluid approximation on a two-node linear network by comparing the costs and the trajectories

of the stochastic-optimal and the fluid-optimal policies with discrete-review type updates. It

turns out that the analytical computation of the fluid-optimal policy even in the case of the

two-node network becomes cumbersome due to the fact that one has to compute the speed

of each of the nodes.

In section III, we shall focus on the single node case. The bulk of our the analytical

results for the fluid-optimal policies are available only for this scenario. Using Pontryagin’s

Maximum Principle, we show the optimality of the well-known cµ rule, that is, to serve the

classes in decreasing order of priority according to the product ciµi, where ci is the delay

cost of class-i and µi denotes the mean rate of flows of class-i. We also shall give analytical

expressions for the optimal server speed as a function of time. The utility and the applicability

of the fluid-optimal policies will be shown using several numerical examples.

Finally, in section IV, we present the conclusions and future work in this direction.

II. MODEL DESCRIPTION

A. Stochastic model

We consider a network of a set of L links shared by a set F of flows with N being the

number of flows (or classes). We denote by C = {Cl}l∈L the vector of links capacity. Class-i
job arrive according to a Poisson process at rate λi and have exponentially distributed sizes

of mean 1/µi, i ∈ F . We denote by ρi = λi/µi the traffic load of class i, and the total traffic

load by ρ =
∑N

i=1, ρi. In the following, we let also Xi(t) be the number of class-i jobs in

the system at time t. We define X(t) = (X1(t), X2(t), . . . , XN (t)) as the state of the system

at time t, and note that the state belongs to INN . A holding cost rate of ci is associated with

flows of class-i. Let pi ⊂ L denote the set of links used by flow i, and let P be the F × L
incidence matrix in which the entry (i, j) is 1 is flow i uses link j and is 0 otherwise.

Link l, l ∈ L can work at maximum speed Cl >
∑

i ρipi,l. We assume that its service rate

can be selected in the interval [0, Cl] and can be changed when the number of jobs in the

system changes, i.e., when the state x(t) changes. In addition, we can decide the capacity

allocated to each class of jobs. We let ui(x) be the capacity allocated to class i when the

system is in state x. Note that X is a random variable whereas x is a particular value that this

random variable can take. We further assume that all class-i jobs share the capacity allocated

to the class according to the PS discipline. In the following, we denote by u(x) the vector

(u1(x),u2(x), . . . ,uN (x)). We note that this vector belongs to the following set
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U =
{

u ∈ IRN
+ : uP ≤ C

}

(1)

Assume that the power required to operate a link at rate x is proportional to xγ where

γ > 1. The total power requirement of the rate allocation vector u is then

∑

l∈L





∑

j∈F

uiPi,j





γ

(2)

For any given stationary policy u, the network state X(t) is a Markov process (a multi-

dimensional birth-and-death process) with transition rates

q(x,y) =

{

λi if y = x+ ei, i ∈ F

µi ui(x) if y = x− ei, i ∈ F

Let S denote the set of states which correspond to the ideal operating point of the network.

This could be the set of states within which the network operator would like the number of

flows to be so that each flow could recieve a given quality of service. We shall assume that

at time 0 the network finds itself in a state x(0) which is far away from this S . This could

happen due to unseen circumstances such as flash-crowds or events which attract a large

number of users at the same time (a major sports event, or some unexpected news event. (see

Figure 1)

x(0)

x(T )

x2

x1

S

Fig. 1. Illustration of the optimal control problem with 2 classes.

The goal of the operator is to find the capacity allocation policy that will bring the network

to a state within S while minimizing the total cost incurred. This cost comprises of two

conflicting components: one for the response time of tasks and the other for the energy

consumption in the network.Equivalently, the goal of the operator is to bring the network

state to a reasonable operating point with minimum total cost. Formally, we aim to find

u∗ : INN → U solving the following problem:
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Minimize Ex(0)

{

∫ T

0

f (X(t),u(X(t))) dt

}

, (3)

where T is the first time the process enters the set S , that is

T = inf{t : X(t) ∈ S|X(0) = x(0)},

and f(x,u) represents the cost rate in state x when a control u is applied, that is,

f(x,u) =
∑

i∈F

cixi + κ
∑

j∈L

(

∑

i∈F

uiPi,j

)γ

. (4)

In (4), κ is a parameter controlling the relative weights of energy consumption and delay,

whereas c is a vector giving the relative weights of the delays of the classes .

Remark 1. The above problem is equivalent to a stochastic shortest path problem (cf. [9])

in which the cost in the states belonging to S is 0 and the rate of transition from these states

to any other state is 0 as well. The horizon of the problem now becomes infinite. We shall

use this infinite horizon formulation from here on.

Remark 2. To simplify the analysis, we shall take S = {0}, that is the state where all classes

have zero flows.

Problem (3) can be transformed into an equivalent discrete-time problem by uniformizing

this CTMC. The sojourn time in state x is exponentially distributed with parameter ν(x) =
∑

i λi +
∑

i µi ui(x). We note that ν(x) ≤ ν for all x ∈ INN , where

ν =
∑

i

λi +max
l∈L

(Cl)
∑

i

µi. (5)

The uniformized version of the CTMC is a DTMC with state space INN and transition

probabilities

p(x,y) =











λi

ν
if y = x+ ei, i ∈ F

µi

ν
ui(x) if y = x− ei, i ∈ F

1
ν
[ν −

∑

i(λi + µi ui(x))] if y = x.

The equivalent discrete-time problem is as follows:

Minimize Jφ(x(0)) =
1

ν
E

{

∞
∑

k=0

f(x(k),u(x(k)))

}

. (6)

In theory, the optimal policy can then be computed using the value-iteration algorithm [9],

that is by iterating over

J (k+1)(x) =
1

ν
min
u∈U

[

f(x,u) +
∑

y

p(x,y)J (k)(y)

]

, (7)
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for all x ∈ INN and for k = 0, 1, 2, . . . In practice however, this approach, that requires

computing at each step k the optimal cost-to-go J (k)(x) for each possible initial state x,

suffers from the curse of dimensionnality. If truncation of the state space INN is feasible in

light traffic regimes, the above technique is prohibitively expensive when either the number

of flow classes or the traffic intensities get large.

B. Fluid model

The stochastic control problem (3) is both analytically and computationally hard. Therefore,

we shall study instead the fluid approximation of the original stochastic network, that is we

shall approximate it by its fluid analog that has the following deterministic and continuous

dynamics

ẋ(t) = λ− µ · u,

where xi(t) represents the quantity of fluid associated to class i at time t, ui(t) is the rate

allocated to this class at that time and· stands for componentwise multiplication. We describe

below the associated fluid optimal control problem.

The cost of the policy u starting from state x0 on a horizon [0, T ] is defined as the sum

of the holding cost of the fluid and the energy cost for processing the fluid, and is given by

J(u;x0) =

∫ T

0

f(x(t),u(t))dt.

We note that the horizon T is not fixed, and it is also a part of the solution. It is the first

time that the process enters the set S = {0}.

The fluid control problem is then to find the rate allocation that drains out the queue with

minimum total cost. Formally, the problem can be stated as

minimize J(u;x0) (OPT)

subject to

ẋi(t) = λi − µiui(t), i ∈ F , (8)

−xi(t) ≤ 0, i ∈ F , (9)

u(t) ∈ U , (10)

x(0) = x0, (11)

x(T ) = 0. (12)

C. Implementation of the fluid policy

In this section, we discuss how to use the control policy u(t) minimizing (OPT) in order

to define an implementable rule for the stochastic network. Roughly speaking, the problem

is that the stochastic process can significantly deviates from its fluid limit. Hence applying

the open-loop fluid control law without taking into consideration the state of the network
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is not an appropriate approach. In recent years, several approaches have been proposed for

translating the solution of the associated fluid control problem into an implementable policy

for the original stochastic network. In this work, we shall consider the family of so-called

discrete-review policies [16], [18]. Those policies step through time in large intervals within

which a deterministic control rule is employed. More precisely, network state is reviewed at

discrete points in time. At each review instant, the controller formulates a plan for the period

of time until the next review instant in order to best track what the fluid control policy would

do starting at that point. In [18], Maglaras proposes a discrete-review policy for scheduling

stochastic networks that achieves asymptotically optimal performances under fluid scaling,

and guarantees stability if the traffic intensity is less than one at each station. See also [10],

[6], [24], [15] for related approaches.

In our work, we have used discrete-review policies in their simplest form. Let tk = k∆T for

k = 0, 1, 2, . . . be the review instants. At time tk, we compute the fluid control policy using as

initial state the current state of the stochastic network. Dividing the review period in m steps,

we allocate the rate ui(tk+
n
m
∆T ) to class i in the time interval

[

tk + n
m
∆T, tk + n+1

m
∆T
)

.

In order to illustrate the benefits that can be expected from such an approach, consider

the simple 2 links and 3 classes linear network shown in Figure 2. The link capacities are

C1 = 10 and C2 = 20. We assume that κ=1 and γ=3 and consider two scenarios:

• Scenario 1: ρ0 = 0.2, ρ1 = 0.3, ρ2 = 0.1, c0 = 1, c1 = 2 and c2 = 2.

• Scenario 2: ρ0 = 0.4, ρ1 = 0.1, ρ2 = 0.5, c0 = 2, c1 = 1, c2 = 6.

ρ0

ρ1 ρ2

C1 C2

Fig. 2. Line Lot network.

Given a sample path for the flow arrival process as well as a sample path of the stochastic

process governing flow sizes, one can compute the sample trajectories that would be obtained

under the optimal stochastic policy and under the fluid policy reviewed at discrete times.

The optimal stochastic policy is easily computed using well-known techniques such as value-

iteration or policy-iteration [9]. In our case, we have used the former technique. The fluid

control problem can be solved using an optimal control solver. In our case, we have used

Bocop, an open source toolbox for optimal control problems [1]. We emphasize that, as clearly

demonstrated by Tables II-C and II-C, the time required for solving the fluid control problem

is several orders of magnitude lower than the time required to compute the optimal stochastic

policy. In other words, whereas computing the optimal stochastic policy is out of reach for

large networks, the computation of the optimal fluid control law requires a relatively modest

effort.

Figure 3 compares sample trajectories obtained for the 3 classes under the optimal stochastic

policy and under the optimal fluid control applied using the discrete review method in the

first scenario and for x(0) = (3, 5, 5) as initial state. Figure 4 provides a similar comparison
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Scenario Computing time (s)

1 780s
2 1020s

TABLE I
TIME REQUIRED TO SOLVE FOR THE OPTIMAL STOCHASTIC POLICY USING VALUE ITERATION (RELATIVE

PRECISION ON OPTIMAL COST-TO-GO IS 10−3).

Scenario Initial State Computing time (s)

1 (3,5,5) 16 s
2 (4,5,3) 10 s

TABLE II
TIME REQUIRED TO SOLVE FOR THE OPTIMAL FLUID POLICY USING BOCOP.

in the second scenario for x(0) = (4, 5, 3) as initial state. It is apparent from these two

examples that the sample trajectories obtained under the fluid policy match very well those

obtained under the optimal stochastic policy.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

st
at

e

time

stochastic vs fluid policy

stochastic policy-class 0
stochastic policy-class 1
stochastic policy-class 2

fluid policy-class 0
fluid policy-class 1
fluid policy-class 2

Fig. 3. Sample trajectories obtained under the optimal stochastic policy and under the fluid policy for x0(0)=3,
x1(0)=5 and x2(0)=5.
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e
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stochastic vs fluid policy

stochastic policy-class 0
stochastic policy-class 1
stochastic policy-class 2

fluid policy-class 0
fluid policy-class 1
fluid policy-class 2

Fig. 4. Sample trajectories obtained under the optimal stochastic policy and under the fluid policy for x0(0)=4,
x1(0)=5 and x2(0)=3.

III. THE SINGLE LINK CASE

In this section, we consider the case of a single node in the network with multiple classes.

For this case Pi,j = 1, ∀i. We wish to compute the policy that minimizes the total cost

and compute the optimal policy. Without energy costs, this problem was solved in [5]. It

was shown that giving full priority to the non-empty class with the largest cµ is optimal.

We shall investigate how energy costs affect the priority rule and how the speed varies as a

function of the fluid. We first show that in the original stochastic model, the optimal policy

is a priority discipline. However given the complexity of the stochastic setting, we were not

able to determine the priority criterion. Using the fluid model we show the optimality of the

cµ rule, that is to give priority to the class i with the highest µici.
Solving the optimal stochastic control problem numerically we observe the optimal policy

coincides with the µc rule

A. Stochastic model

In the following, we denote by J(x) the optimal cost, that is the cost of an optimal policy

u∗ : INN → U minimizing (6). In the case of a single server, Bellman’s equation takes the

form
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J(x) =
1

ν

[

∑

i

cixi + νJ(x) +
∑

i

λi∆x+ei
(i)

+min
u∈U

[

κ

(

∑

i

ui

)γ

−
∑

i

µi ui∆x(i)

]]

, (13)

where ∆x(i) = J(x)−J(x−ei) is the optimal cost differential in state x. An optimal policy

is to use at state x the vector u that minimizes

κ

(

∑

i

ui

)γ

−
∑

i

µi ui∆x(i)

Letting s be such that
∑

i ui = s, the optimal choice is to maximize
∑

i µi ui∆x(i), and the

optimal solution is clearly uk = s for k such that for all i we have µk∆x(k) ≥ µi∆x(i),
whereas ui = 0 for i 6= k. We thus conclude that an optimal policy can be obtained by giving

full priority to only one class.

It is difficult to obtain more precise results on the optimal speed and the priority-rule for

the above described stochastic optimal control problem. Therefore, in the next section we

propose to solve the related fluid control model as an approximation to the stochastic-optimal

policy.

B. Fluid model

For the single node case, the problem (OPT) takes the following form

minimize

∫ T

0

f(y,u)dt (OPT-R)

subject to

ẏi(t) = ρi − ui(t), i ∈ F , (14)

−yi(t) ≤ 0, i ∈ F , (15)

u(t) ∈ U , (16)

y(T ) = y0, (17)

y(T ) = 0, (18)

where we have made the transformation yi =
xi

µi
and f has been redefined as

f(x,u) =
∑

i∈F

c̃ixi + κ
∑

j∈L

(

∑

i∈F

uiPi,j

)γ

, (19)

with c̃i = ciµi for all i ∈ F .
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The problem (OPT-R) has pure state constraints which makes the problem more difficult

than the ones without state constraints. We will solve using the direct method or the direct

adjoining approach [17] which consists of relaxing the pure state constraint and then finding

the appropriate value of the Lagrange multiplier.

The Lagrangian for this problem is defined as

L(x,u,θ,η,β) = f(y, u) +
∑

i

(θi(ρi − ui)− ηiyi − βiui),

where θi is the adjoint variable for class i, ηi corresponds to the pure state constraint xi ≥ 0,

and βi is for the constraint ui ≥ 0. We have ignored for the moment the constraint on the

sum of the service rates.

The necessary conditions for the optimality of u are

θ̇i(t) = −L̇yi
(20)

ẏi(t) = L̇θi (21)

u(t) = argmax
u∈Φ

L (22)

ηiyi = 0, η ≥ 0, (23)

βiui = 0, β ≥ 0, (24)

In addition, due to the pure state constraints there can be jumps in the trajectories of the

adjoint variables at points on the boundary of the state space. Let τk be the time when one

of the state constraints is satisfied with equality. Then,

θ(tk+) = θ(tk−)− νk

From [17], one infers that the adjoint variables are continuous if the boundary is reached

non-tangentially, that is ẏi(tk−) 6= 0 when yi reaches the boundary. We shall assume that

this is indeed the case.

Ignoring for the moment the constraint on the sum of rates and using the exact form of the

cost rate given in (4) , the necessary condition of the optimality of the control (22) becomes

L̇u = 0,

that is,

κγ

(

∑

k

uk(t)

)γ−1

− (θk(t) + βk(t)) = 0, ∀k ∈ P. (25)

1) Optimality of the cµ rule: Let P(t) = {i : yi(t) > 0}, i.e., it is the set of non-empty

classes at time t.

Theorem III.1. At any time t > 0,

1) ui(t) > 0 iff either yi(t) = 0 or i = argmax{c̃j : j ∈ P(t)};

2) if yi(t) = 0, then ui(t) = ρi.
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The result says that amongst the classes with non-zero fluid, it is optimal to only serve the

class with the largest c̃. This is the same as the cµ rule when energy costs are not taken into

account.

The proof of this theorem will be based on the following intermediate result which states

that only one class in P can have a non-zero service rate. The rest of the proof then consists

of starting at the end time T and determining the class that recieves service at time t.

Proposition III.1. In any interval [t1, t2] such that P(t) = P(t1), ∀t ∈ [t1, t2], ui(t)uj(t) =
0, except on a finite number of time instants.

Proof: For any class k ∈ P(t), the complementarity conditions (23) imply that ηk(t) = 0.

Combining this with (20), one obtains the dynamics of the adjoint variable as

θ̇k(t) = −c̃k, ∀k ∈ P(t),

which upon integration gives

θk(t) = −c̃kt+ dk, ∀k ∈ P(t), ∀t ∈ [t1, t2], (26)

where dk are constants of integration.

Let i and j be two classes in P(t) which in addition also satisty ui(t) > 0 and uj(t) > 0.

From the complemenarity conditions (24), it then follows that βi(t) = βj(t) = 0. Substituting

this in the necessary conditions for the optimal control (25), we get

θi(t) = θj(t).

From (26) θi and θj are linear functions on [t1, t2] with different slopes, and thus, they can

intersect at most in one point within this interval. Therefore, any pair of classes can have

non-zero rate simulataneously at most one point in [t1, t2]. Since there are finite number of

pairs, the desired result follows.

Corollary 1. There exists a τN such that for all t ∈ [τN , T ] there is only one class in P(t).

Proof: At T all classes reach 0, and before T two classes with non-zero fluid cannot be

served simulatenously. Hence, the only way all the classes can be at 0 at T is that all classes

except one were at 0 in some interval before T .

The above result says that in any interval with the same set of non-empty classes, only

one class within this set is served at any given time except possibly for a finite number of

time instants. Morevoer, the interval [0, T ] can be divided into intervals during which only

one non-empty class is served.

Proof of Theorem III.1: Let the class be ordered so that c̃1 > c̃2 > . . . > c̃N . We

will start at time T and roll the time backwards. The proof will rely on the dynamics of the

adjoint variables and the complementarity conditions.

From corollary 1, there exists a τN such that only one class has non-zero fluid in [τN , T ].
Also, for any k /∈ P(t), ui = ρi, so that all classes are served at a positive rate in [τN , T ].
From (25) and the complementarity conditions (24),

θi(t)− θj(t) = 0, ∀i, j and ∀t ∈ [τN , T ], (27)
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that is

θ̇i(t)− θ̇j(t) = 0, ∀i, j and ∀t ∈ (τN , T ), (28)

From (20) and (23),

θ̇i = −c̃i + ηi(t), i /∈ P(t), and ηi ≥ 0, (29)

θ̇i = −c̃i, i ∈ P(t). (30)

The only way (28), (29), and (30) can be satisfied is if ηN = 0. Thus, class N , which has

the smallest c̃, is the last one to finish.

We can take τN to be the last time one of the other N − 1 was non-zero. Then there is

some τN−1 such that there are two classes with non-zero fluid in the interval [τN−1, τN ].
The conditions (29) and (30) will have to be satisfied which implies that the other class with

non-zero fluid can only be class-N − 1. From proposition III.1 only one of two classes can

be served in this interval. Next, we shall show that only class-N − 1 can be served.

From (20) and (23), ∀t ∈ [τN−1, τN ],

θN−1(t) = c̃N (τN−1 − t) + dN , (31)

θN (t) = c̃N−1(τN − t) + dN−1. (32)

The constant dN and dN−1 are equal which follows from (27). Thus, we have

θN−1(t)− θN (t) = (c̃N−1 − c̃N )(τN − t) ≥ 0, ∀t ∈ [τN−1, τN ].

Let i be the class that is served and j be the class that is idle. From (22) and the comple-

mentarity conditions (24),

θi(t) = θj(t) + βj(t).

Since βj(t) ≥ 0, the above equality is possible only if i = N − 1 and j = N . Thus, in the

interval [τN−1, τN ] only one class N − 1 is served.

The above arguments can be recursively applied to show that within P(t) the class with

the largest c̃ is the only one that receives non-zero service rate.

2) Optimal speed: Theorem III.1 shows that is optimal to allocate ui(t) = ρi for those

classes i such that yi(t) = 0, and to follow the cµ rule for the classes with non-zero fluid,

that is to serve the class k with the largest value of c̃i among the classes i such that yi(t) > 0.

However, Theorem III.1 does not provide the complete solution of problem (OPT-R) since it

does not tell the capacity allocated to class k = argmax{c̃j : j ∈ P(t)}. Observe that for

that class k it hold that βk(t) = 0, and hence from (25) we have

uk(t) =

(

θk(t)

κγ

)
1

γ−1

, (33)

so that, according to Theorem III.1, we can write the optimal rate allocation as follows
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ui(t) =















(

θk(t)
κγ

)
1

γ−1

if i = k

0 if i ∈ P(t) \ {k}

ρi if i 6∈ P(t)

(34)

In order to determine an optimal control law (u(t), T ) we therefore need to solve for the

state trajectory y(t), the vector of adjoint variables θ(t) and the final time T . We observe that

(20)-(21) provides 2N differential equations, so that the vectors y(t) and θ(t) are known at

each time instant t up to a constant. Including the final time T , there are thus 2N+1 constants

to be determined. Observe that if we can determine one of the constants, the values of the

remaining constants can be inferred from the 2N boundary conditions yi(0) and yi(T ) = 0,

i = 1, . . . , N . The value of θN (T ) can be obtained from the following transversal condition

[12]:

L(y(T ),u(T ),θ(T ),η(T ),β(T )) = 0 (35)

Since yi(T ) = 0 for all i and ui(T ) = ρi for all i 6= N , it yields

κ





∑

i 6=N

ρi + uN (T )





γ

+ θN (T ) [ρN − uN (T )] = 0. (36)

Based on (36), Proposition III.2 gives uN (T ) as the unique root of a non-linear equation.

Proposition III.2. For all x ≥ 0, define g(x) as follows:

g(x) = κ





∑

i 6=N

ρi + x





γ

+ κγxγ−1 [ρN − x] . (37)

Then uN (T ) is the unique root of g(x) = 0 in [0,∞). Moreover, uN (T ) >
∑

i ρi/(γ − 1).

Proof: According to (33), equation (36) can be written in terms of uN (T ) only as

g (uN (T )) = 0. Obviously, we have uN (T ) > 0. It remains to show that uN (T ) is the only

solution of the equation g(x) = 0 in [0,∞). The proof relies on the following lemma.

Lemma III.1. Let F be the set of continuous function f such that f(0) > 0, limx→∞ f(x) =
−∞ and such that the equation f(x) = 0 has a unique root in [0,∞). Then F (y) =
a+

∫ y

0
f(x) dx belongs to F for any a > 0 and any f ∈ F . Furthermore, if x∗ and y∗ are

the unique roots in [0,∞) of f(x) = 0 and F (y) = 0, respectively, it holds that y∗ > x∗.

Proof: As an antiderivative of f , F is continous and it also satisfies F (0) = a > 0.

Moreover, since f(x) −→
x→∞

−∞, there exists x̂ such that f(x) < −1 for all x > x̂. This

implies that
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F (y) <

(

a+ x̂+

∫ x̂

0

f(x) dx

)

− y, ∀y > x̂,

and hence that F (y) −→
y→∞

−∞. Finally, it follows from F ′(y) = f(y) that F is increasing in

[0, x∗) and strictly decreasing in [x∗,∞), implying that the equation F (y) = 0 has a unique

root y∗. Since F (x∗) ≥ a, we necessarily have y∗ > x∗.

Assuming that γ is integer, consider the (γ − 1)th derivative of g(x):

g(γ−1)(x) = κγ!

[

N
∑

i=1

ρi + (1− γ)x

]

.

We have g(γ−1)(0) = κγ!
∑N

i=1 ρi > 0 and limx→∞ g(γ−1)(x) = −∞ since γ > 1.

Moreover, the unique root of g(γ−1)(x) = 0 in [0,∞) is x∗ =
∑

i ρi/(γ−1). Since g(γ−1)(x)
is continuous over [0,∞), we can assert from Lemma III.1 that g(γ−2)(x) satisfies the same

properties. By repeated applications of Lemma III.1, we conclude that uN (T ) is the only

solution of the equation g(x) = 0 in [0,∞), and that uN (T ) >
∑

i ρi/(γ − 1).
Once uN (T ) computed as described in Proposition III.2, we immediately obtain from (33)

that θN (T ) = κγuN (T )γ−1. Assuming that the value of T is known, we are now in position

to recursively compute the remaining constants as described in Proposition III.3.

Proposition III.3. Assume that T is given and define for convenience τN+1 = T and α =
1/(γ − 1). For k = 0, . . . , N − 1, the service rate of class N − k in [τN−k, τN−k+1] is

uN−k(t) =

(

c̃N−k(τN−k+1 − t) + θN−k(τN−k+1)

κγ

)
1

γ−1

, (38)

where τN−k is given by

τN−k = τN−k+1 −
θN−k(τN−k+1)

c̃N−k

(VN−k − 1) , (39)

with

VN−k =

[

1 +
(α+ 1)(κγ)αc̃N−k

(θN−k(τN−k+1))α+1
(yN−k(0) + ρN−k τN−k+1)

]
1

α+1

.

Moreover, for k = 1, . . . , N − 1, it hold that

θN−k(τN−k+1) = θN−k+1(τN−k+2) + c̃N−k+1(τN−k+2 − τN−k+1). (40)

Proof: From (30) and (33), we know that
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uN (t) =

(

c̃N (τN+1 − t) + θN (τN+1)

κγ

)
1

γ−1

,

for t in [τN−k, τN−k+1]. In order to determine τN , we can use the terminal condition

yN (τN+1) = 0 and (21) to obtain

yN (τN+1) = 0 = yN (0) + ρN τN+1 −

∫ τN+1

τN

uN (t) dt,

and, after some elementary algebra, it is readily verified that τN is indeed given by (39) when

k = 0. Once τN is known, we are in position to compute θN−1(τN ). Indeed, we have from

(30) that θN (t) = c̃N (τN+1 − t) + θN (τN+1) for t in [τN−k, τN−k+1]. We also know from

(27) that θN (t) = θN−1(t) in this time interval. We thus deduce that

θN−1(τN ) = θN (τN+1) + c̃N (τN+1 − τN ),

as stated in (40). The above arguments can be recursively applied to show that τN−k and

θN−k(τN−k+1) are indeed given by (39) and (40), respectively, for all k = 1, . . . , N − 1.

Lemma III.2 shows that finally the value of T can be computed as the unique value such

that τ1 = 0.

Lemma III.2. There is a unique value of T such that τ1 = 0.

Proof: The proof relies on the fact that τ1 is strictly increasing in T , and for T = 0,

τ1 < 0, while τ1 → ∞ for T → ∞.

C. Numerical results

We now describe the numerical results we have obtained in different scenarios. For each

scenario, we compare the fluid policy with the optimal stochastic policy obtained by solving

a stochastic shortest path problem with value iteration.

First Scenario

As a first scenario, we consider a single link shared by two classes. We assume that κ=0.5 and

γ=3. The parameters of the traffic classes are as follows: ρ1=0.3, ρ2=0.5, µ1c1=12 and µ2c2=1.

Table III shows the relative gap between the fluid-optimal cost and the stochastic-optimal cost

according to the initial state. We observe that when the initial state gets sufficiently large, the

relative gap becomes negligible.

Figure 5 shows the fluid trajectories of class 1 and 2, as well as the average state trajectories

obtained for each class under the optimal stochastic policy when the initial state is x(0) =
(10, 10). In Figure 6, we plot the optimal fluid rates allocated to each class. These rates are

compared to those that would be obtained under the optimal stochastic policy, taking the

quantity of fluid of each class as the state of the system1

1Since the optimal stochastic policy is defined only at integer points, we use bilinear interpolation to compute its
value from the four neighboring integer points.
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Fig. 5. Fluid trajectories vs. average state trajectories obtained in Scenario 1 under the optimal stochastic policy
for x1(0)=10 and x2(0)=10.
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Fig. 6. Optimal fluid speed vs. optimal stochastic speed in Scenario 1 for x1(0)=10 and x2(0)=10.
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x2

x1 10 20 30 40

10 8.5 7.0 5.5 3.5
20 4.7 4.3 3.5 1.9
30 3.1 2.9 2.2 0.6
40 2.3 2.1 1.3 0.2

TABLE III
RELATIVE GAP IN % BETWEEN THE FLUID-OPTIMAL COST AND THE STOCHASTIC-OPTIMAL COST ACCORDING

TO THE INITIAL STATE.

We also compare sample trajectories obtained under the optimal stochastic policy and under

the optimal fluid control applied using the discrete-review method in Figure 7 and 8. The

initial state is x(0) = (10, 10) and the instants at which the deterministic control policy is

reviewed are indicated. It is clear that the sample trajectory for class 1 and 2 obtained under

the fluid policy closely match those obtained under the optimal stochastic policy. It is also

worth noticing that both policies follow the c µ rule, that is they both give priority to class-1
which has a higher value of ciµi (c1 µ1 = 12 > 1 = c2 µ2).
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Fig. 7. Sample trajectories obtained under the optimal stochastic policy and under the fluid policy for x1(0)=10
and x2(0)=10.

Second Scenario

As a second scenario, we again consider the case of two classes, but this time with γ=1.5 (the
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Fig. 8. Sample trajectories obtained under the optimal stochastic policy and under the fluid policy for x1(0)=10
and x2(0)=10.

value of κ is still 0.5). The parameters of the traffic classes are as follows: ρ1=0.4, ρ2=0.5,

µ1c1=4 and µ2c2=1.

Figure 9 shows the fluid trajectories of class 1 and 2 when the initial state is x(0) =
(13, 15). The fluid trajectory of each traffic class closely matches its average state trajectory

under the optimal stochastic policy.

Figure 11, 12 show a sample path of class 1 and 2 under the optimal fluid control when

the initial state is x(0) = (13, 15). Again, we note that these trajectories closely match those

obtained under the optimal stochastic policy, and that both policies follow the cµ rule.

IV. CONCLUSION

In this paper, we modeled the energy-delay tradeoff in bandwidth-sharing networks with

speed-scaling. Our objective was to determine the policy minimizing the total cost to drain

the network. For the case of a linear network with two links, it was shown via numerical

experiments that the fluid model together with discrete-review provides a good approximation

to the stochastic control problem. For a single link shared by an arbitrary number of classes,

using Pontryagin’s Maximum Principle we completely characterized the fluid optimal control

policy. In particular, we established that the optimal fluid policy behaves according to the

cµ rule. Future work include the extension of the results obtained here for a single link to a

linear network topology.
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Fig. 9. Fluid trajectories vs. average state trajectories obtained in Scenario 2 under the optimal stochastic policy
for x1(0)=13 and x2(0)=15.
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Fig. 10. Optimal fluid speed vs. optimal stochastic speed in Scenario 2 for x1(0)=13 and x2(0)=15.
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Fig. 11. Sample trajectories obtained in Scenario 2 under the optimal stochastic policy and under the fluid control
for x1(0)=13 and x2(0)=15.
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Fig. 12. Sample trajectories obtained under the optimal stochastic policy and under the fluid control for x1(0)=13
and x2(0)=15.
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