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Relativistic transfer equations: maximum principle and
convergence to the non-equilibrium regime

Thomas Leroy∗

Abstract
We consider the relativistic transfer equations for photons interacting via emission absorp-

tion and scattering with a moving fluid. We prove a minimum-maximum principle and we
study the non equilibrium regime: the relativistic correction terms in the scattering operator
lead to a frequency drift term modeling the Doppler effects. We prove that the solution of the
relativistic transfer equations converges toward the solution of this drift diffusion equation.

1 Introduction
We study some mathematical properties of a system describing the coupling between the relativistic
transfer equation for photons and an equation describing the temperature of a fluid moving at
the velocity ~u. This kind of models was historically derived by physicists ([MWM99, POM05])
and some mathematical properties as existence, uniqueness and a maximum principle have been
proved in the non relativistic case [GP86]. The system writes

1
c
∂tI + ~Ω.∇xI = Qt in [0, T f ]× R3

x × R+
ν × S2,

∂tT +∇.(T~u) + ΓT∇.~u = −c
∫
ν,Ω

Λ
γ
Qt in [0, T f ]× R3

x,
(1.1)

where I = I(t, x, ν, ~Ω) is the radiative intensity, T = T (t, x) the fluid temperature, ~u = ~u(x) the
fluid velocity and Qt = Qt(I, T, ν) describes the interaction between light and fluid, t ∈ [0, T f ] for
a given 0 < T f < +∞ is the time, x ∈ R3

x is the position of the photons, ν ∈ R+
ν is the frequency,

~Ω ∈ S2 is the direction and c is the speed of light. The relativistic coefficients Λ and γ are
Λ = 1− ~Ω.~u/c√

1− |~u|2/c2
,

γ = 1
1− |~u|2/c2 .

(1.2)

In this work we denote with a subscript 0 the quantities measured in the moving frame, while
the others are relative to the ones measured in the reference frame. With these notations, the
relation between the frequency ν of a photon measured in the reference frame and its frequency
ν0 measured in the moving frame is

ν0 = Λν. (1.3)

In the same way, the relation between the direction ~Ω of a photon in the reference frame and its
direction ~Ω0 in the moving frame is

~Ω0 = ν

ν0

(
~Ω− γ

c
~u

(
1−

~Ω.~u
c

γ

γ + 1

))
. (1.4)
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A fundamental property is the invariance by change of frame of the photons distribution f = aI/ν3,
where a is a physical constant. This leads to a relation between the radiative intensity I measured
in the reference frame and I0 measured in the moving frame

I(ν, ~Ω) = Λ−3I0(ν0, ~Ω0). (1.5)

As usual, the operator Qt consists of the sum of a scattering operator Qs and an emission ab-
sorption operator Qa. The scattering operator models the diffusion phenomena between light and
fluid. We assume that the scattering is coherent (no energy exchange) and isotropic (in the fluid
frame). Under these assumptions, Qs is defined as

Qs = σs(x)Λ
(∫

S2

Λ′

Λ3 I(ν′, ~Ω′)d~Ω′ − I
)
, (1.6)

where, for ease of notations, we defined Λ′ = γ(1−~Ω′.~u/c) and the measure d~Ω′ such as
∫
S2 d~Ω′ = 1.

The frequency ν′ quantifies the Doppler effects and is defined as ν′ = Λ
Λ′ ν. The coefficient σs is

the scattering cross section and is assumed to depends only on the position x. We define Qs,0 as
the scattering operator measured in the moving frame

Qs,0 = Λ2Qs = σs(x)
(∫

S2
0

I0d~Ω0 − I0
)
, (1.7)

where, again, the measure d~Ω0 is such that
∫
S2

0
d~Ω0 = 1. One recognizes in this expression the

classical non relativistic scattering operator. Although the scattering is isotropic in the moving
frame, i.e.

∫
S2

0
Qs,0d~Ω0 = 0, this is not true in the reference frame, due to the relativistic effects.

The operator Qa is the emission absorption operator. It is defined as

Qa = σa
(
Λν
)
Λ
(
B(Λν, T )

Λ3 − I
)
, (1.8)

where B(ν, T ) = ν3(eν/T − 1
)−1 is the (normalized) Planck function. The emission absorption

measured in the moving frame is

Qa,0 = Λ2Qa = σa(ν0)
(
B(ν0, T )− I0

)
. (1.9)

The coefficient σa is the emission absorption coefficient and is assumed to depend only on the
frequency ν. Once again, one recognizes in (1.9) the classical non relativistic emission absorption
operator. The derivation of system (1.1) from the coupling between the Euler equations and the
relativistic transfer equation is explained for example in [GLG05]: starting from the coupling of the
Euler system with the relativistic radiative equation [BD04] and assuming a given fluid density ρ
and a given velocity field ~u, write the equation of the internal energy by deducting to the equation
on the total energy the equation on the kinetic energy. An important property is that this system
is not conservative on the physical energy

∫
Idxdνd~Ω +

∫
Tdx. Actually, one has

d

dt

(∫
x,ν,Ω

I dxdνdΩ +
∫
x

T dx

)
+ Γ

∫
x

T∇.~u dx =
∫
x,ν,Ω

(~Ω.~u)Qt dxdνdΩ.

The first remaining term comes from the hydrodynamic pressure. The second one corresponds
to the variation of the kinetic energy of the fluid, which is not taken into account by assuming
a given velocity. Due to this non conservation of the energy, the maximum principle proved by
F. Golse and B. Perthame in [GP86] for the non relativistic transfer equation does not hold any
more, and this leads to mathematical issues.

In this paper we prove two main results. First (section 2), we prove a minimum-maximum
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principle for the system (1.1) by means of a suitable modification of the Golse and Perthame
approach. This result enables to write the system (1.1) as a Lipschitz perturbation of a linear
transport equation, from which existence and uniqueness of a solution is obtained. Our point of
view is to study the influence of a moving fluid on the radiative intensity, and thus the coefficients
σa, σs and ~u in the system (1.1) will be taken as smooth as necessary. Several theoretical re-
sults for more realistic emission absorption coefficient can be found in the non relativistic case in
[GP86, BGP87, BGPS88] (see also [YS14] in the context of radiation hydrodynamics). The second
main result (section 3) is the proof of convergence with respect to a small parameter ε formally
equal to |~u|/c, of the solution of system (1.1) toward the solution of a drift diffusion system in the
non-equilibrium regime. This regime is obtained by assuming that the scattering is dominant in
comparison with the emission absorption, and that the speed of light is large in comparison with
the speed of the fluid. After rescaling with a small parameter ε, it yields the following system

∂tI
ε + 1

ε
~Ω.∇xIε = 1

ε2Q
ε
s +Qεa in [0, T f ]× R3

x × R+
ν × S2,

∂tT
ε +∇.(T ε~u) + ΓT ε∇.~u = −

∫
ν,Ω

Λε

γε

(
1
ε2Q

ε
s +Qεa

)
dνdΩ in [0, T f ]× R3

x,
(1.10)

with obvious notations for Qεs and Qεa, and where γε =
√

1− ε2|~u|2
−1 and Λε = γε

(
1 − ε~Ω.~u

)
.

The drift diffusion system writes:
∂tρ−∇.

(
∇ρ

3σs(x)

)
+∇.

(
ρ~u
)

= ∇.~u3 ν∂νρ+ σa(ν)(B(ν, T )− ρ),

∂tT +∇.(T~u) + ΓT∇.~u = −
∫
ν

σa(ν)(B(ν, T )− ρ)dν,
(1.11)

where ρ = lim
ε→0

∫
S2 I

εdΩ is the first angular moment of the radiative intensity. This equation has
been formally derived by D. Mihalas and B. Weibel Mihalas in [MWM99]. The drift term ∇.~u

3 ν∂νρ
modeling the Doppler effects is also involved in an equation proposed by A. Winslow in [WIN95].
To our knowledge, the mathematical justification of the diffusion system (1.11) that is provided
by mean of a convergence result with respect to ε is original. To obtain this convergence result
some assumptions will be done on the regularity of the parameters. In particular the emission
absorption coefficient will be assumed to belong to L2(R+

ν ), which has no physical meaning, but
for technical reasons this assumption is necessary to obtain the convergence in L2.

In the paper we will use the following notations. The angular integral will be denoted < . >,
i.e. < f >=

∫
S2 fdΩ. The space variable x belongs to R3

x, the frequency variable ν to R+
ν , the

temperature T to R+
T and the time t to [0, T f ], for a given 0 < T f < +∞. We denote by ‖.‖Lp

x,ν,Ω

(respectively ‖.‖Lpt,x) the classical Lp norm on R3
x × R+

ν × S2 (respectively on [0, T f ]× R3
x), for a

given 1 ≤ p ≤ +∞. We define the function sgn+ as

sgn+(f) =
{

1 f > 0,
0 f ≤ 0,

(1.12)

and the positive part f+ of a function f as f+ = fsgn+(f). The measure in integrals will not be
written, i.e.

∫
x
. =

∫
R3
x
. dx,

∫
ν
. =

∫
Rν . dν,

∫
Ω . =

∫
S2 . dΩ, ...

The paper is organized as follows. In the next section we prove a minimum-maximum principle for
the relativistic transfer equation (1.1). The section 3 deals with the non-equilibrium regime and is
divided into several parts. In the first one we prove a priori estimates for the drift diffusion system
(1.11), such a minimum-maximum principle, some regularity results and we introduce the main
result, which is the theorem 3.4 of convergence of (1.10) to (1.11). The next parts deal with the
proof of convergence, based on a reconstruction procedure and an original comparison principle
and a weight in lemma 3.8. The paper ends with two appendices containing some technical results.
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2 A minimum-maximum principle for the relativistic trans-
fer equations

In this section we prove several results for the relativistic transfer equations (1.1). The main result
is the following minimum-maximum principle, from which the other results, that is the Lp stability
and the fact that it is a Lipschitz perturbation of a linear transport equation, follow easily using
classical technics. To prove this minimum-maximum principle we need some minimal assumptions

• (H1) Smoothness of the velocity field: ~u ∈ W 1,∞([0, T f ] × R3
x). Moreover, u∗ = ‖~u‖L∞t,x is

such that u∗ < c, where c is the speed of light.

• (H2) Smoothness of the scattering coefficient: σs ∈W 1,∞(R3
x) and σs > 0.

• (H3) Smoothness of the emission absorption coefficient: σa ∈ L∞(R+
ν ) and σa > 0.

• (H4) There exists two bounded and positive constants l∗ and L∗ which are the respectively
the infimum and the supremum of the temperature at the initial time: l∗ ≤ T (t = 0) ≤ L∗.
Besides the radiative intensity at the initial time satisfies B(ν0, l∗) ≤ I0(t = 0) ≤ B(ν0, L∗).

• (H5) The velocity field is continuous ~u ∈ C 1([0, T f ] × R3
x) and the emission absorption

coefficient σa is integrable, e.i. σa ∈ L1(R+
ν ).

The assumption (H5) will be used only to prove that the relativistic transfer system (1.1) is a
Lipschitz perturbation of a C 0 semi-group (lemma 2.2). In the forthcoming proofs, we will often
use the following bounds, which easily come from the previous assumption on the velocity field,
and where the constants Λ∗,Λ∗ ≥ 0 only depends on u∗:

0 < Λ∗ ≤ Λ(t, x, ~Ω) ≤ Λ∗, ∀(t, x, ~Ω) ∈ [0, T f ]× R3
x × S2. (2.1)

We introduce our main result:

Theorem 2.1 (Min-max principle). We assume that hypotheses (H1)-(H4) are satisfied. Then,
for all (t, x, ν) ∈ [0, T f ] × R3

x × R+
ν , one has the a priori estimates l(t) ≤ T (t) ≤ L(t) and

B(ν0, l(t)) ≤ I0(t) ≤ B(ν0, L(t)), where

l(t) = l∗ exp
{
− t
[(

Γ + 1
)
‖~u‖W 1,∞

t,x
+ 2

‖~u‖W 1,∞
t,x

Λ∗
√

1− (u∗/c)2

(
1 + 2

c

‖~u‖W 1,∞
t,x

1− (u∗/c)2

)]}
,

L(t) = L∗ exp
{
t

[(
Γ + 1

)
‖~u‖W 1,∞

t,x
+ 2

‖~u‖W 1,∞
t,x

Λ∗
√

1− (u∗/c)2

(
1 + 2

c

‖~u‖W 1,∞
t,x

1− (u∗/c)2

)]}
.

(2.2)

This result shows that although the system does not conserve the total energy, due to the
absence of kinetic energy balance, energy does not blow up in finite time, and one can give lower
and upper bounds on the radiative energy and on the fluid temperature.

Proof. Since the arguments are the same, we only show the proof for the maximum principle. This
result is a suitable modification of the maximum principle proved by F. Golse and B. Perthame
[GP86] in the non relativistic case. The method is based on varying bounds for which the point
is to get the equations that define these bounds. In order to simplify the notations, we denote
B0,L = B(ν0, L(t)). The system (1.1) can be simplified. Actually, using the invariance of the
measure νdνd~Ω and the isotropy of the scattering operator in the fluid frame, one has∫

ν,Ω

Λ
γ
Qt =

∫
ν,Ω

1
ΛγQt,0 =

∫
ν0,Ω0

1
γ
Qa,0, (2.3)
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and thus system (1.1) reduces to
1
c
∂tI + ~Ω.∇xI = Qt in [0, T f ]× R3

x × R+
ν × S2,

∂tT +∇.(T~u) + ΓT∇.~u = − c
γ

∫
ν0,Ω0

Qa,0 in [0, T f ]× R3
x.

(2.4)

Multiplying the first equation of (1.1) by cΛ
γ sgn

+(I0 − B0,L), integrating over R+
ν × S2 and re-

minding that I(ν, ~Ω) = Λ−3I0(ν0, ~Ω0), one can deduce∫
ν,Ω

sgn+(I0 −B0,L)
Λ2γ

(
∂tI0 + c~Ω.∇I0

)
+
∫
ν,Ω

sgn+(I0 −B0,L)I0
Λ
γ

(
∂tΛ−3 + c~Ω.∇Λ−3

)
=c
∫
ν,Ω

Λsgn+(I0 −B0,L)
γ

Qt.

Developing the derivatives of Λ−3 and using the invariance of the measure νdνd~Ω, one can get
after algebraic manipulations∫
ν,Ω

(
∂t

(I0 −B0,L)+

Λ2γ
+ c~Ω.∇ (I0 −B0,L)+

Λ2γ

)
+
∫
ν,Ω

sgn+(I0 −B0,L)
Λ2γ

(
∂tB0,L + c~Ω.∇B0,L

)
−
∫
ν,Ω

(I0 −B0,L)+
(
∂t

1
Λ2γ

+ c~Ω.∇ 1
Λ2γ

)
− 3

∫
ν,Ω

(I0 −B0,L)+

Λ3γ

(
∂tΛ + c~Ω.∇Λ

)
− 3

∫
ν,Ω

B0,L
sgn+(I0 −B0,L)

Λ3γ

(
∂tΛ + c~Ω.∇Λ

)
= c

γ

∫
ν0,Ω0

sgn+(I0 −B0,L)Qt,0.

Regrouping the terms of the second line together, it yields after rearrangements∫
ν,Ω

(
∂t

(I0 −B0,L)+

Λ2γ
+ c~Ω.∇ (I0 −B0,L)+

Λ2γ

)
−
∫
ν,Ω

(I0 −B0,L)+Λ−3
(
∂t

Λ
γ

+ c~Ω.∇Λ
γ

)
=
∫
ν,Ω

sgn+(I0 −B0,L)
Λ2γ

{
3B0,L

(
∂tΛ
Λ + c

~Ω.∇Λ
Λ

)
− ∂tB0,L − c~Ω.∇B0,L

}
+ c

γ

∫
ν0,Ω0

sgn+(I0 −B0,L)Qt,0.

We remind that B(ν0, L(t)) = ν3
0

eν0/L(t)−1 = (Λν)3

eΛν/L(t)−1 . It yields

∂tB(ν0, L(t)) = 3Λ2ν3∂tΛ
eν0/L(t) − 1

− νL∂tΛ− ν0∂tL

L2
eν0/L(t)

eν0/L(t) − 1
ν3

0
eν0/L(t) − 1

,

which can be written ∂tB(ν0, L(t)) = B(ν0, L(t))
(
3∂t(log Λ)− ν0

L(t)
∂t(log Λ)−∂t(logL(t))

1−e−ν0/L(t)

)
. The same

manipulations lead to ∇B(ν0, L(t)) = B(ν0, L(t))
(
3∇(log Λ) − ν0

L(t)
∇(log Λ)

1−e−ν0/L(t)

)
. The previous

equation thus becomes∫
ν,Ω

∂t
(I0 −B0,L)+

Λ2γ
+
∫
ν,Ω

c~Ω.∇ (I0 −B0,L)+

Λ2γ
= c

γ

∫
ν0,Ω0

sgn+(I0 −B0,L)Qt,0

+
∫
ν,Ω

sgn+(I0 −B0,L)
L(t)Λ2γ

B0,L
ν0

1− e−ν0/L(t)

(
∂t(log Λ) + c~Ω.∇(log Λ)− ∂t(logL(t))

)
+
∫
ν,Ω

(I0 −B0,L)+Λ−3
(
∂t

Λ
γ

+ c~Ω.∇Λ
γ

)
.

(2.5)
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We now turn to the study of the second equation of (1.1). We make the same manipulations than for the
equation for I: multiplying it by sgn+(T − L(t)) and integrating over R+

x yields

d

dt

∫
x

(T − L(t))+ +
∫
x

sgn+(T − L(t))
(
∇.(T~u) + ΓT∇.~u

)
= − c

γ

∫
x,ν0,Ω0

sgn+(T − L(t))Qa,0.

One has ∇.(T~u)+ΓT∇.~u = (T −L(t))∇.~u+~u.∇(T −L(t))+Γ(T −L(t))∇.~u+L(t)∇.~u+ΓL(t)∇.~u. Thus,
sgn+(T −L(t))

(
∇.(T~u) + ΓT∇.~u

)
= ∇.

(
(T −L(t))+ + Γ(T −L(t))+∇.~u+sgn+(T −L(t))(Γ + 1)L(t)∇.~u.

We thus have

d

dt

∫
x

(T − L(t))+ + Γ
∫
x

(T − L(t))+∇.~u+
∫
x

sgn+(T − L(t))
(
∂tL(t) + (Γ + 1)∇.~uL(t)

)
= − c

γ

∫
x,ν0,Ω0

sgn+(T − L(t))Qa,0.
(2.6)

Let us study the source terms involved in (2.5). By definition of the scattering operator (1.7), one has∫
ν0,Ω0

sgn+(I0 −B0,L)Qs,0 = σs(x)
∫
ν0,Ω0

sgn+(I0 −B0,L)
(∫

Ω′0

I0(~Ω′0)− I0
)
,

which we write∫
ν0,Ω0

sgn+(I0 −B0,L)Qs,0 = −σs(x)
∫
ν0

(〈
(I0 −B0,L)+〉

0
−
〈
I0 −B0,L

〉
0

〈
sgn+(I0 −B0,L)

〉
0

)
,

where the notation
〈
.
〉

0
means

∫
S2

0
. d~Ω0. Given a function X ∈ L1 and denoting X− its non positive part,

one has < X >=< X+ + X− >≤ < X+ >=< Xsgn+(X) >. Multiplying this identity by < sgn+(X) >
and using < sgn+(X) >≤ 1, one obtains < X >< sgn+(X) >≤ < X+ >, which yields the fact that∫
ν0,~Ω0

sgn+(I0−B0,L)Qs,0 ≤ 0. We now turn to the terms containing the emission absorption coefficients.
By definition of the emission absorption operator (1.9), one has∫

ν0,Ω0

(
sgn+(I0 −B0,L)− sgn+(T − L(t))

)
Qa,0

=
∫
ν0,Ω0

σa(ν0)
(
B0,T − I0

)(
sgn+(I0 −B0,L)− sgn+(T − L(t))

)
.

(2.7)

The proof of the fact that this term is non positive is done in [GP86, DO01]. Actually, equation (2.7) can
be written∫

ν,Ω

(
sgn+(I0 −B0,L)− sgn+(T − L(t))

)
Qa,0

= −
∫
ν0,Ω0

σa(ν0)
(

(I0 −B0,L)+ − (I0 −B0,L)
)
sgn+(T − L(t))

−
∫
ν0,Ω0

σa(ν0)
(

(T − L(t))+ − (T − L(t))
)
sgn+(I0 −B0,L),

and thus this term is negative since the function T 7→ B(ν, T ) is non decreasing. Integrating equations
(2.6) on R3 and adding equation (2.6), one gets, using all these results

d

dt

∫
x

(∫
ν,Ω

(I0 −B0,L)+

Λ2γ
+ (T − L(t))+

)
≤ −sgn+(T − L(t))

(
∂tL(t) + (Γ + 1)∇.~uL(t)

)
+
∫
ν,Ω

sgn+(I0 −B0,L)
L(t)Λ2γ

B0,L
ν0

1− e−ν0/L(t)

(
∂t(log Λ) + c~Ω.∇(log Λ)− ∂t(logL(t))

)
+ max

(∥∥∥∥∂tΛγ−1 + c~Ω.∇Λγ−1

Λ3

∥∥∥∥
L∞
x,~Ω

, Γ‖∇.~u‖L∞x

)∫
x

(∫
ν,Ω

(I0 −B0,L)+ + (T − L(t))+
)
.

(2.8)
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The key of the proof is that by definition of L(t), the right member of the first line and the second line of
this inequality are non positive. Let us check this. By definition of L(t) (2.2), one has

∂tL(t)
L(t) =

(
Γ + 1

)
‖~u‖

W
1,∞
t,x

+ 2
‖~u‖

W
1,∞
t,x

Λ∗
√

1− (u∗/c)2

(
1 + 2

c

‖~u‖
W

1,∞
t,x

1− (u∗/c)2

)
.

In particular, 
∂tL(t)/L(t) ≥ (Γ + 1)‖~u‖

W
1,∞
t,x

,

∂tL(t)/L(t) ≥
‖~u‖

W
1,∞
t,x

Λ∗
√

1− (u∗/c)2

(
1 + 2

c

‖~u‖
W

1,∞
t,x

1− (u∗/c)2

)
.

(2.9)

The first inequality in (2.9) yields the non positivity of the right member of the first line of (2.8). For the
second line of (2.8), the definition of Λ (1.2) yields

∂tΛ =
~Ω.∂t~u/c√
1− |~u|2/c2

+
(

1− ~Ω. ~u
c

)
~u.∂t~u/c

2√
1− |~u|2/c2

3 .

Simple computations using the assumption (H1) on the velocity field and the estimate (2.1) lead to

Λ−1∂tΛ ≤
‖~u‖

W
1,∞
t,x

/c

Λ∗
√

1− (u∗/c)2

(
1 + 2

‖~u‖
W

1,∞
t,x

/c

1− (u∗/c)2

)
.

The same manipulations for the space derivatives of Λ give us

∂t(log Λ) + c~Ω.∇(log Λ) ≤ 2
‖~u‖

W
1,∞
t,x

Λ∗
√

1− (u∗/c)2

(
1 + 2

c

‖~u‖
W

1,∞
t,x

1− (u∗/c)2

)
.

The second inequality of (2.9) thus gives the non positivity of the second line of (2.8). Equation (2.8)
thus reduces to

d

dt

∫
x

(∫
ν,Ω

(
I0 −B0,L

)+
Λ2γ

+
(
T − L

)+) ≤ C ∫
x

(∫
ν,Ω

(
I0 −B0,L

)+ +
(
T − L

)+)
,

where C = max
(∥∥∥∥ ∂tΛγ−1+c~Ω.∇Λγ−1

Λ3

∥∥∥∥
L∞
x,~Ω

, Γ‖∇.~u‖L∞x

)
. Integrating this inequality between 0 and t

and using the positivity of the coefficients Λ and γ (estimate (2.1) and assumption (H1)) yields

min
(
(Λ∗)−2inf

t,x
γ−1, 1

) ∫
x

(∫
ν,Ω

(I0 −B0,L)+(t) + (T − L)+(t)
)

≤
∫
x

(∫
ν,Ω

(I0 −B0,L)+(0)
Λ2γ

+ (T − L)+(0)
)

+
∫ t

0
C

∫
x

(∫
ν,Ω

(I0 −B0,L)+ + (T − L)+
)
.

The Gronwall lemma thus gives∫
x

(∫
ν,Ω

(
I0 −B0,L

)+(t) +
(
T − L

)+(t)
)
≤ C2

∫
x

(∫
ν,Ω

(I0 −B0,L)+(0)
Λ2γ

+ (T − L)+(0)
)
e
t
‖C‖L∞

t
C2 ,

where C2 = min
(
(Λ∗)−2inf

t,x
γ−1, 1

)−1. The assumption (H4) on the initial condition thus yields that the
left member is non positive, which is the result of the claim.

The proof of the minimum principle is similar. Writing the evolution equation satisfied by∫
x

( ∫
ν,Ω

(B0,l−I0)+

Λ2γ + (l − T )+), the claim relies on the following inequalities satisfied by l(t)
∂tl(t)/l(t) ≤ −(Γ + 1)‖~u‖W 1,∞

t,x
,

∂tl(t)/l(t) ≤ −
‖~u‖W 1,∞

t,x

Λ∗
√

1− (u∗/c)2

(
1 + 2

c

‖~u‖W 1,∞
t,x

1− (u∗/c)2

)
.
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To obtain existence of solutions of (1.1), one can use the semi-group theory for problem written
as Lipschitz perturbation of semi-group operators. In the following lemma the notion of strong
and classical solution is the one used by A. Pazy [PAZ83].

Lemma 2.2. Assume that hypotheses (H1)-(H5) are satisfied. Then system (1.1) has a unique
solution (I, T ) ∈ C 0([0, T f ];Lp(R3

x × R+
ν × S2)) × C 0([0, T f ];Lp(R3

x)). The solution is strong in
the case 1 < p < +∞ and classical in the case p = 1.

Proof. Let us rewrite the system (1.1) as an evolution system involving several operators, that is{
∂t(T, I) +Q(T, I) = Qlips(T ),
(T, I)(t = 0) = (T in, Iin)

(2.10)

where Q(T, I) = A(T, I)−Qlin(T, I),

A(T, I) =
(
~u.∇T ; c~Ω.∇I

)
,

Qlin(T, I) =
(
− (1 + Γ)T∇.~u+ c

γ

∫
ν,Ω

σa(ν0)
Λ I0 ; cQs − c

σa(ν0)
Λ2 I0

)
,

Qlips(T ) = c

(
−
∫
ν,Ω

σa(ν0)
γΛ2 B(ν0, T ) ; σa(ν0)

Λ2 B(ν0, T )
)
,

where Q is the generator of the semi-group and Qlips is the perturbation. The result of the claim
is a consequence of the two following lemmas. In lemma 2.3 we prove that Q is the infinitesimal
generator of a C 0 semigroup on Lp(R3

x)×Lp(R3
x×R+

ν ×S2) and in lemma 2.4 we prove that Qlips
is a Lipschitz operator from Lp(R3

x) × Lp(R3
x × R+

ν × S2) into itself. One then applies theorems
6.1.2 and 6.1.6 of [PAZ83] in the case 1 < p < +∞ and theorems 6.1.2 and 6.1.5 of [PAZ83] in
the case p = 1. The difference comes from the fact that Lp is a reflexive Banach space only in the
case 1 < p < +∞.

Lemma 2.3. Assume that hypotheses (H1)-(H5) are satisfied. Then, for all 1 ≤ p < +∞, the
operator Q = A − Qlin is the infinitesimal generator of a C 0 semigroup on Lp(R3

x) × Lp(R3
x ×

R+
ν × S2).

Proof. It is known (see [DL83]) that A is the infinitesimal generator of a C 0 semigroup on Lp(R3
x)×

Lp(R3
x × R+

ν × S2). We need to prove that Qlin is a linear continuous operator from Lp(R3
x) ×

Lp(R3
x × R+

ν × S2) into itself. Using the inequality ∀a, b ≥ 0, (a + b)p ≤ 2p−1(ap + bp), we just
need to estimate each components of Qlin in Lp. We start with the first component of Qlin. One
has ‖(1 + Γ)T∇.~u‖Lpx ≤ (1 + Γ)‖∇.~u‖L∞x ‖T‖Lpx . For the second term of the first component, the
relation I0 = Λ3I and the estimate (2.1) give∥∥∥∥ cγ

∫
ν,Ω

σa(ν0)
Λ I0

∥∥∥∥p
Lpx

≤ cp(Λ∗)2p‖γ−p‖L∞x

∫
x

(∫
ν,Ω

σa(ν0)I
)p
.

By assumption (H1) on the velocity field, one has γ−1 ≤ 1. Using the Hölder inequality, we get∥∥∥∥ cγ
∫
ν,Ω

σa(ν0)
Λ I0

∥∥∥∥
Lpx

≤ cΛ∗2‖σa‖
L

p
p−1
ν

‖I‖Lp
x,ν,Ω

, (2.11)

which is bounded thanks to assumption (H5) on the regularity of the emission absorption coeffi-
cient. The second component is a little more complicated. We remind that

Qs = σs(x)Λ
(∫

Ω′

Λ′

Λ3 I(ν′, ~Ω′)− I
)
.
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Thus, a Cauchy Schwarz inequality and the estimate (2.1) yield

‖Qs‖pLp
x,ν,Ω

≤ ‖σs‖pL∞x (Λ∗)p
((

Λ∗

Λ3
∗

)p ∫
x,ν,Ω

Ip(ν′, ~Ω′) + ‖I‖p
Lp
x,ν,Ω

)
.

Making the change of variable ν̄ = Λ
Λ′ ν in the integral, we find

‖Qs‖pLp
x,ν,Ω

≤ ‖σs‖pL∞x (Λ∗)p
((

Λ∗

Λ3
∗

)p+1
+ 1
)
‖I‖p

Lp
x,ν,Ω

,

which yields ‖Qs‖Lp
x,ν,Ω

≤ C‖I‖Lp
x,ν,Ω

. The second term of the second component is similar
to (2.11). We deduce that if we denote F = (T, I), there exists a constant C ≥ 0 such that
‖Qlin(F )‖Lpx×Lpx,ν,Ω ≤ C‖F‖Lpx×Lpx,ν,Ω . There just remains to apply theorem 3.1.1 of [PAZ83] to
conclude.

We study the operator Qlips. We have the

Lemma 2.4. Under hypotheses (H1)-(H4), there exists a constant C ≥ 0 such that for all T1,
T2 ∈

(
Lp(R3

x) ∩ L∞(R3
x)
)+, with T1 ≤ T2, the following estimate holds :

‖Qlips(T1)−Qlips(T2)‖Lpx×Lpx,ν,Ω ≤ C‖T1 − T2‖Lpx .

Proof. Studying the expression ofQlips(T1)−Qlips(T2), we see that we need to estimate ‖B(ν0, T1)−
B(ν0, T2)‖Lp

x,ν,Ω
. Making a Taylor expansion of the function T 7→ B(ν0, T ), one gets

|B(ν0, T2)−B(ν0, T1)|p =
∣∣∣∣ ∫ T2

T1

∂TB(ν0, s)ds
∣∣∣∣p ≤ |T1 − T2|p

∣∣∣∣ 1
|T2 − T1|

∫ T2

T1

∂TB(ν0, s)ds
∣∣∣∣p.

The Jensen inequality yields

|B(ν0, T2)−B(ν0, T1)|p ≤ |T1 − T2|p
1

|T2 − T1|

∫ T2

T1

|∂TB(ν0, s)|pds. (2.12)

By definition of the Planck function, one has ∂TB(ν0, s) = ν4
0e
ν0/s

s2(eν0/s−1)2 . Integrating (2.12) on R+
ν

and making the change of variable ν → ν0/s leads to∫
ν

|B(ν0, T2)−B(ν0, T1)|p ≤ |T1 − T2|p
1
Λ

1
|T2 − T1|

∫ T2

T1

s2p+1
∫
ν

ν4pepν

(eν − 1)2p dsdν.

Since there exists a constant C such that
∫
ν

ν4pepν

(eν−1)2p dsdν ≤ C, this expression reduces to

∫
ν

|B(ν0, T2)−B(ν0, T1)|p ≤ |T1 − T2|p
C

Λ(2p+ 2)
T 2p+2

2 − T 2p+2
1

|T2 − T1|
.

Using the formula an − bn = (a− b)
∑n−1
k=0 a

kbn−1−k, one finds a constant C such that

‖B(ν0, T2)−B(ν0, T1)‖Lp
x,ν,Ω

≤ C‖T2 − T1‖Lpx .

This is the same idea to prove the result for the first component of Qlips. It is an easy matter to
conclude.
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3 Non-equilibrium regime
In this section we study the so called non-equilibrium regime. This regime has already been studied
in the grey case with relativistic coefficients in [GLG05] and with non relativistic coefficients in
[DO01] (see also [BN14]). The idea is to assume that the speed of light c is very fast compared
to the velocity field ~u, i.e. |~u|/c << 1 and that the scattering coefficient is stiff compared to the
emission absorption coefficient, i.e. σs/σa >> 1. We thus introduce a coefficient ε, 0 < ε ≤ 1,
formally equal to the ratio of a characteristic speed of the fluid by the velocity of light (a rigorous
derivation of the equations can be found for example in [GLG05, BD04]). Rescaling the emission
absorption coefficient as σa = ε−1σ̂a and the scattering coefficient as σs = εσ̂s leads, after dropping
the hats for ease of notations, to the following system

∂tI
ε + 1

ε
~Ω.∇xIε = Qεs

ε2 +Qεa,

∂tT
ε +∇.(T ε~u) + ΓT ε∇.~u = −

∫
ν,Ω

Λε

γε
Qεa,

(3.1)

where γε =
(
1 − ε2|~u|2

)−1/2 and Λε = γε
(
1 − ε~Ω.~u

)
. We introduce (ρ, T̄ ) the solution of the

following drift diffusion system:
∂tρ−∇.

(
∇ρ

3σs(x)

)
+∇.

(
ρ~u
)

= ∇.~u3 ν∂νρ+ σa(ν)(B(ν, T̄ )− ρ),

∂tT̄ +∇.(T̄ ~u) + ΓT̄∇.~u = −
∫
ν

σa(ν)(B(ν, T̄ )− ρ).
(3.2)

This section is devoted to the proof of convergence of the solution (Iε, T ε) of the relativistic trans-
fer equations (3.1) to the solution of the drift diffusion system (3.2) as ε → 0. The proof will be
done in three steps, following C. Dogbe [DO01] or G. Allaire and F. Golse [AG12]. The idea is
in a first time to find formally the limit, as ε → 0, of the solution (Iε, T ε) using formal Hilbert
expansions. In a second time a function is reconstructed from the truncated Hilbert expansion,
solution of the system (3.1) with a remainder. Finally, we conclude by using a priori estimates on
the solution of the drift diffusion system (3.2) and a stability result for the system (3.1).

This section is organized as follows. In a first part the drift diffusion system will be derived
using formal Hilbert expansion of the radiative transfer equations. In a second part a rigorous
convergence result is proved. Some technical results are postponed to the appendix.

3.1 Formal asymptotic of the radiative transfer equations
In this part the drift diffusion system (3.2) will be obtained formally, using formal Hilbert expan-
sions of the radiative transfer equations (3.1). Indeed, we prove the following lemma.

Lemma 3.1. The formal limit of the solution of the transfer equations (3.1) as ε tends to 0 is
solution of the drift diffusion system (3.2).

Proof. The proof is divided in two steps. In a first one the scattering and emission absorption
operators will be expended in power of ε. In a second part the solution of the radiative transfer
equations (3.1) will also be expended, leading formally to the drift diffusion system (3.2).

3.1.1 First step: Study of the source terms

In order to simplify the next step, concerning the Hilbert expansion of the solution (Iε, T ε) of the
system (3.1), the scattering and the emission absorption operators are expended in power of ε.
Since it is of order ε−2, the study of the scattering operator will be more complicated, while the
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expansion of the emission absorption operator will be rather simple. We start with the scattering
operator. Given a function I : [0, T f ]× R3

x × R+
ν × S2 → R+, it is defined by

Qεs(I) = σs(x)Λε
(∫

S2

Λε′

(Λε)3 I(νε
′
, ~Ω′)d~Ω′ − I

)
,

where νε′ = (Λε/Λε′)ν. We expend it in power of ε: given N ∈ N, we write

Qεs(I) =
∑

0≤i≤N
εiQis(I) + εN+1Q̄εs,N (I).

Due to the Doppler shift, the radiative intensity I is computed at the frequency ν′, and a Taylor
expansion with integral remainder will be performed. In order to simplify the notations we remove
the dependence in ε in the coefficients Λε,Λε′ and νε

′ . Since il will be useful in the next part,
expansions at order 2,1 and 0 with respect to ε of the scattering operator are performed.

Expansion of Qεs at order 2

In this part the scattering operator is written as

Qεs(I) = Q0
s(I) + εQ1

s(I) + ε2Q2
s(I) + ε3Q̄εs,2(I),

with 

Q0
s(I) = σs(x)(< I > −I)

Q1
s(I) = σs(x)

(∫
S2

(
νλ5∂νI(ν, ~Ω′) + λ3I(ν, ~Ω′)

)
d~Ω′ + λ1σs(x)(< I > −I)

)

Q2
s(I) = σs(x)

∫
S2

(
ν(λ6 + λ3λ5)∂νI(ν, ~Ω′) + ν2

2 λ
2
5∂

2
νI(ν, ~Ω′) + λ4I(ν, ~Ω′)

)
d~Ω′

+ σs(x)λ1

∫
S2

(
νλ5∂νI(ν, ~Ω′) + λ3I(ν, ~Ω′)

)
d~Ω′ + σs(x)λ2(< I > −I),

and

Q̄εs,2(I) = σs(x)
∫
S2

(
RI,2 + λ3

(
νλ6∂νI(ν, ~Ω′) + ν2

2 λ
2
5∂

2
νI(ν, ~Ω′) + εRI,2

))
d~Ω′

+ σs(x)
∫
S2

(
λ4
I(ν′, ~Ω′)− I(ν, ~Ω′)

ε
+R Λ′

Λ3 ,2
I(ν, ~Ω′)

)
d~Ω′

+ σs(x)λ1

∫
S2

(
νλ6∂νI(ν, ~Ω′) + ν2

2 λ
2
5∂

2
νI(ν, ~Ω′) + εRI,2

)
d~Ω′

+ σs(x)λ1

∫
S2

(
λ3
I(ν′, ~Ω′)− I(ν, ~Ω′)

ε
+ (λ4 + εR Λ′

Λ3 ,2
)I(ν, ~Ω′)

)
d~Ω′

+ σs(x)λ2

∫
S2

I(ν′, ~Ω′)− I(ν, ~Ω′)
ε

d~Ω′

+ σs(x)λ2

∫
S2

( Λ′
Λ3 − 1
ε

)
I(ν′, ~Ω′)d~Ω′ + σs(x)RΛ,2

(∫
S2

Λ′

Λ3 I(ν′, ~Ω′)d~Ω′ − I(ν, ~Ω)
)
,

(3.3)
where all the coefficients involved in this system are given below. These coefficients come from two
different parts: a part of them come from the expansion of the relativistic coefficients and the others
come from the Taylor expansion of I(ν′) around the frequency ν. We start with the expansion

11



of the relativistic parameters involve in the expression of the scattering operator: using a Taylor
expansion with integral remainder, the coefficient Λ can be written as Λ = 1−ε~Ω.~u+ε2 |~u|2

2 +ε3RΛ,2,
which we write Λ = 1 + λ1ε+ λ2ε

2 + ε3RΛ,2, with λ1 = −~Ω.~u, λ2 = |~u|2
2 and

RΛ,2 = 1
ε3
√

1− ε2|~u|2

∫ 1

1−ε2|~u|2

1− ε2|~u|2 − s
4

1
s
√
s
ds+ |~u|2

2
√

1− ε2|~u|2

(
ε
|~u|2

2 − ~Ω.~u
)
.

In the same way, one has Λ′
Λ3 = 1 + ε(3~Ω− ~Ω′).~u+ ε2R Λ′

Λ3 ,2
, which we write Λ′

Λ3 = 1 + λ3ε+ λ4ε
2 +

ε3R Λ′
Λ3 ,2

, with λ3 = (3~Ω− ~Ω′).~u, λ4 = 3(~Ω, ~u)(2~Ω− ~Ω′, ~u)− |~u|2 and

R Λ′
Λ3 ,2

= 1− |~u|2

(1− ε~Ω.~u)3

(
3~Ω′.~u− 3ε(~Ω, ~u)2 + 2ε2(~Ω, ~u)3 − 3(~Ω, ~u)2(3~Ω.~u− 3ε(~Ω, ~u)2 + ε2(~Ω, ~u)3))

− |~u|2
((

3~Ω− ~Ω′, ~u
)

+ 3ε~Ω.~u
(
2~Ω− ~Ω′, ~u

))
.

Finally, we have Λ
Λ′ = 1 + ε(~Ω′ − ~Ω).~u + ε2~Ω′.~u(~Ω′ − ~Ω).~u + ε3R Λ

Λ′ ,2
, which we write Λ

Λ′ =
1 + λ5ε+ λ6ε

2 + ε3R Λ
Λ′ ,2

, with λ5 = (~Ω′ − ~Ω).~u, λ6 = ~Ω′.~u(~Ω′ − ~Ω).~u and

R Λ
Λ′ ,2

= (~Ω′, ~u)2(~Ω′ − ~Ω, ~u)
1− ε~Ω′.~u

.

We now expand the expression of I(ν′) around the frequency ν. Using ν′−ν = ( Λ
Λ′ −1)ν, a Taylor

expansion with integral remainder of I yields

I(ν′, ~Ω′) = I(ν, ~Ω′) + νλ5ε∂νI(ν, ~Ω′) + ε2
(
νλ6∂νI(ν, ~Ω′) + ν2

2 λ
2
5∂

2
νI(ν, ~Ω′)

)
+ ε3RI,2,

with

RI,2 = νR Λ
Λ′ ,2

∂νI(ν, ~Ω′) + ν2

2ε3

(
( Λ
Λ′ − 1)2 − (ελ5)2

)
∂2
νI(ν, ~Ω′) + 1

ε3

∫ ν′

ν

(ν′ − s)2

2 ∂3
νI(s, ~Ω′)ds,

and this ends the definition of all the coefficients involved in the expansion at order 2 of the
scattering operator.

Expansion of Qεs at order 1

In this part the same expansion of the scattering operator is performed, but we stop at order
1. The method is the same. We write the scattering operator as

Qεs(I) = Q0
s(I) + εQ1

s(I) + ε2Q̄s,1(I),
with 

Q0
s(I) = σs(x)(< I > −I)

Q1
s(I) = σs(x)

(∫
S2

(
νλ5∂νI(ν, ~Ω′) + λ3I(ν, ~Ω′)

)
d~Ω′ + σs(x)λ1(< I > −I)

)

Q̄εs,1(I) = σs(x, ν)
∫
S2

(
λ3λ5ν∂νI(ν, ~Ω′) +RI,1 +R Λ′

Λ3 ,1
I(ν)

)
d~Ω′

+ σs(x)λ1

∫
S2

(
I(ν′)− I(ν)

ε
+ (λ3 +R Λ′

Λ3 ,1
)I(ν′)

)
d~Ω′

+RΛ,1

(∫
S2

Λ′

Λ3 I(ν′, ~Ω′)d~Ω′ − I(ν, ~Ω)
)
.

(3.4)
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Obviously the terms Q0
s(I) and Q1

s(I) are the same than for the expansion at order 2. The
only difference with the previous expansions comes from the remainders of the expansions of the
coefficients. Again, we have, Λ = 1− ε~Ω.~u+ ε2RΛ,1, which we write Λ = 1 + λ1ε+ ε2RΛ,1, with

λ1 = −~Ω.~u,

RΛ,1 =
1−

√
1− ε2|~u|2

ε2
√

1− ε2|~u|2

(
1− ε~Ω.~u

)
,

We also have Λ′
Λ3 = 1 + ε(3~Ω− ~Ω′).~u+ ε2R Λ′

Λ3 ,1
, which we write Λ′

Λ3 = 1 + λ3ε+ ε2R Λ′
Λ3 ,1

, with


λ3 = (3~Ω− ~Ω′).~u,

R Λ′
Λ3 ,1

= (3~Ω− ~Ω′, ~u)
ε

1− (1− ε~Ω, ~u)3

(1− ε~Ω, ~u)3
−
(
(~Ω, ~u)2 − (~Ω, ~u)3)(1− |~u|2)

(1− ε~Ω, ~u)3
.

Finally, we have Λ
Λ′ = 1 + ε(~Ω′ − ~Ω).~u+ ε2R Λ

Λ′ ,1
, which we write Λ

Λ′ = 1 + λ5ε+ ε2R Λ
Λ′ ,1

, with
λ5 = (~Ω′ − ~Ω).~u,

R Λ
Λ′ ,1

= (~Ω′, ~u) (~Ω′ − ~Ω, ~u)
1− ε~Ω′.~u

.

We now make a Taylor expansion, with respect to ν, of I :

I(ν′, ~Ω′) = I(ν, ~Ω′) + νλ5ε∂νI(ν, ~Ω′) + ε2RI,1,

with RI,1 = νR Λ
Λ′ ,1

∂νI + 1
ε2

∫ ν′
ν

(ν′ − s)∂2
νI(s)ds.

Expansion of Qεs at order 0

In this part we make the same development of the scattering operator but we stop at order
1. The method is the same. We write the scattering operator as

Qεs(I) = Q0
s(I) + εQ̄s,0(I).

with

Q̄εs,0(I) = σs(x)
∫
S2

(
RI,0 +R Λ′

Λ3 ,0
I(ν′, ~Ω′)

)
d~Ω′ +RΛ,0

(∫
S2

Λ′

Λ3 I(ν′, ~Ω′)d~Ω′ − I(ν, ~Ω)
)
. (3.5)

Obviously the term Q0
s(I) is the same than for the expansion at order 2. Once again, the only

difference comes from the remainders. We have Λ = 1 + εRΛ,0, with RΛ,0 = 1−ε~Ω.~u−
√

1−ε2|~u|2

ε
√

1−ε2|~u|2
.

We also have Λ′
Λ3 = 1 + εR Λ′

Λ3 ,0
, with R Λ′

Λ3 ,0
= 1−ε2|~u|2

ε
1−ε~Ω.~u−(1−ε~Ω.~u)3

(1−ε~Ω.~u)3 . Finally, we have Λ
Λ′ =

1 + εR Λ
Λ′ ,0

, with R Λ
Λ′ ,0

= (~Ω′−~Ω,~u)
1−ε~Ω′.~u

. We make a Taylor expansion, with respect to ν, of I :

I(ν′, ~Ω′) = I(ν, ~Ω′) + εRI,0,

with RI,0 = 1
ε

∫ ν′
ν
∂νI(s)ds.

Expansion of the emission absorption operator

As for the scattering operator, a Hilbert expansion with exact residual term of the emission
absorption operator is performed. The study is much simpler than for the scattering operator
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since the scaling is less severe. We recall here the definition of the emission absorption operator:
given two function T : [0, T f ]× R3

x → R+ and I : [0, T f ]× R3
x × R+

ν × S2 → R+, it is defined by

Qεa(I, T ) = σa(νε0)
Λε2

(
B(νε0 , T )− (Λε)3I

)
. (3.6)

Dropping the ε in the coefficients Λε and νε0 for ease of notations, we write

Qεa(I, T ) = Q0
a(I, T ) + εQ̄εa(I, T ), (3.7)

with 
Q0
a(I, T ) = σa(ν)

(
B(ν, T )− I

)
,

Q̄εa(I, T ) = 1− Λ2

εΛ2 σa(ν0)
(
B(ν0, T )− I0

)
+ σa(ν0)− σa(ν)

ε

(
B(ν0, T )− I

)
+ σa(ν)B(ν0, T )−B(ν, T )

ε
+ σa(ν0)I − I0

ε
.

(3.8)

3.1.2 Second step: Formal Hilbert expansion of the transport equation

In this part we find the formal asymptotic limit of the relativistic transfer equation in the non-
equilibrium regime using a formal Hilbert expansion, that is{

Iε = I0 + εI1 + ε2I2 + O(ε3),
T ε = T 0 + O(ε).

(3.9)

The limit will only be formal, in the sense that the remainders in (3.9) are not explicitly bounded
in some norm. This will be performed in the next section. Take care to the fact that in the
notations, the subscript 0 refers to quantities computed in the moving frame, while the power 0
refers to the first order term in the expansion in power of ε.

The choice of the scaling is driven by the fact that the temperature T is only involved in O(1)
terms in (3.1), while I is involved in O(ε−2) terms. Since the scattering operator Qs is linear,
one has Qεs(Iε) = Qεs(I0) + εQεs(I1) + ε2Qεs(I2) + O(ε3). We use the expansion at order 2 of the
scattering operator for the zero-th order term I0, the expansion at order 1 for the first order term
I1 and the expansion at order 0 for the second order term I2. It yields

Qεs(I0) = Q0
s(I0) + εQ1

s(I0) + ε2Q2
s(I0) + ε3Q̄εs,2(I0),

Qεs(I1) = Q0
s(I1) + εQ1

s(I1) + ε2Q̄εs,1(I1),

Qεs(I2) = Q0
s(I2) + εQ̄εs,0(I2).

The previous expansion (3.7) of the emission absorption operator yields Qεa(Iε, T ε) = Q0
a(Iε, T ε)+

Q̄εa(Iε, T ε). Moreover, the expansions (3.9) of the unknowns Iε and T ε and a Taylor expansion of
the Planck function B(ν, T ε) formally leads to Q0

a(Iε, T ε) = Q0
a(I0, T 0) + O(ε). It yields, taking

into account all the remainders Q̄s,i, i = 0, 1, 2 and Q̄a as O(ε) terms,

∂t(I0 + εI1 + ε2I2) + 1
ε
~Ω.∇x(I0 + εI1 + ε2I2) = Q0

s(I0)
ε2 + Q1

s(I0) +Q0
s(I1)

ε

+Q2
s(I0) +Q1

s(I1) +Q0
s(I2) +Q0

a(I0, T 0) + O(ε),

∂tT
0 +∇.(T 0~u) + ΓT 0∇.~u = −

∫
ν,Ω

Q0
a(I0, T 0) + O(ε).
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We now study all the terms with the same power of ε. In the forthcoming computations, the
formula

∫
Ω(~Ω, ~u)2 = |~u|2

3 will be often used. First, in 1
ε2 , one has Q0

s(I0) = 0, that is σs(x)(I0 −∫
Ω I

0) = 0, and thus I0 is independent of the angular direction ~Ω. At the order 1
ε , one has

~Ω.∇xI0 = Q0
s(I1) +Q1

s(I0), which yields

~Ω.∇xI0 = σs(x)
(∫

Ω′
I1(~Ω′)− I1

)
+ σs(x)

(∫
Ω′
λ5ν∂νI

0 +
∫

Ω′
λ3I

0
)
.

Using the relations
∫

Ω′ λ5 = −~Ω.~u and
∫

Ω′ λ3 = 3~Ω.~u, one finds

σs(x)
(
I1 −

∫
Ω′
I1(~Ω′)

)
= −~Ω.∇xI0 − σs(x)~Ω.~uν∂νI0 + 3σs(x)~Ω.~uI0 (3.10)

This kind of equation is studied in [AG12]. Let us recall the main lines. We introduce K : φ 7→∫
Ω φ, which is an Hilbert Schmidt operator, and we study the auxiliary equation

(Id −K )bj(~Ω) = Ωj ,∫
Ω
bj = 0.

Since
∫

Ω Ωj =
( ∫

Ω
~Ω
)
j

= 0, the Fredholm theory gives the existence of a solution I1. In particular,
it can be shown, see [AG12], that there exists a unique solution bj(~Ω) ∈ Ker(Id − K )⊥. The
solutions of equation (3.10) are the functions of the form

I1 = − 1
σs(x)

~Ω.∇xI0 − ~Ω.~uν∂νI0 + 3~Ω.~uI0 + C1(t, x, ν), (3.11)

where C1(t, x, ν), constant in ~Ω, is an arbitrary solution of the homogeneous equation (K −Id)C1 =
0. Finally, at the order 0, one has

∂tI
0 + ~Ω.∇xI1 = Q0

s(I2) +Q1
s(I1) +Q2

s(I0) +Q0
a(I0, T 0),

∂tT
0 +∇.(T 0~u) + ΓT 0∇.~u = −

∫
ν

Q0
a(I0, T 0).

(3.12)

We have, using the definitions of the λi (part 3.1.1) and I1,

Q1
s(I1) =− ν

∫
Ω

(~Ω, ~u)(~Ω,∇∂νI0)− σs(x) |~u|
2

3
(
ν∂νI

0 + ν2∂2
νI

0)+ σs(x)|~u|2ν∂νI0

+
∫

Ω
(~Ω, ~u)(~Ω,∇I0) + σs(x) |~u|

2

3 ν∂νI
0 − σs(x)|~u|2I0 − (~Ω, ~u)(~Ω,∇I0)

− σs(x)(~Ω, ~u)2ν∂νI
0 + 3σs(~Ω, ~u)2I0 + σs(x)(~Ω, ~u)(3C1 − ν∂νC1).

In the same way, one has

Q2
s(I0) = −2(~Ω, ~u)2σs(x)ν∂νI0 + σs(x)ν

2

2 ∂
2
νI

0
(
|~u|2

3 + (~Ω, ~u)2
)

+ σs(x)I0
(

3(~Ω, ~u)2 − |~u|2
)
,
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and Q0
s(I2) = σs(x)

( ∫
Ω I

2 − I2). We thus have

∂tI
0 + ~Ω.∇xI1 = −ν

∫
Ω

(~Ω, ~u)(~Ω,∇∂νI0) + σs(x)ν∂νI0
(
|~u|2 − 3(~Ω, ~u)2

)
+ σs(x)ν2∂2

νI
0
(

(~Ω, ~u)2 − |~u|
2

3

)
+
∫

Ω
(~Ω, ~u)(~Ω,∇I0)− (~Ω, ~u)(~Ω,∇I0)

+ 2σs(x)I0
(

3(~Ω, ~u)2 − |~u|2
)

+Q0
a(I0, T 0) + σs(x)(~Ω, ~u)(3C1 − ν∂νC1)

+ σs(x)
(∫

Ω
I2 − I2

)
,

∂tT
0 +∇.(T 0~u) + ΓT 0∇.~u = −

∫
ν

Q0
a(I0, T 0).

(3.13)
The first equation can be rewritten σs(x)(K − Id)I2 = ∂tI

0 − g, with an obvious definition of
the function g. Using once again the Fredholm theory, this equation has a solution if and only
if the compatibility condition ∂tI

0 − g ∈ Ker(K − Id)⊥, i.e.
∫

Ω(∂tI0 − g) = ∂tI
0 −

∫
Ω g = 0 is

satisfied. This gives us ∂tI0 =
∫

Ω g and thus I2 satisfy σs(x)(K − Id)I2 =
∫

Ω g − g. Using the
same arguments than for the computation of I1, the solution of this equation is of the form

I2 =
(

(~Ω, ~u)2 − |~u|
2

3

)(
6I0 − 3ν∂νI0 + ν2∂2

νI
0
)

+ 1
σ2
s(x)

∑
i,j

(
~Ωi~Ωj −

∫
Ω
~Ωi~Ωj

)
∂xj∂xiI

0

+ 1
σs(x)

∑
i,j

(
~Ωi~Ωj −

∫
Ω
~Ωi~Ωj

)((
ν∂νI

0 − 3I0)∂xjui +
(
ν∂ν∂xjI

0 − 3∂xjI0)ui)

−
∑
i,j

(
~Ωi~Ωj −

∫
Ω
~Ωi~Ωj

)
ui∂xjI

0 + (~Ω, ~u)
(
3C1 − ν∂νC1

)
− 1
σs(x) (~Ω,∇C1) + C2(t, x, ν),

(3.14)
where, C2(t, x, ν) is an arbitrary solution of the homogeneous equation (K − Id)C2 = 0. Setting
ρ = I0 and T̄ = T 0, integrating the first equation of (3.13) on S2 and computing all the terms,
we find 

∂tρ−∇.
(
∇ρ

3σs(x)

)
+∇.

(
ρ~u
)

= ∇.~u3 ν∂νρ+ σa(ν)(B(ν, T̄ )− ρ) + O(ε),

∂tT̄ +∇.(T̄ ~u) + ΓT̄∇.~u = −
∫
ν

σa(ν)(B(ν, T̄ )− ρ) + O(ε).

Finally, dropping formally all the O(ε) terms, we find the following drift-diffusion equation
∂tρ−∇.

(
∇ρ

3σs(x)

)
+∇.

(
ρ~u
)

= ∇.~u3 ν∂νρ+ σa(ν)(B(ν, T̄ )− ρ),

∂tT̄ +∇.(T̄ ~u) + ΓT̄∇.~u = −
∫
ν

σa(ν)(B(ν, T̄ )− ρ),
(3.15)

which ends the proof of lemma 3.1.

3.2 A rigorous proof of convergence
This part is devoted to the proof of convergence of the solution (Iε, T ε) of the relativistic transfer
equations (3.1) to the solution of the drift diffusion system (3.2) as ε → 0. On the contrary to
the previous section, in which the limit was obtain formally (lemma 3.1), the remainders of the
source terms expansions (part 3.1.1) are shown to be bounded in L∞t (L2

x,ν) (lemmas 3.5 and 3.6).
The main result (theorem 3.4) deals with the proof of strong convergence in L2 of the difference
between the solution of the transfer equations (3.1) and the solution of the drift diffusion system
(3.2).
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In a first part are introduced several new assumptions, which are different from the assumptions
H done in the previous section, due to the fact that we need more regularity on the coefficients σa,
σs and ~u. Several a priori estimates are proved, such as a maximum principle for the drift diffusion
system (3.2) (lemma 3.2) and some regularity results for the solution of this system (lemma 3.19),
and we introduce our main result (theorem 3.4). The second part deals with the proof of this
result, and is divided in three parts, due to the technical aspects of this proof.

3.2.1 A priori estimates and main result

We assume more regularity on the parameters ~u, σs and σa than in the previous section. This is
summarized here, where the assumptions (H1)−(H4) are related to the regularity of the coefficients
σa, σs,~u and on the parameter ε, the assumption (H5) (respectively the assumption (H6)) is
related to the initial conditions (respectively to the boundary conditions) of the solution of the
drift diffusion system (3.2).

• (H1) The velocity field satisfies ~u ∈W 4,∞([0, T f ]×R3
x). Moreover, u∗ = ‖~u‖L∞ is such that

u∗ < c.

• (H2) The coefficients ε and u∗ are such that there exists ε∗ < 1 such that u∗ε ≤ ε∗. It yields
the positivity of 1− ε2|~u|2 involved in the expression of the Lorentz coefficient γε.

• (H3) Smoothness of the scattering coefficient: σs ∈W 3,∞(R3
x) and σs > 0.

• (H4) Smoothness of the emission absorption coefficient: σa ∈ W 3,∞(R+
ν ) ∩ L2(R+

ν ) and
σa > 0.

• (H5) The initial conditions (ρin, T̄ in) of the drift diffusion system (3.2) are such that
νk∂kν∂

m
t ∂

l
xjρ

in ∈ L∞
(
[0, T f ];L2(R3

x × R+
ν )
)
, k, l, j ∈ (0, 1, 2, 3),m ∈ (0, 1) and ∂kxj∂

m
t T̄

in ∈
L∞
(
([0, T f ];L2(R3

x)
)
, k, j ∈ (0, 1, 2, 3),m ∈ (0, 1). Moreover, there exists two bounded

and positive constants T̄∗ and T̄ ∗ such that ∀(x, ν) ∈ R3
x × R+

ν , T̄∗ ≤ T̄ in(x) ≤ T̄ ∗ and
0 < B(ν, T̄∗) ≤ ρin(x, ν) ≤ B(ν, T̄ ∗).

• (H6) The behavior at the infinity of the solution of the drift diffusion system (3.2) is such
that lim

|xj |→∞
∂kxj∂

m
t T̄ = 0 , k ∈ (0, 1, 2, 3), j ∈ (1, 2, 3) andm ∈ (0, 1) and lim

|xj |→∞
νk∂kν∂

m
t ∂

l
xρ =

lim
ν→0

νk∂kν∂
m
t ∂

l
xρ = lim

ν→∞
νk∂kν∂

m
t ∂

l
xρ = 0, k, l ∈ (0, 1, 2, 3), j ∈ (1, 2, 3) and m ∈ (0, 1), which

means that the solution of the drift diffusion system and its derivatives have a strongly
decaying behavior at |x| → ∞, ν → 0 and ν →∞.

The assumption H2 yields in particular the positivity of the Lorentz factor γε. Moreover, this
assumption together with the assumption H1 lead to an equivalent of the estimates (2.1) for the
relativistic coefficient Λε

0 < Λ∗ ≤ Λε(t, x, ~Ω) ≤ Λ∗, ∀(t, x, ~Ω) ∈ [0, T f ]× R3
x × S2, (3.16)

where the notation Λ∗ and Λ∗ have been kept for simplicity. The assumption H4 which stipulates
that the emission absorption coefficient satisfies σa ∈ L2(R+

ν ) is purely technical, in the sense that
it has no physical meaning, but is necessary to prove the convergence result in L2 norm, since this
result needs the derivatives of the solution of the drift diffusion system to belong to L2 (B.1,B.3).
The end of this section deals with a priori estimates and with our main result. First (theorem
(3.2)), a minimum maximum principle is proved for the solution of the drift diffusion system (3.2),
using the same tools than for the radiative transfer equations (theorem 2.1) together with a trick
to treat the diffusion term. Secondly (lemma 3.3), a regularity result is provided for the solution
of the drift diffusion system (3.2), whose proof is postponed to the appendix. Finally (theorem
3.4), the convergence result of the solution of the radiative transfer equations (3.1) to the solution
of the drift diffusion system (3.2) as ε→ 0 is introduced.
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Lemma 3.2 (Maximum Principle). Assume that hypotheses (H1),(H3),(H4) and (H5) are sat-
isfied. Then ∀(t, x, ν) ∈ [0, T f ]×R3

x ×R+
ν , the solution of the drift diffusion system (3.2) satisfies

the a priori estimates T̄∗(t) ≤ T̄ (t, x) ≤ T̄ ∗(t) and B(ν, T̄∗(t)) ≤ ρ(t, x, ν) ≤ B(ν, T̄ ∗(t)), with T̄∗(t) = T̄∗e
−t(Γ+ 4

3 )‖∇.~u‖L∞
t,x ,

T̄ ∗(t) = T̄ ∗e
t(Γ+ 4

3 )‖∇.~u‖L∞
t,x ,

(3.17)

where the constants T̄∗ and T̄ ∗ are defined in assumption (H5).

Proof. Since the arguments are similar, we only show the proof for the maximum principle. We
denote B∗ν = B(ν, T̄ ∗) for ease of notations. The proof is mainly the same than for the relativistic
transfer equations (1.1), except that we need to treat the second order derivative. To achieve this
we use a method of Carrillo et al [CRS08], which is to introduce a function sgn+

α , where 0 < α ≤ 1
is a small parameter, as a non decreasing regularization of the sgn+ function defined in (1.12). It
yields in particular, using an integration by parts,

∫
x
sgn+

α

(
ρ − B∗ν

)
∇.
( ∇ρ

3σs

)
= −

∫
x

(
sgn+

α

)′(
ρ −

B∗ν)|∇ρ|2/3σs, due to the fact that T̄ ∗ does not depend on the space variable x. Multiplying the
first equation of (3.2) by sgn+

α

(
ρ−B∗ν

)
and integrating on R3

x×R+
ν yields, with an integration by

parts, ∫
x,ν

sgn+
α

(
ρ−B∗ν

)
∂tρ+

∫
x,ν

(
sgn+

α

)′(
ρ−B∗ν

) |∇ρ|2
3σs(x) +

∫
x,ν

sgn+
α

(
ρ−B∗ν

)
∇.
(
ρ~u
)

=
∫
x,ν

sgn+
α

(
ρ−B∗ν

)(∇.~u
3 ν∂νρ+ σa(ν)(B(ν, T̄ )− ρ)

)
.

The positivity of the scattering coefficient σs (assumption (H3)) yields∫
x,ν

sgn+
α

(
ρ−B∗ν)

)
∂tρ+

∫
x,ν

sgn+
α

(
ρ−B∗ν

)
∇.
(
ρ~u
)

≤
∫
x,ν

sgn+
α

(
ρ−B∗ν)

)(∇.~u
3 ν∂νρ+ σa(ν)(B(ν, T̄ )− ρ)

)
.

We now pass to the limit as α→ 0 in this inequality, where only the sgn+
α function depends on α.

It yields ∫
x,ν

sgn+(ρ−B∗ν)∂tρ+
∫
x,ν

sgn+(ρ−B∗ν)∇.(ρ~u)
≤
∫
x,ν

sgn+(ρ−B∗ν)(∇.~u3 ν∂νρ+ σa(ν)(B(ν, T̄ )− ρ)
)
.

Like for the proof of the minimum-maximum principle for the transfer equations (theorem 2.1), we
write an inequality satisfied by

∫
x,ν

(
ρ−B∗ν

)+. One has
∫
x,ν

sgn+(ρ−B∗ν)∇.(ρ~u) =
∫
x,ν
∇.
(
(ρ−

B∗ν)+~u
)

+
∫
x,ν

sgn+(ρ − B∗ν
)
B∗ν∇.~u =

∫
x,ν

sgn+(ρ − B∗ν
)
B∗ν∇.~u. In the same way, one has∫

x,ν
sgn+(ρ−B∗ν)∂tρ = d

dt

∫
x,ν

(
ρ−B∗ν

)++
∫
x,ν

sgn+(ρ−B∗ν)∂tB∗ν and
∫
x,ν

sgn+(ρ−B∗ν)∇.~u3 ν∂νρ =∫
x,ν
∇.~u

3 ν∂ν
(
ρ−B∗ν

)+ +
∫
x,ν

sgn+(ρ−B∗ν)∇.~u3 ν∂νB
∗
ν . An integration by parts yields

∫
x,ν

sgn+(ρ−
B∗ν
)∇.~u

3 ν∂νρ = −
∫
x,ν
∇.~u

3
(
ρ−B∗ν

)+ +
∫
x,ν

sgn+(ρ−B∗ν)∇.~u3 ν∂νB
∗
ν . This gives us

d

dt

∫
x,ν

(
ρ−B∗ν

)+ ≤− ∫
x,ν

∇.~u
3
(
ρ−B∗ν

)+ +
∫
x,ν

σa(ν)(B(ν, T̄ )− ρ)sgn+(ρ−B∗ν)
−
∫
x,ν

sgn+(ρ−B∗ν)(∂tB∗ν +B∗ν∇.~u−
∇.~u

3 ν∂νB
∗
ν

)
.

We write the equation satisfied by
∫
R3
x

(
T − T ∗)

)+, where T is the solution of the drift diffusion
equation (3.2). One finds the same equation (see equation (2.6)) than for the relativistic transfer
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equations

d

dt

∫
x

(
T̄ − T̄ ∗

)+ + Γ
∫
x

(
T̄ − T̄ ∗

)+∇.~u+
∫
x

sgn+(T̄ − T̄ ∗)
(
∂tT̄

∗ + (Γ + 1)T̄ ∗∇.~u
)

= −
∫
x

sgn+(T̄ − T̄ ∗)σa(ν)(B(ν, T̄ )− ρ).

Once again, one has
∫
x

(
sgn+(ρ − B(ν, T̄ ∗)) − sgn+(T̄ − T̄ ∗)

)
σa(ν)(B(ν, T̄ ) − ρ) ≤ 0 which is

non negative thanks to the positivity of the emission absorption coefficient (assumption (H4)).
Introducing H(t) =

∫
x,ν

(
ρ−B(ν, T̄ ∗)

)+ +
∫
x

(
T̄ − T̄ ∗)

)+, one finds

H ′(t) ≤
(

Γ + 1
3

)
‖∇.~u‖L∞x H(t)−

∫
x

sgn+(T̄ − T̄ ∗)
(
∂tT̄

∗ + (Γ + 1)T̄ ∗∇.~u
)

−
∫
x,ν

sgn+(ρ−B∗ν)(∂tB∗ν +∇.~uB∗ν −
∇.~u

3 ν∂νB
∗
ν

)
.

The key of the proof is that by definition of T̄ ∗, one has
∫
x

sgn+(T̄ − T̄ ∗)
(
∂tT̄

∗ + (Γ + 1)T̄ ∗∇.~u
)
≥ 0,∫

x,ν

sgn+(ρ−B∗ν)(∂tB∗ν +∇.~uB∗ν −
∇.~u

3 ν∂νB
∗
ν

)
≥ 0,

(3.18)

Actually, the definition of T̄ ∗(t) (3.17) yields ∂tT̄ ∗(t)/T̄ ∗(t) = (Γ + 4
3 )‖∇.~u‖L∞t,x . It gives the first

line of (3.18). For the second line, the definition of the Planck function yields

∂tB
∗
ν +∇.~uB∗ν −

∇.~u
3 ν∂νB

∗
ν = ν

T̄ ∗
B∗ν

1− e−ν/T̄∗
(
∂tT̄

∗

T̄ ∗
+ ∇.~u3

)
,

which is non negative by definition of T̄ ∗ (3.17). It yields H ′(t) ≤
(
Γ + 1

3
)
‖∇.~u‖L∞x H(t). Since

H(0) = 0 (assumption (H5)), the Gronwall lemma gives the result.

We now turn to a regularity results for the solution of the drift diffusion system (3.2), which
will be needed for the proof of convergence of the next part. We have the

Lemma 3.3. Under assumptions (H1)-(H6), there exists a constant C such that the solution of
the drift diffusion system (3.2) satisfies

∑
0≤p≤1

∑
0≤q≤3

∑
1≤i,j,k≤3
0≤l,m,n≤3

∥∥∥∥νq∂qν∂lxi∂mxj∂nxk∂pt ρ∥∥∥∥
L∞t (L2

x,ν,Ω)
≤ C,

∑
0≤p≤1

∑
1≤i,j,k≤3
0≤l,m,n≤3

∥∥∥∥∂lxi∂mxj∂nxk∂pt T̄∥∥∥∥
L∞t (L2

x)
≤ C,

(3.19)

with the convention ∂0
X = Id, X=x,t, or ν.

Proof. The proof of this lemma is long and tedious, and thus we postpone it to the appendix.
It mainly uses the linearity of the equation on ρ and the maximum principle to treat the non
linearity of the equation on T̄ .

We now introduce our main result, which is the convergence of the solution of the relativistic
transfer equation to the solution of the drift diffusion system as ε→ 0.
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Theorem 3.4. Under assumption (H1)-(H6), there exists a constant C, which does not depend
on ε, such that the solution of the relativistic transfer system (3.1) and the solution of the drift
diffusion system (3.2) satisfy the following estimate

‖Iε(t)−ρ(t)‖L2
x,ν,Ω

+‖T ε(t)−T̄ (t)‖L2
x
≤ C

(
‖Iε(0)−ρ(0)‖L2

x,ν,Ω
+‖T ε(0)−T̄ (0)‖L2

x
+ε
)
, 0 ≤ t ≤ T f .

The end of the paper is devoted to the proof of this convergence result.

3.2.2 Proof of theorem 3.4

In this section the proof of the convergence result (theorem 3.4) is performed. Since it is rather
technical, it is divided in three steps. In a first one, the regularity needed on the solution of
the drift diffusion system (3.2) to control the remainders of the expansions of the source term
(part 3.1.1) is highlighted. In a second part, a function constructed from the truncated Hilbert
expansion performed in the part 3.1.2, is proved to be solution of the radiative transfer equations
(3.1) with a remainder, which is proved to be small with respect to ε. Finally, in a last part, the
difference between this solution and the solution of the radiative transfer equations (3.1) is shown
to tends to 0 with ε in L2. In particular a suitable weight is used to conclude the proof.

First step: control of the remainders of the expansions of the source term

In the last section, the scattering and emission absorption operators (see part 3.1.1) have been
expanded in power of ε, but no attention was given to the remainders Q̄εs,i, for i = 0, 1, 2 defined
respectively in section (3.3), (3.4) and (3.5) and to Q̄εa defined in (3.8). This is the purpose of this
part. The following results are important, in the sense that they highlight the regularity needed
on the solution of the drift diffusion system to control these remainders. The proof of these results
are postponed to the appendix.

Lemma 3.5. Assume that J is a given function. Under assumptions (H1)-(H4), there exists a
constant C ≥ 0 which does not depend on ε, such that the following inequality holds

‖Q̄εs,i(J)‖L∞t (L2
x,ν,Ω) ≤ C

i+1∑
k=0
‖νk∂kνJ‖L∞t (L2

x,ν,Ω), i = 0, 1, 2.

with the convention ∂0
ν = Id.

In the same way, the following lemma shows the regularity needed on given functions J and G to
control the remainder Q̄εa of the emission absorption operator.

Lemma 3.6. Assume that G and J are two given functions. Under assumptions (H1)-(H4),
there exists a constant C ≥ 0 which depends on the L∞([0, T f ] × R3

x) norm of G, but does not
depend on ε such that the following inequality holds

‖Q̄εa(J,G)‖L∞t (L2
x,ν,Ω) ≤ C

(
‖G‖L∞t (L2

x) + ‖J‖L∞t (L2
x,ν,Ω) + ‖νJ‖L∞t (L2

x,ν,Ω)

)
.

Second step: reconstruction of the solution

In this part is reconstructed a pair (Îε, T̂ ) constructed from the formal Hilbert expansion, so-
lution to (3.1) with a remainder, which is shown to be small with respect to ε in some norm.
These functions are defined by {

Îε = ρ+ ερ1 + ε2ρ2,

T̂ = T̄ ,
(3.20)
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where ρ, ρ1, ρ2 and T̄ are constructed as follow: (ρ, T̄ ) is the solution of the drift-diffusion equation
(3.15),

ρ1 = 1
σs(x)

~Ω.∇xρ− ~Ω.~uν∂νρ+ 3~Ω.~uρ, (3.21)

and

ρ2 =
(

(~Ω, ~u)2 − |~u|
2

3

)(
6ρ− 3ν∂νρ+ ν2∂2

νρ

)
+ 1
σ2
s(x)

∑
i,j

(~Ωi~Ωj− < ~Ωi~Ωj >)∂xj∂xiρ

+ 1
σs(x)

∑
i,j

(~Ωi~Ωj− < ~Ωi~Ωj >)
((
ν∂νρ− 3ρ

)
∂xj~ui +

(
ν∂ν∂xjρ− 3∂xjρ

)
~ui

)
−
∑
i,j

(~Ωi~Ωj− < ~Ωi~Ωj >)~ui∂xjρ.

(3.22)

Obviously ρ1 and ρ2 are related to the definition of I1 (3.11) and I2 (3.14). In this part is proved
the following lemma, which shows that (Îε, T̂ ) is solution of the radiative transfer equations (3.1)
with remainders Rε and Sε.

Lemma 3.7. Under assumptions (H1)-(H6), the pair (Îε, T̂ ) previously constructed is solution
of the following system

∂tÎ
ε + 1

ε
~Ω.∇xÎε = 1

ε2Q
ε
s(Îε) +Qεa(Îε, T̂ ) + εRε,

∂tT̂ +∇.(T̂ ~u) + ΓT̂∇.~u = −
∫
ν,Ω

Λε

γε
Qεa(Îε, T̂ ) + εSε,

(3.23)

where Rε and Sε are such that there exists a constant C which does not depend on ε such that
‖Rε‖L∞t (L2

x,ν,Ω) ≤ C and ‖Sε‖L∞t (L2
x) ≤ C.

Proof. Using the results of the previous section, it is easy to see that
Q0
s(ρ) = 0,

~Ω.∇ρ = Q0
s(ρ1) +Q1

s(ρ),

∂tρ+ ~Ω.∇ρ1 = Q0
s(ρ2) +Q1

s(ρ1) +Q2
s(ρ) +Q0

a(ρ, T̂ ).

We write Qεs(Îε) as

Qεs(Îε) = Q0
s(ρ)+ε

(
Q0
s(ρ1)+Q1

s(ρ)
)
+ε2(Q0

s(ρ2)+Q1
s(ρ1)+Q2

s(ρ)
)
+ε3(Q̄εs,2(ρ)+Q̄εs,1(ρ1)+Q̄εs,0(ρ2)

)
Using algebraic arguments, we obtain the system (3.23), where

Rε = ∂tρ1 + ε∂tρ2 + ~Ω.∇ρ2 −
(
Q̄εs,2(ρ) + Q̄εs,1(ρ1) + Q̄εs,0(ρ2)

)
+ Q0

a(ρ, T̂ )−Qεa(Îε, T̂ )
ε

, (3.24)

and Sε = 1
ε

∫
ν,Ω
(Λ
γQ

ε
a(Îε, T̂ )−Q0

a(ρ, T̂ )
)
. We now study the remainders Rε and Sε. First, using

the lemma 3.5, one has∥∥∥∥Q̄εs,2(ρ) + Q̄εs,1(ρ1) + Q̄εs,0(ρ2)
∥∥∥∥
L∞t (L2

x,ν,Ω)
≤ C

( 3∑
k=0
‖νk∂kνρ‖L∞t (L2

x,ν,Ω) +
2∑
k=0
‖νk∂kνρ1‖L∞t (L2

x,ν,Ω)

+
1∑
k=0
‖νk∂kνρ2‖L∞t (L2

x,ν,Ω)

)
.
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The definitions of ρ1 (3.21) and ρ2 (3.22) yield, with another constant C,

‖Rε‖L∞t (L2
x,ν,Ω) ≤ C

( ∑
0≤p≤1

∑
0≤q≤3

∑
1≤i,j,k≤3
0≤l,m,n≤3

∥∥∥∥νq∂qν∂lxi∂mxj∂nxk∂pt ρ∥∥∥∥
L∞t (L2

x,ν,Ω)

+
∥∥∥∥Q0

a(ρ, T̂ )−Qεa(Îε, T̂ )
ε

∥∥∥∥
L∞t (L2

x,ν,Ω)

)
.

The first term is uniformly bounded thanks to the lemma 3.19. For the second one, one has

Q0
a(ρ, T̂ )−Qεa(Îε, T̂ )

ε
= −Q̄εa(Îε, T̂ ) + σa(ν)

(
ρ1 + ερ2

)
,

where Q̄εa is defined in (3.8). Since a maximum principle has been provided, the lemma 3.6 can be
applied to control the first term of the right member. Using the definition of ρ1 (3.21), ρ2 (3.22)
and the lemma 3.3 to control the other ones, one easily gets∥∥∥∥Q0

a(ρ, T̂ )−Qεa(Îε, T̂ )
ε

∥∥∥∥
L∞t (L2

x,ν,Ω)
≤ C,

where the constant C is uniform in ε. It yields, with another (uniform in ε) constant C,

‖Rε‖L∞t (L2
x,ν,Ω) ≤ C. (3.25)

We now look at the term Sε. One can rewrite it as

Sε = 1
ε

∫
ν,Ω

(
Λ
γ
− 1
)(

σa(ν0)
(
B(ν0, T̂ )− Îε

))
:= Sε1

− 1
ε

∫
ν,Ω

(
Λ
γ
− 1
)(

σa(ν)
(
B(ν, T̂ )− ρ

))
:= Sε2

+ 1
ε

∫
ν,Ω

(
σa(ν0)B(ν0, T̂ )− σa(ν)B(ν, T̂ )

)
:= Sε3

+ 1
ε

∫
ν,Ω

(
σa(ν)ρ− σa(ν0)Îε

)
:= Sε4

We study each term separately. By definition, Λγ−1−1 = ε(~Ω, ~u). The relation (a+b)2 ≤ 2(a2+b2)
yields

‖Sε1‖2L2
x
≤ 2‖~u‖2L∞x

{∫
x

(∫
ν

σa(ν0)B(ν0, T̂ )
)2

+
∫
x

(∫
ν,Ω

σa(ν0)Îε
)2}

.

A Cauchy Schwarz inequality in the second term gives

‖Sε1‖2L2
x
≤ 2‖~u‖2L∞x

{
‖σa‖2L∞x

∫
x

(∫
ν

B(ν0, T̂ )
)2

+ ‖σa‖2L2
ν
‖Îε‖2L2

x,ν,Ω

}
,

which is bounded thanks to the assumption H4 on the emission absorption coefficient. The defi-
nition of the Planck function, together with the change of variable ν 7→ ν0/T̂ , yield

∫
ν
B(ν0, T̂ ) =

T̂ 4 ∫
ν
ν3(eν − 1

)−1 ≤ CT̂ 4. It yields in particular
∫
x

( ∫
ν
B(ν0, T̂ )

)2 ≤ C‖T̂‖L2
x
. Finally, the max-

imum principle (lemma 3.2), the definition of Î in terms of ρ, ρ1 and ρ2 (3.20) and the regularity
of the solution of the drift diffusion system (lemma 3.19) yield ‖Sε1‖L2

x
≤ C. The same arguments

give ‖Sε2‖L2
x
≤ C. The control of the term Sε3 is a little more technical. In order to use the fact

that ν0 − ν is of order ε, we decompose it as

Sε3 = 1
ε

∫
ν,Ω

((
σa(ν0)− σa(ν)

)
B(ν0, T̂ ) +

(
B(ν0, T̂ )−B(ν, T̂ )

)
σa(ν)

)
= Sε3,1 + Sε3,2.

22



The relations σa(ν0)− σa(ν) =
∫ ν0
ν
σ′a(s)ds and ν − ν0 = (1− Λ)ν yield

‖Sε3,1‖2L2
x
≤ ‖σa‖2W 1,∞

sup
t,x
|1− Λ|2

ε2

∫
x

(∫
ν

νB(ν0, T̂ )
)2
.

The definition of the Planck function, together with the change of variable ν 7→ ν0/T̂ give us∫
ν
νB(ν0, T̂ ) = Λ−2T̂ 5 ∫

ν
ν4(eν − 1

)−1 ≤ CT̂ 5. Finally, the relation |1− Λ| ≤ Cε, the assumption
H4 on the regularity of the emission absorption coefficient and the maximum principle (lemma
3.2) lead to ‖Sε3,1‖2L2

x
≤ C. For the term Sε3,2 the relation B(ν0, T̂ ) − B(ν, T̂ ) =

∫ ν0
ν
∂νB(s, T̂ )ds

gives

‖Sε3,2‖2L2
x

= 1
ε2

∫
x

(∫
ν,Ω

∫ s=ν0

s=ν
σa(ν)∂νB(s, T̂ )

)2
.

The Fubini’s theorem yields
∫
ν

∫ s=Λν
s=ν σa(ν)∂νB(s, T̂ ) =

∫
s

∫ ν=s
ν=s/Λ σa(ν)∂νB(s, T̂ ). One thus finds,

using the estimate (3.16)

‖Sε3,2‖2L2
x
≤

sup
t,x
|1− Λ|2

ε2
‖σa‖L∞ν

Λ∗

∫
x

(∫
ν

ν∂νB(ν, T̂ )
)2
.

The definition of the Planck function gives ν∂νB(ν, T̂ ) = (3 − (1 − e−ν/T̂ )−1ν/T̂ )B(ν, T̂ ). Once
again, the change of variable ν 7→ ν0/T̂ give us

∫
ν
ν∂νB(ν, T̂ ) ≤ C, which yields, with another

constant C, ‖Sε3,2‖L2
x
≤ C. The same arguments give ‖Sε4‖L2

x
≤ C, which concludes the proof.

Third step: end of the proof

In this part we end the proof of the theorem 3.4. The following lemma shows that for all t ∈ [0, T f ],
the function ‖Iε(t) − Îε(t)‖L2

x,ν,Ω
+ ‖T ε(t) − T̂ (t)‖L2

x,
tends to 0 with ε. The important point of

the proof is the use of a well chosen weight to overcome the fact that the scattering operator is of
order ε−2.

Lemma 3.8. Under assumptions (H1)-(H6), there exist a constant C which does not depend on
ε such that (Iε − Îε, T ε − T̂ ) satisfy the following estimate

‖Iε(t)−Îε(t)‖L2
x,ν,Ω

+‖T ε(t)−T̂ (t)‖L2
x
≤ C

(
‖Iε(0)−Îε(0)‖L2

x,ν,Ω
+‖T ε(0)−T̂ (0)‖L2

x
+ε
)
, 0 ≤ t ≤ T f .

Proof. We denote Eε = Iε − Îε and F ε = T ε − T̂ . Using the lemma 3.7, the couple (Eε, F ε)
satisfies the following system : ∂tE

ε + 1
ε
~Ω.∇xEε = 1

ε2Q
ε
s(Eε)− εRε + Uε,

∂tF
ε +∇.(F ε~u) + ΓF ε∇.~u = −εSε + V ε,

(3.26)

with 
Uε = Qεa(Iε, T ε)−Qεa(Îε, T̂ ),

V ε = −
∫
ν,Ω

Λ
γ

(
Qεa(Iε, T ε)−Qεa(Îε, T̂ )

)
.

Let us first prove that the L2
x,ν norm of Uε and the L2

x norm of V ε are controlled by the L2
x,ν norm

of Eε and the L2
x norm of F ε. The definition of the emission absorption operator (3.6) yields

Uε = σa(ν0)
((
B(ν0, T

ε)−B(ν0, T̂ )
)
− Λ3(Iε − Îε))
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The triangular inequality together with the estimate (3.16) yield

‖Uε‖L2
x,ν,Ω

≤ max
(
1,Λ∗3

)
‖σa‖L∞x

(
‖B(ν, T ε)−B(ν, T̂ )‖L2

x,ν
+ ‖Iε − Îε‖L2

x,ν,Ω

)
.

The same arguments than in the proof of the lemma 2.4 give ‖B(ν, T ε)−B(ν, T̂ )‖L2
x,ν
≤ C‖T ε −

T̂‖L2
x
, which yields

‖Uε‖L2
x,ν,Ω

≤ C
(
‖Eε‖L2

x,ν,Ω
+ ‖F ε‖L2

x

)
. (3.27)

We turn to the control of V ε. By definition of the operator Qεa (1.8), one has

V ε =
∫
ν,Ω

Λ2

γ
σa(ν0)

(
B(ν0, T̂ )−B(ν0, T

ε)
Λ3 + Iε − Îε

)
.

We treat these terms separately. For the first one, the estimate 3.16, the assumption H4 on the
regularity of the emission absorption coefficient and the arguments used to control Uε (3.27) give∥∥∥∥ ∫

ν,Ω

Λ2

γ
σa(ν0)B(ν0, T̂ )−B(ν0, T

ε)
Λ3

∥∥∥∥
L2
x

≤ (Λ∗)−1C‖T̂ − T ε‖L2
x
,

For the second one, a Cauchy Schwarz inequality yield∥∥∥∥ ∫
ν,Ω

Λ2

γ
σa(ν0)

(
Iε − Îε

)∥∥∥∥
L2
x

≤ C‖σa‖L2
ν
‖Iε − Îε‖L2

x
.

It finally yields, with another constant C

‖V ε‖L2
x
≤ C

(
‖T ε − T̂‖L2

x
+ ‖Iε − Îε‖L2

x,ν,Ω

)
. (3.28)

To obtain the proposed result, we need a stability result for the modified transfer system (3.26).
The problematic term comes from the scattering operator, which is of order ε−2. Since the
scattering operator is isotropic in the moving frame, we multiply the first equation of (3.26) by
the weight Λγ−1Eε0 , with an obvious notation Eε0 = Λ3Eε and we integrate it on R3

x × R+
ν × S2.

This gives us

1
2
d

dt

∫
x,ν,Ω

γ−1Λ4(Eε)2 =
∫
x,ν,Ω

γ−1Λ4Eε
(
− εRε + Uε

)
+
∫
x

γ−1σs(x)
∫
ν,Ω

1
ΛE

ε
0
(〈
Eε0
〉

0 − E
ε
0
)

+ 1
2

∫
x,ν,Ω

(Eε)2
(
∂tγ
−1Λ4 + 1

ε
~Ω.∇γ−1Λ4

)
,

(3.29)
where we reminds that < Eε0 >=

∫
Ω0
Eε0 . Using the invariance of the measure νdνd~Ω = ν0dν0d~Ω0,

one has ∫
ν,Ω

1
ΛE

ε
0
(〈
Eε0
〉

0 − E
ε
0
)

=
∫
ν0

(〈
Eε0
〉2

0 −
〈
Eε20

〉
0

)
,

which is non positive thanks to a Cauchy-Schwarz inequality, and it shows the importance of the
chosen weight. Adding equation (3.29) with the second equation of (3.26) multiplied by F ε and
integrating on R3

x, we get

1
2
d

dt

(∫
x,ν,Ω

γ−1Λ4(Eε)2 +
∫
x

(F ε)2
)
≤ 1

2

∫
x,ν,Ω

(Eε)2
∣∣∣∣∂tγ−1Λ4 + 1

ε
~Ω.∇γ−1Λ4

∣∣∣∣+
∫
x

(F ε)2|∇.~u|
(

1
2 + Γ

)
+
∫
x,ν,Ω

γ−1Λ4|Eε|
∣∣Uε + εRε

∣∣+
∫
x

|F ε|
∣∣V ε + εSε

∣∣.
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We need to control the two last terms. Using the inequalities ab ≤ 1/2(a2 + b2) and (a + b)2 ≤
2(a2 + b2), one has∫

x,ν,Ω
γ−1Λ4|Eε|

∣∣Uε + εRε
∣∣ ≤ Λ∗4

(
1
2‖E

ε‖2L2
x,ν,Ω

+ ‖Uε‖2L2
x,ν,Ω

+ ε2‖Rε‖2L2
x,ν,Ω

)
.

Using the estimate (3.27), one finally finds∫
x,ν,Ω

γ−1Λ4|Eε|
∣∣Uε + εRε

∣∣ ≤ C(‖Eε‖2L2
x,ν,Ω

+ ‖F ε‖2L2
x,ν

+ ε2‖Rε‖2L2
x,ν,Ω

)
,

where the constant C is uniform in ε. One also has∫
x

|F ε|
∣∣V ε + εSε

∣∣ ≤ 1
2‖F

ε‖2L2
x

+ ‖V ε‖2L2
x

+ ε2‖Sε‖2L2
x
,

which gives us, together with estimate (3.28)∫
x

|F ε|
∣∣V ε + εSε

∣∣ ≤ C(‖F ε‖2L2
x

+ ‖Eε‖2L2
x,ν

+ ε2
)
.

This gives us

1
2
d

dt

(∫
x,ν,Ω

γ−1Λ4(Eε)2 +
∫
x

(F ε)2
)
≤ C

(∫
x,ν,Ω

(Eε)2 +
∫
x

(F ε)2 + ε2
)
,

where the constant C is uniform in ε. Integrating this inequality between 0 and t and using the
Gronwall lemma, one gets a new constant C such that

‖Eε(t)‖L2
x,ν,Ω

+ ‖F ε(t)‖L2
x
≤ C

(
‖Eε(0)‖L2

x,ν,Ω
+ ‖F ε(0)‖L2

x
+ ε

)
,

where the constant C depends on min
(
1 , inf

t,x,ν,Ω
γ−1Λ4)−1. Using the estimate (3.16), and the

assumption H2, which yields the positivity of the Lorentz factor γ, one sees that inf
t,x,ν,Ω

γ−1Λ4 > 0,
and this concludes the proof.

Acknowledgements The author warmly thank Bruno Després and Christophe Buet for valu-
able comments and discussions.

A Appendix: Scattering and emission absorption opera-
tor’s expansion

In this part we prove the lemma 3.5, which deals with the control of the remainders Q̄εs,i, i = 0, 1, 2
of the expansion of the scattering operator at order i defined respectively in section (3.5), (3.4)
and (3.3), and the lemma 3.6, which deals with the control of the remainder Q̄εa of the expansion
of the emission absorption operator defined in (3.8). These proofs need the following lemmas.
The first one (lemma A.1) provides integrability results for Planck type function, while the second
(lemma A.2) concerns the regularity of the coefficients λi (study of Qεs in section 3.1.1) and the
remainder of their expansions.

Lemma A.1. For any given function T ∈ L∞(R3
x) ∩ L2(R3

x) and for all α ∈ N, there exists a
constant C ≥ 0 such that the following estimate holds ‖ναB(ν, T )‖L2

x,ν
≤ C‖T‖α+ 5

2
L∞x
‖T‖L2

x
.
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Proof. We remind that B(ν, T ) = ν3(eν/T − 1
)−1. The change of variable y 7→ ν/T leads to

‖ναB(ν, T )‖2L2
x,ν

=
∫
x,ν

ν6+2α(
eν/T − 1

)2 dνdx =
∫
x

T 7+2α
∫
y

y6+2α(
ey − 1

)2 dydx.
If we denote f(y) = y6+2α(ey−1

)−2, one has f(0) = 0 and f has an exponential decay as y → +∞.
Thus, there exists a bounded constant C such that ‖f‖L1

ν
= C. It yields the existence of a constant

C such that ‖ναB(ν, T )‖L2
x,ν
≤ C‖T‖α+ 5

2
L∞x
‖T‖L2

x
, which is the announced result.

We prove the following lemma, which shows that under assumptions on the coefficients ~u, σs, σa
and ε, the coefficients λi (study of Qεs in section 3.1.1) are uniformly bounded in L∞.

Lemma A.2. Under assumptions (H1)-(H4), there exists a constant C ≥ 0, which does not
depend on ε, such that the following estimates holds

∀i ∈ [1, 6], ‖λi‖L∞
t,x,Ω,Ω′

≤ C, ‖R Λ
Λ′ ,2
‖L∞

t,x,Ω,Ω′
≤ C, ‖R Λ′

Λ3 ,2
‖L∞

t,x,Ω,Ω′
≤ C , ‖RΛ,2‖L∞

t,x,Ω,Ω′
≤ C.

Proof. Using the expression of the λi, i ∈ [1, 6], the first point is obvious. One has R Λ
Λ′ ,2

=
(~Ω′,~u)2(~Ω′−~Ω,~u)

1−ε~Ω′.~u
, and thus R Λ

Λ′ ,2
∈ L∞t,x,Ω,Ω′ using assumptions H on ~u and ε. Furthermore, on has

R Λ′
Λ3 ,2

= 1− |~u|2

(1− ε~Ω.~u)3

(
3~Ω′.~u− 3ε(~Ω, ~u)2 + 2ε2(~Ω, ~u)3 − 3(~Ω, ~u)2(3~Ω.~u− 3ε(~Ω, ~u)2 + ε2(~Ω, ~u)3))

− |~u|2
((

3~Ω− ~Ω′, ~u
)

+ 3ε~Ω.~u
(
2~Ω− ~Ω′, ~u

))
And thus R Λ′

Λ3 ,2
∈ L∞t,x,Ω,Ω′ using assumptions H on ~u and ε. We remind that

RΛ,2 = 1
ε3
√

1− ε2|~u|2

∫ 1

1−ε2|~u|2

1− ε2|~u|2 − s
4

1
s
√
s
ds+ |~u|2

2
√

1− ε2|~u|2

(
ε
|~u|2

2 − ~Ω.~u
)

We have |RΛ,2| ≤ ε|~u|4
4(1−ε2|~u|2)2 + |~u|2

2
√

1−ε2|~u|2

(
ε |~u|

2

2 − ~Ω.~u
)
, and thus one can see that it is bounded

in L∞t,x,Ω,Ω′ uniformly with respect to ε.

We now prove the lemma 3.5. Since the arguments are similar, the proof is provided only for the
remainder Q̄s,2 of the expansion of the scattering operator at the order 2.

Proof of lemma 3.5. Studying the expression of Q̄εs,2(I) (3.3), one can see that the only com-
plicated terms come from RI,2 and I(ν′, ~Ω′)− I(ν, ~Ω′). For the first one, one has

RI,2 = νR Λ
Λ′ ,2

∂νI(ν, ~Ω′) + ν2

2ε3

(
( Λ
Λ′ − 1)2 − (ελ5)2

)
∂2
νI(ν, ~Ω′) + 1

ε3

∫ ν′

ν

(ν′ − s)2

2 ∂3
νI(s, ~Ω′)ds

First, one can check that ( Λ
Λ′−1)2−(ελ5)2 ≤ Cε3. We have to estimate

∫
Ω′
∫ ν′
ν

(ν′−s)2

2 ∂3
νIε(s, ~Ω′)ds

in L2
x,ν,Ω. Using a Hölder inequality, the definition ν′ = (Λ/Λ′)ν and the estimate Λ/Λ′− 1 ≤ Cε,∫

x,ν,Ω

∣∣∣∣ ∫
Ω′

∫ ν′

ν

(ν′ − s)2

2 ∂3
νI(s, ~Ω′)ds

∣∣∣∣2 ≤ ε5

4

∫
x,Ω,Ω′

∫
ν

∫ ν′

ν

ν5∣∣∂3
νI(s, ~Ω′)

∣∣2dsdν
Using Fubini’s theorem, we get∫

x,ν,Ω

∣∣∣∣ ∫
Ω′

∫ ν′

ν

(ν′ − s)2

2 ∂3
νI(s, ~Ω′)ds

∣∣∣∣2 ≤ ε5

4

∫
x,Ω,Ω′

∫
s

∫ s

(Λ′/Λ)s
ν5∣∣∂3

νI(s, ~Ω′)
∣∣2dνds
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This gives us ∫
x,ν,Ω

∣∣∣∣ ∫
Ω′

∫ ν′

ν

(ν′ − s)2

2 ∂3
νI(s, ~Ω′)ds

∣∣∣∣2 ≤ Cε6‖ν3∂3
νI‖2L2

x,ν,Ω

Thus, ∥∥∥∥∫
Ω′

∫ ν′

ν

(ν′ − s)2

2 ∂3
νI(s, ~Ω′)ds

∥∥∥∥
L∞t (L2

x,ν,Ω)
≤ Cε3‖ν3∂3

νI‖L∞t (L2
x,ν,Ω)

Using the same arguments, one can see that∥∥∥∥∫
Ω′

I(ν′, ~Ω′)− I(ν, ~Ω′)
ε

∥∥∥∥
L∞t (L2

x,ν,Ω)
≤ C‖ν∂νI‖L∞t (L2

x,ν,Ω)

Using these estimates, the assumption H3 on the scattering coefficient σs and the lemma A.2, one
easily finds the result

We now turn to the proof of lemma 3.6, which deals with the control of the remainder Q̄εa of the
expansion of the emission absorption operator.

Proof of the lemma 3.6. We recall here the remainder Q̄εa
Q̄εa(I, T ) = 1− Λ2

εΛ2 σa(ν0)
(
B(ν0, T )− I0

)
+ σa(ν0)− σa(ν)

ε

(
B(ν0, T )− I

)
+ σa(ν)B(ν0, T )−B(ν, T )

ε
+ σa(ν0)I − I0

ε
.

We start with the first term. One can see that |1−Λ2| ≤ Cε, where C is bounded in L∞([0, T f ]×
R3
x × S2) uniformly in ε. One thus has∥∥∥∥1− Λ2

εΛ2 σa(ν0)
(
B(ν0, T )− I0

)∥∥∥∥
L∞t (L2

x,ν,Ω)
≤ C

Λ∗
‖σa‖L∞ν

(
‖B(ν0, T )‖L∞t (L2

x,ν,Ω) + ‖I0‖L∞t (L2
x,ν,Ω)

)
.

Using the change of variable ν → Λν and the relation I0 = Λ3I, one finds a new constant C such
that ∥∥∥∥1− Λ2

εΛ2 σa(ν0)
(
B(ν0, T )− I0

)∥∥∥∥2

L∞t (L2
x,ν,Ω)

≤ C
(
‖B(ν, T )‖L∞t (L2

x,ν,Ω) + ‖I‖L∞t (L2
x,ν,Ω)

)
.

Finally, the lemma A.1 on the integrability of the Planck function (lemma A.1) yield, with another
constant C,∥∥∥∥1− Λ2

εΛ2 σa(ν0)
(
B(ν0, T )− I0

)∥∥∥∥
L∞t (L2

x,ν,Ω)
≤ C

(
‖T‖L∞t (L2

x) + ‖I‖L∞t (L2
x,ν,Ω)

)
.

We now look at the second component of Q̄εa. One has, using the relation σa(ν0) − σa(ν) =∫ ν0
ν
σ′a(s)ds and a Cauchy-Schwarz inequality,∫

ν

(
(σa(ν0)− σa(ν))

(
B(ν0, T )− I

))2
≤ ‖∂νσa‖2L∞ν

∫
ν

(
B(ν0, T )− I

)2(ν − ν0)2.

By definition ν0−ν = ν(Λε−1) and thus there exists a constant C such that |ν0−ν| ≤ Cεν. This
estimate, together with a Cauchy-Schwarz inequality and the lemma A.1 give us, with another
constant C,∥∥∥∥σa(ν0)− σa(ν)

ε

(
B(ν0, T )− I

)∥∥∥∥
L∞t (L2

x,ν,Ω)
≤ C‖∂νσa‖L∞ν

(
‖T‖L∞t (L2

x) + ‖νI‖L∞t (L2
x,ν,Ω)

)
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We turn to the third term of Q̄εa. One has, using a Taylor expansion, a Cauchy-Schwarz inequality
and the Fubini’s theorem,∫

ν

(B(ν0, T )−B(ν, T ))2dν ≤
∫
ν

∫ ν0

ν

|ν0 − ν||∂νB(s, T )|2dsdν ≤ Cε
∫
s

|∂νB(s, T )|2
∫ s

s
Λ

νdνds

As previously, on has s(1− 1
Λ ) ≤ Cεs and thus∥∥∥∥σa(ν)B(ν0, T )−B(ν, T )
ε

∥∥∥∥
L∞t (L2

x,ν,Ω)
≤ C‖σa‖L∞ν ‖ν∂νB‖L∞t (L2

x,ν,Ω)

One has ν∂νB(ν, T ) = 3B(ν, T )− ν
T B(ν, T )

(
1−e−ν/T

)−1. Using the same kind of arguments than
for the lemma A.1, one finds ‖ν∂νB‖L∞t (L2

x,ν,Ω) ≤ C‖T‖L∞t (L2
x) . For the last term, the relations

I0 = Λ3I and 1− Λ3 = Cε yield∥∥∥∥σa(ν0)I − I0
ε

∥∥∥∥
L∞t (L2

x,ν,Ω)
≤ C‖I‖L∞t (L2

x,ν,Ω),

which ends the proof.

B Regularity of the solution of the drift diffusion system
In this part we prove the lemma 3.3, which deals with the regularity of the solution of the drift
diffusion system. The proof mainly uses the linearity of the equation on ρ and the maximum
principle to overcome the difficulties coming from the nonlinearity of the equation on T. The
proof consists to estimate each terms of the sum in (3.19). Since the proof of the estimates of
these terms is rather similar, we only show the development for some of them.

Lemma B.1. Under assumptions (H1)-(H6), there exists a constant C such that the solution
(ρ, T̄ ) of the drift diffusion system (3.15) satisfies the following estimate

‖ρ(t)‖L2
x,ν

+ ‖T̄ (t)‖L2
x
≤ C, 0 ≤ t ≤ T f .

Proof. Multiplying the first equation of (3.15) by ρ, integrating on R3
x × R+

ν , multiplying the
second by T , integrating on R3

x and adding, we get

1
2
d

dt

(∫
x,ν

ρ2 +
∫
x

T̄ 2
)

+
∫
x,ν

|∇ρ|2

6σs(x) +
∫
x,ν

ρ2

2 ∇.~u+
(
Γ + 1

2
) ∫

x

T̄ 2∇.~u

= −
∫
x,ν

∇.~u
3

ρ2

2 +
∫
x,ν

σa(ν)
(
B(ν, T̄ )− ρ

)
(ρ− T̄ ).

We study the last term. One has∫
x,ν

σa(ν)
(
B(ν, T̄ )−ρ

)
(ρ−T̄ ) =

∫
x,ν

σa(ν)B(ν, T̄ )ρ+
∫
x,ν

σa(ν)T̄ ρ−
∫
x,ν

σa(ν)B(ν, T̄ )T̄−
∫
x,ν

σa(ν)ρ2,

and we study successively each of those terms. For the first one, the Cauchy-Schwarz inequality
yields ∫

x,ν

σa(ν)B(ν, T̄ )ρ ≤ 1
2‖σa‖L

∞
ν

(
‖B(ν, T̄ )‖2L2

x,ν
+ ‖ρ‖2L2

x,ν

)
.

The relation ‖B(ν, T̄ )‖L2
x,ν
≤ C‖T̄‖L2

x
(lemma A.1) and the assumption H4 on the regularity of

the emission absorption coefficient finally give a constant C such that∫
x,ν

σa(ν)B(ν, T̄ )ρ ≤ C
(
‖T̄‖2L2

x
+ ‖ρ‖2L2

x,ν

)
.
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The second one is a litle more complicated. The inequality ab ≤ 1
2 (a2 + b2) yields∫

x,ν

σa(ν)T̄ ρ ≤ 1
2‖T̄‖

2
L2
x

+ 1
2

∫
x

(∫
ν

σa(ν)ρ
)2
,

and a Cauchy Schwarz inequality gives∫
x,ν

σa(ν)T̄ ρ ≤ 1
2‖T̄‖

2
L2
x

+ 1
2‖σa‖

2
L2
ν
‖ρ‖2L2

x,ν
. (B.1)

For the third one, one has
∫
x,ν

σa(ν)B(ν, T̄ )T̄ ≤ ‖σa‖L∞ν
∫
x
T̄
∫
ν
B(ν, T̄ ). The lemma A.1 and the

assumption H4 on the regularity of the emission absorption coefficient finally give a constant C
such that

∫
x,ν

σa(ν)B(ν, T̄ )T̄ ≤ C‖T̄‖2L2
x
. This gives us, using the assumption H3 on the positivity

of the scattering coefficient and the assumption H1 on the regularity of the velocity field ~u a
constant C such that

1
2
d

dt

(∫
x,ν

ρ2 +
∫
x

T̄ 2
)
≤ C

(∫
x,ν

ρ2 +
∫
x

T̄ 2
)
.

The Gronwall lemma and the assumption H5 on the initial conditions give the expected result.

The following lemma deals with the control of νρ in L2
x,ν .

Lemma B.2. Under assumptions (H1)-(H6), there exists a constant C such that the solution ρ
of the first equation of the drift diffusion system (3.15) satisfies the following estimate

‖νρ(t)‖L2
x,ν
≤ C, 0 ≤ t ≤ T f .

Proof. Multiplying the first equation of (3.15) by ν2ρ, integrating it on R3
x×R+

ν , we get, denoting
h = νρ,

1
2
d

dt

∫
x,ν

h2 +
∫
x,ν

|∇h|2

6σs(x) = −
∫
x,ν

h2∇.~u
2 +

∫
x,ν

σa
(
νhB(ν, T̄ )− h2)

We look at the last term. One has,∫
x,ν

σa
(
νhB(ν, T̄ )− h2) ≤ 1

2‖σa‖L
∞
ν

(
‖h‖2L2

x,ν
+ ‖νB(ν, T̄ )‖2L2

x,ν

)
.

Using the lemma A.1 and the maximum principle (lemma 3.2), one has ‖νB(ν, T̄ )‖2L2
x,ν
≤ C‖T̄‖2L2

x
.

This gives us, with another constant C depending on the L2
x norm of T̄ (lemma B.1), d

dt

∫
x,ν

h2 ≤
C(
∫
x,ν

h2 + 1). The Gronwall lemma and the assumption H5 on the initial conditions give the
result.

We now turn to the estimate of ν∂νρ. One has the

Lemma B.3. Under assumptions (H1)-(H6), there exists a constant C such that the solution ρ
of the first equation of the drift diffusion system (3.15) satisfies the following estimate

‖ν∂νρ(t)‖L2
x,ν
≤ C, 0 ≤ t ≤ T f .

Proof. We differentiate the equation of the drift diffusion system (3.15) with respect to ν, we
multiply it by ν2∂νρ and we integrate it on R3

x × R+
ν . Denoting h = ν∂νρ, we get

1
2
d

dt

∫
x,ν

h2+
∫
x,ν

|∇h|2

6σs(x) = −2
3

∫
x,ν

h2∇.~u+
∫
x,ν

∂νσa

(
νB(ν, T̄ )−νρ

)
h+
∫
x,ν

σa

(
ν∂νB(ν, T̄ )h−h2

)
.
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Using a Cauchy-Schwarz inequality, the assumptions H1 on the velocity field, H3 on the positivity
of the scattering coefficient, H4 on the regularity of the emission absorption coefficient and the
lemma B.2 on the control of νρ in L2

x,ν , one gets a constant C such that

1
2
d

dt
‖h(t)‖L2

x,ν
≤ C

(
‖h(t)‖2L2

x,ν
+ ‖νB(ν, T̄ )‖L2

x,ν
+ ‖ν∂νB(ν, T̄ )‖L2

x,ν

)
.

Once again, the lemma (A.1) yields ‖νB(ν, T̄ )‖2L2
x,ν
≤ C‖T̄‖2L2

x
. Furthermore, one has ν∂νB(ν, T̄ ) =

3B(ν, T̄ ) − ν
T̄

(
1 − e−ν/T̄

)−1
B(ν, T̄ ). The same arguments than for the proof of the lemma (A.1)

yields ‖ν∂νB(ν, T̄ )‖2L2
x,ν
≤ C‖T̄‖2L2

x
. The Gronwall lemma and the assumption H5 on the initial

conditions finally give the result.

Using exactly the same arguments, one can prove under assumptions (H1)-(H6), that ∀t ∈
[0, T f ], ν2∂2

νρ(t) and ν3∂3
νρ(t) belong to L2(R3

x × R+
ν ). We now turn to the control of the space

derivatives of the solution of the diffusion system (3.15). One has the

Lemma B.4. Under assumptions (H1)-(H6), there exists a constant C such that the solu-
tion (ρ, T̄ ) of the drift diffusion system (3.15) satisfies the following estimate: ‖∇ρ(t)‖L2

x,ν
+

‖∇T̄ (t)‖L2
x
≤ C, 0 ≤ t ≤ T f .

proof. Differentiating the first equation of (3.15) with respect to xj , multiplying the obtained
equation by ∂xjρ and integrating on R3

x × R+
ν , we get

1
2
d

dt

∫
x,ν

|∂xjρ|2 +
∫
x,ν

|∇∂xjρ|2

6σs(x) + 1
3

∫
x,ν

∇(∂xjρ).∇ρ∂xjσ−1
s +

∫
x,ν

∂xjρ∇.(ρ∂xj~u) =

− 2
3

∫
x,ν

|∂xjρ|2∇.~u+ 1
3

∫
x,ν

∂xjρν∂νρ∇.(∂xj~u) +
∫
x,ν

σa∂xjρ∂xj

((
B(ν, T̄ )− ρ

))
One has ∇(∂xjρ).∇ρ = 1

2∂xj |∇ρ|
2. Furthermore,

∂xjρ∇.(ρ∂xj~u) = 1
2∂xjρ

2∇.∂xj~u+ ∂xjρ
∑
i

∂xiρ∂xi~ui

This gives us

1
2
d

dt

∫
x,ν

|∂xjρ|2 +
∫
x,ν

|∇∂xjρ|2

6σs(x) + 1
6

∫
x,ν

∂xj |∇ρ|2∂xjσ−1
s + 1

2

∫
x,ν

∂xjρ
2∇.∂xj~u+

∑
i

∫
x,ν

∂xjρ∂xiρ∂xi~ui

= −2
3

∫
x,ν

|∂xjρ|2∇.~u+ 1
3

∫
x,ν

∂xjρν∂νρ∇.(∂xj~u) +
∫
x,ν

σaρ∂xj∂xj

((
B(ν, T̄ )− ρ

))
Making the sum of this equation for j = 1, 2, 3, using integration by parts, Cauchy Schwarz
inequalities, the assumptions H1, H3 and H4 on the regularity of the coefficients ~u, σs and σa and
the lemmas B.1 and B.2 on the integrability of ρ and νρ in L2

x,ν , we get a constant C such that

1
2
d

dt

∫
x,ν

|∇ρ|2 ≤ C
(

1 +
∫
x,ν

|∇ρ|2
)

+
∑
j

∫
x,ν

σa∂xjρ∂xj

((
B(ν, T̄ )− ρ

))
We need to control the last term. One has

σa∂xjρ∂xj

((
B(ν, T̄ )− ρ

))
= σa

(
∂xjρ∂xjB(ν, T̄ )− |∂xjρ|2

)
Using the definition of B(ν, T̄ ), one has ∂xjB(ν, T̄ ) = ∂xj T̄

ν
T 2 ν

4eν/T̄
(
eν/T̄ − 1

)−2. Thus, one has

∑
j

∫
x,ν

σa∂xjρ∂xjB(ν, T̄ ) ≤ 1
2‖σa‖L

∞
ν

(∫
x,ν

|∇ρ|2 +
∫
x

|∇T̄ |2

T̄ 4

∫
ν

ν8e2ν/T̄(
eν/T̄ − 1

)4).
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The change of variable y = ν
T̄

leads to∫
x

|∇T̄ |2

T̄ 4

∫
ν

ν8e2ν/T̄(
eν/T̄ − 1

)4 =
∫
x

|∇T̄ |2T̄ 5
∫
R+

y8e2y(
ey − 1

)4 .
The maximum principle (lemma 3.2) together with the same idea than in the proof of the lemma
A.1 shows that ∫

x

|∇T̄ |2T̄ 5
∫
y

y8e2y(
ey − 1

)4 ≤ C‖∇T̄‖2L2
x
.

Finally, one finds another constant C such that∑
j

∫
x,ν

∂xjρ∂xj

(
σa
(
B(ν, T̄ )− ρ

))
≤ C

(∫
x

|∇T̄ |2 +
∫
x,ν

|∇ρ|2
)
.

This gives us, with another constant C,

1
2
d

dt

∫
x,ν

|∇ρ|2 ≤ C
(

1 +
∫
x

|∇T̄ |2 +
∫
x,ν

|∇ρ|2
)

(B.2)

We turn to the equation on T̄ in (3.15). Differentiating this equation with respect to xj , multiplying
it by ∂xj T̄ , integrating on R3 and taking the sum for j = 1, 2, 3, we get

1
2
d

dt

∫
x

|∇T̄ |2+
(

1
2+Γ

)∫
x

|∇T̄ |2+
∑
j

∫
x

(∂xjT )T̄∇.(∂xj~u) = −
∑
j

∫
x,ν

σa∂xj T̄ ∂xj

((
B(ν, T̄ )−ρ

))
.

One has
∑
j

∫
x,ν

σa∂xj T̄ ∂xjB =
∑
j

∫
x,ν

σa|∂xj T̄ |2∂TB. Once again, the same arguments than for
the lemma A.1 on the integrability of the Planck function show that ∂TB(ν, T ) ∈ L1

ν . One finds a
constant C such that

∑
j

∫
x,ν

∂xj T̄ ∂xj
(
σaB

)
≤ C‖σa‖L∞ν ‖∇T̄‖

2
L2
x
. Moreover, the Cauchy-Schwarz

inequality together with the inequality ab ≤ 1
2 (a2 + b2) yield∑

j

∫
x,ν

σa∂xj T̄ ∂xjρ ≤
1
2‖σa‖

2
L2
ν
‖∇T̄‖2L2

x
+ 1

4‖∇ρ‖
2
L2
x,ν
. (B.3)

Finally, an integration by parts yields
∑
j

∫
x
(∂xj T̄ )T̄∇.(∂xj~u) ≤ 1

2‖~u‖W 2,∞
x
‖∇T̄‖2L2

x
. This gives us

another constant C such that

1
2
d

dt

∫
x

|∇T̄ |2 ≤ C
(

1 +
∫
x

|∇T̄ |2 +
∫
x,ν

|∇ρ|2
)
,

This result, together with the inequality (B.2), yields another constant C such that

1
2
d

dt

(
‖∇T̄‖2L2

x
+ ‖∇ρ‖2L2

x,ν

)
≤ C

(
1 + ‖∇T̄‖2L2

x
+ ‖∇ρ‖2L2

x,ν

)
.

The Gronwall lemma and the assumption H5 on the initial conditions give the result.

We do not give the proof of the remaining terms in (3.19) since it uses the same arguments.
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