
HAL Id: hal-01094440
https://hal.science/hal-01094440

Submitted on 1 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integral Equations for Acoustic Scattering by Partially
Impenetrable Composite Objects

Xavier Claeys, Ralf Hiptmair

To cite this version:
Xavier Claeys, Ralf Hiptmair. Integral Equations for Acoustic Scattering by Partially Impene-
trable Composite Objects. Integral Equations and Operator Theory, 2015, 81 (2), pp.151-189.
�10.1007/s00020-014-2197-y�. �hal-01094440�

https://hal.science/hal-01094440
https://hal.archives-ouvertes.fr


Integral Equations for Acoustic Scattering
by Partially Impenetrable Composite Objects

X.Claeys and R.Hiptmair

Abstract. We study direct first-kind boundary integral equations arising
from transmission problems for the Helmholtz equation with piecewise
constant coefficients and Dirichlet boundary conditions imposed on a
closed surface. We identify necessary and sufficient conditions for the
occurrence of so-called spurious resonances, that is, the failure of the
boundary integral equations to possess unique solutions.

Following rA. Buffa and R. Hiptmair, Regularized combined
field integral equations, Numer. Math., 100 (2005), pp. 1–19s we propose
a modified version of the boundary integral equations that is immune to
spurious resonances. Via a gap construction it will serve as the basis for
a universally well-posed stabilized global multi-trace formulation that
generalizes the method of rX. Claeys and R. Hiptmair, Multi-trace
boundary integral formulation for acoustic scattering by composite struc-
tures, Communications on Pure and Applied Mathematics, 66 (2013),
pp. 1163–1201s to situations with Dirichlet boundary conditions.

Mathematics Subject Classification (2010). Primary 45A05; Secondary
65R20.

Keywords. integral equation, scattering, wave propagation, Helmholtz,
junction points.

1 Introduction

We are concerned with boundary integral equations (BIE) describing
the propagation of acoustic waves in so-called composite media composed of
parts with linear and spatially homogenous material properties. Such media
are rather common in mathematical models in engineering and well-posed
BIE are important as foundation for boundary element methods (BEM), a
well established and widely used technique for computational acoustics.

This work received financial support from Fondation ISAE, and from the French Ministry
of Defense via DGA-MRIS..
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The bulk of mathematical investigations on BIE has addressed the case
of only two different homogeneous media, with one occupying a bounded
volume in space, see, for instance, [16], [26, Ch. 9], [32, Sect. 3.9], and the
monographs [27, 15]. Apparently, the first profound mathematical deriva-
tion and analysis of particular direct BIEs for acoustics with composite me-
dia was given in [37]. Of course, boundary element methods for composite
scattering had been devised before in computational engineering, notably
the so-called Poggio-Miller-Chew-Harrington-Wu-Tsai (PMCHWT) integral
equations [31, 7, 39, 18] for electromagnetic scattering.

The BIEs proposed in [37] may be dubbed a single trace formulation
(STF), because they involve a single pair of Cauchy data on each interface
as unknowns. They can legitimately be regarded as the standard direct BIEs
for transmission problems, because they immediately arise from fundamental
Calderón identities and the transmission conditions are imposed strongly
through the trial trace spaces. If all participating media are penetrable, the
BIEs of STF are well-posed in natural trace spaces, see [12, Sect. 3.2], [11,
Prop. A.1]. However, if impenetrable media are admitted, the standard STF
may be affected by the notorious spurious resonance phenomenon, that is, for
particular combinations of wave numbers the BIE may fail to possess unique
solutions. This has not been properly addressed in [37] and in Section 4 we
provide a detailed analysis of when the STF becomes vulnerable to spurious
resonances. In short, spurious resonances can occur, if an impenetrable part
is completely surrounded by another homogeneous medium, see Theorem 4.8.

To restore unconditional well-posedness of the STF, we adapt the classi-
cal idea of combined field integral equations (CFIE), both in its indirect and
direct version, cf. [1, 24, 28] for the former, and [6] for the latter. Sloppily
speaking, CFIEs exploit the capacity of (approximate) absorbing boundary
conditions to ensure unique solvability of time-harmonic wave propagation
problems even on bounded domains, whereas a discrete set of resonant fre-
quencies will always haunt pure Dirichlet or Neumann boundary conditions.
The simplest choice of approximate absorbing boundary conditions is plain
impedance or Robin boundary conditions with non-zero purely imaginary
impedance, see [32, Sect. 3.4.9]. Yet, in this work, we rely on regularized or
modified versions of CFIEs from [3, 36], which are compatible with varia-
tional formulations in natural trace spaces. The corresponding extensions of
the single trace boundary integral equations are studied in Section 5.

Another drawback of the classical STF-BIEs, when used as the founda-
tion for low-order Galerkin boundary element discretization, is their failure
to be amenable to the powerful and popular Calderón preconditioning tech-
niques [19, 34, 8]. For lucid explanations refer to [12, Sect. 4]. Lately, this
shortcoming of the STF has prompted the development of so-called multi-
trace formulations (MTF) for scattering at composite objects. They feature
four unknown traces at (some) material interfaces and come in two flavors:
global MTFs as introduced in [9, 11, 12, 10] and [12, Sect. 5], and local MTFs
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presented in [20, 21]. They all have in common that they enforce the trans-
mission conditions only weakly, in contrast to the STF. Thus, trial and test
spaces can neatly be split into contributions of different sub-domains, and,
in the spirit of domain decomposition, this paves the way for local precondi-
tioning.

Thus far, all mathematical analyses of MTFs eschew non-penetrable
media, except for [13], which is confined to pure diffusion problems. Only in
computational engineering some recent variants of local MTF for computa-
tional electromagnetics [29, 30] include CFIE ideas in order to treat impen-
etrable, that is, perfectly electrically conducting, bodies. In this article, in
Section 5, we propose a CFIE-type extension of the global MTF introduced
in [11]. It naturally emerges from single trace CFIEs appealing to the ”gap
idea” described in [11, Sect. 5] and [12, Sect. 5.2]. The new global multi-trace
CFIEs inherit unconditional stability and turn out to be a compact pertur-
bation of the previously known global MTF. Thus, the customary Calderón
preconditioning technique [12, Sect. 4] can be applied to them.

Discretization, for instance, by Galerkin boundary element methods,
will not be addressed in this article. However, coercivity of variational formu-
lations in spaces of Cauchy traces together with uniqueness of solutions, im-
mediately allows to conclude quasi-optimality of conforming Galerkin BEM,
see [17], [38], and [32, Sect 4.2.3]. Hence, our theory paves the way for pre-
dicting the convergence of all varieties of Galerkin BEM for both single- and
multi-trace CFIE provided that the smoothness of Cauchy traces of the exact
field solution is known.

List of notations

Ωi material sub-domains � Rd, Ω0 unbounded, see Fig. 1
n number of (bounded) sub-domains with penetrable medium
Σ :� BΩΣ Boundary where homogeneous Dirichlet boundary conditions

are imposed
Γ union of interfaces (skeleton), see (2.1)

γjd, γjn Dirichlet and Neumann trace operators on BΩj , see (2.4)
γj Cauchy trace operator defined in (2.5)
HpBΩjq Cauchy trace space associated with BΩj , see (3.1)
HpΓq Multi-trace space as defined in (3.1)
〈�, �〉j Duality pairing between Dirichlet and Neumann traces on BΩj
r�, �s self-duality pairing on HpΓq
X� 1

2 pΓq, XpΓq single trace Dirichlet/Neumann/Cauchy spaces, see (3.5),
(3.6)

Td, Tn, T restriction of single trace functions onto Σ, see Proposi-
tions 3.1, 3.2

SLjκ single layer potential defined on BΩj
DLjκ double layer potential defined on BΩj
Gjκ total potential defined on BΩj
CκpBΩjq space of Cauchy data on BΩj
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Ajκj boundary integral operator on BΩj
Bi,j non-local “remote” coupling boundary integral operators
X0pΓq single trace space with vanishing Dirichlet data on Σ, see (4.1)

2 Setting of the problem

In the present article, we consider a partition Rd � Ynj�0Ωj YΩΣ where
ΩΣ and the Ωj for j � 0 are open, bounded, and mutually disjoint, and each
ΩΣ, Ωj is a Lipschitz domain [26, Def. 3.28].

In addition, we assume that ΩΣ, RdzΩΣ, and each Ωj are connected. An
important consequence of these assumptions is that ΩΣ does not contain any
hole which rules out the presence of an internal resonant cavity. We set

Γ :� Ynj�0BΩj (the ”skeleton”) and Σ :� BΩΣ . (2.1)

As in Figure 1 there may exist points where three or more sub-domains
abut, which is precisely the situation that we wish to tackle. We consider
the following transmission problem for the Helmholtz equation: Find U P
H1

locpRdzΩΣq 1such that" �∆U � κ2
jU � 0 in Ωj

U � Uinc is κ0-outgoing in Ω0
(2.2a)

"
U |BΩj � U |BΩk � 0

BnjU |BΩj � BnkU |BΩk � 0
on BΩj X BΩk (2.2b)

t U |Σ � 0 . (2.2c)

In equation (2.2a), the outgoing condition refers to Sommerfeld’s radiation
condition, i.e. if ω � Rd is any bounded open subset, we shall say that
V P H1

locp∆,Rdzωq is κ-outgoing if

lim
ρÑ8

»
BBρ

|BrV � iκV |2dσρ � 0

where Bρ is the ball of center 0 and radius ρ, dσρ is the surface measure on
BBρ, and Br refers to the radial derivative. Sommerfeld’s radiation is presented
in detail for example in [27, §.2.6.5] or [25, §.4.4]. For the sake of simplicity
and clarity, we asume that all wave numbers are positive

κj ¡ 0 , j � 0, . . . , n . (2.3)

Then Problem (2.2) admits a unique solution U , as proved in [37, Sect. 2].

1We follow the usual notations; given some open subset ω � Rd, we define H1pωq :�
tv P L2pωq | ∇v P L2pωqu with }v}2

L2pωq
:� }v}2

L2pωq
� }∇v}2

L2pωq
, and H1p∆, ωq :� tv P

H1pωq | ∆v P L2pωqu. If Hpωq is any one of these spaces, Hlocpωq :� tv | ϕv P Hpωq @ϕ P
C8
K pRdqu, where C8

K pRdq refers to the space of C8 function with compact support.
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n0

n1

n2

nΣ

Ω0 = exterior domain

For each j the vector nj

refers to the normal vec-

tor on BΩj directed to-

ward the exterior of Ωj ,

and nΣ denotes the vec-

tor normal to Σ directed

toward the exterior of

ΩΣ. The existence of

such vector fields is guar-

anteed by Rademacher’s

theorem [32,Thm. 2.7.1].

Ω1

Ω2

ΩΣ

Figure 1. Geometric setting for the Helmholtz transmis-
sion problem for composite media with impenetrable ΩΣ.

As it involves transmission conditions, and since we will be interested
in the derivation of boundary integral equations adapted to this problem, we
need to introduce suitable trace operators. According to [32, Thm. 2.6.8 and
Thm. 2.7.7], for every subdomain Ωj , j � 0 . . . n, there exist continuous trace

operators γjd : H1
locpΩjq Ñ H1{2pBΩjq and γjn : H1

locp∆,Ωjq Ñ H�1{2pBΩjq
(so-called Dirichlet and Neumann traces) by density defined through

γjdpϕq :� ϕ|BΩj and γjnpϕq :� nj �∇ϕ|BΩj @ϕ P C8pΩjq . (2.4)

We use similar notations for traces on Σ with nΣ fixing the orientation of the
Neumann trace, see Figure 1. Both traces can be merged into the interior
Cauchy trace operators

γjpvq :�
�
γjdpvq
γjnpvq

�
@v P H1

locp∆,Ωjq . (2.5)

Traces from the exterior of Ωj spawn the exterior Cauchy trace operators

γjc : H1
locp∆,RdzΩjq Ñ H1{2pBΩjq�H�1{2pBΩjq, whose Neumann trace is still

based on the normal nj .

Remark 2.1. Forgoing generality in favor of clarity and brevity, we focus on
the rather simple problem (2.2) as typical specimen of transmission problem
describing acoustic scattering. Straightforward extensions of the approach in
this article can cope with the following situations:


 several impenetrable subdomains (not just one),

 Neumann (instead of Dirichlet) boundary conditions imposed on Σ,

 wave-numbers κj with non-vanishing imaginary part,

 piecewise constant coefficients in the second-order part of the differential

operator as in [12],

 more general source terms (for example, general inhomogeneous trans-

mission and boundary conditions).
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These points would entail only minor adjustments in our analysis. We refer
the reader to [11, 12] for more details on how to deal with more complex
situations. In [12] electromagnetic scattering problems are treated alongside
their acoustic counterparts in a unified setting. Following this policy and the
CFIE ideas of [2], the considerations of this article could also be generalized
to electromagnetic wave propagation.

3 Trace spaces

We want to recast Problem (2.2) into variational boundary integral
equations, so that these are immune to spurious resonances. We aim for BIE
set in natural trace spaces. The most fundamental trace space we can intro-
duce consist is the multi-trace space [11, Sect. 2.1], the Cartesian product of
local traces:

HpΓq :� HpBΩ0q � � � � �HpBΩnq
where HpBΩjq :� H� 1

2 pBΩjq �H� 1
2 pBΩjq .

(3.1)

We endow each HpBΩjq with the norm given by }pv, qq}HpBΩjq
:� p}v}2

H1{2pBΩjq
�

}q}2
H�1{2pBΩjq

q1{2, and equip HpΓq with the norm naturally associated with the

cartesian product

}u}HpΓq :�
�
}u0}2HpBΩ0q

� � � � � }un}2HpBΩnq

	1{2

for u � pu0, . . . , unq P HpΓq2. We write 〈�, �〉j for the duality pairing between

H� 1
2 pBΩjq and H� 1

2 pBΩjq. We also need a bilinear duality pairing for HpBΩjq
and HpΓq; we opt for the skew-symmetric version

ru, vs :�
ņ

j�0

ruj , vjsj

where

��
uj
pj



,

�
vj
qj


�
j

:� 〈uj , qj〉j � 〈vj , pj〉j .
(3.2)

This particular choice of a duality pairing is well adapted to the forthcoming
analysis. Note that under the duality pairing r , s, the space HpΓq is its own

topological dual, and it is easy to show, using the duality between H1{2pBΩjq
and H�1{2pBΩjq, that the pairing r , s induces an isometric isomorphism be-
tween HpΓq and its dual HpΓq1, equivalent to the inf-sup condition

inf
vPHpΓq

sup
uPHpΓq

| ru, vs |
}u}HpΓq}v}HpΓq � 1. (3.3)

2Functions in Dirichlet trace spaces like H� 1
2 pBΩjq will be denoted by u, v, w, whereas we

use p, q, r for Neumann traces. Small fraktur font symbols u, v, w are reseved for Cauchy
traces, with an integer subscript indicating restriction to a subdomain boundary. Capital

letters will be used to designate scalar functions on domains, whereas small bold letters
will be used for vector fields.
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We also write HpΣq :� H1{2pΣq � H�1{2pΣq and equip this space of Cauchy
traces with the norm }pv, qq}2HpΣq :� }v}2

H1{2pΣq
� }q}2

H�1{2pΣq
. Analogous to

(3.2), on this space we shall consider the following skew-symmetric duality
pairing ��

u
p


�
v
q


�
Σ

:� 〈u, q〉Σ � 〈v, p〉Σ . (3.4)

3.1 Single-trace spaces

Next, as in [11, Sect. 2.2], [12, Sect. 3.1], we introduce subspaces of
traces that respect the transmission conditions (2.2b) across interfaces. We
first focus on traces of Dirichlet/Neumann type introducing

X�
1
2 pΓq :�  pujqnj�0 P Πn

j�0H
1
2 pBΩjq

��
DV P H1pRdq s.t. V |BΩj � uj @j

(
,

X�
1
2 pΓq :�  ppjqnj�0 P Πn

j�0H� 1
2 pBΩjq

��
Dq P Hpdiv,Rdq s.t. nj � q|BΩj � pj @j

(
.

(3.5)

The Cartesian product (up to some permutation of indices) X1{2pΓq�X�1{2pΓq
yields the single-trace space XpΓq � HpΓq defined by

XpΓq :�
!
u �

�
uj
pj


n
j�0

���
pujqnj�0 P X�

1
2 pΓq, ppjqnj�0 P X�

1
2 pΓq

)
.

(3.6)

Observe that a function U P H1p∆,Ω0q � � � � �H1p∆,Ωnq satisfies the trans-
mission conditions (2.2b), if and only if pγjpUqqnj�0 P XpΓq. In particular, if

U P H1p∆,RdzΩΣq then pγjpUqqnj�0 P XpΓq. Indeed, from an intuitive point
of view, the space XpΓq can be viewed as the space of traces of functions that
satisfy the transmission conditions (2.2b). Thus, in the sequel, we will use
this space to enforce transmission conditions.

Since every x P Σ also belongs to some BΩj , j � 0, . . . , n, functions in

X�1{2pΓq can be expected to induce traces in H�1{2pΣq. This is made precise
in the following proposition.

Proposition 3.1. For every element pujqnj�0 P X�1{2pΓq, there exists a unique

uΣ P H1{2pΣq such that V |Σ � uΣ for any V P H1pRdq that satisfies V |BΩj �
uj, j � 0 . . . n. Moreover the linear operator Td : XpΓq Ñ H1{2pΣq defined by
Tdp puj , pjqnj�0 q :� uΣ is continuous and surjective.

Similarly, for every element ppjqnj�0 P X�1{2pΓq, there exists a unique

pΣ P H�1{2pΣq such that nΣ � p|Σ � pΣ for any p P Hpdiv,Rdq that satisfies
nj � p|BΩj � pj, j � 0 . . . n . Moreover the linear mapping Tn : XpΓq Ñ
H�1{2pΣq defined by Tnp puj , pjqnj�0 q :� pΣ is continuous and surjective.
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Proof: We prove only the first part of the proposition, as the proof of the
second part follows along the same lines. Assume that uΣ P H�1{2pΣq satisfies
V |Σ � uΣ for one particular V P H1pRdq such that V |BΩj � uj , @j � 0 . . . n.

If V 1 P H1pRdq also satisfies V |BΩj � uj , j � 0 . . . n, then V and V 1 coincide
on Σ since Σ � Ynj�0BΩj . Hence uΣ � V 1|Σ. This proves the uniqueness of
uΣ.

Let us construct the map Td explicitely. First, for every subdomain Ωj
we consider a continuous lifting operator Ej : H1{2pBΩjq Ñ H1pΩjq satisfying

γjd � Ejpvjq � vj . Then define E : X1{2pΓq Ñ L2pRdzΩΣq by combining the Ej
according to Ep pujqnj�0q|Ωj :� Ejpujq, j � 0 . . . n.

Actually EpX1{2pΓqq � H1pRdzΩΣq. Indeed, note that γkd � Ep pujqnj�0q �
uk for all k � 0 . . . n and for any choice of the uj ’s. Choose u :� pujqnj�0

arbitrarily in X1{2pΓq. There exists V P H1pRdq such that γjdpV q � uj �
γjdpEpuqq, which implies γjdpV �Epuqq � 0. From this we conclude Epuq�V P
H1pRdzΩΣq and finally Epuq P V �H1pRdzΩΣq � H1pRdzΩΣq.

Now consider any continuous extension operator rE : H1pRdzΩΣq Ñ
H1pRdq such that rEpV q|RdzΩΣ

� V . Whenever u � puj , pjqnj�0 belongs to

XpΓq, we have in particular pujqnj�0 P X1{2pΓq, so we can define

TdpUq :� �
γΣ

d � rE � E�� pujqnj�0

�
for any u � puj , pjqnj�0 P XpΓq .

With this definition, Td is clearly continuous. In addition, it fulfills the other

requirements: setting V � rE � E � pujqnj�0

�
we have V P H1pRdq and V |BΩj �

uj , j � 0 . . . n, by construction. In particular, this implies that uΣ � V |Σ �
TdpUq. l

The following elementary result generalizes [11, Eq. (2.2)] and [12, Theo-
rem 3.1] and it will be crucial for many manipulations.

Proposition 3.2. Define the continuous operator T : XpΓq Ñ HpΣq by the
formula Tpuq � pTdpuq,Tnpuqq. Then we have

ru, vs � � rTpuq,TpvqsΣ @u, v P XpΓq .
Proof: According to the explicit expression of r , s and r , sΣ given by (3.2)
and (3.4), it suffices to show that, whenever u � puj , pjqnj�0 P XpΓq and
v � pvj , qjqnj�0 P XpΓq, we have

ņ

j�0

〈uj , qj〉j � � 〈Tdpuq,Tnpvq〉Σ and
ņ

j�0

〈vj , pj〉j � � 〈Tnpuq,Tdpvq〉Σ .

We will prove only the first identity above, as the second can be shown
in exactly the same manner, exchanging the roles of u and v. First of all
note that pujqnj�0 P X1{2pΓq since u P XpΓq, and pqjqnj�0 P X�1{2pΓq since

v P XpΓq. In addition, according to Proposition 3.1, there exist G P H1pRdq
and h P Hpdiv,Rdq such that

G|BΩj � uj , G|Σ � Tdpuq and nj � h|BΩj � qj , nΣ � h|Σ � Tnpvq .
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As a consequence, applying Green’s formula in each Ωj , ΩΣ and then in Rd,
we obtain

〈Tdpuq,Tnpvq〉Σ �
ņ

j�0

〈uj , qj〉j

�
»

ΩΣ

divphqG� h �∇Gdx�
ņ

j�0

»
Ωj

divphqG� h �∇Gdx

�
»
Rd

divphqG� h �∇Gdx � 0 .

l

3.2 Review of potential operators

In this paragraph we recapitulate well-known results concerning the
integral representation of solutions of the homogeneous Helmholtz equation in
Lipschitz domains. Detailed proofs can be found, for example, in [32, Chap.3].

Let the function Gκpxq designate the κ-outgoing fundamental solution
for the Helmholtz operator �∆ � κ2. For each subdomain Ωj , for any u �
pu, pq P HpBΩjq and any x P RdzBΩj , define the single/double layer potential
operators by3

SLjκppqpxq :�
»
BΩj

ppyqGκpx� yq dσpyq ,

DLjκpuqpxq :� �
»
BΩj

upyqnjpyq �∇y

�
Gκpx� yq � dσpyq ,

Gjκpuqpxq :� DLjκpuqpxq � SLjκppqpxq , x R BΩj .

(3.7)

The operator Gjκ defined above maps continuously HpBΩjq into H1
locp∆,Ωjq�

H1
locp∆,RdzΩjq, see [32, Thm 3.1.16]. In particular Gjκ can be applied to a

pair of traces, i.e. Cauchy traces, of the form u � γjpV q. This potential
operator can be used to write a representation formula for solutions of the
homogeneous Helmholtz equation, see [32, Thm 3.1.6].

Proposition 3.3. Let U P H1
locpΩjq satisfy ∆U � κ2

jU � 0 in Ωj. In addition,
assume that U is κj-outgoing, if j � 0. Then we have the representation
formula

Gjκj pγjpUqqpxq �
#
Upxq for x P Ωj ,

0 for x P RdzΩj .
Similarly, if V P H1

locpRdzΩjq satisfies ∆V � κ2
jV � 0 in RdzΩj, as well as a

radiation condition in the case j � 0, then we have Gjκj pγjpV qqpxq � �V pxq
for x P RdzΩj, and Gjκj pγjpV qqpxq � 0 for x P Ωj.

3We point out that in order to maintain symmetry of formulas our choice of signs differs
from what is commonly adopted in the literature.
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The potential operator Gjκ also satisfies a remarkable identity, known as jump

relations, describing the relationship of traces of Gjκj puq from both sides of

BΩj . Using the jump operator for Cauchy traces rγjs :� γj � γjc , they can
concisely be expressed as

rγjs � Gjκj pujq � uj @uj P HpBΩjq , j � 0, . . . , n . (3.8)

We refer the reader to [32, Thm.3.3.1] (the jump formulas are often given in
the form of four equations in literature). Proposition 3.3 shows that, if U is
solution to a homogeneous Helmholtz equation in Ωj (and is κj-outgoing, if

j � 0) then
�
γj �Gjκj

�pγjpUqq � γjpUq. This actually provides a caracteriza-

tion of solutions of the homogeneous Helmholtz equation, cf. [11, Prop. 3.2],
[27, Thm. 3.1.3], [32, Sect. 3.6].

Proposition 3.4. Define the space of Cauchy data

CκpBΩjq :� tγjpUq | U P H1
locpΩjq and ∆U � κ2U � 0 in Ωj ,

U κj-outgoing, if j � 0 u .
Then γj �Gjκ : HpBΩjq Ñ HpBΩjq is a continuous projector, called the interior
Calderón projector of Ωj, whose range coincides with CκpBΩjq, i.e. for any
uj P HpBΩjq

γj � Gjκpujq � uj ðñ uj P CκpBΩjq .
For a detailed proof of this proposition, see [32, Prop. 3.6.2]. This characteri-
zation of Cauchy traces of (outgoing) Helmholtz solutions is instrumental for
deriving direct boundary integral equations for the subdomains Ωj . The next
lemma gives another caracterization of the space of Cauchy data, which was
established in [11, Lemma 6.2].

Lemma 3.5. Consider any j � 0, . . . n, and any κ ¡ 0. Then for any uj P
HpBΩjq we have

uj P CκpBΩjq ðñ ruj , vjsj � 0 @vj P CκpBΩjq . (3.9)

Applying traces to potentials yields boundary integral operators. In our com-
pact notation, the crucial local boundary integral operators are

Ajκj :� tγju � Gjκj
:� 1

2 pγj � γjc q � Gjκj �
��Kj Vj

Wj K1j



, j � 0, . . . , n .

(3.10)

We adopted the notations of [32, Sect. 3.1] for the atomic boundary integral
operators, the double layer operators Kj , the single layer operators Vj , the
adjoint double layer operators K1j , and the hypersingular boundary integral
operators Wj .

The operators Ajκj satisfy an intriguing symmetry property, which seems

to be well known in literature, see for example [4, Thm 3.9] (that concerns
the Maxwell case, though). Since, apparently, the proof for acoustic waves is
not published, we give it for the sake of completeness.
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Lemma 3.6. For any j � 0, . . . , n, and any wave number κj we have,�
Ajκj pujq, vj

�
j
�

�
Ajκj pvjq, uj

�
j

@uj , vj P HpBΩjq .

Proof: This result is just a consequence of the jump formulas (3.8), as well
as of Lemma 3.5 applied repeatedly in Ωj and RdzΩj :�

Ajκj uj , vj

�
j

(3.10)�
�
tγjuGjκj uj , vj

�
j

(3.8)�
�
tγjuGjκj uj , rγjsGjκj vj

�
j

(3.9)� �
�
γj Gjκj uj , γ

j
c G

j
κj vj

�
j
�
�
γjc G

j
κj uj , γ

j Gjκj vj

�
j

(3.9)� �
�
rγjsGjκj uj , tγjuGjκj vj

�
j

(3.8)�
�
tγjuGjκj vj , uj

�
j

(3.10)�
�
Ajκj vj , uj

�
j
.

l

Another symmetry of potentials and their traces applies to the coupling be-
tween different subdomains:

Lemma 3.7. Take two arbitrary subdomains Ωj ,Ωk with j � k, any wave
number κ0. We have�

γj Gkκ0
pvkq, vj

�
j
� �

γk Gjκ0
pvjq, vk

�
k

@vj P HpBΩjq, @vk P HpBΩkq .

Proof: First of all, applying Lemma in 3.5 in Ωj yields�
γj Gkκ0

pvkq, vj
�
j
�

�
γj Gkκ0

pvkq, rγjsGjκ0
pvjq

�
j
� �

�
γj Gkκ0

pVkq, γjc Gjκ0
pVjq

�
j
.

Consider two Cauchy traces wj � pwjqqnq�0, wk � pwkq qnq�0, defined by the
following formulas (with α � j, k)

wαq :� γq Gακ0
pvαq for q � α, wαα :� γαc Gακ0

pvαq .
With these notations�

γj Gkκ0
pukq, γjc Gjκ0

pvjq
�
j
�

�
wkj ,w

j
j

�
j
.

Observe that wj ,wk P XpΓq. As a consequence, we can apply Proposition 3.2
and obtain �

wkj ,w
j
j

�
j
� � �

Tpwkq,Tpwjq�
Σ
�

¸
q�0...n
q�j

�
wkq ,w

q
j

�
q
.

In addition, note that wjq,w
k
q P Cκ0

pBΩqq for q � j, k, and similarly Tpwjq,Tpwkq
P Cκ0pBΩΣq. Now we apply Lemma 3.5 on BΩq for q � j, k and on BΩΣ, which
shows that all the terms vanish on the right hand side of (3.2), except the one
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associated to q � k. This yields
�
wkj ,w

j
j

�
j
�

�
wkk,w

j
k

�
k
. Finally we conclude

the proof by applying Lemma 3.5 once more in Ωk to obtain�
wkk,w

j
k

�
k
�

�
γkc G

k
κ0
pvkq, γk Gjκ0

pvjq
�
k

� �
�
rγksGkκ0

pvkq, γk Gjκ0
pvjq

�
k
� �

γk Gjκ0
pvjq, vk

�
k
. l

Since we will also use potential operators SLΣ
κ , DLΣ

κ and GΣ
κ that are defined

by (3.7) with Ωj replaced by ΩΣ, we would like to mention that all the above
results also hold for the subdomain ΩΣ.

4 Classical single-trace formulation of the first kind

Now we present a first direct boundary integral formulation for Problem
(2.2). This first formulation was already introduced and analysed in [37].
Since it is pivotal for our later developments, we recall its derivation and
main properties.

4.1 Boundary and transmission conditions

The classical single-trace formulation takes into account the homoge-
nous Dirichlet boundary conditions (2.2c) on Σ by incorporating them into
the variational space. Set u :� pγjpUqqnj�0 where U is the unique solution
to Problem (2.2). To arrive at an integral equation formulation, one first
enforces the transmission conditions across the interfaces, and the Dirichlet
boundary conditions on Σ by demanding that u P X0pΓq where

X0pΓq :� t u P XpΓq | Tdpuq � 0 u . (4.1)

Note that in the case n � 0 where Rd � Ω0 Y ΩΣ and Γ � Σ, this space is
simply given by X0pΓq � t0u � H�1{2pΣq. Thanks to the continuity of Td :
XpΓq Ñ H1{2pΣq, the space X0pΓq is a closed subspace of XpΓq. In addition,
the function U P H1

locp∆,RdzΩΣq satisfies the boundary and transmission
conditions in (2.2), if and only if pγjpUqqnj�0 P X0pΓq. In order to impose these
conditions in a variational manner, one may rely on the following elementary
characterization of X0pΓq.
Lemma 4.1. For any u P HpΓq, we have,

u P X0pΓq ðñ ru, vs � 0 @v P X0pΓq.
Proof: Let u P X0pΓq. Take any element v P X0pΓq. Denote by u, v P H1{2pΣq
and p, q P H�1{2pΣq the traces such that Tpuq � pu, pq and Tpvq � pv, qq.
According to the definition of X0pΓq we must have u � v � 0. Applying
Proposition 3.2, we obtain

ru, vs � � rTpuq,TpvqsΣ � 〈0, q〉Σ � 〈0, p〉Σ � 0 .

Now assume that u P HpΓq satisfies ru, vs � 0, for all v P X0pΓq. It is a
direct consequence of Proposition 7.1 in [11] that actually u P XpΓq (note
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that notations are different in [11]). Let u P H1{2pΣq and p P H�1{2pΣq satisfy
Tpuq � pu, pq. Take any trace q P H�1{2pΣq and consider q P Hpdiv,Rdq such
that nΣ �q|Σ � q. Finally denote qj :� nj �q|BΩj and set v � p0, qjqnj�0. Clearly

v P XpΓq since q P Hpdiv,Rdq, and Tdpvq � 0,Tnpvq � q by construction, so
v P X0pΓq. Finally we obtain

0 � ru, vs � � rTpuq,TpvqsΣ � � 〈u, q〉Σ .

Since this holds for every q P H�1{2pΣq, we finally conclude that u � Tdpuq �
0, which implies u P X0pΓq. l

4.2 Integral formulation

Define uinc :� pγ0pUincq, 0, . . . , 0q. According to the characterization of
Cauchy data given by Proposition 3.4, the trace u :� pγ0U, . . . , γnUq of a
solution U of the boundary transmission problem (2.2) satisfies

p�Id{2� Aqpu� uincq � 0 ,

where the operator A : HpΓq Ñ HpΓq is defined subdomain-wise by

Apuq :� p Ajκj pujq qnj�0 � p tγju � Gjκj pujq qnj�0

�

�����������

A0
κ0

0 � � � 0

0 A1
κ1

. . .
...

...
. . .

. . . 0

0 � � � 0 Anκn

�����������
�

�����������

u0

...

...

un

�����������
,

(4.2)

for u � pu0, . . . , unq P HpΓq. Summing up, Problem (2.2) spawns the boundary
integral equations

u P X0pΓq such that p�Id{2� Aqpu� uincq � 0 . (4.3)

To cast Equation (4.3) into a variational form, one must first test it with suit-
able traces. Choosing test traces v P X0pΓq, and taking into account Lemma
4.1, we see that if u satisfies (4.3), then it also solves the STF variational
formulation [12, Eq. (3.19)]$&% find u P X0pΓq such that

rApuq, vs � � �
uinc, v

� @v P X0pΓq .
(4.4)

It was established, in [37, §4.1], that the bilinear form pu, vq ÞÑ rApuq, vs sati-
fies a generalized G̊arding inequality, see also [13, Thm. 3.4], [11, Thm. 10.4],
[12, Thm. 3.3].
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Proposition 4.2. Let the isometric isomorphism Θ : HpΓq Ñ HpΓq be defined
by4 Θpvq :� p�vj , qjqnj�0 for v � pvj , qjqnj�0 P HpΓq. There exists a compact
operator K : HpΓq Ñ HpΓq, and a constant β ¡ 0 such that

| rpA�Kqv,Θpvqs | ¥ β}v}2HpΓq @v P HpΓq .
A direct consequence of this proposition is that the operator A : X0pΓq Ñ

X0pΓq is of Fredholm type with index 0. As a consequence, dimpkerpAqq is
finite and will depend on the wave numbers κ0, κ1, . . . , κn. Fredholm alterna-
tive arguments [32, Sect. 2.1.4] bear out that injectivity of A already ensures
stability of the variational problem (4.4).

Corollary 4.3. If kerpAq � t0u then there is α ¡ 0 such that

inf
uPX0pΓq

sup
vPX0pΓq

| rApuq, vs |
}u}HpΓq}v}HpΓq ¡ α and

inf
vPX0pΓq

sup
uPX0pΓq

| rApuq, vs |
}u}HpΓq}v}HpΓq ¡ 0 .

(4.5)

The link between the STF variational formulation (4.4) and the transmission
boundary value problem (2.2) has been established in [37, §4.1]:

Proposition 4.4. Provided that kerpAq � t0u, the traces u � pγjpUqqNj�0 solve

(4.4), if and only if U P L2
locpRdzΩΣq is solution to (2.2), where Upxq is

defined by

Upxq :� Uincpxq � G0
κ0
pu0qpxq for x P Ω0 ,

Upxq :� Gjκj pujqpxq for x P Ωj , j � 1, . . . , n .
(4.6)

4.3 Spurious resonances

As mentioned in the introduction, an important drawback of Formula-
tion (4.4), is the possibility that kerpAq � t0u, which is commonly referred to
as “spurious resonance phenomenon” in literature. Of course, this is highly
undesirable, because, in case kerpAq � t0u, then (4.4) is not well posed,
whereas Problem (2.2) always has a unique solution. In this section, we ex-
amine in what situations spurious resonances can occur. First of all, we need
to establish an auxiliary result.

Lemma 4.5. Let u � pu0, . . . , unq P X0pΓq satisfy rApuq, vs � 0 for all v P
X0pΓq, and set Wjpxq � Gjκj pujqpxq, x P RdzΩj Then, for each j � 0 . . . n,

we have Wj � 0 on any connected component of RdzΩj that does not coincide
with ΩΣ.

Proof: The proof takes the cue from [37, Sect. 2] and combines elements of
the proofs of [12, Lemma 3.4], [11, Prop. A.1]. We split it into three steps.

4We use overbars to designate complex conjugation.
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Ê Let u satisfy the assumptions of the lemma and define Wj as above.
By the definition of A and Lemma 4.1 (ñ) we conclude

rApuq, vs �
ņ

j�0

�
γjc pWjq, vj

�
j
� 0 @v P X0pΓq .

Appealing to Lemma 4.1 (ð), this implies that

w :� pγjc pWjqqnj�0 P X0pΓq . (4.7)

Ë Next we establish that Wj � 0 in any unbounded connected compo-
nent of RdzΩj . To see this, note that for any j � 0 . . . n, we have ∆Wj �
κ2
jWj � 0 in RdzΩj and Wj is κj-outgoing (radiating). Take ρ ¡ 0 large

enough to ensure that RdzΩ0 � Bρ, where Bρ � Rd denotes the ball centered

at 0 with radius ρ. Applying Green’s formula in BρzΩj for j � 0 . . . n yields»
BBρ

WjBrW j dσ �
»

BρzΩj

|∇Wj |2 � κ2
j |Wj |2 dx�

»
BΩj

γjd,cpWjqγjn,cpW jq dσ

0 �
»

BρzΩ0

|∇W0|2 � κ2
0|W0|2 dx�

»
BΩ0

γ0
d,cpW0qγ0

n,cpW 0q dσ

In the equations above, Br refers to the radial derivative. Take the imaginary
part of the identity above, and sum over j � 0 . . . n, taking into account that
w :� pγjc pWjqq0¤j¤n P XpΓq. This yields

ņ

j�1

Im
 »

BBρ

WjBrW jdσ
( � Im

 ņ

j�0

»
BΩj

γjd,cpWjqγjn,cpW jq dσ
(

� 1

2
Imt rw,ws u � 0.

In the last equality above we used Lemma 4.1. By construction, the functions
Wj are κj-outgoing radiating, so that 0 � limrÑ8

³
BBρ

|BrWj � iκjWj |2dσ.

As a consequence we obtain

ņ

j�1

1

κj

»
BBρ

|BrWj |2 � κ2
j |Wj |2 dσ

�
ņ

j�1

1

κj

»
BBρ

|BrWj � iκjWj |2dσ � 2
ņ

j�1

Im
! »

BBρ

WjBrW j dσ
)

�
ņ

j�1

1

κj

»
BBρ

|BrWj � iκjWj |2dσ ÝÑ
ρÑ�8

0 .

This shows in particular that limρÑ8

³
BBρ

|Wj |2dσ � 0 for all j � 1 . . . n. As

a consequence, we can apply Rellich Lemma, see Lemma 2.11 in [14], which
implies that Wj � 0 in the unbounded component of RdzΩj , j � 1 . . . n.

Ì Consider an arbitrary j P t0, . . . nu, and let Oj be a bounded connected

component of RdzΩj with Oj � ΩΣ. Since (i) ΩΣ,Ω0, . . . ,Ωn form a partition
of Rd, (ii) all these domains are connected, and (iii) RdzΩΣ is connected, we
find that



16 X.Claeys and R.Hiptmair


 Σ �� BOj ,

 there is a ` P t1, . . . , nu, ` �� j, such that Ωl � Oj and |BΩ` X BΩj | ¡ 0.

A typical situation is depicted in Figure 2. Hence, there exists xj P BOjXBΩ`
and an open ball D � Bpxj , ρjq, ρj ¡ 0, such that

DX BOj � DX BΩ` � H .

Ω2

Ω3

Ω1 ΩΣ

D

Figure 2. Geometrical situation for part Ì of the proof of
Lemma 4.5. Here j � 1, O1 � ΩΣ Y Ω2 Y Ω3 and ` � 3.

Since both Oj and Ωj are connected and bounded, the set RdzOj is unbounded
and connected. Thus, it is entirely contained in the unbounded connected
component of RdzΩ` that we denote by U`. From part Ë of the proof we
know that W` � 0 in U`.

Obviously, BU` � BΩ` as well as BOj � BΩj . Moreover we know that
D X BOj � D X BU` has positive measure. Since w � pγkc pWkqqnk�0 P X0pΓq
according to (4.7) from Part Ê of the proof, we deduce that onDXBOjXBU` �
BΩj X BΩ` holds

γjd,cpWjq � γ`d,cpW`q � 0

γjn,cpWjq � �γ`n,cpW`q � 0 on DX BOj X BU` .
This means that γjc pWjq � 0 on BOj X D. As ∆Wj � κ2

jWj � 0 in Oj , by
analytic continuation this implies Wj � 0 in Oj according to Lemma 2.2 in
[37]. l

Our final goal is to find sufficient and necessary conditions, under which the
assumptions of Lemma 4.5 imply u � 0. The next result teaches that we need
to examine the functions Wj outside Ωj .

Lemma 4.6. Let u P X0pΓq satisfy rA u, vs � 0 for all v P X0pΓq. Set Wjpxq :�
Gjκj pujqpxq, x R BΩj, and assume that γjc pWjq � 0 for all j � 0 . . . n. Then
u � 0.
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Proof: We have γjpWjq � rγjpWjqs � rγjs�Gjκj pujq � uj so pγjpWjqqnj�0 � u P
X0pΓq. Moreover, by construction ∆Wj�κ2

jWj � 0 in Ωj for all j � 0, . . . , n.

We conclude that V P H1
locpRdzΩΣq defined by V |Ωj � Wj |Ωj satisfies all

the equations of Problem (2.2) without incident field, Uinc � 0. Since this
transmission problem is well-posed V must vanish. Hence γjpWjq � 0 for all
j � 0 . . . n, and finally uj � rγjpWjqs � 0 for all j � 0 . . . n, i.e. u � 0. l

The previous lemma together with Lemma 4.5 sends the message that kerpAq �
t0u can occur only if ΩΣ agrees with a connected component of the comple-
ment of some subdomain. Now we describe a simple setting in which this is
the case.

Example ([33, Sect. 3.1]). Consider the case where n � 0, so that the scatterer
reduces to a single impenetrable part Rd � Ω0 Y ΩΣ, and Γ � BΩ0 � Σ, see
Figure 3. In this geometrical setting we have X0pΓq � t0u �H�1{2pΣq.

Choose κ0 P R� such that there exists V P H1p∆,ΩΣqzt0u that satisfies
∆V � κ2

0V � 0 in ΩΣ, and V � 0 on BΩΣ. The existence of such non-trivial
functions V is a classical consequence of spectral theory. Formulation (4.4)
then reduces to the well-known single-layer integral formulation of the first
kind: seek p P H� 1

2 pΓq such that〈
q, ptγ0

du � SL0
κ0
qppq〉

0
� � 〈q, γ0

dpUincq
〉

0
@q P H� 1

2 pΓq . (4.8)

Note that rγ0
ds � SL0

κ0
� 0 according to (3.8), so we have tγ0

du � SL0
κ0
� γ0

d,c �
SLκ0

. Coming back to the function V considered above, we have γ0
d,cpV q � 0

and γ0
n,cpV q � 0. In addition, a direct application of Proposition 3.3 yields

V pxq � � SL0
κ0
p γ0

n,cpV q qpxq for x P ΩΣ, so tγ0
du � SL0

κ0
p γ0

n,cpV q q � γ0
d,c �

SL0
κ0
p γ0

n,cpV q q � 0, which means that p :� γ0
n,cpV q �� 0 solves (4.8), although

Uinc � 0.

ΩΣ Ω0

Figure 3. Homo-
geneous impenetrable
scatterer giving rise
to an exterior Dirich-
let problem for the
Helmholtz equation.

Ω1ΩΣ Ω0

Figure 4. Situation
without spurious res-
onances, cf. Corol-
lary 4.7

We have assumed that RdzΩΣ is connected. Therefore it is evident, that, if
ΩΣ coincides with a bounded component of RdzΩj , the boundary Σ of ΩΣ

must be contained in BΩj .
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Corollary 4.7. Assume that Σ � BΩj for all j � 0 . . . n. Then, for any choice
of wave numbers satisfying (2.3), we have kerpAq � t0u

The insights we have gained so far are not exactly intuitive as demon-
strated by the following example.

Example. Consider Problem (2.2) where n � 1, so that Rd � Ω0 YΩ1 YΩΣ.
Assume that κ0 � κ1 so that the interface BΩ0 X BΩ1 is “artificial”. In fact,
we face the very same scattering problem as in Example 4.3 above. Suppose
that mespΣ X BΩ0q ¡ 0 and mespΣ X BΩ1q ¡ 0 like in Figure 4. Then, no
matter what the value of κ0 (even if κ0 P Sp∆,ΩΣq), there is no spurious
resonance!

The following lemma generalizes the observation made in Example 4.3.
In the interest of a concise statement we introduce the (discrete) set of interior
Dirichlet eigenvalues of �∆ on ΩΣ:

Sp∆,ΩΣq :�
"
κ ¡ 0 | DV P H1p∆,ΩΣqzt0u :

�∆V � κ2V in ΩΣ ,
V � 0 on BΩΣ

*
.

(4.9)

Theorem 4.8. For Problem (2.2), for any choice of wave numbers satisfying
(2.3), we have the equivalence

kerpAq � t0u ðñ

$'&'%
Σ � BΩj for a j P t0, . . . , nu

and

κj P Sp∆,ΩΣq

,/./- .

Proof: Without loss of generality assume that Σ � BΩ0 (the proof below can
easily be adapted to the case Σ � BΩj for j � 0).

Ê There exists a connected component O0 of RdzΩ0 such that Σ � BO0.
We necessarily have Σ � BO0, otherwise Σ would admit a boundary as a
Lipschitz manifold of dimension d�1, and this is not possible since Σ � BΩΣ.
The set RdzO0 is connected, it is contained in RdzΩΣ, and it is maximal

as a connected subset of RdzΩΣ. As a consequence RdzO0 � RdzΩΣ since
RdzΩΣ is assumed to be connected. In conclusion, ΩΣ is exactly one bounded
connected component of RdzΩ0. In particular, ΩΣ is separated from the other
subdomains Ωj , j � 1, . . . , n:

ΩΣ XYnj�1Ωj � H. (4.10)

Ë Assume first that κ0 P Sp∆,ΩΣq. As in Example 4.3, consider a
function V P H1pΩΣqzt0u such that ∆V � κ2

0V � 0 in ΩΣ, and V � 0
on Σ. Consider u0 � pu0, p0q P HpBΩ0q with u0 � 0, p0 � 0 on BΩ0zΣ,
and p0 � γΣ

n pV q �� 0 on Σ. Applying Proposition 3.3 to V , we see that

G0
κ0
pu0qpxq � SLΣ

κ0
pp0qpxq � 0 for x P Ω0 � RdzΩΣ, so that γ0

d SL
Σ
κ0
pp0q � 0.

Now set u � pu0, 0, . . . , 0q P X0pΓqzt0u. For any v � pv0, . . . , vnq P X0pΓq we
have

rApuq, vs � �
γ0 SL0

κ0
pp0q, v0

�
0
� 〈γ0

d SL
0
κ0
pp0q, q0

〉
0
� 0 ,
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where v0 � p0, q0q on Σ. Hence, u P KerpAqzt0u.
Ì Now assume that κ0 R Sp∆,ΩΣq. We have to confirm that necessarily

u � 0. Thanks to Lemma 4.5 Wj � 0 in RdzΩj for j � 1 . . . n, and W0 � 0

in RdzpΩ0 Y ΩΣq, which implies

γjc pWjq � 0 for j � 1 . . . n, and γ0
c pW0q|BΩ0zΣ � 0 .

Now let us show that γ0
c pW0q � 0 on Σ as well, i.e. γΣpW0q � 0. We al-

ready know that, with w from (4.7), Tdpwq � γΣ
d pW0q � 0 since w P X0pΓq.

According to Proposition 3.3, we have

W0pxq � �G0
κ0
pγ0
c pW0qqpxq � GΣ

κ0
pTpwqqpxq � SLΣ

κ0
pTnpwq qpxq

for all x P ΩΣ � RdzΩ0. So we conclude that 0 � γΣ
d pW0q � γΣ

d �SLΣ
κ0
pTnpwq q.

It is well known, see for example [32, Thm. 3.9.1], that KerpγΣ
d SLκ0

q � t0u,
if κ0 R Sp∆,ΩΣq, hence we finally conclude that Tnpwq � γ0

n,cW0 � 0, which

means γ0
c pW0q � 0. To finish the proof we apply Lemma 4.6. l

5 Single-trace combined field integral equation

We have discovered that the STF (4.4) is free of spurious resonnance
except for the situation Σ � BΩj . As a remedy we are going to devise an
augmented STF taking the cue from the CFIE approach already mentioned
in the Introduction. We will not restrict ourselves to geometries that allow
spurious resonances because, if Σ is largely contained in BΩj with the excep-
tion of a small section, discretizations of the STF may already suffer from
poor conditioning. Thus, even when spurious resonances cannot occur, the
CFIE augmentation may enhance numerical stability!

The classical CFIEs resort to simple complex combinations of Dirichlet
and Neumann traces, ignoring the fact that they belong to different function
spaces. This compounds the difficulties of a rigorous analysis of the resulting
boundary integral equations. We refer to the discussion in [3, Sect. 3.1 ]. This
problem can be overcome by using regularized CFIE that rely on compact
operators which map between Dirichlet and Neumann traces. This was first
employed for theoretical investigations [28] and, more recently, used for the
design of stable Galerkin boundary element methods [5, 3, 22, 23, 35, 2]. Our
approach is inspired by [3].

5.1 Transformed traces

The principle of regularized CFIE boils down to enforcing generalized
impedance (Robin type) boundary conditions for potentials on Σ. As in [3,
Sect. 3.2], these impedance boundary conditions rely on a regularizing linear
operator M : H�1{2pΣq Ñ H�1{2pΣq that satisfies

(i) M is compact , (5.1a)

(ii) Imt〈ϕ,Mϕ〉Σu ¡ 0 @ϕ P H�1{2pΣqzt0u . (5.1b)
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There exist many operators satisfying (i)-(ii). Indeed if M̃ is any second order
strongly coercive real symmetric surface differential operator on Σ, then M �
�ı M̃ matches these conditions. The particular choice M � �ı p∆Σ � Idq�1

will be further commented in §5.4. Based on M we define the space of traces
complying with generalized impedance boundary conditions

XMpΓq :�  
u P XpΓq | Tdpuq � MTnpuq

(
. (5.2)

Appealing to the duality of the trace spaces H�1{2pΣq and H�1{2pΣq we can
define the adjoint regularizing operator M� : H�1{2pΣq Ñ H�1{2pΣq by the
formula 〈

q,M� p
〉

Σ
:� 〈p,M q〉Σ @p, q P H�1{2pΣq . (5.3)

It is immediate that M� satisfies (5.1), if and only if M does. As a consequence,
we can define the space XM�pΓq analogously to (5.2). It can be used to obtain
a weak characterization of XMpΓq:
Lemma 5.1. For any u P HpΓq, we have u P XMpΓq ðñ ru, vs � 0 @v P
XM�pΓq.
Proof: Ê(ñ) From Proposition 3.2 and (3.4) we obtain the identity

ru, vs � 〈Tnpuq,Tdpvq〉Σ � 〈Tdpuq,Tnpvq〉Σ , u, v P XpΓq . (5.4)

For u P XMpΓq we infer

ru, vs � 〈Tnpuq,Tdpvq〉Σ � 〈MTnpuq,Tnpvq〉Σ
�

〈
Tnpuq,

�
Tdpvq �M� Tnpvq

�looooooooooomooooooooooon
�0

〉
Σ

� 0 @v P XM�pΓq .

Ë(ð) To begin with, as in the proof of [12, Thm. 3.1], we conclude with
(5.4) that u P XpΓq. Then, for v P XM�pΓq, (5.4) becomes

ru, vs � 〈Tnpuq,M� Tnpvq
〉

Σ
� 〈Tdpuq,Tnpvq〉Σ � 〈pTdpuq �MTnpuqq,Tnpvq〉Σ .

As Tn is surjective, the second assertion of the lemma follows. l

The regularizing operator will enter the definition of a trace transforma-
tion R : XpΓq Ñ XpΓq that realizes an isomorphism of the form “iden-
tity + compact”. Its definition involves a continuous extension operator
EΣ : H� 1

2 pΣq Ñ H1pRdq that furnishes a right inverse of the trace γΣ
d . Then

we define

R � Id� C , C :� ��
γjd � EΣ �M �Tn, 0

��n
j�0

, (5.5)

where C : XpΓq Ñ XpΓq inherits compactness from M.

Lemma 5.2. R is an isomorphism and we have RpX0pΓq q � XMpΓq.
Proof: Observe that C2 � 0, so that R�1 � Id � C, which proves the first
statement. Now let γd : H1pRdq Ñ XpΓq refer to the global trace operator
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defined by γdpuq � pγjdpuqqnj�0. Since Td �γd � EΣ � Id and TnpC uq � 0, we
easily see that for u P X0pΓq

TdpR uq �MTnpR uq � Tdpuqloomoon
�0

�MTnpuq �MTnpuq � 0 .

this shows that RpX0pΓq q � XMpΓq. We show in the same manner that
pId� CqpXMpΓq q � X0pΓq, which finishes the proof. l

Remark 5.3. If Σ � BΩj for some j P t0, . . . , nu, we can pick an extension
EΣ that is local in the sense that

supppEuq � ΩΣ Y ΣY Ωj , u P H�1{2pΣq . (5.6)

5.2 Direct single trace CFIE

The STF (4.4) is a direct BIE in the sense that its unknowns are Cauchy
traces of the solution of the transmission problem (2.2). This property is
preserved by the CFIE augmentation proposed in this section.

As in Section 4.2 let u � pujqnj�0 P X0pΓq denote the Cauchy traces of the

solution U of Problem (2.2) i.e. uj � γjpuq, j � 0, . . . , n. We have seen that
it satisfies the integral equation (4.3). The derivation of a direct combined
field integral equation starts from this identity and, as before, casts it into
a weak form similar to (4.4). However, this time we employ test functionsrv P XMpΓq instead of taking v P X0pΓq! We end up with: seek u P X0pΓq such
that �p�Id{2� Aqu,rv� �

ņ

j�0

�
γjc G

j
κj pujq,rvj�

j

� � �
uinc,rv� @rv P XMpΓq .

(5.7)

Thanks to Lemmas 5.2 and 4.1, an equivalent reformulation of (5.7) is

rp�Id{2� Aqu, pId� Cqvs � rA u, vs � cpu, vq
� � �

uinc, pId� Cqv� @v P X0pΓq ,
(5.8)

where we define the compact bilinear form c : XpΓq�XpΓq Ñ C according to

cpw, vq :� rp�Id{2� Aqw,C vs , w, v P XpΓq . (5.9)

Compactness of c is an immediate consequence of the compactness of C :
XpΓq Ñ XpΓq. We may also introduce the unique element ruinc P HpΓq such
that rruinc, vs � � �

uinc, pId� Cqv�. This makes it possible to write the direct
single trace CFIE in variational form:#

seek u P X0pΓq such that

rA u, vs � cpu, vq � � rruinc, vs @v P X0pΓq . (5.10)

Below we write aM for the bilinear form from (5.10). Obviously, (5.10) amounts
to a compact perturbation of (4.4) so that it preserves many key properties.
In particular, it satisfies a generalized G̊arding inequality analogous to Propo-
sition 4.2.
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Corollary 5.4. Recall the isomorphism Θ : HpΓq Ñ HpΓq from Proposi-
tion 4.2, defined by Θpvq � p�vj , qjqnj�0 for v � pvj , qjqnj�0 P HpΓq. The
bilinear form aM on the left side of (5.10) satisfies

| aMpv,Θpvqq � kpv,Θpvqq| ¥ β }v}2HpΓq @v P X0pΓq ,
with a compact sesqui-linear form k : XpΓq � XpΓq Ñ C.

Denote AM : X0pΓq Ñ X0pΓq1 the operator induced by aM. The previous
proposition shows that AM is of Fredholm type with index 0. Thanks to
Fredholm alternative arguments injectivity of AM is sufficient for stability of
the variational problem (5.10) (in the sense of an inf-sup condition like (4.5)).

Lemma 5.5. For any choice of the wave numbers κ0, . . . κn satisfying (2.3),
KerpAMq is trivial.

Proof: By and large, the proof runs parallel to that of Lemma 4.5 and The-
orem 4.8. Thus, some parts will only be sketched and for details the reader
may refer to Section 4.3.

Ê Pick u � pu0, u1, . . . , unq P X0pΓq such that it solves (5.7)/(5.8) with

uinc � 0. As in Section 4.3 we set Wjpxq � Gjκj pujqpxq and w :� �
γjcWj

�n
j�0

P
HpΓq, cf. (4.7). Since (5.7) with uinc � 0 implies

�
w,rv� � 0 for all rv P XMpΓq,

Lemma 5.1 confirms w P XM�pΓq.
Ë We exploit (5.1b) and exactly as in Step Ë of the proof of Lemma 4.5

we show that Wj � 0 in any unbounded connected component of RdzΩj .
Ì The arguments employed in Step Ì of the proof of Lemma 4.5 com-

pletely carry over to the present situation and confirm that Wj � 0 in any

connected component of RdzΩj that does not coincide with ΩΣ. This is the
counterpart of the statement of Lemma 4.5 for (5.10).

Í If Σ � BΩj for every j � 0, . . . , n, we find w � 0 as explained when
justifying Corollary 4.7. Then apply Lemma 4.6 and the proof is finished.

Î Assume Σ � BΩj for some j � 0, . . . , n. By above arguments all Wk,

k �� j, vanish on RdzΩk. However, Wj may not vanish on ΩΣ, recall Step Ë
of the proof of Theorem 4.8. However, from w P XM�pΓq we conclude

γΣ
d pWjq � M� γΣ

n pWjq .
Thus, In ΩΣ the function Wj satisfies ∆Wj�κ2

jWj � 0 in ΩΣ and γΣ
d pWjq �

M� γΣ
n pWjq. By Green’s formula, we obtain as in [3]

0 � Im
! »

ΩΣ

|∇Wj |2 � κ2
j |Wj |2dx

)
� Im

! »
Σ

γΣ
n pW jq �M� �γΣ

n pWjq dσ
)
.

According to property (5.1b) of M�, this implies γΣ
n pWjq � 0, hence γΣ

d pWjq �
M� γΣ

n pWjq � 0. Finally this yields γjc pWjq � 0 and Wj � 0 in ΩΣ, so that
we know w � 0. Appealing to Lemma 4.6 finishes the proof. l

As in Section 4.2, via Fredholm theory, from this lemma we conclude that
(5.10) always possesses a unique solution.
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Remark 5.6. In the case n � 0 of a single impenetrable scatterer the spaces
and operators reduce to

X0pΓq � t0u �H� 1
2 pΣq , A

(4.2)� A0
κ0
, C

(5.5)�
�
M �Tn

0



. (5.11)

As a consequence, with (3.10) the variational equation (5.8) becomes: seek
u � p0, p0q P X0pΓq��

� Id
2 �

��K0 V0

W0 K10



�
0
p0



,

�
Id�

�
0 M
0 0



�
0
q0


�

� �
��
uinc

pinc



,

�
Id�

�
0 M
0 0



�
0
q0


�
for all q0 P H� 1

2 pΣq. Owing to (3.2) and with uinc � puinc, pincq this is equiv-

alent to finding p0 P H� 1
2 pΣq such that

〈V0 p0, q0〉 �
〈p�Id{2� K10qp0,M q0

〉 � 〈uinc, q0〉 � 〈pinc,M q0〉
õ〈�

V0�M�p�Id{2� K10q
�
p0, q0

〉 � 〈uinc �M� pinc, q0

〉
,

for all q0 P H� 1
2 pΣq. This agrees with the regularized CFIE from [3, Sect. 4].

5.3 Indirect CFIE

Both the STF (4.4) and the regularized CFIE (5.10) are direct BIE,
since their unique solutions provide true Cauchy traces of the solution U of
(2.2). If the solution of a BIE does not agree with traces of the solution of the
related boundary value problem, it is classified as indirect. In [3, Sect. 3] a
regularized indirect CFIE was devised for the simple situation n � 0. In this
section we adapt this approach to the STF. We obtain a variational equation
that is dual to the direct CFIE introduced in the previous section.

The indirect CFIE stems from a representation of the solution to Prob-
lem (2.2) in the following form

Upxq � G0
κ0
pũ0qpxq � Uincpxq for x P Ω0,

Upxq � Gjκj pũjqpxq for x P Ωj , j � 1 . . . n,

where ũ � pũjqnj�0 P XMpΓq .

(5.12)

Admittedly, existence of such a representation of U is not obvious at first
glance. Assume for a moment that such a representation can be found. Then
the boundary and transmission conditions of Problem (2.2) can be expressed
as pγjpUqqnj�0 P X0pΓq. Using Lemma 4.1 and representation (5.12) yields

�
γ0pUincq, v0

�
0
�

ņ

j�0

�
γj Gjκj pũjq, vj

�
j
� 0 @v � pvjqnj�0 P X0pΓq . (5.13)
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Definition (3.10) together with the jump relations (3.8) give the equivalent
statement�

p1

2
Id� Aqũ, v

�
� � �

γ0pUincq, v0

�
0

@v � pvjqnj�0 P X0pΓq . (5.14)

Thanks to Lemma 5.2 there exists u � pu0, . . . , unq P X0pΓq such that ũ �
R u � pId�Cqu. Plugging this into (5.14), and taking account of the definition
of uinc and Lemma 4.1, we obtain

rApuq, vs �
�
pA�1

2
IdqC u, v

�
� � �

uinc, v
� @v P X0pΓq . (5.15)

Clearly, this equation is a perturbed version of Formulation (4.4). Introduce
the bilinear form

c1pw, vq :�
�
pA�1

2
IdqCw, v

�
, (5.16)

the variational problem of the indirect single trace CFIE can be stated as:#
seek u P X0pΓq such that

rA u, vs � c1pu, vq � � ruinc, vs @v P X0pΓq .
(5.17)

Lemma 5.7. We have c1pw, vq � cpv,wq for all v,w P X0pΓq.

Proof: This is an immediate consequence of the definitions (5.9), (5.16), of
Lemma 3.6, and of the skew-symmetry of the pairing r�, �s. l

Corollary 5.8. For any choice of the wave numbers κ0, . . . κn satisfying (2.3),
the indirect single trace CFIE (5.17) has a unique solution.

Proof: Lemma 5.7 tells us that the bilinear forms of (5.17) and (5.10) are
adjoint to each other. As a consequence, Corollary 5.4 and Lemma 5.5 carry
over to (5.17) verbatim. A Fredholm alternative argument clinches the case.
. l

The previous proposition makes clear that Formulation (5.17) is always
well posed. Now, assume that u is defined as the solution to Formulation
(5.17). Undo the substitution made above by setting ũ � R�1 u � pId� Cqu.
Then, by construction, the function U defined by (5.12) solves Problem (2.2)
and coincides with its unique solution. Ultimately, this proves that a repre-
sentation according to (5.12) can always be found for a solution of Problem
(2.2). In addition, by means of (5.12) the field can be recovered.

Remark 5.9. In the case n � 0 already discussed in Remark 5.6 the variational
problem (5.17) boils down to the indirect CFIE derived in [3, Sect. 3].



Integral Equations for Partially Impenetrable Objects 25

5.4 Mixed variational formulations

A convenient concrete choice for an operator M satisfying (5.1a) and
(5.1b) was proposed in [3, Sect. 4], namely M � p∆Σ � Idq�1 : H�1pΣq Ñ
H1pΣq, where ∆Σ stands for the Laplace-Beltrami operator on the closed
surface Σ. The variational definition of this operator reads:

Mϕ P H1pΣq : dΣpMϕ, vΣq � �ı 〈ϕ, vΣ〉Σ @vΣ P H1pΣq, ϕ P H�1pΣq ,
(5.18)

with sesqui-linear form (gradΣ is the surface gradient on Σ)

dΣpz, vq :�
»

Σ

gradΣ z � gradΣ v � z v dS , z, v P H1pΣq . (5.19)

Compactness of M : H�1{2pΣq Ñ H�1{2pΣq is immediate from the continuity
M : H�1pΣq Ñ H1pΣq and the compact embeddings H�1{2pΣq � H�1pΣq and
H1pΣq � H�1{2pΣq. This operator is also symmetric in the sense that

〈Mϕ,ψ〉Σ � 〈Mψ,ϕ〉Σ , ϕ, ψ P H�1pΣq . (5.20)

The bilinear forms of the variational formulations (5.10) and (5.15) of
single-trace CFIEs involve evaluations of M. With Galerkin boundary element
discretization in mind, it is desirable to avoid these and rely on the variational
definition of M instead. As in [3, Sect. 4.2 & Sect. 3.2], this can be achieved
by introducing auxiliary variables. In light of Lemma 5.7 we will restrict the
discussion to the direct formulation (5.8). Using (4.2), the bilinear form c
from (5.9) can be rewritten as (w, v P X0pΓq)

cpw, vq �
ņ

j�0

���Id{2� Ajκj
�
wj ,

�
C v

�
j

�
j
� � 1

2 rw,C vs �
ņ

j�0

�
Ajκj wj ,

�
C v

�
j

�
j

À� 1
2 rTw,TpC vqsΣ �

ņ

j�0

〈�
Ajκj wj

�
n
, γjd EΣ MpTn vq

〉
j

Á� �1

2
〈Tnpwq,MpTn vq〉Σ �

ņ

j�0

〈
pγjd EΣq1

�
Ajκj wj

�
n
,MpTn vq

〉
Σ

Â�
A
M
�
� 1

2 Tnpwq �
ņ

j�0

pγjd EΣq1
�
Ajκj wj

�
n

	
,Tnpvq

E
Σ

In step À we appeal to Proposition 3.2 for the first term and use the no-
tation p�qn to extract the Neumann component of Cauchy traces. We also
exploit that C v has vanishing Neumann component and the definition (5.5)

of C. The step Á uses that Td �EΣ � Id and the adjoint operator pγjd EΣq1 :
H�1{2pBΩjq Ñ H�1{2pΣq. In Â we apply (5.20). These manipulations suggest
that we introduce the new unknown

zΣ :� M
�
� 1

2 Tnpwq �
ņ

j�0

pγjd EΣq1
�
Ajκj wj

�
n

	
P H1pΣq , (5.21)
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which satisfies

dΣpzΣ, vΣq �
〈
� 1

2 Tn w�
ņ

j�0

pγjd EΣq1
�
Ajκj wj

�
n
, vΣ

〉
Σ

� � 1
2 〈Tn w, vΣ〉Σ �

ņ

j�0

〈�
Ajκj wj

�
n
, γjd EΣpvΣq

〉
j

@vΣ P H1pΣq .

(5.22)

By means of zΣ we can express cpw, vq � 〈zΣ,Tn v〉Σ, which converts the
variational problem (5.10) of the direct single-trace CFIE into mixed form:
seek u P X0pΓq, zΣ P H1pΓq such that, @v P X0pΓq, @vΣ P H1pΣq,

rA u, vs � 〈zΣ,Tn v〉Σ � �rruinc, vs ,@
1
2 Tnpuq �

n°
j�0

pAjκj ujqn, γjd EΣpvΣq
D

Σ
� dΣpzΣ, vΣq � 0 .

(5.23)

This variational problem inherits coercivity from (5.10), because the com-
pact embedding H1pΣq � H�1{2pΣq renders the off-diagonal operators of
(5.23) compact. Uniqueness also carries over from (5.10). Moreover, (5.23)
is amenable to Galerkin discretization by means of standard boundary el-
ements, for instance, piecewise linear continuous functions on a triangular
surface mesh of Σ for the approximation of zΣ.

6 Multi-trace Combined Field Integral Equations

As pointed out in the Introduction, a shortcoming of the classical single-
trace formulation (4.4) and also of its stabilized versions(5.10) and (5.17)
is the tight coupling between subdomains implicit in the use of the single
trace variational space X0pΓq, which contains the transmission conditions ”in
strong form”. This limits flexibility in using Galerkin trial spaces locally on
the subdomains. More severely, it turned out to be a big obstacle to the
use of operator preconditioning techniques. We skip a detailed explanation
here and recommend that the reader study [12, Sect. 4]. We only quote the
conclusion drawn in [12] and [13] that switching to variational formulations
posed on decoupled local trace spaces will pave the way for effective operator
preconditioning.

This has been the main motivation behind the development of so-called
multi-trace formulations (MTFs). Here the expression “multi-trace” refers
to a family of BIE where the unknowns are doubled on each interface that
separates two (bounded) subdomains. In [11] and [12, Sect. 5] a global MTF
was devised based on the classical STF (4.4). In this section we are going to
derive and study its CFIE counterpart related to the formulations that we
have established in Sections 4 and 5.
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6.1 The gap idea

The global MTF was discovered through a heuristic geometric limit pro-
cess, which is elucidated and justified in [11, Sect. 5], [12, Sect. 5.2], and [13,
Sect. 4.2]. Tersely speaking, we imagine an (infinitely) narrow gap between
bounded subdomains Ωj , j � 1, . . . , N , including ΩΣ. This gap is filled with
the same ambient medium as Ω0, see Figure 5 for an illustration. For this
arrangement where all bounded subdomains are isolated from each other we
consider variational single trace formulations. Sloppily speaking, the corre-
sponding global MTFs then boil down to STFs applied to gap configurations
with vanishing gap.

Ω1

Ω2

ΩΣ

Ω0

ñ

Ω1

Ω2

ΩΣ

Ω0

Figure 5. Illustration of the gap idea (gap highlighted)

Recalling Theorem 4.8, the alert reader will have noticed that the gap con-
figuration as in Figure 5 (right) is exactly the situation, in which spurious
resonances may afflict the classical STF (4.4), because Σ � BΩ0. More pre-
cisely, uniqueness of solutions will be lost, if κ0 P Sp∆,ΩΣq, where the latter
set comprises the interior Dirichlet eigenvalues for �∆ on ΩΣ, see (4.9). Thus,

(E1). we expect that the standard global MTF will suffer from spurious
resonances whenever κ0 P Sp∆,ΩΣq.

On the other hand,

(E2). we also expect that the MTFs we obtain from pursuing the gap
construction for CFIE extensions of the STF, will be stable for all com-
binations of wave numbers.

This hope relies on Lemmas 5.5 and Corollary 5.8. In the sequel we give rig-
orous justifications of our conjectures. We are not going to employ vanishing
gap arguments, which entail difficult geometric limit processes, but directly
scrutinize the variational formulations as in [11].

In the gap setting (Figure 5, right) we face a partitioning BΩ0 � Ynj�1BΩjY
Σ so that, in this special case, the variational space X0pΓq from (4.1) for the
STF variational formulations is clearly isomorphic to a product of Cauchy
trace spaces on the subdomain boundary and Neumann traces on Σ:pHpΓq :� HpBΩ1q � � � � �HpBΩnq �H� 1

2 pΣq . (6.1)



28 X.Claeys and R.Hiptmair

This space will supply the functional framework for the global MTF, including
for general configurations (such as in Figure 5, left). The main difference

between pHpΓq and the space HpΓq introduced in (3.1) is that the former does
not contain any contribution from BΩ0. Instead, it comprises contributions

from Σ, via a trace chosen in H�1{2pΣq. We equip the new space pHpΓq with
a norm defined by

}pu}2
pHpΓq :� }pu1}2HpBΩ1q

� � � � � }pun}2HpBΩnq
� }pΣ}2H�1{2pΣq

for all pu � ppu1, . . . ,pun, pΣq. Clearly, the dual space of pHpΓq with respect to

local L2-type duality pairings is qHpΓq :� HpBΩ1q � � � � �HpBΩnq � H1{2pΣq.
In concrete terms, for pu � ppu1, . . . ,pun, uΣq P qHpΓq, and pv � ppv1, . . . ,pvn, qΣq PpHpΓq the underlying duality pairing between pHpΓq and qHpΓq is defined by
the bilinear form

qpu,pvy :�
ņ

j�1

�puj ,pvj�j � 〈uΣ, qΣ〉Σ .

Routine verifications show that this bilinear form is non-degenerate and sat-
isfies inf-sup conditions. We will use it to derive variational formulations.

6.2 Multi-trace formulations (MTFs)

Guided by the gap idea, and the STF (4.4) in gap settings, we can
embark on the lengthy manipulations elaborated in [11, Sect. 8] and [12,
Eq. (5.8)]. Since no new complications arise in the presence of essential
boundary conditions, we omit the details. In the end we arrive at a multi-
trace formulation for the transmission boundary value problem with Dirichlet
boundary conditions on Σ:$'&'%

find pu P pHpΓq such that

rpAppuq,pvz � rpf,pvz @pv P pHpΓq , (6.2)

where pf � ppf1, . . . ,pfn, fΣq P qHpΓq is defined by pfj � γjpUincq and fΣ �
γΣ

d pUincq, and pA : pHpΓq Ñ qHpΓq is a continuous linear operator defined by

pA :�

��������������

A1
κ1
�A1

κ0
γ1 G2

κ0
� � � γ1 Gnκ0

γ1 SLΣ
κ0

γ2 G1
κ0

A2
κ2
�A2

κ0
� � � γ2 Gnκ0

γ2 SLΣ
κ0

...
...

. . .
...

...

γn G1
κ0

γn G2
κ0

� � � Anκn �Anκ0
γn SLΣ

κ0

γΣ
d G1

κ0
γΣ

d G2
κ0

� � � γΣ
d Gnκ0

VΣ
κ0

��������������
(6.3)

Definitions of the potentials SLΣ
κ and Gjκ0

can be found in (3.7), and VΣ
κ0

:�
γΣ

d SLΣ
κ0

is a single layer boundary integral operator on Σ. Hence, with pu �
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ppu1, . . . ,pun, pΣq, pv � ppv1, . . . ,pvn, qΣq, the bilinear form of (6.2) boils down to

rpAppuq,pvz � ņ

j�1

�
pAjκj �Ajκ0

qppujq,pvj�
j
�

ņ

j�1

¸
i�1
i�j

�
γj Gippuiq,pvj�j �

ņ

j�1

�
γj SLΣ

κ0
ppΣq,pvj�

j
�

ņ

j�1

〈
γΣ

d Gjκ0
ppujq, qΣ

〉
Σ

ņ

j�1

�
γj SLΣ

κ0
ppΣq,pvj�

j
�
〈
γΣ

d SLΣ
κ0
ppΣq, qΣ

〉
Σ

(6.4)

Remark 6.1. The key observation is that all building blocks of pA and the
terms in (6.4) remain well defined, even if we dispense with a gap between

the subdomains Ωj , j ¥ 1 and ΩΣ. Thus, pA and the multi-trace variational
problem (6.2) remain meaningful in the generic setting with junction points
depicted in Figure 5, left, and introduced in Section 2. The gap idea instills
confidence that (6.2) will inherit all properties of the single-trace problem
(4.4) on isolated subdomains. In the next section, we are going to provide a
rigorous foundation for this intuition.

6.3 Analysis of standard MTF

We consider the standard global MTF variational problem (6.2)/(6.4)
in the general ”non-gap” setting with possible junction points (Figure 5,

left). Obviously, the bilinear form ppu,pvq Ñ JpAppuq,pvK is continuous on pHpΓq.
Also let us point out a symmetry property of this bilinear form that will be

useful later. Due to the definition of pA from (6.3), the next result is a direct
consequence of Lemma 3.6 and Lemma 3.7:

rpAppuq,pvz � rpAppvq,puz @pu,pv P pHpΓq . (6.5)

Now, extending Proposition 4.4 to the standard global MTF, the following
proposition exhibits the precise relationship between Formulation (6.2) and
Problem (2.2). Corresponding results for the pure transmission problem can
be found in [11, Sect. 9].

Proposition 6.2. If pu � ppu1, . . . ,pun, pΣq P pHpΓq solves (6.2) then U P L2
locpRdzΩΣq

defined by

Upxq � Gjκj ppujqpxq for x P Ωj , j � 1 . . . n

Upxq � Uincpxq � SLΣ
κ0
ppΣqpxq �

°n
j�1 G

j
κ0
ppujqpxq for x P Ω0

(6.6)
is the unique solution of Problem (2.2).

Proof: By construction, the function U defined by (6.6) satisfies ∆U�κ2
jU � 0

in Ωj for j � 0 . . . n, and the radiation conditions at 8 (with respect to κ0).
The only property we have to verify is the transmission conditions (2.2b), that
is, pγjpUqqnj�0 P X0pΓq. Owing to Lemma 4.1 this is equivalent to showing
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that for all v � pvjqnj�0 P X0pΓq we have
°n
j�0

�
γjpUq, vj

�
j
� 0 which, see

(6.6), is equivalent to�
γ0Uinc � γ0 SLΣ

κ0
ppΣq �

ņ

j�1

γ0 Gjκ0
ppujq,pv0

�
0

�
ņ

j�1

�
γj Gjκ0

ppujq, vj�j � 0 .

(6.7)

We fix some v P X0pΓq, and denote v� :� pv1, . . . , vn,Tnpvqq P pHpΓq. For the
remainder of the proof it is important to remember that Tdpvq � 0. From the

jump relations (3.8) and (3.10) we can conclude Ajκj �Ajκ0
� γj Gjκj �γjc Gjκ0

.

We use this identity and infer from (6.2) and (6.4) with pv � v�

0 �
rpApu, v�z� rpf, v�z � ņ

j�1

��
γj Gjκj ppujq, vj�

j
� �

γjc G
j
κ0
ppujq, vj�j

�
ņ

i�1
i��j

�
γj Giκ0

ppuiq, vj�j � 〈γΣ
D Gjκ0

ppujq,Tnpvq
〉

Σ

	
(6.8a)

�
ņ

j�1

�
γj SLΣ

κ0
ppΣq, vj

�
j
�
〈
γΣ

d SLΣ
κ0
ppΣq,Tnpvq

〉
Σ

(6.8b)

�
ņ

j�1

�
γjUinc, vj

�
j
� 〈γΣ

d Uinc,Tnpvq
〉

Σ
. (6.8c)

For j � 1, . . . , n, evidently Gjκ0
ppujq P H1

locp∆,RdzΩjq. As a consequence, when

we take the trace on BΩj from outside, we have z :� �
γ0 Gjκ0

ppujq, . . . , γjc Gjκ0
ppujq,

. . . , γn Gjκ0
ppujq� P XpΓq. Thus, we can invoke Proposition 3.2, and find rz, vs �

� rTpzq,TpvqsΣ, which means

�
γjc G

j
κ0
ppujq, vj�j � n°

i�1
i��j

�
γi Gjκ0

puj , vi�i � 〈γΣ
d Gjκ0

ppujq,Tnpvq
〉

Σ

� � �
γ0 Gjκ0

puj , v0

�
0
.

(6.9)

In the same vein, we can set y :� �
γ0 SLΣ

κ0
ppΣq, . . . , γn SLΣ

κ0
ppΣq

� P XpΓq,
which, again by Proposition 3.2, satisfies ry, vs � � rTpyq,TpvqsΣ, equivalent
to

ņ

j�1

�
γj SLΣ

κ0
ppΣq, vj

�
j
�
〈
γΣ

d SLΣ
κ0
ppΣq,Tnpvq

〉
Σ

� �
�
γ0 SLΣ

κ0
ppΣq, v0

�
0
.

(6.10)

Similarly, since ∆Uinc � κ2
0Uinc � 0 everywhere, Proposition 3.2 yields

°n
j�0�

γjUinc, vj
�
j
� � �

γΣUinc,T v
�
Σ
� � 〈γΣ

d Uinc,Tn v
〉

Σ
. Obviously, we aim to

use this last identity to tackle (6.8c), (6.9) (summed over j � 1, . . . , n) to
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simplify (6.8a), and (6.10) to replace (6.8b). Thus we arrive at

0 �
ņ

j�1

�
γj Gjκ0

ppujq, vj�j �
ņ

j�1

�
γ0 Gjκ0

ppujq, v0

�
0

�
�
γ0 SLΣ

κ0
ppΣq, v0

�
0
� �

γ0Uinc, v0

�
Σ
,

(6.11)

which agrees the equation (6.7)! Since v was chosen arbitrarily in X0pΓq, this
finishes the proof. l

The gap construction hints that the operators pA defined in (6.3) will enjoy
coercivity analogous to the assertions of Theorem 4.2. This is confirmed by
the next result, which generalizes [11, Thm. 10.4].

Proposition 6.3. Define the operators θj : HpBΩjq Ñ HpBΩjq by θjpv, qΣq �
p�v, qΣq, and let Φ : pHpΓq Ñ pHpΓq denote the operator Φppvq � pθ1ppv1q,
. . . , θnppvnq, qq for pv � ppv1, . . . ,pvn, qq. There exists a compact operator K :pHpΓq Ñ qHpΓq, and a constant β ¡ 0 such that���rppA� Kqpv,Φppvqz��� ¥ β}pv}2

pHpΓq for all pv P pHpΓq .
Proof: Since a change of the wave numbers κ0, κ1, . . . , κn only induces a

compact perturbation of pA [32, Lemma 3.9.8], it suffices to prove the result
for the case where κ0 � � � � � κn � ı where ı � ?�1. Take any pv �
ppv1, . . . ,pvn, qΣq P pHpΓq. Denote Wjpxq :� Gjκ0

ppvjqpxq for j � 1 . . . n, and

Wn�1pxq :� GΣ
κ0
ppvn�1q where pvn�1 :� p0, qΣq P HpΣq.

For the sake of concise notations, in the remainder of this proof, we will
write r�, �sn�1 :� r�, �sΣ, Gn�1

κ0
:� GΣ

κ0
, An�1

κ0
:� tγΣuGΣ

κ0
and Ωn�1 :� ΩΣ.

Then we have

Re
rpAppvq,Φppvqz � Re

�
An�1
κ0

ppvn�1q, θn�1ppvn�1q
�
n�1

�
ņ

j�1

2 Re
�
Ajκ0

ppvjq, θjppvjq�j
�
n�1̧

j�1

n�1̧

q�1
q�j

Re
�
γq Gjκ0

ppvjq, θqppvqq�q .
Proceeding exactly as in the proof of Proposition 10.3 in [11], and in particular
applying Proposition 10.1 and 10.2 of [11], we have

Re
rpAppvq,Φppvqz �

n�1̧

q�0

ņ

j�1

»
Ωq

|∇Wj |2 � |Wj |2dx

�
n�1̧

q�0

»
Ωq

���∇� n�1̧

j�1

Wj

	���2 � ��� n�1̧

j�1

Wj

���2 dx
¥
n�1̧

q�0

ņ

j�1

}Wj}2H1pΩqq
.

(6.12)
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Note that pa1 � � � � � akq2 ¤ k pa2
1 � . . . a2

kq for any a1, . . . ak P R. Applying
this elementary identity to (6.12) allows to conclude that

2pn� 1qRe
rpAppvq,Φppvqz
¥ 2n

n�1̧

q�0

ņ

j�1

}Wj}2H1pΩqq
� 2

n�1̧

q�0

��� n�1̧

j�1

Wj

���2

H1pΩqq

¥
n�1̧

q�0

}Wn�1}2H1pΩqq
.

(6.13)

Now, since �∆Wj�Wj � 0 in Ωq for any j, q, and since, by the jump relations
(3.8), pvj � rγjpWjqs, the continuity of trace operations yields }pvj}HpBΩjq ¤
C
°n�1
q�0 }Wj}H1pΩqq. Combining this with (6.12) and (6.13) concludes the

proof. l

A direct consequence of the previous proposition is that the operator pA is
Fredholm with index 0. Hence it is an isomorphism if it is injective, which
can fail only in case of spurious resonnance, since Problem (2.2) is well posed.
Recalling the gap idea and the characterization of the kernel of A from The-
orem 4.8, the following result about spurious resonances of the global MTF
is not surprising, cf. Section 6.1.

Proposition 6.4. KerppAq � t p0, . . . , 0, pq | p P KerpγΣ
d SLΣ

κ0
q u. As a conse-

quence, for any choice of wave numbers κj, the operator pA is a bijection if
and only if κ0 R Sp∆,ΩΣq.
Proof: Since pA is Fredholm with index 0, it is a bijection, if and only if it

is injective. Assume that pu � ppu1, . . . ,pun, pΣq P pHpΓq satisfies pAppuq � 0. In
this case Proposition 6.2 applies with Uinc � 0. Since Problem (2.2) is well
posed this shows that, in Formula (6.6), U � 0 as well, so we conclude that

Gjκj ppujqpxq � 0 for x P Ωj , and finally

γj Gjκj ppujq � 0 @j � 1, . . . , n . (6.14)

Now pick an arbitrary l � 1 . . . n, and an arbitrary vl P CκlpBΩlq from the
space of Cauchy data defined in (3.4). We have pv :� p0, . . . , 0, vl, 0 . . . , 0q PpHpΓq. We can apply (6.2) in the form

rpAppuq,pvz � 0, take into account the

definition of pA, see (6.4), use (6.14), which yields

0 �
�
γl SLΣ

κ0
ppq, vl

�
l
�

ņ

j�1

�
γl Gjκ0

ppujq, vl�l � �
γlc G

l
κl
ppulq, vl�

l
. (6.15)

In the computations above, we used the identity Alκl �Alκ0
� γlc G

l
κl
�γl Glκ0

.
Next, as vl P CκlpBΩlq, Lemma 3.5 show that the following terms vanish�

γl Glκ0
ppulq, vl�

l
� 0 ,

�
γl SLΣ

κ0
ppq, vl

�
l
� 0 . (6.16)



Integral Equations for Partially Impenetrable Objects 33

In addition, we have HpBΩlq � Impγlc Glκlq`Cκ0
pBΩlq according to [11, Lemma

A.2]. Combining (6.15) and (6.16) we obtain that�
γlc G

l
κl
ppulq, vl�

l
� 0 for all vl P HpBΩlq . (6.17)

Finally, we conclude that γlc G
l
κl
ppulq � 0 for all l � 1 . . . n. As a consequence,

we obtain from the jump relations

puj � rγjsGjκj ppujq � γj Gjκj ppujq � γjc G
j
κj ppujq � 0.

Since pAppuq � 0, from the bottom row of 6.3 we finally obtain that γΣ
d SLΣ

κ0
ppΣq �

0. Hence pΣ P KerpγΣ
d SLΣ

κ0
q. Recall that the single layer operator γΣ

d SLΣ
κ0

is a Fredholm operator with index 0, and it is an ismorphism (i.e. admits
a trivial kernel) if and only if κ0 R Sp∆,ΩΣq, see [32, Thm 3.9.1]. From

this we conclude that, if κ0 R Sp∆,ΩΣq, then pΣ � 0, and KerppAq � t0u.
In case κ0 P Sp∆,ΩΣq, then SLΣ

κ0
ppΣqpxq � 0 for all x P RdzΩΣ, so that

γl SLΣ
κ0
ppΣq � 0 @l � 1 . . . n, hence p0, . . . , 0, pΣq P KerppAq. l

Comparing Proposition 4.8, Proposition 4.7 and Proposition 6.4, we see that
if Formulation (4.4) suffers spurious resonnances, then so does Formulation
(6.2). On the other hand, we point out that for any geometric arrangement
with ΩΣ �� H, there are certain κ0 where Formulation (6.2) breaks down,
while Formulation (4.4) remains well posed.

6.4 Direct multi-trace CFIE

Since we expect spurious resonances for (6.2), recall (E1), we also study
multi-trace counterparts of CFIE formulations. The focus will be first on the
direct single-trace CFIE proposed in Section 5.2 and its variational formu-

lation on pHpΓq. By the structure of (5.10), we need only elaborate how to
adapt the compact bilinear form c from (5.9).

Again we take inspiration from geometrical configurations involving a
gap between the different scatterers (Figure 5, left). In gap configurations

there exists a natural isomorphism pHpΓq � X0pΓq, we look for pc : pHpΓq �pHpΓq Ñ C such that pcppu,pvq � cpu, vq, where we have the correspondencespu Ø u and pv Ø v in the isomorphism mapping pHpΓq onto X0pΓq. Observe
that c defined by (5.9) can be re-written as

cpu, vq �
ņ

j�0

�
γjc G

j
κj pujq,Cpvjq

�
j
, u, v P X0pΓq . (6.18)

In the gap situation (i.e. the situation of disjoint subdomains), the extension
operator EΣ can be chosen to map into functions, whose support is inside Ω0,
which means that γjd � EΣ � 0 for j �� 0, and that, essentially, C maps into
H1{2pΣq. This brings about a substantial simplification of the operator C and
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leads to

cpu, vq � �
γ0
c G

0
κ0
pu0q, pC vq0

�
0
� 〈γΣ

n G0
κ0
pu0q,MTnpvq

〉
Σ
, u, v P X0pΓq .

(6.19)

For any pv, qq P H1{2pBΩjq � H�1{2pBΩjq, denote θjpv, qq :� pv,�qq. Since
pujqnj�0 P X0pΓq and BΩ0 � Σ Y BΩ1 Y � � � Y BΩn, the trace u0 is equal
to θjpujq on each BΩj , j � 1 . . . n, and equal to p0,�pΣq on Σ. This yields

G0
κ0
pu0q � �SLΣ

κ0
ppΣq �

°n
j�0 G

j
κ0
pujq. Hence

pcppu,pvq � �
〈
M�

�
γΣ

n SLΣ
κ0
ppΣq

�
, qΣ

〉
Σ
�

ņ

j�1

〈
M�

�
γΣ

n Gjκ0
pujq

�
, qΣ

〉
Σ
, (6.20)

for pu � pu1, . . . , un, pΣq P pHpΓq, pv � pv1, . . . , vn, qΣq P pHpΓq. From (5.10), 6.3,

and (6.20) we deduce the operator pAM : pHpΓq Ñ qHpΓq defined aspAM :���������������

A1
κ1
�A1

κ0
� � � γ1 Gnκ0

γ1 SLΣ
κ0

γ2 G1
κ0

� � � γ2 Gnκ0
γ2 SLΣ

κ0

...
. . .

...
...

γn G1
κ0

� � � Anκn �Anκ0
γn SLΣ

κ0�
γΣ

d �M� γΣ
n

�
G1
κ0

� � � �
γΣ

d �M� γΣ
n

�
Gnκ0

�
γΣ

d �M� γΣ
n

�
SLΣ

κ0

��������������
(6.21)

Similar considerations yield an expression in qHpΓq for the right hand side of
the direct single trace CFIE in the gap setting; we findpfM :� �

γ1Uinc, . . . , γ
nUinc, γ

Σ
d Uinc �M�pγΣ

n Uincq
� P qHpΓq . (6.22)

Then the direct multi-trace CFIE in variational form and in the gap setting
reads: $'&'%

find pu P pHpΓq such that

rpAMppuq,pvz � rpfM,pvz @pv P pHpΓq , (6.23)

Although we have derived Formulation (6.23) in a gap setting where all scat-
terers were distant from each other, this formulation still makes sense in a
general geometric configuration (such as in Figure 5, left). We justifies in the
next paragraph the validity of (6.23) for a general setting. In addition, we give
rigorous arguments for conjecture (E2) on Page 27, where we claimed that
the direct global multi-trace CFIE (6.23) is immune to spurious resonances
for any choice of wave numbers κj .
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Obviously, thanks to the compactness of M, see (5.1), the operator pAM

from (6.21) is a compact perturbation of pA from 6.3, and the bilinear form of
(6.2) is a compact perturbation of that of (6.23). The next result exhibits the
precise relationship between the solution to (6.23) and the solution to (6.2).

Proposition 6.5. A solution of the global multi-trace CFIE (6.23) is also a
solution of the standard global MTF (6.2).

Proof: Take a solution pu � ppu1, . . . ,pun, pΣq P pHpΓq of (6.23). Consider the

function W pxq :� Uincpxq� SLΣ
κ0
ppΣqpxq�

°n
j�1 G

j
κ0
ppujqpxq. Take test tracespv P pHpΓq of the form pv � p0, . . . , 0, qΣq, where qΣ P H�1{2pΣq is arbitrary.

Formulation (6.23) yields»
Σ

q
�
γΣ

d pW q �M� γΣ
n pW q � dσ � 0 @q P H� 1

2 pΓq ,

which implies γΣ
d pW q � M� γΣ

n pW q. Since we have ∆W � κ2
0W � 0 in ΩΣ,

applying Green’s formula provides

0 � Imt
»

ΩΣ

|∇W |2 � κ2
0|W |2dxu � 2 Imt

»
Σ

γΣ
n pW qM γΣ

n pW qdσu ,

hence γΣ
n pψq � 0. We conclude that γΣ

d pψq � M� γΣ
n pψq � 0. This corresponds

to the equation of (6.2) associated with the last line of (6.3). Since the only
difference between (6.23) and (6.2) is this equation, we are done with the
proof. l

A corollary of the previous result is that, if U solves (6.23), then the
unique solution to Problem (2.2) is given by (6.6). This justifies considering
(6.23) for general geometric configurations. Now, since pc is compact, Propo-
sition 6.3 implies that the bilinear form of (6.23) also satisfies a generalized
Garding inequality.

Corollary 6.6. The assertion of Proposition 6.3 holds with pA replaced withpAM.

A consequence of the above proposition is that the operator pAM is of
Fredholm type with index 0. One advantage of Formulation (6.23) over For-
mulation (6.2) is the absence of spurious resonnances, which is proved by the
following result.

Proposition 6.7. For any choice of wave numbers κj ¡ 0, the global multi-
trace CFIE (6.23) possesses a unique solution.

Proof: Pick an element pu P KerppAMq. This means that pu is a solution of (6.23)

where pfM � 0. As a consequence of Proposition 6.5, we have pu P KerppAq, so
that, by Proposition 6.4, pu � p0, . . . , 0, pΣq for some pΣ P H�1{2pΣq. Coming

back to (6.23), and choosing pv P pHpΓq of the form pv � p0, . . . , 0, qΣq with
some qΣ P H�1{2pΣq, we obtain»

Σ

qΣ

�
γΣ

d SLΣ
κ0
ppΣq �M�

�
γΣ

n SLΣ
κ0
ppΣq

� �
dσ � 0 .
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It was established in [3, Lemma 4.1] that the operator γΣ
d SLΣ

κ0
�M� γΣ

n SLΣ
κ0

is injective for all κ0 ¡ 0. So we conclude that pΣ � 0 which finishes the
proof. l

Corollary 6.8. For any choice of the wave numbers κ0, . . . κn satisfying (2.3),

Formulation (6.23) is well posed i.e. pAM : pHpΓq Ñ qHpΓq is an isomorphism.

Proof: Since pAM is a Fredholm operator with index 0, this holds true if and
only if it is injective, which is the statement of Proposition 6.7. l

6.5 Indirect multi-trace CFIE

Of course, there is a multi-trace version also of the indirect CFIE pre-
sented in Section 5.3. Since developments are largely parallel to that for the
direct CFIE, we do not give details. As is clear from (5.17), which serves
as the starting point, the operator of the indirect multi-trace CFIE will be

a perturbed version of pA. More precisely, the potential operator SLΣ
κ0

is re-

placed with SLΣ
κ0
�DLΣ

κ0
�M. As in Section 6.2 the perturbation is encoded

in a bilinear form pc� : pHpΓq � pHpΓq Ñ C, defined by

pc�ppu,pvq :�
ņ

j�1

�
γj DLΣ

κ0
pM pΣq, vj

�
j
�
〈
γΣ

d DLΣ
κ0
pM pΣq, qΣ

〉
Σ
, (6.24)

for pu � pu1, . . . , un, pΣq P pHpΓq and pv � pv1, . . . , vn, qΣq P pHpΓq. This bilinear
form inherits compactness from M is. It can be used to state the indirect
global multi-trace CFIE in variational form$'&'%

Find pu P pHpΓq such that

rpAppuq,pvz� pc�ppu,pvq � rpf,pvz @pv P pHpΓq . (6.25)

Compared to Formulation (6.2), this variational problem features an addi-
tional compact term. The next proposition gives a precise description of the
relation between the solutions of (6.25) and the solutions to (2.2).

Proposition 6.9. If pu � ppu1, . . . ,pun, pΣq P pHpΓq is a solution of (6.25), then
U P L2

locpRdzΩΣq defined by (for j � 1, . . . , n)

Upxq � Gjκj ppujqpxq , x P Ωj

Upxq � Uincpxq � SLΣ
κ0
ppΣqpxq � DLΣ

κ0
pM� pΣqpxq

Upxq � Uincpxq � SLΣ
κ0
ppΣqpxq�

ņ

j�1

Gjκ0
ppujqpxq, x P Ω0 ,

(6.26)

is the unique solution of the transmission boundary value problem (2.2).

We do not give the proof of this result as it is identical to the proof of
Proposition 6.2. The only difference is that SLΣ

κ0
ppΣq has to be replaced by

SLΣ
κ0
ppΣq �DLΣ

κ0
pM pΣq. Now let us underline the close relationship between



Integral Equations for Partially Impenetrable Objects 37

(6.25) and (6.23), that are dual to each other in the sense of the following
lemma.

Lemma 6.10. The bilinear forms of the direct global multi-trace CFIE (6.23)
and its indirect counterpart (6.25) are adjoint to each other:

rpAppuq,pvz� pcppu,pvq � rpAppvq,puz� pc�ppv,puq @pu,pv P pHpΓq .
Proof: We already know that JpAppuq,pvK � JpAppvq,puK, according to (6.5), so we
have to show that pcppu,pvq � pc�ppv,puq. Take two elements pu � pu1, . . . , un, pΣq
and pv � pv1, . . . , vn, qΣq in pHpΓq. We have

pcppu,pvq � �
〈
M� γΣ

n SLΣ
κ0
ppΣq, qΣ

〉
Σ
�

ņ

j�1

〈
M� γΣ

n Gjκ0
pujq, qΣ

〉
Σ

(6.27)

We examine successively each term in the sum above. vΣ � pM q, 0q P HpΣq
and uΣ � p0, pq P HpΣq. Applying symmetry property given by Lemma 3.6
in ΩΣ yields

�xγΣ
n SLΣ

κ0
ppq,M qyΣ � xγΣ

d,c DL
Σ
κ0
pMqq, pyΣ . (6.28)

Similarly we have �xM� γΣ
n Gjκ0

pujq, qyΣ � rγΣ Gjκ0
pujq, vΣsΣ. We can apply

Lemma 3.7 (taking ΩΣ as one of the subdomains) to obtain rγΣ Gjκ0
pujq, vΣsΣ �

rγj GΣ
κ0
pvΣq, ujsj which can be written in the present case

�xM� γΣ
n Gjκ0

pujq, qyΣ � rγj DLΣ
κ0
pM qq, ujsj (6.29)

according to the explicit expression of vΣ. Plugging (6.28) and (6.29) into the
explicit expression of pc given by (6.27), and comparing with the definition ofpc�, this concludes the proof. l

Let pA1M : pHpΓq Ñ qHpΓq refer to the continuous operator associated to the bi-
linear form in the left-hand side of (6.25). The previous lemma, combined with

the inf-sup conditions satisfied by pA, shows that pA1M is bijective if and only ifpAM is bijective, which is systematically true according to Proposition 6.6. In

addition, since pA and pA1M only differ by a compact contribution, Proposition
6.3 implies that the bilinear form associated to Formulation (6.25) satisfies
a generalized Garding inequality. We sum up all these results in the next
proposition.

Proposition 6.11. The assertion of Proposition 6.3 holds with pA replaced bypA1M. In addition, for any choice of the wave numbers κ0, . . . κn satisfying
(2.3), Formulation (6.25) is well posed i.e. it admits a unique solution andpA1M : pHpΓq Ñ qHpΓq is an isomorphism.
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