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Abstract 

Tolerance analysis is an important step to validate assembly process planning scenario. Simulations are generally performed to 

evaluate the expected geometrical variations of the assembled product. When the simulation models take into account part 

compliance, assembly sequence and contact interaction, the resulting behaviour of the assembly are generally non-linear and 

simulations – mainly performed using finite element analysis – require high computing efforts. This paper investigates the ability to 

approximate the non-linear propagation of geometrical variations in assembly with artificial neural networks. The aim is to drastically 

reduce the computing efforts required for the simulation and therefore allow its use for the geometrical tolerances allocation 

optimisation. The influence of the neural network design parameters on the approximation quality is presented in a case study. The 

quality of the neural network approximation is also evaluated and discussed. 
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1. Introductiona 

Due to several sources of geometrical variations, the 

actual geometrical state of an assembled product differs 

from its nominal state. Some key characteristics (KC) of 

the product – related to the fulfilment of functional 

requirements – are identified and bounded to define the 

acceptable differences between the actual state and the 

nominal state of a product. A product with all its KC 

within the specified boundaries is declared conform. 

Tolerance analysis consists in predicting the expected 

conformity rate – the percentage of conform assembled 

products – of a production. It requires the use of an 

appropriate method to simulate the KC deviations 

according to the geometrical variations of the components 

and to the dispersions of the assembly processes. When 

the assembly sequence, the compliance of the components 

and the influence of contact at interfaces are taken into 

account, the geometrical variation propagation during the 

assembly follows a non-linear relation, especially when 
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the key characteristics are gaps at interfaces between 

components. This relation is generally obtained thanks to 

a finite element analysis (FEA) [1, 2, 3, 4, 5]. 

If one knows the propagation relation for the assembly 

of one product, a stochastic analysis can be used to 

evaluate the probability density function (PDF) of each 

key characteristic deviation and evaluate the value of the 

expected conformity rate. The stochastic analysis may 

require numerous evaluations of the propagation relation 

of the assembly. The resulting intensive use of non-linear 

FEA is highly computationally expensive. Thus, the 

computing cost required for a tolerance allocation method 

based on iterative tolerance analyses seems to be a 

prohibitive one. 

Several papers present solutions to reduce the 

computational cost of geometrical variation propagation 

in non-linear cases. Cai et al. proposed a second order 

Taylor series development in [2]. The second order terms 

extend the method of influence coefficient (MIC) 

proposed by Liu and Hu [1] to give an approximation of 

the non-linear relation. It can drastically reduce the 
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number of FEA required but it only provides a local 

approximation in the neighbourhood of the evaluated 

point. Dahlström and Lindkvist [3] proposed a contact 

search algorithm coupled with an adapted MIC to model 

the influence of contact. The method proved to be 

approximately five times faster than non-linear FEA with 

little loss of accuracy. Xie et al. presented the direct 

evaluation of the KC deviations probability density 

functions thanks to a statistical analysis based on Taylor 

series development obtained with a small amount of FEA 

results and a problem dimension reduction [4]. This 

method leads to a sizeable gain in computing time for the 

evaluation of statistical moments of the KC distribution. 

Ungemach and Mantwill investigated the use of a 

retroactive contact consideration to correct MIC results 

[5]. This method also led to lower computing efforts than 

FEA to evaluate a close approximation of the KC 

deviations considering the contact influence. 

This paper deals with an original method to 

approximate the non-linear geometrical variation 

propagation in assembly with an artificial neural network. 

This leads to a sizeable gain in computing time once the 

neural network is trained and allows performing multiple 

tolerance analyses with various input conditions (e.g. 

optimisation of tolerance allocation) with low computing 

efforts. 

The following section presents several approximation 

methods among which the neural networks seem to be the 

most suitable. It also focuses on the topology and 

architecture of artificial neural networks (NN). The third 

section gets into the details of the experiment plan 

performed to identify relevant neural network design 

parameter sets for geometrical variation propagation 

approximation and to evaluate the associated 

approximation quality. The fourth and fifth sections 

present a case study and the experimental results 

obtained. Section six is the conclusion. 

2. Approximation of non-linear geometrical variation 

propagation relations 

2.1. Metamodels for non-linear relations 

Considering a problem entity (e.g. geometrical 

variation propagation in assembly), a causal simulation 

model can be established (e.g. the parametric FEA-based 

geometrical variation propagation relation in the 

assembly). Kleijnen defines a metamodel as an 

approximation of the multi-input/multi-output relation 

given by the simulation model [6]. 

Considering 𝒙 as the input vector and 𝒚 as the output 

vector resulting from the model of the problem entity, the 

simulation model can be mathematically expressed by a 

function 𝑓(𝒙) = 𝒚 . Evaluating the probability density 

function of 𝒚 (e.g. the KC deviations gathered in a vector) 

requires mapping the input parameters space. The 

computing effort required to evaluate the simulation 

model 𝑓 on numerous 𝒙 samples can be an obstacle to a 

suitable method. A computationally efficient solution 

consists in computing a learning set of simulation results 

(𝒙𝑖 , 𝒚𝑖)𝑖∈{1…𝑁} to build a metamodel 𝑓∗ that minimises 𝜀 

as defined in eq. (1): 

𝜀 = ∑ |𝑓∗(𝒙𝑖) − 𝒚𝑖|
𝑁
𝑖=1  (1) 

Such a metamodel should provide a good prediction 

𝒚∗ = 𝑓∗(𝒙) for untested inputs 𝒙 although built from a 

small size 𝑁  of the learning set. Generally, those two 

characteristics are antagonistic. 

A common approach consists in fitting the simulation 

results with a linear model. This is basically the case of 

the method of influence coefficients [1]. This method is 

not suitable when the problem entity is non-linear. Second 

order polynomials methods are also commonly used but 

they generally only provide suitable approximations in a 

local area in the input space. Splines can be used to build 

a global model according to multiple local fitting. 

Unfortunately, the most common multivariate spline 

methods are based on interpolating splines, which are not 

applicable for metamodelling purposes [7]. This class of 

methods is therefore limited to univariate or bivariate 

input space. 

Inverse distance methods, including local linear 

approximation methods, define another class of simple 

metamodels, but the computing cost to evaluate 𝑓∗ 

increases with the size of the learning set which is related 

to the number of components of 𝒙. It becomes an issue 

when the number of input variables of the problem entity 

involves a large learning set (i.e. a large 𝑁). The same 

problem exists with spatial correlation (kriging) 

metamodels. Kriging can briefly be described as a spatial-

dependant linear combination of the observations 

{𝒚𝑖}𝑖∈{1…𝑁} of the learning set. 

Artificial neural networks can deal with multi-

input/multi-output approximation problems [8]. It can be 

seen as a general formulation of several classes of 

metamodels aforementioned [7]. 

Finally, kernel regression methods can provide better 

approximation quality than neural networks with a lower 

algorithmic cost [9] but it requires a strong mathematical 

background to be handled properly. 

The artificial neural networks seem to be suitable for 

metamodelling the geometrical variation propagation in 

assembly, as they can provide good approximations of 

large multi-input/multi-output simulation models while 

requiring a reasonable mathematical background. 



 

2.2. Description of an artificial neural network 

The artificial neuron is the fundamental information-

processing unit of a neural network. From the 

mathematical point of view, it is a function of 𝑚 variables 

(𝑢1 … 𝑢𝑚) returning a scalar 𝑣. Fig. 1 is a block diagram 

representing the non-linear model of a neuron. Its transfer 

function is given in eq. (2), using the conventions 𝑢0 = 1 

and 𝑤0 = 𝑏. 

𝑣 = 𝜑(𝑏 + ∑ 𝑤𝑗 ⋅ 𝑢𝑗
𝑚
𝑗=1 ) = 𝜑(∑ 𝑤𝑗 ⋅ 𝑢𝑗

𝑚
𝑗=0 ) (2) 

The 𝑤𝑗  are called synaptic weights and 𝑏 is the neuron 

bias. The function 𝜑  is called activation function. 

Sigmoid functions are usually employed as activation 

functions for approximation purposes [10]. 

An artificial neural network is a function obtained by 

composition of artificial neurons, as depicted in Fig. 2. 

The graphical representation is more convenient than an 

equivalent mathematical expression of the neurons' 

transfer function composition. The topology of the 

network is characterised by the number of neurons and the 

existing connections between them. A particular topology 

called multilayer perceptron is known to be efficient for 

metamodelling purpose [8]. Fig. 2 shows the example of 

a perceptron with a two neurons output layer and one 

layer of three neurons, called hidden layer. The 

approximation capabilities of the network depend on the 

number of hidden layers and also on the number of 

neurons in each layer. The higher the number of neurons 

and the number of hidden layers, the more complex the 

pattern that can be approximated. A high number of 

neurons also leads to a complex training. 

When the topology of the network and the activation 

functions are chosen, the metamodel function 𝑓∗  only 

depends on the synaptic weights and bias of the neurons. 

The final step of the metamodelling – the training of the 

neural network – aims at estimating the values of those 

parameters (weights and biases) to minimise an objective 

function evaluated on a training data set (𝒙𝑖 , 𝒚𝑖)𝑖∈{1…𝑁}. 

In the case of approximation neural networks, the 

objective function commonly used is the mean squared 

error defined in eq. (3) (optimised with respect to the 𝑤𝑗  

parameters). 

𝑚𝑠𝑒({𝑤𝑗}) =  
1

𝑁
∑ (𝑓∗(𝒙𝑖 , {𝑤𝑗}) − 𝒚𝑖)

2𝑁
𝑖=1  (3) 

The training is commonly performed with an algorithm 

called back propagation. 

2.3. NN-based geometrical variation propagation in 

assembly 

Fig. 3 schematically displays how the key 

characteristics are simulated according to the FEA-based 

geometrical variation propagation relation (blue frame). It 

also explains how they can be approximated with a 

trained neural network (orange frame). The following 

section focuses on the neural network design (pictured in 

the green frame). 

3. Neural networks design and assessment 

3.1. Experiment plan 

Fig. 4 summarises the main parameters that influence 

the approximation quality of the neural network. In our 

case, some design parameters (in light grey in Fig. 4) can 

be chosen according to the literature on neural networks. 

The choice of sigmoid activation functions, multilayer 

perceptron topology or back propagation training 

algorithm with mean squared error as objective function 

are not discussed in this paper as they appear to be 

relevant for metamodelling purpose [8]. Formal relations 

known between components of the input vector 𝒙  and 

output vector 𝒚  are also previously assigned to avoid 

letting the neural network learns it, what reduces the 

number of neurons required, and the number of 

parameters estimated during the training. 

Other parameters are more problem-dependant. An 

experiment plan is performed to identify relevant sets of 

neural network design parameters for the approximation 

of geometrical variation propagation in assembly and to 

evaluate the associated approximation quality. The 

following subsections are describing the design 

parameters and the neural network approximation quality 

indicators chosen in this study. 
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Fig. 1. Non-linear model of a neuron (adapted from [8]). 
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Fig. 2. Example of a neural network with 5 neurons, 𝑚 inputs and 

2 outputs. 



 

3.2. Design parameters selection 

As mentioned previously, the number of hidden layers 

and the number of neurons in each hidden layer (called 

hidden layers' size) can have a significant impact on the 

approximation quality. For those two parameters, two 

levels are chosen: one and two layers and 10 and 20 

neurons per layer. 

The inputs {𝒙𝑖}𝑖∈{1…𝑁} and outputs {𝒚𝑖}𝑖∈{1…𝑁} can be 

normalised to reduce scale effects between components 

and to reduce estimation errors due to related training 

issues. That gives two other design parameters with two 

levels each. 

The training data set {𝒙𝑖}𝑖∈{1…𝑁} must be designed to 

map efficiently the input space with a minimum number 

𝑁 of finite element analyses to perform and nevertheless 

providing a good generalisation, i.e. an estimation of the 

𝑤𝑗  parameters that allows a good prediction for 𝒙 ∉
{𝒙𝑖}𝑖∈{1…𝑁} . The impact of the number 𝑁  of training 

points is evaluated: two levels 𝑁 = 2000and 𝑁 = 10000 

are chosen. 

Two different sampling methods are commonly used 

to generate the training data set {𝒙𝑖}𝑖∈{1…𝑁} : random 

uniform distribution for each variable and Latin 

Hypercube Sampling of the learning region. Theoretical 

pros and cons are not discussed in this paper. The two 

methods are evaluated and compared, leading to another 

design parameter with two levels. 

The size of the learning region is defined by the 

volume of the convex hull formed by the training data set 

in the hyperspace of dimension 𝑚, where 𝑚 stands for the 

number of components of the input vector 𝒙. The learning 

region must obviously include the entire region where the 

geometrical variation propagation relation needs to be 

approximated. A neural network trained on a wide region 

provides the ability to approximate the geometrical 

variation propagation relation for a large variety of inputs 

(i.e. provides a wide search space for tolerance allocation 

optimisation) but can lead to higher approximation errors. 

To evaluate the impact of the size of the learning region 

on the approximation quality, the training of the neural 

network is performed either on a wide or on a tight 

learning region (Fig. 5). This is the last design parameter. 

The seven design parameters (summarised in dark in 

Fig. 4) with two levels lead to 128 (27) experiments to 

identify relevant sets of parameters for the geometrical 

variation propagation approximation. 
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Fig. 3. Principle of the geometrical variation propagation in assembly approximated with a neural network compared to direct finite element 

analysis variation propagation simulation. 
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Fig. 4. Cause-and-effects diagram inventorying characteristics of a neural network (design parameters investigated in dark). 



 

3.3. Approximation quality indicators 

The paper deals with the evaluation of the expected 

conformity rate associated with assembly processes and 

with geometrical tolerances of components. The quality 

of the metamodel may thus be expressed with indicators 

representing the approximation of this quantity at the 

population level. Meanwhile, it is still interesting to 

evaluate the generalisation quality at the individual level 

(i.e. the ability to predict the value of the output for an 

untested input) to assess the confidence in the neural 

network approximation. 

Considering a population of 𝑃  input vectors 

{𝒙𝑝}
𝑝∈{1…𝑃}

representing the geometrical variations of 

parts and assembly processes for the assembly of 

𝑃 products, the reference simulation model responses 

{𝒚𝑝}
𝑝∈{1…𝑃}

 are computed thanks to 𝑃  finite element 

analyses. That gives the reference used to evaluate the 

metamodel response {𝒚𝑝
∗ }

𝑝∈{1…𝑃}
= {𝑓∗(𝒙𝑝)}

𝑝∈{1…𝑃}
. 

The indicators presented in eq. (4) are described for a 

scalar valued population {𝑦𝑝}
𝑝∈{1…𝑃}

. As the output 𝒚 is 

assumed to be a vector, the indicators are calculated for 

each of the components of 𝒚 separately and the worst case 

along the dimension of 𝒚  is chosen to characterise the 

global quality of the approximation. 

{
𝛿𝑐95% = |𝑐95% ({𝑦𝑝}) − 𝑐95% ({𝑦𝑝

∗})|

𝛿𝑦̅̅̅̅ =
1

𝑃
∑ |𝑦𝑖 − 𝑦𝑖

∗|𝑃
𝑖=1

 (4) 

where 𝑐95%(𝑋) denotes the 95% coverage interval of the 

set 𝑋 as defined in Fig. 6. The associated indicator 𝛿𝑐95% 

expresses the error on the predicted boundary of 𝑦∗ for a 

95% target conformity rate. 

The generalisation quality at the individual level is 

evaluated through 𝛿𝑦̅̅̅̅  which is the mean of the absolute 

generalisation error among the population. 

4. Case study 

4.1. Problem entity 

The case presented in this paper is the pre-assembly of 

a mechanical structure depicted in Fig. 7. The structure is 

composed of two feet, a frame and a square. The feet and 

the frame are positioned with a tooling before assembly 

(see Fig. 7 (b)). The assembly sequence is given in Fig. 7 

(a). 

The key characteristics of the pre-assembled structure 

are the maximum gaps between each couple of surfaces 

nominally in contact (see Fig. 7 (b)). The three 

corresponding key characteristic deviations are the 

problem entity outputs. 

The arrows in Fig. 7 (b) expresses a contact between 

two surfaces of two components or a kinematic link 

between two components [11]. The problem entity inputs 

model the components and assembly processes 

geometrical variations. They are decomposed in two 

categories.  

The dispersions of the situation of each component are 

due to geometrical variations of the kinematic links. Each 

relation on degrees of freedom imposed by a kinematic 

link is prone to geometrical variations. To reduce the size 

of the problem, the positioning of the feet by the tool is 

supposed to be performed without introducing 

geometrical variations. The five other kinematic links 

considered are leading to nine relations on degree of 

freedom prone to variations. Those variations are 

expressed with nine components of the vector 𝒙. 

The geometrical variations of each component are 

described by modes. The concept of mode-based 

description and tolerancing of geometrical variations has 

been explained by Huang and Ceglarek in [12] and by 

Samper and Formosa in [13]. The magnitude of each of 

the five unitary modes depicted in Fig. 7 (c) is also an 

input of the problem entity, giving five more components 

of the vector 𝒙. 
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Fig. 5.Example of a wide and a tight learning region compared to 

the approximation region of the neural network in the case of a two 

dimensions input space. 
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Fig. 6. Example of a cumulative density functions 𝐹𝑋  and 

illustration of the 95% coverage interval 𝑐95%(𝑋). 



 

Although they can be considered as an input of the 

problem entity due to their impact on the resulting gaps, 

the clamping forces introduced by the staples (steps iv-v-

vi) are not considered to be prone to variations in this 

study. 

The outputs of the problem entity are the maximum 

gaps at interfaces between surfaces. As the simulation 

takes the contact interaction into account, the gaps are 

necessarily positive and the multi-input/multi-output 

geometrical variation propagation relation is non-linear. 

4.2. Simulation model and neural network 

approximation 

The training data sets and the reference responses are 

generated with parametric non-linear finite element 

analyses conducted with Cast3M. Each kinematic link in 

the assembly is converted into boundary conditions the 

parameters of which are the associated geometrical 

deviations. The meshes of the components are also 

deviated according to the magnitude of their modes. To 

take the assembly sequence into account, the boundary 

conditions of each step of the sequence are updated 

according to the solution of the finite element problem of 

the previous step. 

The reference data set {𝒙𝑝}
𝑝∈{1…𝑃}

 has 10000 points 

(𝑃 = 10000). Each variable 𝒙 has a normal distribution 

with mean values and standard deviations detailed in 

Table 1. 

This table also summarises the boundaries of the tight 

and wide learning regions for each input variable. 

The experiments are conducted with the Neural 

Networks toolbox of MATLAB®. The training of a neural 

network requires initial values before optimising the 

weights. The introduction of randomness in those initial 

values is recommended to avoid introducing prior 

information [8]. The training of each network is then 

performed 30 times with random initial weights and the 

worst value of each of the indicator defined in eq. (4) 

among those 30 trainings is considered. 

Table 1. Characteristics of the reference data set ([𝜇 − 3𝜎, 𝜇 +
3𝜎] intervals) and boundaries of the learning regions (in 𝑚𝑚 for 

the kinematic links (indexes corresponds to Fig. 7 (a)) variations 

and modes magnitudes. 

Kinematic link dof Ref. Tight Wide 

Tool-Foot  Tx, Ty, Tz [0 0] [0 0] [0 0] 

Tool-Frame (1) 

Tx [0, 0.2] ±0.3 ±0.5 

Ty [-0.7, 

0.7] 

±0.8 ±1 

Tz [-0.7, 
0.7] 

±0.8 ±1 

Tool-Frame (2) 

Tx [0, 0.2] ±0.3 ±0.5 

Tz [-0.7, 
0.7] 

±0.8 ±1 

Tool-Frame (3-

4) 

Tx [0, 0.2] ±0.3 ±0.5 

Foot 2-Square 

(5) 

Tx [-0.3, 

0.8] 

±0.8 ±1 

Ty [-0.5, 
0.7] 

±0.8 ±1 

 

Part Mode Ref Tight Wide 

Frame 1 [0, 0.75] ±0.75 ±1 

Foot 1 1 [0, 0.2] [0, 0.4] [0, 1] 

Foot 2 1 [0, 0.2] [0, 0.4] [0, 1] 

Square 
1 [-0.3, 0.3] ±0.4 ±1 

2 [-05, 0.8] ±0.8 ±1 

 

 
(a) (b) (c) 

Fig. 7. (a) Assembly sequence of the use case: (i) Feet positioned by tool; (ii) Frame positioning positioned by tool; (iii) Square positioning 

positioned on foot 2 (hole to hole) and frame;(iv) Clamping of square on foot 2; (v) Counter-drilling and clamping of square on foot 

1;(vi) Counter-drilling and clamping of square on frame. (b) GAIA® graph [11] of the positioning link of the components. Uncertainties are 

associated with each relation on degree of freedom. (c) Geometrical variation modes of the components. 
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5. Results 

5.1. Relevant sets of design parameters 

The search of optimal sets of design parameters is a 

multi-objective optimality problem due to the two 

indicators considered. The approach chosen for solving 

this problem consists in searching the Pareto front in the  

(𝛿𝑦̅̅̅̅ , 𝛿𝑐95%) plane, as shown in Fig. 8. In this case, there 

are four optimal networks (see Fig. 8) the design 

parameters of which are given in Table 2. 

The four networks are trained on a tight learning region 

mapped with 10000 points. As far as the training data are 

not prone to noise, this result can be generalised: the 

higher the density of learning points, the better the 

approximation. They all have a single hidden layer, what 

may be due to the smoothness of the geometrical variation 

propagation relation. In a general case, we can assume 

that this relation is smooth enough to be approximated 

with a single layer perceptron. 

The input and output normalisation do not seem to 

affect the approximation quality in the tested case. It is 

probably because of the natural homogeneousness of the 

data in this case. Yet, the training of networks with 

normalised data is generally faster and the NN4 – which 

appears to be a good trade-off among the optimal 

networks – is built with normalised data. The Latin 

Hypercube Sampling generally allows a faster training 

than the random uniform sampling. But in matter of 

approximation quality, no strong trend can be observed 

among the networks close to the Pareto front. 

The hidden layer size is always a hard parameter to 

select [8]. The more neurons, the larger the estimation 

error but the lower the expected approximation error. 

NN4 has 20 neurons in its hidden layer but the worst 

results (not visible in Fig. 8) are also obtained with 20 

neurons in the hidden layer. Thus, further experiments 

need to be performed to find the optimum hidden layer 

size relatively to the approximation quality in the general 

case. 

5.2. Associated approximation quality 

Table 3 presents 𝑐95% and 𝛿𝑦̅̅̅̅  of each of the three key 

characteristics for the reference data set {𝒚𝑝}
𝑝∈{1…𝑃}

 and 

for the {𝒚𝑝
∗ }

𝑝∈{1…𝑃}
 obtained with the four Pareto optimal 

networks.  

The 𝑐95% of the three gaps obtained with NN1, NN2, 

NN3 and NN4 need to be compared to the reference 

values.  

The highest 𝛿𝑐95% of 0.039 mm (neural network 1, gap 

3) is around twenty per cent of the reference 𝑐95%. This 

error is the worst case among 30 neural network trainings. 

For most of the tested case, the 𝛿𝑐95% error is quite lower 

than ten percent, especially for gap 1 and 2. It is therefore 

interesting to notice that the size of the coverage interval 

is widely under-evaluated for gap 3, what can denote that 

the neural networks tend to be bad at approximating the 

tails of cumulative density functions. This can be an issue 

to evaluate the conformity rate. 

The average generalisation error is around five per cent 

of the reference 𝑐95%. 

The global approximation performance evaluated in 

this case study can be seen as satisfactory for many 

tolerancing applications. Therefore, this good 

approximation ability may be seen cautiously. The 

reference data set is nearly centred in the learning region, 

with normal distribution of the variables. Those 

particularities may favour a good approximation. 

Nevertheless, it can be difficult to evaluate a confidence 

indicator with a reasonable computing time. 

 

Fig. 8. Indicators for the 128 tested networks of the experiment plan 

(blue crosses) and Pareto front (red line) in the (𝛿𝑦̅, 𝛿𝑐95%) plane 

for the case study. 

Table 2. Design parameters of the Pareto-optimal networks (LHS 

and RU stand for Latin Hypercube Sampling and Random Uniform 

respectively). 

Design parameters NN1 NN2 NN3 NN4 

Nb. of hidden layer(s)  1 1 1 1 

Hidden layer size  10 10 10 20 

Input normalization Yes No No Yes 

Output normalization No Yes No Yes 

Nb. Of learning points 10000 10000 10000 10000 

Sampling LHS RU RU RU 

Training region size Tight Tight Tight Tight 

Table 3. Approximation performed with the Pareto-optimal 

networks in the worst case among the 30 trainings compared to the 

reference simulation (values in mm). 

 Gap 1 Gap 2 Gap 3 

 𝑐95% 𝛿𝑦̅̅̅̅  𝑐95% 𝛿𝑦̅̅̅̅  𝑐95% 𝛿𝑦̅̅̅̅  

Ref. 0.262 / 0.276 / 0.231 / 

NN1 0.263 0.015 0.273 0.013 0.193 0.006 

NN2 0.263 0.017 0.277 0.014 0.201 0.006 

NN3 0.264 0.016 0.274 0.021 0.202 0.008 

NN4 0.262 0.016 0.265 0.021 0.207 0.002 

 



 

5.3. Potential gain in computing time 

The evaluation of the FEA-based variation 

propagation relation in the presented case takes 

approximately 0.65 s for a single assembly simulation. 

Then, the simulation of a population of 10000 assembled 

products takes approximately 6500 s and the total 

computing time required for multiple tolerance analyses 

is linear with respect to the number of analyses (see 

Fig. 9). 

In our case, the same computing time is also required 

to generate a training data set because of its 10000 

elements. The training of the neural network takes 

approximately 25 s, what leads to a total 6525 s to obtain 

an operational neural network. After that, the evaluation 

of the approximated NN-based variation propagation 

relation takes less than 1.10-4 s, leading to 1 s to 

approximate a population of 10000 assembled products. 

Those figures are summarised in Fig. 9. They are 

average values observed along the experiments. They can 

only serve the relative comparison between FEA-based 

simulation and neural network approximation. 

The Fig. 9 shows the potential gain in computing time 

when multiple analyses are performed, like in an optimum 

tolerance allocation research. The metamodel is valid as 

long as the evaluated region is included in the learning 

region. The neural network approximation can also be a 

relevant solution for off-line preparation before 

performing a quick evaluation of different scenario. 

6. Conclusion 

The computing time may become a hurdle in the 

simulation of geometrical variation propagation in 

assembly for tolerance analysis, particularly when the 

influence of part compliance, assembly sequence and 

contact interaction are taken into account (what generally 

leads to non-linear geometrical variation propagation 

relations). 

This paper presents an original method to approximate 

the non-linear geometrical variation propagation relation 

with neural networks. This approximation aims to reduce 

drastically the computing time required for multiple 

tolerance analysis. 

The impact of several design parameters of the neural 

network on the approximation quality is investigated 

through a case study. Several appropriate sets of design 

parameters are identified. Further work is still required to 

find the optimum size of the neural network hidden layer. 

The quality of the approximation of those relevant 

networks is also evaluated on the case study. The average 

generalisation error – at the individual level – and the 

error in the prediction at the population level – like the 

95% coverage interval evaluated in the paper – are 

satisfactory in the tested case. The errors are generally 

below ten per cent for the 95% coverage interval. Yet, the 

method proposed lacks a way to assess the confidence in 

the approximation.  

Finally, the potential gain in computing time is pointed 

out. The approximation of the geometrical variation 

propagation in assembly with neural networks proved to 

be particularly efficient when multiple tolerance analyses 

need to be performed, leading to a very low computing 

time required while the network is trained and as long as 

the evaluated population is included in the learning 

region. 
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