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ABSTRACT
With the development of new imaging systems delivering
large-size data sets, phase retrieval has become recently the
focus of much attention. The problem is especially chal-
lenging due to its intrinsically nonconvex formulation. In
addition, the applicability of many existing solutions may
be limited either by their estimation performance or by their
computational cost, especially in the case of non-Fourier mea-
surements. In this paper, we propose a novel phase retrieval
approach, which is based on a smooth nonconvex approxi-
mation of the standard data fidelity term. In addition, the
proposed method allows us to employ a wide range of convex
separable regularization functions. The optimization process
is performed by a block coordinate proximal algorithm which
is amenable to solving large-scale problems. An application
of this algorithm to an image reconstruction problem shows
that it may be very competitive with respect to state-of-the-art
methods.

Index Terms— Phase retrieval problem, Nonconvex op-
timization, Nonsmooth optimization, Proximal methods

1. INTRODUCTION

Phase retrieval is one of the oldest while still most challen-
ging problems encountered in imaging. It basically consists of
producing an estimate v̂ of an original multivariate signal v
from (possibly noisy) magnitude measurements |Hv| where
H is a complex-valued linear operator. Such a problem plays
a central role in numerous application fields of image proces-
sing, in particular in crystallography [1], optical imaging [2],
phase contrast tomography [3], and coherent diffraction ima-
ging [4].

The most popular methods to estimate v are probably
Gerchberg-Saxton (GS) algorithm [5] and its relaxed version
Fienup algorithm [6]. Initially introduced for the case when
H is a Fourier transform matrix, these algorithms alternate
projections onto the range of H and onto the nonconvex
set of vectors with magnitude equal to |Hv|. Note that,
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since the latter constraint set is nonconvex, these algorithms
do not benefit from the convergence guarantees of the fa-
mous Projections Onto Convex Set (POCS) algorithm [7].
Convex relaxations of the phase retrieval problem based on
Semi-Definite-Programming (SDP) formulations were pro-
posed in [8, 9], giving rise to the PhaseLift and PhaseCut
algorithms, respectively. Both methods have been shown to
outperform GS and Fienup, in a certain number of application
examples [10].

All the aforementioned methods tend to be sensitive to
noise and/or to be less effective in the under-determined case
[11]. Such difficulties are mainly due to the ill-posed charac-
ter of the phase retrieval problem and they can be alleviated by
incorporating some a priori information in the reconstruction
process. Several algorithms based on SDP relaxation [12], al-
ternating projection [13] and greedy pursuit [11], have been
recently introduced, which aim at solving the phase retrieval
problem under the prior assumption that the sought signal v
has a sparse representation in a (possibly redundant) dictio-
nary. However, up to the best of our knowledge, these ap-
proaches may become very computationally intensive as the
problem dimension increases. This is particularly critical for
SDP and alternating projections methods, when the pseudo-
inverse of H does not have a closed form, as it usually hap-
pens for non-Fourier measurements, or for the greedy method
in [11] when the sparsity degree of the data is not sufficient.

In this paper, we introduce a new phase retrieval strategy
relying on the minimization of a penalized criterion. This cri-
terion is composed of (i) a difference of convex functions (DC
function) achieving a smooth approximation of the standard
nonconvex nonsmooth least-squares data fidelity term, and
(ii) a convex non necessarily smooth block separable pena-
lization term. The latter function can be chosen in a flexible
manner. For instance, it can be used to incorporate a sparsity
assumption on the solution. The resulting nonconvex nons-
mooth optimization problem is then solved with the Block
Coordinate Variable Metric Forward-Backward (BC-VMFB)
method that we have recently introduced in [14]. This algo-
rithm is ensured to converge to a critical point of the criterion
and it takes advantage of the block separable structure of the
regularization term. The proposed method thus benefits from
a low computational cost which makes it applicable to large-



scale problems.
The rest of the paper is organized as follows : Section 2

presents the phase retrieval problem and introduces a new ob-
jective function. Section 3 describes the proposed BC-VMFB
algorithm and emphasizes its convergence properties. Finally,
in Section 4, the good performance of our approach is shown
via experiments.

2. PROBLEM FORMULATION

2.1. Observation model

Let v ∈ RM be the original unknown signal. Given H ∈
CS×M an observation matrix with complex-valued elements,
the measurements z ∈ [0,+∞)S are assumed to be related to
the original signal through the model

z = (z(s))1≤s≤S =|Hv|+w, (1)

where | · | denotes the componentwise modulus operator, and
w ∈ [0,+∞)S is a realization of an additive noise.

It is important to note that Model (1) encompasses the
case when the target signal is complex since the observed vec-
tor can then be expressed under the form

z =

∣∣∣∣[HR + iHI | −HI + iHR]

[
vR
vI

]∣∣∣∣+w, (2)

with i2 = −1 and (·)R (resp. (·)I) designates the real (resp.
imaginary) part of its argument.

2.2. Minimization problem

Let W ∈ RM×N , M ≤ N , be a given frame synthe-
sis operator (e.g. a possibly redundant wavelet representa-
tion) [15] such that v = Wx. Following a synthesis ap-
proach, the estimated signal reads v̂ = Wx̂ where the frame
coefficient vector x̂ ∈ RN is estimated by minimizing the
sum of a data fidelity term F and a regularization function R,
i.e.

G = F +R. (3)

In the context of phase retrieval problems, a usual way to
define the data fidelity term F is to consider the nonconvex
nonsmooth least-squares criterion [6, 11] :

(∀x ∈ RN ) F (x) =

S∑
s=1

ϕ(s)([HWx](s)), (4)

where, for every s ∈ {1, . . . , S}, ϕ(s) = 1
2 (| · | − z(s))2. We

propose to replace the latter nonsmooth function by a smooth
approximation of it, easier to handle, which is defined as the
difference of two convex terms, parametrized by a constant
δ > 0 :

(∀u ∈ C)

ϕ(s)(u) =
1

2

(
|u|2 + (z(s))2

)
− z(s)

(
|u|2 + δ2

)1/2
.

It can be noticed that, in the limit case when δ = 0, the stan-
dard nonsmooth fidelity function is recovered.

Regarding the penalization term, we will focus on the case
when R is a block separable function. More precisely, let us
define (Jj)1≤j≤J a partition of the frame coefficient index
set {1, . . . , N} into J ≥ 2 subsets with nonzero block-sizes
(Nj)1≤j≤J . In the following, we assume that the regulariza-
tion function can be expressed as

R(x) =

J∑
j=1

Rj(x
(j)), (5)

where, for every j ∈ {1, . . . , J}, function Rj : RNj →
(−∞,+∞] is proper, lower semicontinuous, convex and
continuous on its domain, and x(j) ∈ RNj denotes the j-th
block of components of x.

3. PROPOSED ALTERNATING OPTIMIZATION
METHOD

3.1. Optimization tools

We first introduce the notion of proximity operator which
will be useful to present our algorithm. Let ψ : RN →
(−∞,+∞] be a convex, proper, lower semicontinuous func-
tion and let U ∈ RN×N be a symmetric positive definite
(SPD) matrix. The proximity operator of ψ at ξ ∈ RN re-
lative to the metric induced by U ∈ RN×N is defined as
( [16, Sec. XV.4] and [17])

proxU ,ψ(ξ) = argminζ∈RN ψ(ζ) +
1

2
‖ζ − ξ‖2U .

Hereabove, ‖ · ‖U denotes the weighted norm defined by
‖ · ‖U = 〈·,U ·〉1/2, where 〈·, ·〉 is the usual Euclidean scalar
product. Note that, if U is the identity matrix, then the usual
proximity operator introduced in the pioneering work [18] is
recovered.

3.2. Proposed algorithm

Although the proposed data fidelity term (4) is a noncon-
vex function, it presents the advantage of being Lipschitz dif-
ferentiable. Such a property suggests the use of the Forward-
Backward (FB) scheme [19] for minimizing the objective
function (3). A major advantage of FB algorithm is that it be-
nefits from proven theoretical convergence guarantees, even
in the nonconvex case [20, 21]. However, in practice, this
algorithm may suffer from slow convergence so that accele-
rated versions have been proposed in [14, 22–26], still with
convergence guarantees in the nonconvex case ( [14,22–24]).
In this paper, the block separable structure of R is accounted
for by adopting the following BC-VMFB method from [14].
This algorithm combines the advantages of a preconditioning
strategy [22] with an alternating minimization scheme :



Algorithm 1 BC-VMFB algorithm.
For every ` ∈ N, let γ` ∈ (0,+∞) and Aj`(x`) ∈
RNj`

×Nj` be a SPD preconditioning matrix.
Initialize with x0 ∈ RN .
Iterations :

For ` = 0, 1, . . .
Select a block index j` ∈ {1, . . . , J}.
x̃
(j`)
` = x

(j`)
` − γ`Aj`(x`)

−1∇j`F (x`),

x
(j`)
`+1 = proxγ−1

` Aj`
(x`),Rj`

(
x̃
(j`)
`

)
,

x
(`)
`+1 = x

(`)
` .

In the above algorithm, at each iteration ` ∈ N,∇j`F (x`) ∈
RNj` denotes the partial gradient of F with respect to block
x(j`) computed at x`, and ` is the complementary set of j`
on {1, . . . , J}, i.e. ` = {1, . . . , J} \ {j`}.

Note that Algorithm 1 is equivalent to the algorithm in
[22] for Nj` ≡ N and reduces to the standard FB algorithm
if, additionally, Aj`(x`) reduces to the identity matrix. The
convergence of BC-VMFB requires the design of a proper
strategy to adjust the preconditioning matrices (Aj`(x`))`∈N
in an automatic manner. This will be discussed in the next
section.

3.3. Choice of the preconditioning matrices

At iteration ` ∈ N, let j` be the chosen index in {1, . . . , J}
and let x` be the `-th iterate generated by Algorithm 1.
Then, we propose to choose matrix Aj`(x`) by following
the Majorize-Minimize principle [27], i.e. it is such that the
quadratic function

Qj`(·,x`) = F (x`) + (· − x(j`)
` )>∇j`F (x`)

+
1

2
‖ · −x(j`)

` ‖
2
Aj`

(x`)
,

majorizes the restriction of F to its j`-th block on RNj` . We
thus have, for every y ∈ RNj` ,

F (x
(1)
` , . . . ,x

(j`−1)
` ,y,x

(j`+1)
` , . . . ,x

(J)
` ) ≤ Qj`(y,x`).

According to our result in [14, Prop.4.1], such a majorization
condition is fulfilled by the diagonal matrix

Aj`(x`) = Diag
(
Ω>j`1S

)
, (6)

where 1S is the unit vector on RS and the elements of Ωj` ∈
RS×Nj` are given, for every (s, n) ∈ {1, . . . , S} × Jj` , by

Ω(s,n) = |[HW ]
(s,n)
R |

∑N

n′=1
|[HW ]

(s,n′)
R |

+ |[HW ]
(s,n)
I |

∑N

n′=1
|[HW ]

(s,n′)
I |. (7)

3.4. Convergence result

One appealing feature of Algorithm 1 is that its conver-
gence is guaranteed by the following result deduced from [14,
Thm. 3.1] :

Theorem 1. Let (x`)`∈N be a sequence generated by Algo-
rithm 1 where (Aj`(x`))`∈N are defined as in (6). Assume
that

(i) G is a coercive function, i.e. lim‖x‖→+∞G(x) = +∞.

(ii) R is a semi-algebraic function. 1

(iii) There exists (γ, γ) ∈ (0,+∞)2 such that, for every ` ∈
N, γ ≤ γ` ≤ 2− γ.

(iv) The blocks are updated according to an essentially cy-
clic rule, i.e. there exists a constant K ≥ J such that,
for every ` ∈ N, {1, . . . , J} ⊂ {j`, . . . , j`+K−1}.

Then, the sequence (x`)`∈N converges to a critical point x̂
of (3). Moreover,

(
G(x`)

)
`∈N monotonically converges to

G(x̂).

4. EXPERIMENTAL RESULTS

4.1. Observation model

We now demonstrate the practical performance of our al-
gorithm in an image reconstruction problem. Starting from a
complex-valued original image v ∈ CM (see Fig. 1) with size
M = 128× 128, we generate noisy observations z ∈ RS ac-
cording to Model (2). The observation matrix H ∈ CS×M
results from the composition of two degradation operators,
namely a projection matrix modeling S = 23400 Radon pro-
jections from 128 parallel acquisition lines and 180 angles re-
gularly distributed on [0, π), and a complex-valued blur ope-
rator. For the latter, a 1D convolution kernel with length 3,
acting separately on the acquired sinogram for each angle has
been used. It can be noticed that such a model is reminis-
cent of the linearized version of the phase contrast tomogra-
phy problem addressed in [28, 29] in the 3D case.

4.2. Regularization term

We choose the synthesis frame operator W so that each
vector x = (x(n))1≤n≤N ∈ RN , N = 8M , is the concatena-
tion of two vectors of R4M , corresponding to an overcomplete
Haar decomposition of vR (resp. vI) for one resolution level.
An example of frame decomposition of the real part of the
original image is displayed in Fig. 2.

The regularization function R is defined as the sum, for
p ∈ {1, . . . , 4M} of terms of the form :

1. Semi-algebraicity is a property satisfied by a wide class of functions,
which means that their graph is a finite union of sets defined by a finite num-
ber of polynomial inequalities.



Fig. 1. (top) Real and imaginary parts of the original image
v and estimated images v̂ using either (middle) Algorithm 1,
SNR = 21.27 dB or (bottom) the regularized alternating projection
method from [13], SNR = 14.45 dB.

Fig. 2. (left) Example of frame decomposition of the original image.
(right) Indices of a block x(j) for Q = 32. Only the coefficients
corresponding to the real part of the image are displayed.

ρ(p)(u(p)) =


ϑp‖u(p) − ωp‖

κp

2 if p /∈ E,
0 if p ∈ E and u(p) = 0,
+∞ otherwise,

where u(p) ∈ R2 is the p-th pair of frame coefficients cor-
responding to the real and imaginary part of the image, and
E corresponds to the object background. The sparsity of the
detail part of x̂ is promoted by setting κp = 1 and ϑp =
ϑd ∈ (0,+∞) for the detail subbands of the decomposition.
For the approximation coefficients, we choose κp = 2 and
ϑp = ϑa ∈ (0,+∞). Parameter ωp ∈ R2 corresponds to a

Fig. 3. Convergence profile of Algorithm 1 (solid line) and the non
preconditioned variant from [24] (dashed line), Intel(R) Core(TM)
i7-3520M @ 2.9GHz using Matlab 7.

mean value parameter on the sought frame coefficient u(p). In
our experiments, we take ωp = (0.4, 0.6) for the approxima-
tion part, and ωp = 0 otherwise. Thus, the resulting criterion
G satisfies Assumptions (i)-(iv) of Theorem 1. Note that the
proximity operators involved in Algorithm 1 are easy to com-
pute since they have an explicit form [30].

4.3. Simulation results

The magnitude measurement vector is corrupted with an
additive real-valued white zero-mean Gaussian noise with va-
riance equal to 0.025 (truncated so as to guarantee the non-
negativity of the observations). In our experiments, parame-
ters ϑa, ϑd and δ are adjusted so as to maximize the signal-
to-noise ratio (SNR) between the original image v and the
reconstructed one v̂. In Algorithm (1), for every j, x(j) cor-
responds to a vector of given fixed size 8Q which gathers 8
blocks extracted from the approximation and detail subbands
of both real and imaginary parts of the image, as depicted
in Fig. 2. At each iteration ` ∈ N, j` is then randomly cho-
sen so that each block is updated at least once per J itera-
tions. In practice, the reconstruction time was observed to
vary significantly with respect to the block-size parameter
Q. In this example, the best choice in terms of convergence
speed is reached for Q = 2. Fig. 1 shows the reconstructed
image obtained with our algorithm using this optimal block-
size and γ` ≡ 1.9. We also present in Fig. 1 the reconstruc-
tion result obtained using an enhanced version of the regu-
larized alternating projection approach from [13], where the
non-inversibility of matrix H has been taken into account.
Note that due to the large size of the data, it appeared impos-
sible to run SDP approaches from [8,9,12], neither the greedy
method from [11]. Moreover, we obtained poor results using
the standard GS algorithm.

Fig. 3 illustrates the decay of (‖x` − x̂‖/‖x̂‖)` (in log
scale) using the proposed algorithm or the non preconditioned
variant from [24]. The optimal solution x̂ has been precom-
puted for each algorithm, using a large number of iterations.
One can observe that the variable metric strategy leads to a si-
gnificant acceleration of the convergence. It must be noticed
that the method from [13] is almost 10 times slower to reach
a stabilized SNR value.



5. REFERENCES

[1] R. Harrison, “Phase problem in crystallography,” J. Opt. Soc.
Amer. A, vol. 10, no. 5, pp. 1046–1055, 1993.

[2] A. Walther, “The question of phase retrieval in optics,” J.
Modern Opt., vol. 10, no. 1, pp. 41–49, 1963.

[3] H. H. Bauschke, P. L. Combettes, and D. R. Luke, “A new
generation of iterative transform algorithms for phase contrast
tomography,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP 2005), Philadelphia, PA, 19-23 Mar. 2005,
vol. 4, pp. 89–92.

[4] Y. Shechtman, Y. Eldar, A. Szameit, and M. Segev, “Efficient
coherent diffractive imaging for sparsely varying objects,” Op-
tics Express, vol. 21, no. 5, pp. 6327–6338, 2013.

[5] R. W. Gerchberg and W. O. Saxton, “A practical algorithm for
the determination of phase from image and diffraction plane
pictures,” Optik, vol. 35, pp. 237–246, 1972.

[6] J. R. Fienup, “Phase retrieval algorithms : A comparison,”
Appl. Opt., vol. 21, pp. 2758–2769, Aug. 1982.

[7] H. H. Bauschke, P. L. Combettes, and D. R. Luke, “Phase re-
trieval, error reduction algorithm, and Fienup variants : a view
from convex optimization,” J. Opt. Soc. Amer. A, vol. 19, no.
7, pp. 1334–1345, Jul. 2002.

[8] E. Candès, T. Strohmer, and V. Voroninski, “Phaselift : Exact
and stable signal recovery from magnitude measurements via
convex programming,” Comm. Pure Appl. Math., vol. 66, no.
8, pp. 1241–1274, 2013.

[9] I. Waldspurger, A. d’Aspremont, and S. Mallat, “Phase re-
covery, maxcut and complex semidefinite programming,” To
appear in Math. Program., 2013.

[10] F. Fogel, I. Waldspurger, and A. D’Aspremont, “Phase retrie-
val for imaging problems,” Tech. Rep., Apr. 2013, http:
//arxiv.org/abs/1304.7735/.

[11] Y. Shechtman, A. Beck, and Y. Eldar, “GESPAR : Efficient
phase retrieval of sparse signals,” IEEE Trans. Signal Process.,
vol. 62, no. 4, pp. 928–938, Feb 2014.

[12] K. Jaganathan, S. Oymak, and B. Hassibi, “Recovery of sparse
1-D signals from the magnitudes of their Fourier transform,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT 2012), Cambridge,
MA, 1-6 Jul. 2012, pp. 1473–1477.

[13] S. Mukherjee and C.S. Seelamantula, “An iterative algorithm
for phase retrieval with sparsity constraints : application to fre-
quency domain optical coherence tomography,” in Proc. IEEE
Int. Conf. Acoust., Speech and Signal Process. (ICASSP 2012),
Kyoto, Japan, 25-30 Mar. 2012, pp. 553–556.

[14] E. Chouzenoux, J.-C. Pesquet, and A. Repetti, “A block co-
ordinate variable metric forward-backward algorithm,” Tech.
Rep., 2013, http://www.optimization-online.
org/DBHTML/2013/12/4178.html.

[15] S. Mallat, A Wavelet Tour of Signal Processing, Academic
Press, Burlington, MA, 3rd edition, 2009.

[16] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and
Minimization Algorithms, Springer-Verlag, New York, 1993.

[17] P. L. Combettes and B. C. Vũ, “Variable metric quasi-Fejér
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