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From 1998 to 2003, Alan N. Gent and some co-workers published a series of papers devoted to the first
measurements of fatigue crack growth properties in rubber in mode III loading conditions (Rubber
Chemistry and Technology, vol. 71, pp. 76–83; vol. 71, pp. 84–94; vol. 76, pp. 1276–1289). The present
paper proposes to revisit this seminal work benefiting from the capabilities of new multiaxial fatigue
machines. Then, a new mode III fatigue test for elastomers is developed. A thin bonded disk of rubber
with a circumferential cut is subjected to cyclic torsion to investigate the fatigue crack growth in mode
III. The corresponding measurement methods for the crack growth rate and the fracture energy are
proposed. As a constant small axial extension can be applied and controlled to prevent the cracking
surfaces from abrasion and to ensure almost mode III loading conditions, the quality and the relevance of
the experimental data are highly enhanced. As a results, the method is applied to an unfilled natural
rubber and the crack growth rate is related to the fracture energy for several loading cases. The effects of
axial extension, alternate cycles and positive minimum angle cycles are examined. In particular, it is
shown that for fully unloaded cycles the crack growth rate laws in modes I and III coincide in the regime
of high fracture energies.

1. Introduction

Industrial rubber parts often admit complex shape and are
subjected to multiaxial loading conditions. As an example, tires
experience tension induced by pressure, and shear and compres-
sion induced by contact with the road. Then, these complex
loading conditions can induce any type of crack opening, i.e.
modes I, II and III [1].

On the one hand, fatigue of rubber in mode I has been largely
studied with tension and pure shear experiments, for which
numerous experimental data are available, see for example [2,3].
On the other hand, only very few works have been proposed in
mode III. For quasi-static loading conditions, Gdoutos et al. con-
sidered trousers samples [4,5], and Cha and Jeong performed
peeling experiments [6]. For fatigue loading conditions, crack
growth in mode III was studied in a series of papers due to Gent
and coworkers [7–9]. In this study, the authors have (I) developed
a dedicated mechanical system that was adapted on a classical
tensile machine to prescribe torsion loading conditions [8], (II)
derived the equations that permit to analyze experimental mea-
surements [7], and (III) improved their results with the help of

finite element analysis [9]. Recently, Keller et al. used the same
kind of device to perform mode III fatigue test on self-healing
elastomers [10].

The aim of the present paper is to revisit the experiments of
Gent and co-workers with the help of new commercial fatigue
tension/torsion machines devoted to soft materials.1 Indeed, we
propose here a specific sample and the corresponding testing
methodology to investigate the crack growth in mode III fatigue
for rubber. The emphasis is laid on the thorough control of the
loading conditions that permits us to overcome the difficulties
encountered in [8]: the small mode I opening of the crack is
controlled and permits us to substantially limit abrasion of cracked
surfaces. The outline of this paper is as follows. First, Section 2
presents the sample, the machine and the methods to measure the
crack growth rate dc=dn (with c being the crack length and n being
the number of cycles) and the fracture (or tearing) energy G. Then,
Section 3 presents and discusses the results: pure mode III
measurements are compared with those previously published,
and as suggested in the fourth conclusion of [9] new loading

1 Throughout the paper, notations and terminology used in the papers of Gent
and coworkers are adopted.
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conditions, i.e. superimposed modes I and III, and alternate fatigue,
are investigated. Finally, a short conclusion closes the paper.

2. Methods

2.1. Sample

2.1.1. Geometry
The sample is a thin cylinder with a circumferential cut. In the

undeformed configuration, its height is h¼5.7 mm and its radius is
a¼30mm. These dimensions are almost the same as those considered
in [8]. The crack depth in the undeformed state is denoted as c. We
note c0 the particular value of c at the beginning of the experiment.
The uncracked portion of the radius is r¼ a�c. Under simultaneous
tension and torsion, the cylinder deforms and the crack grows; the
corresponding deformed height and radius are respectively λh and rm
where λ is the axial stretch ratio and the subscript �m stands for
“measured”. The geometry of the sample is sketched in Fig. 1.

2.1.2. Fabrication
First, raw unfilled rubber is laminated into thin sheets from

which circular parts are punched with a die cutter to form small
cylinders of about 30 mm in radius and 7–8 mm in height. Then,
the surface of steel-end pieces is prepared for gluing: they are
roughened and a Chemosyl adhesive, a strong rubber–metal
adhesive that polymerizes during the molding process, is applied.
Samples are formed in a three-part steel mold. The mold is pre-
heated at 150 1C and the forming pressure is set at about 10 MPa.
Both metal end-pieces and raw rubber are introduced in the mold.
Once molding is completed, samples are extracted and left for
cooling at room temperature. Finally, dimensions of the samples
are verified; they almost always satisfy the required design.
Nevertheless, due to the manual preparation of raw rubber, a
given sample can exhibit a 0.1 mm variation in height.

The second step of fabrication is the cutting of the initial crack.
It is to note that this step must be carefully performed to ensure a
homogeneous initial crack depth c in the samples and the
parallelism of the crack faces with the surface of the steel-end
pieces. Our method consists in using a utility knife mounted on a
rigid support: the uncracked sample is placed in a lathe and
rotation is prescribed, then the blade is slowly and carefully
moved to cut it in the middle plane.

2.2. Machine and loading conditions

The above-described samples have been designed for the
Instron ElectroPuls™ E10000 uniaxial tension/torsion fatigue
machine shown in Fig. 2. This machine permits us to prescribe

the axial displacement2 d or the axial force F, and the angle of
twist ϕ or the torque M. In fact, the major difference with the
experimental work of Gent and co-workers is the possibility to
control the axial displacement or force and then to limit rubbing of
cracked surfaces. Indeed, the experiments conducted in [8] corre-
spond to F¼0 in the present case. Here, we investigated the
influence of d and F on the measurements, and we empirically
concluded that d¼0.5 mm is a good compromise to limit rubbing
and to minimize the influence of mode I loading conditions.

2.3. Methods of measurements

Classical results of fatigue crack growth experiments are pre-
sented as log ðdc=dnÞ (fatigue crack growth rate) vs. log G (fracture
energy) curves. Indeed, drawing these types of curves necessitates
rigorous methods to measure c, dc=dn and G.

2.3.1. Crack depth
In order to determine the crack depth c, the crack radius r must

be measured. To measure it in real-time during the test and to
ensure a sufficient accuracy, two different methods have been
considered: a “direct” method that gives r at given number of
cycles, and a “deduced” method, similar to the method adopted in
[8], that uses F and M to deduce r in real-time. Practically, the
former method permits us to validate the latter one.

Direct method: During each fatigue test, at least four measure-
ments of r are performed: the initial crack depth (after cutting of
the sample), the final crack depth (measured on the fracture
surface after sufficient crack growth and cutting of the sample),
and two or more intermediate values.

Practically, the test is stopped at the maximum strain of a cycle,
the crack is open by the axial tensile force and the uncracked
deformed radius rm is measured with an inextensible string of
length L. The string is tied around the uncracked part of the
sample, and its dangling length ld is measured by a vernier caliper;
it leads to rm ¼ l=2π with l¼ L� ld. In order to obtain the uncracked
undeformed radius r, a simple linear equation is used. At the
beginning of the experiment, c0 and then r0 ¼ a�c0 are known,
and rm

0 is measured under tension. Similarly, the final deformed
crack depth rm

f is measured under tension, and the undeformed
final crack depth rf is measured on the final cut surface. Thus,

r� r0þrm�r0m
rfm�r0m

ðrf �r0Þ: ð1Þ

Fig. 1. Sample. Top: reference configuration. Bottom: deformed configuration.

Fig. 2. A sample in the fatigue machine.

2 The stretch ratio is related to the axial displacement by λ¼ 1þd=h.
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Deduced method: The second method consists in relating the
evolution of r to the ones of F and/orM. As the force and the torque
can be recorded (or prescribed) throughout the cycles, it leads to
the continuous measurement of the uncracked radius with time.
As emphasized in [7], for pure torsion and simple constitutive
equations the torsional stiffness, i.e. M=ϕ, is a function of r4.
Motivated by this result, we simply propose to relate r to F and M
by power laws which empirically account for the coupling
between modes I and III, and the complex non-linear mechanical
response of rubber materials:

r� AFα and r� BMβ ; ð2Þ

where A;B;α;β are scalar parameters that depend on a given
sample. Practically, these parameters are identified with the values
at the beginning and at the end of the experiments, i.e. r0; T0;M0

and rf ; Tf ;Mf respectively.
In order to illustrate the relevance of the deduced method,

Fig. 3 presents the evolution of the crack depth c as a function of
the number of cycles for a given sample and arbitrary loading
conditions, as obtained by the three methods: by direct measure-
ment, as a deduced function of the force F and as a deduced
function of the torqueM. As shown in this figure, the data deduced
from the force and the torque lead to almost the same curves, and
they are validated by the three direct measurements depicted in
the figure.

2.3.2. Crack growth rate
Once the crack depth is measured, the next step consists in

determining the fatigue crack growth rate dc=dn (in meter per
cycle). By nature, fatigue experiments lead to scattered results.
Then, in order to quantify the scattering of our results in terms of
crack growth rate, we must analyze the observational error in the
measurements of c. It is due to both the resolution error on
measured data and the interpolation systematic error induced by
the above-mentioned “deduced” method. First, the resolution
error on the measurement of rm is

Δrm ¼Δl
2π

: ð3Þ

The resolution of the vernier caliper is equal to 0.1 mm, but
considering the possible (even limited) extensibility of the string
and the possible human error, we estimate the resolution error as

Δl¼ 2:0 mm. Thus,

Δrm � 0:3 mm: ð4Þ
Concerning the interpolation error, we observe in Fig. 3 that the
maximum distance between the two interpolated curves (force
and torque) and the direct measurements (unfilled circles) does
not exceed 0.3 mm. Thus, the total observational error in the
measurement of c is less than 0.6 mm. Obviously, the error on
dc=dn cannot be directly deduced from the error on c. However, as
a systematic error on c is nullified by differentiation and as the
random noise is minimized by averaging between two data points,
the error on dc=dn should not exceed the error usually observed in
mode I experiments, i.e. around half a decade.

2.3.3. Fracture energy G
Following Rivlin and Thomas, the fracture energy, also known

as the tearing energy in rubber science or the energy release rate
in the classical theory of fracture mechanics, is defined as [11]

G¼ �∂U
∂A

����
d;ϕ

ð5Þ

where U is the total strain energy in the sample, A is the cracked
surface, and the subscript �jd;ϕ means that the differentiation is
made at constant displacement, i.e. external forces do no work.

Analytical solution: In their seminal paper, Rivlin and Thomas
proposed analytical formulae for different samples used for crack
growth in rubber. Nevertheless, the corresponding formula for the
present sample has been proposed in [7]; the authors consider
that the sample can be seen as an infinitely long neo-Hookean
cylinder of radius r subjected to pure torsion, i.e. the cracked
portion of the disk is assumed to be stress-free and to carry no
load. Thus, the corresponding strain energy reduces to

U ¼ μ
πϕ2

4h
r4; ð6Þ

where μ is the shear modulus. Then, invoking Eq. (5) and noting
that the cracked area is A¼ πða2�r2Þ, the fracture energy is

G¼ μ
ϕ2

2h
r2: ð7Þ

Moreover, in the same paper, the authors derive a corrected
formula to relax the previous assumption: in order to account
for the area near the crack front that is not completely unloaded,
they introduced a small correction factor δ such that

G¼ μ
ϕ2

2h
r2 1þδ

r

� �3

: ð8Þ

Finally, they empirically set δ¼ 0:22h for their subsequent
calculations.

In our experiments, the axial extension of the sample can be
prescribed; then this must be taken into account in the derivation
of the fracture energy. Similarly in the basic formula Eq. (7), we
consider a neo-Hookean cylinder of radius r subjected to simulta-
neous uniaxial extension λ and torsion ϕ. In a system of cylindrical
coordinates ðρ;θ; zÞ with z the axial direction, the left Cauchy–
Green tensor is given by [12]

B¼ 1
λ
eρ � eρþ

1
λ
ð1þK2ðρÞÞeθ � eθ

þ
ffiffiffi
λ

p
KðρÞðeθ � ezþez � eθÞþλ2ez � ez ð9Þ

where KðρÞ ¼ϕρ=h and ρA ½0; r�.
Then, the strain energy density in a given point is

W ¼ μ
2

2
λ
þK2ðρÞ

λ
þλ2�3

!
; ð10Þ
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Fig. 3. Comparison of measurement methods for the crack depth.
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and by integration over the cylinder of radius r and height h, it
leads to

Un ¼ μ
2
πr2h

2
λ
þλ2�3

� �
þw
λ

ð11Þ

where the second term in the right-hand side is simply the result
of Aboutorabi et al. divided by the axial extension λ [7]. With this
strain energy, the fracture energy reduces to

Gn ¼ μ
2
h

2
λ
þλ2�3

� �
þG
λ
; ð12Þ

where G is given by Eq. (7). Indeed, the fracture energy is the sum
of a contribution that corresponds to the uniaxial part of the
loading conditions, i.e. the mode I,

GI ¼
μ
2
h

2
λ
þλ2�3

� �
ð13Þ

and a contribution of the mode III loading conditions corrected by
tension

GIII ¼
G
λ
: ð14Þ

In fact, with Eq. (12) it is possible to manage the relative contribution
of mode I in the experiments. In the present work, λ has been chosen
such that the ratio GI=G

n did never exceed 4%. Indeed, with such
small values it is possible to conduct almost pure mode III fatigue
tests with a substantial limitation of crack face abrasion.

Numerical validation: In the third paper of the series, published
five years later than the first two ones, Gent and Yeoh investigated
deviations from their simple analytical model with the help of Finite
Element Analysis (FEA): they investigated the influence of initial
crack depth and position on G [9]. Here, we considered FEA to
validate our previous results Eqs. (7) and (12). The commercial
software Abaqus is used. With the help of the twist deformation
degrees of freedom implemented in this software, and due to the
geometrical symmetry of the sample, an axisymmetric model is
adopted. Moreover, accounting for the symmetry with respect to the
crack plane, only half of the sample is considered. So, quadratic
elements with twist deformation and reduced integration are used.
The main drawback of this type of finite elements is the impossibility
to directly compute the fracture energy through a J-integral in the
software. To overcome this difficulty, the method of global strain
energy is adopted [9]: G is calculated as the difference of the stored
energy between two samples with slightly different crack depth, i.e.
a discrete version of Eq. (5):

G� �UðrþdrÞ�UðrÞ
πððrþdrÞ2�r2Þ

: ð15Þ

Remark 1. In order to determine the mesh size and a relevant
value for dr in Eq. (15), a convergence study has been conducted. It
has been shown that dr must be higher than the element size, and
that even a relatively coarse mesh is able to capture the right value
of G if dr is well-chosen. Practically, for the present sample
geometry (see Section 2.1.1) the mesh size is set at 0.25 mm and
the corresponding mesh contains 1320 elements; then, G is
determined by adopting values of dr between 0.5 and 1 mm
depending on the loading conditions.

The major difficulty with this finite element model is the
determination of the boundary conditions. The two extreme choices
consist in fully constraining the radial displacement of the lower and
upper boundaries, or letting it to be completely free. The former
choice corresponds to the boundary conditions that apply on the real
sample, the latter one corresponds to the analytical solution devel-
oped in [8]. In order to analyze the influence of this choice on Gn, we
have compared them for pure torsion with the analytical solution

(λ¼ 1 in Eq. (12)). The corresponding results are presented in Fig. 4
for different values of the (relative) uncracked radius r=a. A similar
analysis was proposed in the third paper of the series [9]. Depending
on the shape ratio r=h, the analytical solution fits with the free radial
displacement boundary conditions case for small ratios, i.e.
r=h� 2–3:7, and tends to the case of fully constrained radial
displacement for high ratios, i.e. r=h� 5. Then, this analysis first
highlights that the analytical solution of the infinitely long cylinder
remains valid even for short cylinders, and second shows that it
underestimates Gn by about 10% for low r=h ratios, and overestimates
Gn for large r=h ratios.

To conclude, the present numerical model demonstrates that
the analytical solution for the fracture energy G and, then Gn, can
be used if we consider that the difference between the real
solution, i.e. fully constrained radial displacement boundary
condition, is not so large as compared with the scattering of
fatigue measurements. Nevertheless, as we were able to develop a
quite simple numerical model, i.e. in particular with an axisym-
metric coarse mesh, which is not highly time consuming, all the
values of G and Gn reported in the following have been obtained
numerically.

3. Results and discussion

In this section, the previous methodology is applied to inves-
tigate the fatigue crack growth in mode III of natural rubber under
various loading conditions.

3.1. Materials and loading conditions

The material studied is an unfilled natural rubber (NR) vulcanized
during the formation of the sample. Its chemical composition is
given in Table 1. As the maximum global extension prescribed to
samples does not exceed 200%, the material response is modeled by
an isotropic incompressible hyperelastic neo-Hookean constitutive

8000

6000

4000

2000

G
 (J

/m
2 )

1.00.90.80.70.60.50.40.3
r/a

 Analytical model
 Free boundary numerical model
 Fully constrained numerical model

Fig. 4. Influence of the boundary conditions on Gn.

Table 1
NR composition. Data are given in phr (parts per hundred of rubber).

Compound NR Stearic acid ZnO CBS Sulfur 6PPD

phr 100 2 2.5 1.6 1.6 1.9
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equation [13]. The corresponding shear modulus was determined
with uniaxial tensile experiments: μ¼ 0:44 MPa.

The mode III loading conditions are torsion cycles with pre-
scribed angles; a typical experiment consists in about 80,000
cycles without failure. These loading conditions can be classified
into three types:

� fully unloaded tests, during which the minimum torsional angle
in a cycle is zero; these experiments are similar to the ones
investigated by Gent and coworkers,

� partially unloaded tests, during which the minimum torsional
angle remains positive,

� and finally alternate tests, during which the minimum torsional
angle is the opposite of the maximum one.

As previously emphasized, all tests are conducted with a small
tensile stretch to prevent abrasion of crack surfaces. Moreover,

note that results obtained with the two latter types of experiments
have never been published. These three types of tests are depicted
in Fig. 5. Practically, nine different tests have been conducted. In
order to consider an almost constant strain rate, the frequency is
set to 1 Hz for fully and partially unloaded experiments, and to
0.5 Hz for alternate experiments. The corresponding loading con-
ditions are given in Table 2.

3.2. Remark about abrasion of crack faces

As already mentioned, the use of modern uniaxial tension/
torsion loading machine permits the application and control of a
slight uniaxial extension in order to prevent the abrasion of
cracked surfaces. This axial displacement leads to a mode I crack
opening. As mentioned in Table 2, three values of the axial
displacement were considered: 0.3, 0.5 and 1 mm. In order to
compare the efficiency of this method, the corresponding fracture
surfaces, sliced after the end of the tests, are shown in Fig. 6; these
photographs can be compared with the one proposed in Fig. 5 in
[8] which exhibits abrasion patterns. In the three pictures, both
the initial cut and the uncracked area can be distinguished; the
crack growth zone takes place between these two zones. The crack
growth zone highly differs depending on the axial displacement.

The sample with the smallest uniaxial opening (FU3, left hand
side photograph in Fig. 6) is considerably abraded by rubbing: the
crack growth zone is rough and the corresponding abrasion ridges
are about 1 mm thick. Increasing the crack opening substantially
reduces the roughness: for an axial displacement equal to 0.5 mm,
the thickness of the ridges is about 0.3 mm (see the middle
photograph in Fig. 6). Finally, for the largest crack opening, i.e.
1 mm axial displacement, the fracture surface does not exhibit a
ribbed surface as shown in the right-hand side photograph of
Fig. 6. So, the mode I crack opening is efficient to limit surface
abrasion during mode III experiments. Nevertheless, to conduct
almost pure mode III experiments, a compromise must be reached
between completely avoiding abrasion and limiting the influence
of mode I loading conditions. In the present work, we chose to set
the axial displacement to 0.5 mm.

Finally, as easily seen in the three photographs of Fig. 6 small
straight cracks take place in the central uncracked area of the
samples; however we were not able to explain this feature.

3.3. Crack growth results

3.3.1. Fully unloaded experiments
Fig. 7 presents the experimental results for the fully unloaded

experiments (four samples). First, Fig. 7(a) depicts the raw data.
The curves can be separated into two parts: for low fracture
energy, i.e. log Gr3:75, the results depend on the mode I crack

0.00

 A
ng

le
 (R

ad
)

Time (s)

Fig. 5. Types of loading conditions: (—) fully unloaded test, (⋯) partially unloaded
test, (- - -) alternate test.

Table 2
Loading conditions.

Type Sample Minimum
angle (deg)

Maximum
angle (deg)

Axial
displacement
(mm)

FU1 0 30 0.5
Fully unloaded FU2 0 30 0.5

FU3 0 30 0.3
FU4 0 30 1

PU1 5 30 0.5
Partially unloaded PU2 7.5 30 0.5

PU3 10 30 0.5

Alternate A1 �30 30 0.5
A2 �30 30 0.5

Fig. 6. Fracture surfaces for a given axial displacement. Left: 0.3 mm (sample FU3), middle: 0.5 mm (sample FU1), right: 1 mm (sample FU4).
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opening, and for higher values of G the four sets of experimental
points coincide. So, one can argue that for low values of G mode I
highly influences the crack growth rate whereas for higher G only
mode III drives dc=dn. In order to quantitatively discuss these
results, we adopt the approach of Lake and Lindley for mode I
fatigue crack growth: they proposed to separate the dc=dn vs. G
curves by the following set of equations (see Eqs. (2)–(5) in [2]):

dc=dn¼ r; GrG0 ð16Þ

dc=dn¼ AðG�G0Þþr; G0rGrGt ð17Þ

dc=dn¼ BGβ ; GtrGrGc ð18Þ

dc=dn¼1; G¼ Gc; ð19Þ
where r, A, B and β are the rate of growth constants, and G0, Gt and
Gc are the threshold fracture energies that separate the different
crack growth regimes:

� Eq. (16) defines the minimum tearing energy for mechano-
oxidative crack growth G0 under which there is no influence of
G on the crack growth rate,

� Eq. (17) stands for the linear relationship that correspond to
low values of G and ends for the threshold energy Gt, i.e. the
fracture energy at which the dependence of crack growth rate
on G changes from linear to power law,

� Eq. (18) represents the power law regime for high G (note that
in [2] the authors empirically set β¼ 2),

� and finally Eq. (19) defines the critical fracture energy.

For the four experiments FU1–FU4, the parameter G0 of the low
G regime (Eq. (17)) and the power law parameters of Eq. (18) are
fitted; they are given in Table 3. These quantitative results
strengthen the previous qualitative observations: mode I influ-
ences the low G regime through G0, but do not influence high G
regime for which the same values of B and β have been obtained.

Fatigue regime for low G, Eq. (17): The low G regime is difficult
to comment upon. Indeed, the value of G0 determined by Lake and
Lindley, i.e. 50 J/m2, is highly inferior than our findings. To under-
stand this discrepancy, our definition of G0 must be clarified: here
we define G0 as the fracture energy for which the crack growth
rate would be equal to 10�9 m/cycle if the low G regime curve is
extended to very low crack growth value. It is to note that in their
paper, De and Gent did not measure this quantity [8].

In order to comment the difference between our values of G0

and the one of Lake and Lindley, we invoke a study of Lindley who
demonstrated that for mode I loading conditions with non-zero
minimum force (or displacement), the crack growth rate decreases
as the R-ratio, i.e. the ratio between the minimum and the
maximum forces (or displacements), increases [14]; see also the
survey of Mars and Fatemi for additional details [15]. During our
experiments, the axial extension is prescribed and then it leads to
small non-fully relaxing loading conditions. At the beginning of an
experiment (high G, small crack length), the axial extension is very
small as compared to the torsion strain. Therefore, the crack
growth rate is unaffected by the axial extension. As the crack
grows, the torsion strain diminishes, and G decreases. When the
torsion strain and the axial extension become the same order of
magnitude, the effects of non-fully relaxing conditions empha-
sized above take place and the crack growth rate rapidly drops, as
established by Lindley and Mars.

Fatigue regime for high G, Eq. (18): Now, we only focus on the
fatigue regime for high G, in which there is no influence of mode I
crack opening.

The present results in mode III given in Table 3 are compared
with those of other authors also obtained for unfilled NR vulcani-
zates (obviously, some details of the chemical composition differ
from one to the other): the results in mode III of De and Gent [8],
the results in mode I of Lake and Lindley [2] obtained on thin
strips with a small edge cut, and the results in mode I of Young [3]
obtained with pure shear samples (at 50 1C and 40 Hz!). The
corresponding values of the power law parameters of Eq. (18)
are reported in Table 3. They were given in the corresponding
papers for the two former sets of results, and recently calculated
by Mars for the latter one [16]. The corresponding curves are
plotted in Fig. 7(b). For high values of G, parameters and curves are
similar, the major discrepancy is observed between our results and
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Fig. 7. Crack growth rate dc=dn vs. fracture energy G for unfilled NR vulcanizate
under fully unloaded mode III loading conditions: (a, up) raw data, (b, down) fitted
laws for high values of G and comparison with published results for mode I.

Table 3
Parameters of crack growth laws.

Sample Axial
displacement

G0

(J/m2)
B
(m/cycle)/(J/m2)

β

FU3 0.3 mm 1800 1:78� 10�15 2.33

FU1 0.5 mm 2950 1:78� 10�15 2.33

FU2 0.5 mm 2900 1:78� 10�15 2.33

FU4 1 mm 4500 1:78� 10�15 2.33

De and Gent [8] 0 mm – 3:81� 10�16 2.71

Lake and Lindley [2] – 50 5� 10�14 2

Young [3] – – 4:46� 10�12 1.35
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the ones of De and Gent. Nevertheless, it must be noted that in this
case the fitted parameters have been obtained only with two data
points. The major conclusion is that for high values of G crack
growth rates in modes I and III are the same, and then can be
determined with only one type of experiment.

3.3.2. Other types of experiments
To investigate the influence of non-relaxing loading conditions

that has been commented in the previous remark, experiments
with non-zero minimum torsion angle are conducted; they corre-
spond to the samples named as PU in Table 2. Moreover, we took
advantage of the versatility of the machine to perform alternate
experiments; they correspond to samples A in Table 2. As this
work is the first to propose experimental results for both partially
unloaded and alternate mode III fatigue experiments in elasto-
mers, the results cannot be compared with others. Indeed, the two
types of experiment are considered simultaneously, and the
results will be discussed as compared with the classical fully
unloaded experiments described above and illustrated in the
present section by the sample FU1.

Raw results are depicted in Fig. 8. The corresponding values of
the parameters of the crack growth laws are given in Table 4. In
Fig. 8, it is clear that the crack growth law is affected by the
minimal angle. To discuss this influence, we define the torsion
R-ratio Rn by

Rn ¼ ϕmin

ϕmax
: ð20Þ

In the present experiments, Rn ranges from 0.167 to 0.333 for
partially unloaded experiments, is equal to 0 for fully unloaded
experiments, and is equal to �1 for alternate tests. For small
positive values of Rn, i.e. sample PU1, the crack growth rate law is
similar to the one in fully unloaded conditions (Rn ¼ 0); only G0

differs: it is higher when Rn40. This difference is due to the
dependence of G0 on Rn already exhibited in mode I for fully
unloaded tests. For high values of Rn, i.e. samples PU2 and PU3, the
slope of the law β increases with Rn: β¼ 14 for P2 and β¼ 100 for
P3. The crack growth rate is significantly lower than for FU1 and
PU1. Moreover, G0 also increases with Rn, which is in agreement
with the results obtained for non-fully relaxing results in mode I
[14]. Finally, we examine the alternate results. It is to be noted that
these types of loading conditions are difficult to prescribe in mode
I, and then the effect of such conditions on crack growth rate is
unknown. As shown in Fig. 8, alternate loading conditions increase
the crack growth rate by a factor 10 (for a given G) and reduces G0

as compared to unloaded loading conditions. In fact, the decrease
in G0 is in continuity with the partially unloaded results: as Rn

increases (from �1 to 0.333 here), G0 increases. Thus, we can
argue that the fatigue crack growth in rubber depends on both the
minimum and the maximum loading states.

4. Conclusion

In the present paper, the series of papers of Gent and co-
workers dedicated to mode III fatigue of rubber has been revisited
with the help of a modern multiaxial fatigue machine. A similar
approach of the problem has been adopted: first a specific sample
was designed and fabricated as in [8], the corresponding fracture
energy was derived analytically as in [7], and numerically as in [9].
The experiments were conducted by taking advantage of the
versatility of the machine: the application and control of a slight
axial strain permits us to limit abrasion of cracked surface and the
loading capabilities permit us to conduct fatigue tests with various
loading ratios between �1 and 0.333.

Some interesting results have been established. First, in regime of
high G, modes I and III crack growth laws coincide. In the same
regime, if we only consider results in mode III, small positive values
of the R-ratio yield crack growth laws similar to Rn ¼ 0. Nevertheless,
for some other values of this ratio, we observed important changes in
the crack growth rate both for partially unloaded loading conditions
with high minimum torsion angle (Rn ¼ 0:333) and for alternate
loading conditions (Rn ¼ �1). Second, in regime of low G the crack
growth rate laws in mode III highly depend on the loading condi-
tions: the amount of mode I as well as the R-ratio substantially
influence the critical threshold G0.
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