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With the development of new imaging systems delivering large-size data sets, phase retrieval has become recently the focus of much attention. The problem is especially challenging due to its intrinsically nonconvex formulation. In addition, the applicability of many existing solutions may be limited either by their estimation performance or by their computational cost, especially in the case of non-Fourier measurements. In this paper, we propose a novel phase retrieval approach, which is based on a smooth nonconvex approximation of the standard data fidelity term. In addition, the proposed method allows us to employ a wide range of convex separable regularization functions. The optimization process is performed by a block coordinate proximal algorithm which is amenable to solving large-scale problems. An application of this algorithm to an image reconstruction problem shows that it may be very competitive with respect to state-of-the-art methods.

INTRODUCTION

Phase retrieval is one of the oldest while still most challenging problems encountered in imaging. It basically consists of producing an estimate v of an original multivariate signal v from (possibly noisy) magnitude measurements |Hv| where H is a complex-valued linear operator. Such a problem plays a central role in numerous application fields of image processing, in particular in crystallography [START_REF] Harrison | Phase problem in crystallography[END_REF], optical imaging [START_REF] Walther | The question of phase retrieval in optics[END_REF], phase contrast tomography [START_REF] Bauschke | A new generation of iterative transform algorithms for phase contrast tomography[END_REF], and coherent diffraction imaging [START_REF] Shechtman | Efficient coherent diffractive imaging for sparsely varying objects[END_REF].

The most popular methods to estimate v are probably Gerchberg-Saxton (GS) algorithm [START_REF] Gerchberg | A practical algorithm for the determination of phase from image and diffraction plane pictures[END_REF] and its relaxed version Fienup algorithm [START_REF] Fienup | Phase retrieval algorithms : A comparison[END_REF]. Initially introduced for the case when H is a Fourier transform matrix, these algorithms alternate projections onto the range of H and onto the nonconvex set of vectors with magnitude equal to |Hv|. Note that, This work was supported by the MASTODONS project by CNRS (grant 2013MesureHD) since the latter constraint set is nonconvex, these algorithms do not benefit from the convergence guarantees of the famous Projections Onto Convex Set (POCS) algorithm [START_REF] Bauschke | Phase retrieval, error reduction algorithm, and Fienup variants : a view from convex optimization[END_REF]. Convex relaxations of the phase retrieval problem based on Semi-Definite-Programming (SDP) formulations were proposed in [START_REF] Candès | Phaselift : Exact and stable signal recovery from magnitude measurements via convex programming[END_REF][START_REF] Waldspurger | Phase recovery, maxcut and complex semidefinite programming[END_REF], giving rise to the PhaseLift and PhaseCut algorithms, respectively. Both methods have been shown to outperform GS and Fienup, in a certain number of application examples [START_REF] Fogel | Phase retrieval for imaging problems[END_REF].

All the aforementioned methods tend to be sensitive to noise and/or to be less effective in the under-determined case [START_REF] Shechtman | GESPAR : Efficient phase retrieval of sparse signals[END_REF]. Such difficulties are mainly due to the ill-posed character of the phase retrieval problem and they can be alleviated by incorporating some a priori information in the reconstruction process. Several algorithms based on SDP relaxation [START_REF] Jaganathan | Recovery of sparse 1-D signals from the magnitudes of their Fourier transform[END_REF], alternating projection [START_REF] Mukherjee | An iterative algorithm for phase retrieval with sparsity constraints : application to frequency domain optical coherence tomography[END_REF] and greedy pursuit [START_REF] Shechtman | GESPAR : Efficient phase retrieval of sparse signals[END_REF], have been recently introduced, which aim at solving the phase retrieval problem under the prior assumption that the sought signal v has a sparse representation in a (possibly redundant) dictionary. However, up to the best of our knowledge, these approaches may become very computationally intensive as the problem dimension increases. This is particularly critical for SDP and alternating projections methods, when the pseudoinverse of H does not have a closed form, as it usually happens for non-Fourier measurements, or for the greedy method in [START_REF] Shechtman | GESPAR : Efficient phase retrieval of sparse signals[END_REF] when the sparsity degree of the data is not sufficient.

In this paper, we introduce a new phase retrieval strategy relying on the minimization of a penalized criterion. This criterion is composed of (i) a difference of convex functions (DC function) achieving a smooth approximation of the standard nonconvex nonsmooth least-squares data fidelity term, and (ii) a convex non necessarily smooth block separable penalization term. The latter function can be chosen in a flexible manner. For instance, it can be used to incorporate a sparsity assumption on the solution. The resulting nonconvex nonsmooth optimization problem is then solved with the Block Coordinate Variable Metric Forward-Backward (BC-VMFB) method that we have recently introduced in [START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF]. This algorithm is ensured to converge to a critical point of the criterion and it takes advantage of the block separable structure of the regularization term. The proposed method thus benefits from a low computational cost which makes it applicable to large-scale problems.

The rest of the paper is organized as follows : Section 2 presents the phase retrieval problem and introduces a new objective function. Section 3 describes the proposed BC-VMFB algorithm and emphasizes its convergence properties. Finally, in Section 4, the good performance of our approach is shown via experiments.

PROBLEM FORMULATION

Observation model

Let v ∈ R M be the original unknown signal. Given H ∈ C S×M an observation matrix with complex-valued elements, the measurements z ∈ [0, +∞) S are assumed to be related to the original signal through the model

z = (z (s) ) 1≤s≤S =|Hv| + w, (1) 
where | • | denotes the componentwise modulus operator, and w ∈ [0, +∞) S is a realization of an additive noise.

It is important to note that Model (1) encompasses the case when the target signal is complex since the observed vector can then be expressed under the form

z = [H R + i H I | -H I + i H R ] v R v I + w, (2) 
with i 2 = -1 and (•) R (resp. (•) I ) designates the real (resp. imaginary) part of its argument.

Minimization problem

Let W ∈ R M ×N , M ≤ N , be a given frame synthesis operator (e.g. a possibly redundant wavelet representation) [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF] such that v = W x. Following a synthesis approach, the estimated signal reads v = W x where the frame coefficient vector x ∈ R N is estimated by minimizing the sum of a data fidelity term F and a regularization function R, i.e.

G = F + R. (3) 
In the context of phase retrieval problems, a usual way to define the data fidelity term F is to consider the nonconvex nonsmooth least-squares criterion [START_REF] Fienup | Phase retrieval algorithms : A comparison[END_REF][START_REF] Shechtman | GESPAR : Efficient phase retrieval of sparse signals[END_REF] :

(∀x ∈ R N ) F (x) = S s=1 ϕ (s) ([HW x] (s) ), (4) 
where, for every s ∈ {1, . . . , S}, ϕ

(s) = 1 2 (| • | -z (s) ) 2 .
We propose to replace the latter nonsmooth function by a smooth approximation of it, easier to handle, which is defined as the difference of two convex terms, parametrized by a constant δ > 0 :

(∀u ∈ C) ϕ (s) (u) = 1 2 |u| 2 + (z (s) ) 2 -z (s) |u| 2 + δ 2 1/2 .
It can be noticed that, in the limit case when δ = 0, the standard nonsmooth fidelity function is recovered.

Regarding the penalization term, we will focus on the case when R is a block separable function. More precisely, let us define (J j ) 1≤j≤J a partition of the frame coefficient index set {1, . . . , N } into J ≥ 2 subsets with nonzero block-sizes (N j ) 1≤j≤J . In the following, we assume that the regularization function can be expressed as

R(x) = J j=1 R j (x (j) ), (5) 
where, for every j ∈ {1, . . . , J}, function R j : R Nj → (-∞, +∞] is proper, lower semicontinuous, convex and continuous on its domain, and x (j) ∈ R Nj denotes the j-th block of components of x.

PROPOSED ALTERNATING OPTIMIZATION METHOD

Optimization tools

We first introduce the notion of proximity operator which will be useful to present our algorithm. Let ψ : R N → (-∞, +∞] be a convex, proper, lower semicontinuous function and let U ∈ R N ×N be a symmetric positive definite (SPD) matrix. The proximity operator of ψ at ξ ∈ R N relative to the metric induced by U ∈ R N ×N is defined as ( [16, Sec. XV.4] and [START_REF] Combettes | Variable metric quasi-Fejér monotonicity[END_REF])

prox U ,ψ (ξ) = argmin ζ∈R N ψ(ζ) + 1 2 ζ -ξ 2 U .
Hereabove, • U denotes the weighted norm defined by

• U = •, U • 1/2
, where •, • is the usual Euclidean scalar product. Note that, if U is the identity matrix, then the usual proximity operator introduced in the pioneering work [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF] is recovered.

Proposed algorithm

Although the proposed data fidelity term ( 4) is a nonconvex function, it presents the advantage of being Lipschitz differentiable. Such a property suggests the use of the Forward-Backward (FB) scheme [START_REF] Tseng | A modified forward-backward splitting method for maximal monotone mappings[END_REF] for minimizing the objective function [START_REF] Bauschke | A new generation of iterative transform algorithms for phase contrast tomography[END_REF]. A major advantage of FB algorithm is that it benefits from proven theoretical convergence guarantees, even in the nonconvex case [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems : proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[END_REF][START_REF] Attouch | On the convergence of the proximal algorithm for nonsmooth functions involving analytic features[END_REF]. However, in practice, this algorithm may suffer from slow convergence so that accelerated versions have been proposed in [START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF][START_REF] Chouzenoux | Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function[END_REF][START_REF] Ochs | iPiano : inertial proximal algorithm for non-convex optimization[END_REF][START_REF] Bolte | Proximal alternating linearized minimization for nonconvex and nonsmooth problems[END_REF][START_REF] Tran-Dinh | Composite self-concordant minimization[END_REF][START_REF] Combettes | Variable metric forwardbackward splitting with applications to monotone inclusions in duality[END_REF], still with convergence guarantees in the nonconvex case ( [START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF][START_REF] Chouzenoux | Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function[END_REF][START_REF] Ochs | iPiano : inertial proximal algorithm for non-convex optimization[END_REF][START_REF] Bolte | Proximal alternating linearized minimization for nonconvex and nonsmooth problems[END_REF]). In this paper, the block separable structure of R is accounted for by adopting the following BC-VMFB method from [START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF]. This algorithm combines the advantages of a preconditioning strategy [START_REF] Chouzenoux | Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function[END_REF] with an alternating minimization scheme :

Algorithm 1 BC-VMFB algorithm.
For every ∈ N, let γ ∈ (0, +∞) and A j (x ) ∈ R Nj ×Nj be a SPD preconditioning matrix. Initialize with x 0 ∈ R N . Iterations :

For = 0, 1, . . .       
Select a block index j ∈ {1, . . . , J}.

x(j ) = x (j ) -γ A j (x ) -1 ∇ j F (x ), x (j ) +1 = prox γ -1 Aj (x ),Rj x(j ) , x ( ) +1 = x ( ) .
In the above algorithm, at each iteration ∈ N, ∇ j F (x ) ∈ R Nj denotes the partial gradient of F with respect to block x (j ) computed at x , and  is the complementary set of j on {1, . . . , J}, i.e.  = {1, . . . , J} \ {j }.

Note that Algorithm 1 is equivalent to the algorithm in [START_REF] Chouzenoux | Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function[END_REF] for N j ≡ N and reduces to the standard FB algorithm if, additionally, A j (x ) reduces to the identity matrix. The convergence of BC-VMFB requires the design of a proper strategy to adjust the preconditioning matrices (A j (x )) ∈N in an automatic manner. This will be discussed in the next section.

Choice of the preconditioning matrices

At iteration ∈ N, let j be the chosen index in {1, . . . , J} and let x be the -th iterate generated by Algorithm 1. Then, we propose to choose matrix A j (x ) by following the Majorize-Minimize principle [START_REF] Sotthivirat | Image recovery using partitioned-separable paraboloidal surrogate coordinate ascent algorithms[END_REF], i.e. it is such that the quadratic function

Q j (•, x ) = F (x ) + (• -x (j ) ) ∇ j F (x ) + 1 2 • -x (j ) 2 Aj (x ) ,
majorizes the restriction of F to its j -th block on R Nj . We thus have, for every y ∈ R Nj , 1) , . . . , x (j -1) , y, x

F (x ( 
(j +1) , . . . , x (J) ) ≤ Q j (y, x ).
According to our result in [START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF]Prop.4.1], such a majorization condition is fulfilled by the diagonal matrix

A j (x ) = Diag Ω j 1 S , (6) 
where 1 S is the unit vector on R S and the elements of Ω j ∈ R S×Nj are given, for every (s, n) ∈ {1, . . . , S} × J j , by

Ω (s,n) = |[HW ] (s,n) R | N n =1 |[HW ] (s,n ) R | + |[HW ] (s,n) I | N n =1 |[HW ] (s,n ) I |. (7)

Convergence result

One appealing feature of Algorithm 1 is that its convergence is guaranteed by the following result deduced from [14, Thm. 3.1] : Theorem 1. Let (x ) ∈N be a sequence generated by Algorithm 1 where (A j (x )) ∈N are defined as in [START_REF] Fienup | Phase retrieval algorithms : A comparison[END_REF]. Assume that (i) G is a coercive function, i.e. lim x →+∞ G(x) = +∞.

(ii) R is a semi-algebraic function. 1(iii) There exists (γ, γ) ∈ (0, +∞) 2 such that, for every ∈ N, γ ≤ γ ≤ 2 -γ. (iv) The blocks are updated according to an essentially cyclic rule, i.e. there exists a constant K ≥ J such that, for every ∈ N, {1, . . . , J} ⊂ {j , . . . , j +K-1 }.

Then, the sequence (x ) ∈N converges to a critical point x of (3). Moreover, G(x ) ∈N monotonically converges to G( x).

EXPERIMENTAL RESULTS

Observation model

We now demonstrate the practical performance of our algorithm in an image reconstruction problem. Starting from a complex-valued original image v ∈ C M (see Fig. 1) with size M = 128 × 128, we generate noisy observations z ∈ R S according to Model (2). The observation matrix H ∈ C S×M results from the composition of two degradation operators, namely a projection matrix modeling S = 23400 Radon projections from 128 parallel acquisition lines and 180 angles regularly distributed on [0, π), and a complex-valued blur operator. For the latter, a 1D convolution kernel with length 3, acting separately on the acquired sinogram for each angle has been used. It can be noticed that such a model is reminiscent of the linearized version of the phase contrast tomography problem addressed in [START_REF] Guigay | Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region[END_REF][START_REF] Davidoiu | Nonlinear phase retrieval using projection operator and iterative wavelet thresholding[END_REF] in the 3D case.

Regularization term

We choose the synthesis frame operator W so that each vector x = (x (n) ) 1≤n≤N ∈ R N , N = 8M , is the concatenation of two vectors of R 4M , corresponding to an overcomplete Haar decomposition of v R (resp. v I ) for one resolution level. An example of frame decomposition of the real part of the original image is displayed in Fig. 2.

The regularization function R is defined as the sum, for p ∈ {1, . . . , 4M } of terms of the form : mean value parameter on the sought frame coefficient u (p) . In our experiments, we take ω p = (0.4, 0.6) for the approximation part, and ω p = 0 otherwise. Thus, the resulting criterion G satisfies Assumptions (i)-(iv) of Theorem 1. Note that the proximity operators involved in Algorithm 1 are easy to compute since they have an explicit form [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF].

Simulation results

The magnitude measurement vector is corrupted with an additive real-valued white zero-mean Gaussian noise with variance equal to 0.025 (truncated so as to guarantee the nonnegativity of the observations). In our experiments, parameters ϑ a , ϑ d and δ are adjusted so as to maximize the signalto-noise ratio (SNR) between the original image v and the reconstructed one v. In Algorithm (1), for every j, x (j) corresponds to a vector of given fixed size 8Q which gathers 8 blocks extracted from the approximation and detail subbands of both real and imaginary parts of the image, as depicted in Fig. 2. At each iteration ∈ N, j is then randomly chosen so that each block is updated at least once per J iterations. In practice, the reconstruction time was observed to vary significantly with respect to the block-size parameter Q. In this example, the best choice in terms of convergence speed is reached for Q = 2. Fig. 1 shows the reconstructed image obtained with our algorithm using this optimal blocksize and γ ≡ 1.9. We also present in Fig. 1 the reconstruction result obtained using an enhanced version of the regularized alternating projection approach from [START_REF] Mukherjee | An iterative algorithm for phase retrieval with sparsity constraints : application to frequency domain optical coherence tomography[END_REF], where the non-inversibility of matrix H has been taken into account. Note that due to the large size of the data, it appeared impossible to run SDP approaches from [START_REF] Candès | Phaselift : Exact and stable signal recovery from magnitude measurements via convex programming[END_REF][START_REF] Waldspurger | Phase recovery, maxcut and complex semidefinite programming[END_REF][START_REF] Jaganathan | Recovery of sparse 1-D signals from the magnitudes of their Fourier transform[END_REF], neither the greedy method from [START_REF] Shechtman | GESPAR : Efficient phase retrieval of sparse signals[END_REF]. Moreover, we obtained poor results using the standard GS algorithm.

Fig. 3 illustrates the decay of ( xx / x ) (in log scale) using the proposed algorithm or the non preconditioned variant from [START_REF] Bolte | Proximal alternating linearized minimization for nonconvex and nonsmooth problems[END_REF]. The optimal solution x has been precomputed for each algorithm, using a large number of iterations. One can observe that the variable metric strategy leads to a significant acceleration of the convergence. It must be noticed that the method from [START_REF] Mukherjee | An iterative algorithm for phase retrieval with sparsity constraints : application to frequency domain optical coherence tomography[END_REF] is almost 10 times slower to reach a stabilized SNR value.
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 1 Fig. 1. (top) Real and imaginary parts of the original image v and estimated images v using either (middle) Algorithm 1, SNR = 21.27 dB or (bottom) the regularized alternating projection method from [13], SNR = 14.45 dB.

Fig. 2 .

 2 Fig. 2. (left) Example of frame decomposition of the original image. (right) Indices of a block x (j) for Q = 32. Only the coefficients corresponding to the real part of the image are displayed.

  p ∈ E and u (p) = 0, +∞ otherwise, where u (p) ∈ R 2 is the p-th pair of frame coefficients corresponding to the real and imaginary part of the image, and E corresponds to the object background. The sparsity of the detail part of x is promoted by setting κ p = 1 and ϑ p = ϑ d ∈ (0, +∞) for the detail subbands of the decomposition. For the approximation coefficients, we choose κ p = 2 and ϑ p = ϑ a ∈ (0, +∞). Parameter ω p ∈ R 2 corresponds to a

Fig. 3 .

 3 Fig. 3. Convergence profile of Algorithm 1 (solid line) and the non preconditioned variant from [24] (dashed line), Intel(R) Core(TM) i7-3520M @ 2.9GHz using Matlab 7.

Semi-algebraicity is a property satisfied by a wide class of functions, which means that their graph is a finite union of sets defined by a finite number of polynomial inequalities.