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Abstract—In this paper, we propose an original solution to
the problem of point cloud clustering. The proposed technique
is based on a d-dimensional formulated Delaunay Triangulation
(DT) construction algorithm and adapts it to the problem of
cluster detection. The introduced algorithm allows this detection
as along with the DT construction. Precisely, a criterion that
detects the occurrences of gaps in the simplices perimeter
distribution within the triangulation is added during incremental
DT construction. This allows then to detect and label simplices as
inter- or intra cluster. Experimental results on 2D shape datasets
are presented and discussed in terms of cluster detection and
topological relationship preservation.

Keywords—Computational geometry, Delaunay triangulation,
clustering, forward approach

I. INTRODUCTION AND RELATED WORK

”One important goal of data analysis is to allow the user to
obtain knowledge about the data” [1]. Referring to Carlsson’s
discussions [1], one very basic objective of data analysis is to
construct qualitative geometric information out of quantitative
information by means of analyzing pairwise distances among
the data points in order to reveal connected components. The
visualization of this so-called qualitative information gives rise
to the need for suitable tools to embed the shape of the data
points, or subsets of points, and their topological relationship
with respect to each others. Geometrical configuration preser-
vation, or topology preservation, has then to be met for the
sake of detecting denser parts of the point cloud (clusters) by
means of visualizing a graph.

Proximity graphs [2] might satisfy this fundamental re-
quirement as they might faithfully embed both local (neigh-
borhood) and high-level information (groups of points) that
exist among the data points. The topology preserving property
of these graphs relies on how one might define proximity and
this proximity defines how they would faithfully or unfaithfully
encapsulate and summarize the distribution of the pairwise
distances. Notable proximity graphs include Delaunay’s [3],
relative neighborhood’s (RNG) [4], Gabriel’s [5], minimum
spanning tree (MST) [6], k-nearest neighbor (k-NN) or β-
skeleton’s [7].

Furthermore, referred to as graph theory-based techniques
in the clustering literature [8], [9], usage of proximity graphs
for the task of clusters detection is notably made in algorithms
such as CHAMELEON (k-NN) [10], Zahn’s (MST) [11],
Mulhenbach’s (any proximity graph) [12], MOSAIC (RNG)
[13], AUTOCLUST and TRICLUST (Delaunay) [14], [15].

However, none of these algorithms take any volumetric infor-
mation into account as they all focus on analyzing the edge
lengths distribution. In particular, none of the cited Delaunay
based algorithms take into account the amount of topological
information carried by the simplices. The works presented in
[16] and [17] address this problem as the former takes into
account the distribution of the perimeters of the simplices and
the latter proposes a composite measure based on the associ-
ation of the perimeter, intra-simplex edge length distribution
and local information. These two algorithms therefore refine
the resulting graph by making use of the information within the
simplicial complex [18]: in opposition to graph theory-based
techniques, they are simplicial complex-based ones.

Moreover, proximity graph-based clustering algorithms
rely on: 1) the construction of the proximity graph, 2) the
revelation of the possibly existing clusters by means of pruning
extra edges. In this paper, we then argue about the possibil-
ity of detection of clusters among the data points as along
with the proximity graph construction process. To this end,
we introduce a one-pass forward strategy. In particular, we
propose to adapt a d-dimensional Delaunay triangulation (DT)
algorithm, namely DeWall algorithm [19], for the task of
clustering. Precisely, the proposed criterion detects breaks of
homogeneity in the perimeter distribution as along with the
insertion of a new simplex. The detection of these breaks of
continuity in the distribution allows then to label the newly
inserted simplex as being inter or intra-cluster. The underlying
problem addressed throughout this paper is therefore revealing
the possibly existing clusters among a set of points as along
with the construction of their DT.

The presented work is defined for a finite data points set
S ⊂ Rd and outputs the Delaunay triangulation of a as along
with an unoriented graph G = (V,E) such that V = S and
E ⊆ S × S are its vertices and edges sets respectively.

II. PROXIMITY GRAPHS AND DELAUNAY
TRIANGULATION

A. Proximity graphs and clustering

Let us define the general criterion for the creation of a
given edge ei that belongs to proximity graph G:

ei ∈ E ⇔ I(P ) ∩ {V \ P} = ∅,∀i = 1 . . . C2
k (1)

with P = {p1...pk} ⊂ V a given set of affinely independant
points (2 ≤ k ≤ |V |) and I(P ) a conflict zone in which
existence of points is tested. The edges of E, that state that
given data points P ⊆ S are close to each others, are such



that the zone I(P ) contain no other points than the one of P .
This zone might for instance be defined as a d-lune or d-ball
in case of RNG ([4]) or Gabriel ([5]) graphs respectively.

In the presented work, E is populated by edges satisfying
the empty ball Delaunay criterion [3], i.e. P = {p0...pd} and
I(P ) is the hypersphere passing through the d+1 points of
P . Furthermore, dataset V = S is assumed to be in general
position, i.e. there is no d+ 2 points of S lying on a common
hypersphere. In that non-degenerate configuration, the DT of
S is then uniquely defined (and therefore G as well). From
now on, we shall denote DG(S) the Delaunay graph of S and
DT (S) the Delaunay triangulation of S.

B. Techniques for constructing the Delaunay triangulation

1) Definitions and elementary properties: The Delaunay
complex or Delaunay triangulation (DT) is a widely-used
structure that allows to grasp geometrical and topological
relationships between given d-dimensional points. The graph
DG(S), composed of all the edges of DT (S), present the
well-known following property that

MST (S) ⊆ RNG(S) ⊆ GG(S) ⊆ DG(S)

as a result of embedding the edges of a simplicial complex
(i.e. the set of all the k-simplices, k ∈ [0, d + 1]). As well,
each edge of DG(S) denotes the adjacency of two Voronoi
cells within the Voronoi diagram of S [18].

A point x ∈ Rd is a vertex of DT (S) iff x ∈ S and DT (S)
has several elementary properties among which we enumerate
the following two:

1) The intersection of two simplices in DT (S) is either
an empty set or a common face.

2) The circumscribed hyper-sphere passing through the
d+1 vertices of each simplex σ does not contain any
other point of S in its interior (empty conflict zone
mentionned in equation (1)).

Furthermore, each d-simplex is defined by the convex hull
of d+ 1 points of S (e.g. triangles or tetrahedron when d = 2
or d = 3 resp.) and defines d + 1 (d − 1)-simplices (e.g. 3
faces in dimension 2). Formally, each d-simplex is composed
of k-simplices (composed of k + 1 points), with 0 ≤ k ≤ d.
Finally, a simplicial complex is a finite collection of faces C
such that:

1) Any face of C is a k-simplex (0 ≤ k ≤ d).
2) Any sub-face of any face of C belongs to C.
3) The intersection of any face of C is either empty or

a face of C.

According to [20], sequential algorithms for constructing
the Delaunay triangulation are composed of the following five
types of algorithms: sweepline, lift method based, incremen-
tal, divide-and-conquer and gift-wrapping. As the presented
method is based on the last three paradigms, let us now briefly
describe these three types of algorithms. Exhaustive insight
about Delaunay triangulation algortihms might be found in
[18].

In a nutshell, these algorithms incrementally insert a new
point p ∈ S and are divided in two types regarding 1) if

they incrementally add new simplices outside the convex hull
of the current triangulation or 2) if they add new simplices
unpredictably inside or outside the convex hull of the current
triangulation. This boils-down to knowing if to-be-inserted
point p would lie outside current convex hull or unpredictably
inside or outside current convex hull. On the one hand, in
the latter case [21], [22], the incremental insertion of a new
point p implies the detection of the conflicting simplices
i.e. simplices whose circumscribe hypersphere contain p. The
current triangulation is to be modified quite surely and finding
the conflicting simplices is a making bottleneck. On the other
hand, algorithms such as [23] do not modify the current
triangulation and only wraps it with new simplices, therefore
inserting point p outside the convex hull of current unfinished
triangulation. In addition, during the gift-wrapping process,
a dictionary of unfinished faces that are on the boundary of
the current triangulation is maintained, as a result of adding
simplices outside the current convex hull. These unfinished
faces are still up to be processed and the gift-wrapping process
stops when there is no unfinished d-face anymore.

Finaly, divide-and-conquer algorithms split the points set
S in two disjoint subsets S1 and S2. Then, the triangulation is
recursively computed on S1 and S2. In the end, partial results,
covering S1 and S2, are merged to obtain actual DT (S). The
merging of the partial triangulations constitute the bottleneck
of these techniques and attention has to be paid to the splitting
hyperplanes choice strategy.

C. The DeWall algorithm : a divide-and-conquer space-filling
strategy

The strategy we based our method on, namely DeWall
algorithm [24], is an algorithm mixing both gift-wrapping
and divide-and-conquer DT construction paradigms : starting
from an initial Delaunay d-simplex crossed by an axis-aligned
hyperplane α, the triangulation is constructed by constructing
α-crossed simplices, incrementally adding points lying in the
outer part of current convex hull (gift-wrapping) until no
further point satisfying this condition can be found. For a given
α, following this rationale then leads to a partition of V into
three parts : the one composed of vertices belonging to the d-
simplices crossed by α (the wall) and the two other ones lying
on each side of the wall. The algorithm is then recursively
applied on these two parts (divide-and-conquer) and thus
implicitly 1) creates a sequence of axis-aligned hyperplanes
in a fashion kd-trees do, 2) constructs triangulation wrapping
a space-filling structure. An overview of the execution of the
algorithm is illustrated in Figure 1.

The actual incremental construction proceeds as follows:
given a face f of simplex σ, the unique simplex that shares
face f with σ is built. This construction implies finding the
point p∗ ∈ S which satisfies the empty hypersphere property.
As formulated in [24], p∗ is the point which informally min-
imizes the radius of circumscribed hypersphere and formally
minimizes the Delaunay distance (dd) to f :

dd(f, p) =

{
r : c ∈ Half(f, p)
−r : otherwise

with r and c the radius and center of the circumsphere passing
by p and extremity points of face f . Half(f, p) is the half-
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Fig. 1. The proposed one-pass strategy in dimension 2. Plain blue edges are the current wall’s finished ones. Successive
hyperplanes are drawn in dashed red. The black dotted edges are the remaining unfinished faces of the triangulation. (a) Toy
dataset 12 points divided in two separated clusters: the blue and the red one; (b) First simplex and hyperplane Hyperplane
α0, and initial α0-crossed Delaunay simplex (shaded) are selected. p∗ is then computed such as it minimizes the radius of the
circumscribed Delaunay hypersphere passing through current unfinished face; (c) Label propagation Simplex σt is added to
the ones of Σlσt−1

and the intra-cluster label l = 0 is propagated. At current iteration t, σt is τ times larger than σt−1 thus σt
may be wrongly labeled as an inter-cluster if not compared to Σlσt ; (d) First wall construction Simplices are added until no
point lies outside the unfinished α0-crossed faces: first wall construction ends here; (e) Second wall construction σ8 is labeled
as inter-cluster as it is τ times as large as the average one of Σ0

σ6
. σ9 is not τ times as small as σ8 and therefore shares the

same label as σ8. Note that if σ9 would have been τ times as small as σ8, as |Σ1
σ8
| equals 1, σ9 would have been labeled as

intra-cluster as it presents a perimeter smaller than the minimum one of Σinterσ9
; (f) Cluster detection. The algorithm continues

until no unfinished faces remain. At this stage of construction, the algorithm correctly detected two connected components that
correspond to the blue and red cluster of the toy dataset.

space defined by the hyperplane passing through f and by the
point p.

III. ABOUT THE INSERTION OF A CLUSTER DETECTION
CRITERION IN THE TRIANGULATION CONSTRUCTION

A. DT-based clustering algorithms

Along with the proximity graphs based ones, the exist-
ing DT-based clustering techniques leverage the following
paradigm: (i) DT (S) is computed, (ii) statistical information
is extracted on the basis of the pairwise distances distribution
analysis, (iii) the final graph is produced by pruning extra
edges (or simplices) with respect to the previous statistical
information. This three-pass procedure eventually leads to
revealing the possibly existing clusters. Notable clustering
algorithms following this paradigm are AUTOCLUST [14] and
TRICLUST [15]. Other works ([16], [17]) do not only take the
pairwise distances information into account but also the inher-
ent volumetric information carried by the d-simplices. We call
forward-backward approaches these three-pass algorithms.

As opposed to these techniques, we propose in this pa-
per a forward approach as the clusters are detected along

with the construction of DT (S). This approach leverages
the incremental DeWall algorithm presented in Section II.C.
Straightforwardly, DeWall algorithm allows to add a gap
detection criterion at each insertion of a new simplex. As
the triangulation is final atfer each insertion (i.e. previous
simplices will not be modified in the next stages), it is possible
to maintain statistical information of the current stage of the
construction of DT (S) and therefore to propagate the inter-
cluster label accordingly. The proposed inter-cluster labeling
strategy is detailed hereunder.

B. A forward approach for cluster detection

The objective of the presented approach boils down to the
selection of a suitable measure for the labeling of inter-cluster
simplices at any stage of the construction of the triangula-
tion. Derived from discussions in [25], [17], the proposed
technique detects the occurrence of breaks of continuity in
the distribution of the simplex perimeters. Indeed, following
a density-based definition of clusters, clusters are groups of
points among which distances are significantly smaller than the
ones between the clusters: void surrounds the denser parts that
constitute the clusters. Consequently, inter-cluster simplices are



prone to present higher perimeter values than the intra-cluster
ones. We note δl(σ) the label of a given simplex σ, where
δl(σ) = 1 if σ is labeled as inter-cluster and 0 otherwise.

Let σt be the newly inserted simplex sharing a face with
a previous simplex σt−1, Σσt = {σ1, ..., σt} be the set of all
the simplices previously constructed up to σt, Σintraσt = {σ ∈
Σσt , δl(σ) = 0} be the set of intra-cluster simplices of Σσt ,
Σinterσt = {σ ∈ Σσt , δl(σ) = 1} be the set of inter-cluster
simplices of Σσt and finally

Σlσt = {σt−k+1, ..., σt}

such as δl(σt−k) = ... = δl(σt) and δl(σt−k) 6= δl(σt).

Σlσt is the set of the previous simplices that share the same
label as σt. Then, for a given iteration t > 1 and a given scalar
τ > 0, let δ(t, τ) : N×R→ {0, 1} be the inter-cluster labeling
function such as
if δl(σt−1) = 0,

δ(t, τ) =

{
1 : ρ(σt)

mean(Σlσt−1
)
> τ

0 : otherwise
(2)

if δl(σt−1) = 1,

δ(t, τ) =

{
0 : ρ(σt)

mean(Σlσt−1
)
< 1

τ

1 : otherwise
(3)

where ρ(σ) =
∑
e∈σ |e| denotes the perimeter of the simplex

σ, |e| the length of e and mean(S) (respectively min(S)
and max(S)) the average (respectively the minimum and
maximum) perimeter value of the simplices in S.

As mentioned in equations (2) and (3), the labeling strategy
of a newly inserted simplex is different regarding whether
previously inserted simplex is labeled as intra- or inter-cluster.
Indeed, if previous simplices of Σlσt−1

were labeled as intra-
cluster, the only configuration for which σt would not be
labeled as intra-cluster would be that its perimeter is τ times as
large as the average one of Σlσt−1

. Conversely, if the simplices
of Σlσt−1

were labeled as inter-cluster, the only configuration
for which the label of σt would not be inter-cluster would be
that the average perimeter of Σlσt−1

is τ times as large as σt’s
one, i.e. ρ(σt)

mean(Σ
)
σt−1

)
< 1

τ . In other words, the label of Σlσt−1
is

propagated to its newly inserted neighbor σt unless σt presents
a significant difference in size. In particular, a gap is detected
beetween σt and σt−1 if σt is τ times as large (small) as
the average simplex of Σlσt−1

. Then, the computation of ratio
ρ(σt)

mean(Σlσt−1
)

allows to detect the so-called breaks of continuity
in the perimeter distribution, and therefore the label changes, in
agreement with the simplices of Σlσt−1

. Moreover, it provides
a robust solution to the problem of mislabeling intra-cluster
simplices as inter- ones as the perimeter distribution of the
intra-cluster simplices might not to be locally homogeneous.
The converse reasoning is followed to avoid labeling locally
smaller inter-cluster simplices as intra-cluster ones (Figure 1).

Nevertheless, at each label change, |Σlσt | equals 1, therefore
computing ρ(σt)

mean(Σlσt−1
)

boils down to comparing σt to its

neighbor, namely computing ρ(σt)
ρ(σt−1) . This situation is prone

to detect gaps that do not define the border of the clusters. In

that specific case, σt is compared to all the simplices computed
since the beginning of the triangulation.
Thus, |Σlσt | = 1 implies that:
if δl(σt−1) = 0,

δ(t, τ) =


1 : ρ(σt)

mean(Σlσt−1
)
> τ

and ρ(σt) > max(Σintraσt−1
)

0 : otherwise

(4)

if δl(σt−1) = 1,

δ(t, τ) =


0 : ρ(σt)

mean(Σlσt−1
)
< 1

τ

and ρ(σt) < min(Σinterσt−1
)

1 : otherwise

(5)

Indeed, if σt−1 was labeled as intra-cluster, labeling σt
as inter-cluster is consistent when its perimeter is greater than
the maximum perimeter of Σintraσt−1

. Analogueously, if σt−1 was
labeled as inter-cluster, labeling σt as intra-cluster would be
consistent if its perimeter would be smaller than the minimum
perimeter of Σinterσt−1

.

IV. EXPERIMENTS

The proposed approach is tested on two 2D shapes
datasets1, namely Aggregation (7 clusters) and Compound (6
clusters). The datasets are normalized to variance 1 and mean
0 and the implementation relies on our C++ implementation
of d-dimensional algorithm in [24].

A. About determining the threshold value and the first simplex

As the technique relies on the choice of parameter τ , we
provide first the grounds for its choice for the sake of the
next section demonstration. Second (respectively third) column
of Figure 3 plot, for all adjacent simplices σ and σ′ in a a
given dataset, ρ(σ)

ρ(σ′) ratio distribution, where δl(σ) = 0 and
δl(σ

′) = 0 (resp. δl(σ) = 0 and δl(σ′) = 1). Observations on
the two datasets show that τ should be chosen in [1.65, 3.48].
1.65 is the average value of the third quartiles of the 13 intra-
cluster boxplots in Figure 3. 3.48 is the average value of the
first quartiles of the intra / inter pairs of simplices. Accordingly,
we set τ = 3.48 for the rest of the experiments.

For the construction of the first Delaunay simplex, which
is crossed by the first hyperplane α0, we select α0 orthogonal
to the dimension which presents the highest frequency, as the
first simplex is labeled as intra-cluster. For Aggregation, wet set
{(x, y), x = 1.5} as the hyperplane α0 and {(x, y), x = −1.0}
for Compound.

B. The evaluation of the technique: execution on synthetic
datasets

The proposed technique yields the DT of the a point cloud
for which a label is assigned to each simplex. The triangulation
of Aggregation is composed of 1555 simplices. Our algorithm
labels 1443 of them as intra-cluster and 111 as inter-cluster.
Figure 3 illustrates the result of the proposed technique and

1http://cs.joensuu.fi/sipu/datasets/
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Fig. 2. Datasets statistics. First column: Scatterplots of the two tested datasets and analysis of their distribution along each
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Fig. 3. Aggregation dataset result. The execution of the
technique over Aggregation dataset revealed 4 connected com-
ponents.

displays the intra-cluster simplices. The algorithm detects four
connected components: {{1}, {2}, {3,4}, {5,6,7}}. Among
those connected components, cluster 1 and 2 are correctly dis-
connected unlike cluster 3 and 4 which are connected. Clusters
5, 6 and 7 are merged in the same connected component.
Following a density-based definition of clusters, connection
of clusters 3 and 4 is topology preserving in the sense that
there exist points that link these two clusters, thus no gap is
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Fig. 4. Zahn dataset statistics. The execution of the technique
over Compound dataset revealed 4 connected components
disregarding the singletons.

detected in the perimeter distribution between them. The same
argument applies to clusters 5 and 6. However, clusters 5 and 7
are wrongly connected by mislabeled simplices. The algorithm
fails to disconnect these clusters, regarding the ground-truth
labeling, as it detects a denser zone in this place of the point
cloud.

The triangulation of Compound is composed of 777 sim-



plices. Our algorithm labels 632 of them as intra-cluster and
145 as inter-cluster. The algorithm detects four non-singleton
connected components: {{1,2}, {3,4}, {5}, {6}} (cf. Figure
4). Clusters 1 and 2 are connected as the simplices separating
them is merely as large as the one within them. The algorithm
fails at disconnected nested clusters 3 and 4 as there is no break
of continuity when passing from cluster 4 to 3. However, it
successfully disconnects nested clusters 5 and 6 as the inter-
cluster simplices between them are larger than their intra-
cluster ones.

V. DISCUSSION AND CONCLUSION

In this paper, we presented an original solution to the
problem of cluster detection. The proposed technique adapts
an algorithm from the computational geometry field to the
problem of clustering. Precisely, this technique enriches an
incremental divide-and-conquer gift-wrapping algorithm that
constructs the DT of a point cloud by notably detecting the
border of existing clusters. The technique proposes an original
one-pass cluster detection strategy as, in opposition to the
other techniques in the literature, it detects clusters as along
with the proximity graph construction. This technique is based
on the assumption that clusters are denser parts of the space
which are separated by way sparser space. This hypothesis
is reformulated in terms of perimeter of simplices and gaps
in their distribution. The experiments notably showed that
the proposed technique failed at detecting nested clusters that
present a great difference in their perimeter value distribution.
As well, the technique might perform poorly if the first
Delaunay simplex is not actually within a cluster and if a
proper τ is not found.

However, the experiments showed that the proposed tech-
nique manages well with arbitrary shaped clusters. Even if
the number of ground-truth clusters is not found, it notably
detected the hull of the clusters and the topological rela-
tionship among these. Moreover, the algorithm manages to
deal with clusters presenting locally heterogeneous distribution
of perimeters by maintaining the short-term memory of the
clusters that gave to a given simplex its label and the long-
term when this information is not available.

Forthcoming works include providing a thorough investi-
gation in order to transpose what the ground-truth defines as
intre-clusters in terms of simplices perimeter to find a golden τ
and propose an heuristic for the first simplex selection. Other
future works include testing the proposed solution on higher
dimensional datasets and, as the technique allows to detect
the border of clusters, adapt it to the problem of incremental
clustering.

REFERENCES

[1] G. Carlsson, “Topology and data,” Bulletin of the American Mathemat-
ical Society, vol. 46, pp. 255–308, 2009.

[2] J. Jaromczyk, “Relative neighborhood graphs and their relatives,” Pro-
ceedings of the IEEE, 1992.

[3] B. Delaunay, “Sur La sphère vide,” Izv. Akad. Nauk SSSR, Otdelenie
Matematicheskii i Estestvennyka Nauk, vol. 7, pp. 793–800, 1934.

[4] G. Toussaint, “The relative neighbourhood graph of a finite planar set,”
Pattern recognition, vol. 12, pp. 261–268, 1980.

[5] R. K. Gabriel and R. R. Sokal, “A New Statistical Approach to
Geographic Variation Analysis,” Systematic Zoology, vol. 18, no. 3,
pp. 259–278, 1969.
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