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This paper discusses the different approaches that can be used to determine the strain energy density of
a given rubber-like material based on tension–torsion experimental results. More precisely, the aim is to
answer the question: how to handle the measured macroscopic quantities, i.e. load and torque, to
determine the constitutive equation with the less possible assumptions? The method initially proposed
by Penn and Kearsley [Trans. Soc. Rheol. 20 (1976) 227–238] is adopted: the strain energy derivatives
with respect to kinematical quantities have to be calculated in terms of the measured load and torque.
Here, we propose to consider different sets of kinematical quantities to overcome the incoherence
encountered with the classical Cauchy–Green strain invariants I1 and I2. Two new sets are considered:
the principal stretch ratios and two specific invariants of the logarithmic (true) Hencky strain tensor. The
corresponding derivations coupled with new experimental results permit (i) to calculate the Cauchy
stress tensor on the outer surface of the cylindrical samples, and (ii) to demonstrate that a well-
conditioned set of kinematical quantities must be adopted to determine the strain energy density. It is
proved here that the principal stretch ratios are good candidates to express and determine the strain
energy density with tension–torsion experiments.

1. Introduction

In service, industrial elastomeric parts are subjected to severe
multiaxial mechanical loading conditions, thus the use of finite
element calculations during their design necessitates robust and
accurate hyperelastic constitutive equations. The easiest and most
common method adopted to determine the most relevant con-
stitutive equation for a given material consists in performing
uniaxial tension–compression experiments. Nevertheless, identi-
fying the corresponding material parameters with such experi-
mental data leads to poor prediction of the mechanical responses
for non-uniaxial loading conditions (see for example [20,30]). The
first method to overcome this limitation is to enrich the experi-
mental database with supplementary data issued from other
loading condition experiments, such as pure shear, simple shear
or equibiaxial tension. The major drawback is that both specific
specimens and experimental set-ups are needed. The second
method consists in performing experiments that combine differ-
ent simple loading conditions; in this case, unique geometry of
specimen and experimental set-up are sufficient to obtain several

deformation states. In this context, biaxial experiments such as
bulge tests [19,28,31,35] or square sheets tensile tests [3,15,27,33]
are revealed difficult to perform due to both the complexity of
experimental set-ups and the inhomogeneity of the deformation
in the specimens. On the contrary, simultaneous tension–torsion
experiments are a relevant alternative to consider combined
loading conditions: the cylindrical geometry of the specimen is
simple and commercial testing machines are nowadays available.

Considering such experiments, the problem reduces to the deter-
mination of the constitutive equation, i.e. the stress–strain relation-
ship, from the measurement of load and torque for prescribed
extension and angle of twist. As the kinematics of cylinders subjected
to simultaneous tension and torsion is well-established, the derivation
of strain from extension and angle of twist is obvious. The difficulty of
the method consists in the derivation of stress from measured force
and torque. Practically three approaches can be adopted to identify the
constitutive equation:

(i) choosing a strain energy function and identifying the corre-
sponding parameters by comparison between experimental
and theoretical force and torque data,

(ii) determining the stress state from experimental data, choosing a
relevant strain energy function and identifying the correspond-
ing parameters with the stress–strain experimental data,

n Corresponding author. Tel.: þ33 2 40 37 68 42.
E-mail address: erwan.verron@ec-nantes.fr (E. Verron).

1



(iii) determining the strain energy derivatives from experimental
data, choosing a relevant strain energy function and identify-
ing the corresponding parameters with the strain energy
derivatives-strain data.

The approach (i) is classical and is not developed in this paper; its
main drawback is that the strain energy function must be
presupposed without any clue. The two other approaches do not
require to presuppose the strain energy function.

In the case of homogeneous deformation, like uniaxial tension,
pure shear, equibiaxial tension or biaxial tension, approach (ii) is
often used since the relation between stress and load is straight-
forward (see for example [32,16]). In this context, a specific type of
plot is widely considered, presenting reduced stress versus exten-
sion and referred to as the Mooney plot ([34,10,4] for example).
Nevertheless, determining experimental stresses for tension–tor-
sion tests is not obvious because of the inhomogeneity of defor-
mation in the radial direction of cylindrical specimens. Penn and
Kearsley [26] derived the method to determine experimental
derivatives of the strain energy with respect to strain invariants
at the outer radius of the cylinder for the special case of pure
torsion (length is held constant). Later, Humphrey et al. [13]
applied the method to pre-extension followed by torsion of a
transversely isotropic cylinder. Knowing the experimental strain
energy derivatives, it becomes easy to calculate stresses. However,
to the authors' knowledge, no stress–strain curve has been
published for large strain combined tension–torsion experiments
on rubber-like materials. Thus, the first objective of this paper
is to present experimental stresses data at the outer radius of
an elastomeric cylinder subjected to pre-extension followed by
torsion.

Approach (iii) appears to be more complicated. Firstly, a choice
has to be made concerning chosen quantities with respect to
which the strain energy derivatives are calculated. Most authors
consider uniaxial and biaxial tension experiments, and choose the
two first invariants of Cauchy–Green strain tensors I1 and I2
[1,5,8,14,15,27,23,34,17]. Secondly, depending on the chosen quan-
tities and the considered loading conditions, strong hypotheses
have to be made. For example, it is possible to calculate a
combination of strain energy derivatives with respect to I1 and I2
in the case of uniaxial tension, but each one is undetermined
without further assumptions. Rivlin and Saunders [27] supposed
that ∂W=∂I1 is constant while ∂W=∂I2 is a function of I2 only.
Thirdly, a rigorous analysis of experimental strain energy deriva-
tives is not facilitated by the coupling between invariants, and by
the scattering of experimental results, particularly for small strain
[27,9,6]. Concerning the heterogeneous case of tension–torsion
tests, some authors ([21] for example) applied the method
presented by Penn and Kearsley [26] to build experimental strain
energy derivatives curves. These data are restricted to pure torsion
(uniaxial extension maintained to 1), and are always expressed
in terms of I1 and I2. Thus, the second objective of this paper is
to calculate strain energy derivatives with respect to various
mechanical quantities (invariants of tensors, stretch ratios) for
various extensions followed by torsion and to discuss the best
choice for the determination of the most relevant constitutive
equation.

In the next section, all the ingredients of the method are
presented: kinematics and governing equations of a cylinder
under quasi-static tension–torsion loading conditions, the deriva-
tives of the strain energy function (similarly than in [26]), and
finally the derivation of stress. Attention is drawn on the possibi-
lity to choose different sets of strain invariants to obtain the
derivatives of the strain energy. Considering new tension–torsion
experimental data, results obtained with the different sets of
strain energy derivatives as well as results for stress are derived

in Section 3 for different values of pre-extension followed by
torsion. Finally, Section 4 proposes a discussion on the advantages
and drawbacks of each approach; in particular, experimental data
issued from strain energy derivatives confirm the importance of
choosing a well-conditioned set of invariants, as emphasized by
Criscione [6].

2. Relationships between local quantities and experimental
measurement of load and torque

2.1. Governing equations of a cylinder under quasi-static isochoric
uniaxial tension and torsion

These equations are well-established since Rivlin and Saunders
[27], and are briefly recalled here for clarity.

Fig. 1 presents the notations for the tension–torsion of a homo-
geneous cylinder in both undeformed and deformed configurations.

Rubber-like materials being classically considered incompres-
sible, the deformation is supposed isochoric. A homogeneous
cylinder of initial length and radius L and A is considered. In the
reference configuration ðC0Þ a material point M of the undeformed
cylinder is positioned by its coordinates (R, Θ, Z) in the cylindrical
coordinate system ðeR; eΘ; eZ Þ. The deformation consists in an axial
displacement u in the direction eZ and an angle of twist ϕ around
the same vector, applied on the top surface Ssup while the bottom
surface Sinf is maintained and the lateral surface Slat remains free
to move. The length and radius of the deformed cylinder are
denoted l and a respectively. The point M moves to M0, and its
coordinates are (r, θ, z) in the deformed cylindrical coordinate
system (er ; eθ ; ez). The displacement from M to M0 is given by

r¼ Rffiffiffi
λ

p ; θ¼ΘþτZ; z¼ λZ; ð1Þ

where λ is the extension and τ is the angle per unit of undeformed
length. They are uniform and defined as

λ¼ l
L
; τ¼ϕ

L
: ð2Þ

Consequently, the deformation gradient F is

F ¼ 1ffiffiffi
λ

p ðer � eRþeθ � eΘÞþτreθ � eZþλez � eZ ; ð3Þ

Fig. 1. Kinematics of a cylinder under uniaxial tension and torsion: notations.
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and the left Cauchy–Green strain tensor B has the following form:

B¼ 1
λ
er � erþ

1
λ
þτ2r2

� �
eθ

� eθþλτrðeθ � ezþez � eθÞþλ2ez � ez: ð4Þ

Eq. (4) shows that the strain is entirely determined by the
extension λ and the twist angle per unit length τ.

Next, we focus on the stress state: our aim is to determine the
Cauchy stress tensor σ. From the experimental point of view, the
quantities measured are the load force N and the torque M; they
are respectively related to the Cauchy stress tensor components by

Nez ¼
Z
Ssup

σ � ez dS¼
Z
Ssup

σzz dSez; ð5Þ

and

Mez ¼
Z
Ssup

rer � ðσ � eθÞ dS¼
Z
Ssup

rσθz dSez: ð6Þ

Since σ is locally defined, it is not possible to bypass the integra-
tion and to express σθz and σzz as explicit functions of N and M.
Furthermore, without additional assumptions, there is no equa-
tions that involve the other stress components. We now restrict
the investigation to the special case of homogeneous, incompres-
sible, isotropic hyperelastic materials. Indeed, the mechanical
response of the material is defined by strain energy function W
which, for isotropic materials, depends on the two first invariants
of B, denoted I1 and I2, and given by

I1 ¼ τ2r2þ2
λ
þλ2; ð7Þ

I2 ¼
τ2r2

λ
þ 1

λ2
þ2λ: ð8Þ

The Cauchy stress tensor derives from this strain energy function
(see for example [12]). Denoting W1 and W2 the derivatives of W
with respect to I1 and I2 respectively,

σ ¼ �pIþ2W1B�2W2B
�1 ð9Þ

where I is the 3�3 identity tensor and p is the Lagrange multiplier
associated with the incompressibility constraint (often referred to
as the hydrostatic pressure). For the tension–torsion strain tensor
B given by Eq. (4), it leads to

σrrðrÞ ¼ 2W1λ
�1�2W2λ�p ð10Þ

σθθðrÞ ¼ 2W1ðλ�1þτ2r2Þ�2W2λ�p ð11Þ

σzzðrÞ ¼ 2W1λ
2�2W2 λ�2þτ2r2

λ

� �
�p ð12Þ

σθzðrÞ ¼ 2W1λτrþ2W2τr ð13Þ

σrθðrÞ ¼ 0 ð14Þ

σrzðrÞ ¼ 0 ð15Þ
In order to determine p, we consider the equilibrium equation in
the radial direction

dσrrðsÞ
ds

þ1
s
ðσrrðsÞ�σθθðsÞÞ ¼ 0; 0osoa ð16Þ

and the boundary condition on the lateral surface

σrrðaÞ ¼ 0: ð17Þ
Integration of Eq. (16) between the radius s¼r and the lateral
surface s¼a with the constitutive equations (10)–(11) and

the boundary condition equation (17) permits to obtain the value
of p at r

pðrÞ ¼ 2τ2
Z a

r
W1ðsÞs dsþ2W1ðrÞλ�1�2W2ðrÞλ; ð18Þ

and the diagonal components of σ

σrrðrÞ ¼ �2τ2
Z a

r
W1ðsÞs ds ð19Þ

σθθðrÞ ¼ �2τ2
Z a

r
W1ðsÞs dsþ2W1ðrÞτ2r2 ð20Þ

σzzðrÞ ¼ 2W1ðrÞðλ2�λ�1Þ�2W2ðrÞ λ�2�λþτ2r2

λ

� �

�2τ2
Z a

r
W1ðsÞs ds: ð21Þ

Then, it is possible to express N in terms of the derivatives of the
strain energy function

N¼ 4πðλ�λ�2Þ
Z a

0
ðλW1ðrÞþW2ðrÞÞr dr

�4π
τ2

λ

Z a

0
W2ðrÞr3 dr�4πτ2

Z a

0
r
Z a

r
W1ðsÞs ds

� �
dr; ð22Þ

or, after integration by parts of the last term on the right-hand
side,

N¼ 4πðλ�λ�2Þ
Z a

0
rðλW1ðrÞþW2ðrÞÞ dr

�2π
τ2

λ

Z a

0
ð2W2ðrÞþλW1ðrÞÞr3 dr: ð23Þ

Similarly, invoking Eqs. (6)2 and (13), the torque is

M¼ 4πτ
Z a

0
ðλW1ðrÞþW2ðrÞÞr3 dr: ð24Þ

2.2. Derivatives of the strain energy function

Once the experiments performed, the quantities λ, τ, M and N
are known; in displacement driven experiments, the two former
quantities are prescribed and the two latter ones are measured. As
shown in Eqs. (10)–(15), the determination of the stress tensor
necessitates the calculation of the strain energy derivatives W1

and W2. Nevertheless, these derivatives are functions of the radial
position r and their forms are not known. Thus, considering Eqs.
(23)–(24) they can be expressed in terms of N andM only if further
assumptions are adopted.

In the next paragraphs, the derivation of W1 and W2 and the
corresponding assumptions are first presented, then the deriva-
tives of W with respect to the principal stretch ratios are
established, and finally a new set of relevant strain invariants is
introduced to propose a new approach of the problem.

2.2.1. Derivatives of the strain energy with respect to ðIiÞi ¼ 1;2
This derivation has been first introduced by Penn

and Kearsley [26]. As shown by Eqs. (7)–(8), I1 and I2 are functions
of λ and τr; thus W, W1 and W2 are also functions of these
two quantities. Performing the change of variables u¼ τr,
Eqs. (23)–(24) become

Nτ2 ¼ 4πðλ�λ�2Þ
Z τa

0
ðλW1ðλ;uÞþW2ðλ;uÞÞu du

�2π
λ

Z τa

0
ð2W2ðλ;uÞþλW1ðλ;uÞÞu3 du; ð25Þ

3



and

Mτ3 ¼ 4π
Z τa

0
ðλW1ðλ;uÞþW2ðλ;uÞÞu3 du: ð26Þ

In both equations, the right-hand side terms depend on τ only
through the upper bound of the integrals.

The next step of the derivation consists in differentiating Eqs.
(25)–(26) with respect to τ. Nevertheless, it is possible only if an
additional assumption is adopted: λ must be set constant, i.e. only
torsion around a constant pre-stretching must be considered.
Then, applying the Leibniz integral rule, W1 and W2 can be
evaluated at the outer undeformed radius A

W1ðλ; τAÞ ¼
λ

τ2A2TNþ2
1

λτ2A2þ
1
λ
� λ2

τ2A2

!
TM ð27Þ

W2ðλ; τAÞ ¼ � λ2

τ2A2TNþ
2λ3

τ2A2�
2

τ2A2�1

!
TM ð28Þ

where

TN ¼ λ
2πτA2

dðNτ2Þ
dτ

and TM ¼ λ2

4πτ3A4

dðMτ3Þ
dτ

: ð29Þ

Thus, the functions Nτ2 and Mτ3 can be measured experimentally,
then differentiated with respect to τ, and finally using Eq. (29) in
Eqs. (27)–(28) leads to the derivatives of the strain energy with
respect to I1 and I2.

2.2.2. Derivatives of the strain energy with respect to the principal
stretch ratios ðλiÞi ¼ 1;2;3

Some classical hyperelastic models are expressed in terms of
the principal stretch ratios ðλiÞi ¼ 1;2;3, for example the Ogden
model [24]. In this case the strain energy function is explicitly
written in terms of the principal stretch ratios, i.e.Wðλ1; λ2; λ3Þ and
the principal Cauchy stresses differences are

σi�σj ¼ λi
∂W
∂λi

�λj
∂W
∂λj

ði; jÞ ¼ ð1;2;3Þ2; ia j: ð30Þ

In the special case of incompressible materials, stretch ratios are
related by λ1λ2λ3 ¼ 1, the strain energy function can be written as
W ðλ1; λ3Þ ¼Wðλ1;1=ðλ1λ3Þ; λ3Þ. Then, the principal Cauchy stresses
differences become (see [25])

σ1�σ2 ¼ λ1
∂W
∂λ1

ð31Þ

σ3�σ2 ¼ λ3
∂W
∂λ3

ð32Þ

σ3�σ1 ¼ λ3
∂W
∂λ3

�λ1
∂W
∂λ1

ð33Þ

Moreover, recalling that the invariants are

I1 ¼ λ21þλ22þλ23 ¼ λ21þλ23þ
1

λ21λ
2
3

ð34Þ

I2 ¼ λ21λ
2
2þλ22λ

2
3þλ23λ

2
1 ¼

1

λ21
þ 1

λ23
þλ21λ

2
3; ð35Þ

the derivatives of W with respect to λ1 and λ3 are related to W1

and W2 by

∂W
∂λ1

¼ 2 λ1�
1

λ31λ
2
3

!
W1þ2 λ1λ

2
3�

1

λ31

!
W2 ð36Þ

∂W
∂λ3

¼ 2 λ3�
1

λ33λ
2
1

!
W1þ2 λ21λ3�

1

λ33

!
W2 ð37Þ

In the special case of simultaneous tension–torsion, the princi-
pal stretch ratios at the outer radius A can be written as functions
of λ and τ

λ1 ¼
1
2

λ2þ1þτ2A2

λ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2þ1þτ2A2

λ

 !2

�4λ

vuut
0
B@

1
CA

2
64

3
75
1=2

ð38Þ

λ2 ¼
1ffiffiffi
λ

p ð39Þ

λ3 ¼
1
2

λ2þ1þτ2A2

λ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2þ1þτ2A2

λ

 !2

�4λ

vuut
0
B@

1
CA

2
64

3
75
1=2

: ð40Þ

Moreover, as the radial stress σ2 is null on the outer radius, Eqs.
(31)–(32) give the two non-zero principal Cauchy stresses at the
outer radius

σ1 ¼ λ1
∂W
∂λ1

and σ3 ¼ λ3
∂W
∂λ3

; ð41Þ

where the partial derivatives of W are given by Eqs. (36)–(37), and
the principal stretch ratios λ1 and λ3 by Eqs. (38)–(40).

2.2.3. Derivatives of the strain energy with respect to the invariants
ðKiÞi ¼ 2;3 of the Hencky strain tensor

Following the work of Criscione et al. [7], we propose here to
use the Hencky strain tensor, also referred to as the true strain
tensor or the logarithmic strain tensor, to analyze the tension–
torsion experimental results. Indeed, Criscione et al. [7] developed
this theory to overcome the difficulties observed when classical
hyperelastic models expressed in terms of I1 and I2 are considered
to fit experimental data, due to the correlation of the quantities
involved in the fitting process. The mathematical relevance of this
framework has been recently investigated by Sendova and Walton
[29].

The Hencky strain tensor noted H in the following is defined as

H ¼ lnðB1=2Þ; ð42Þ
or also

H ¼ ln V ð43Þ
where V is the pure strain tensor issued from the left polar
decomposition of the deformation gradient F ¼VR, R being a
rotation tensor. The invariants of H introduced by Criscione et al.
[7] are

K1 ¼ tr H ð44Þ

K2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dev H : dev H

p
ð45Þ

K3 ¼
3
ffiffiffi
6

p

K3
2

detðdev HÞ; ð46Þ

where dev� ¼ ��ðtr�=3ÞI stands for the deviatoric operator. It is
worth noting that each of these invariants admits a simple
mechanical meaning: K1 quantifies the amount of volumetric
dilatation, K2 quantifies the amount of distortion and K3 describes
the mode of distortion (K3 ¼ �1 for uniaxial compression and
equibiaxial tension, K3 ¼ 0 for pure shear and K3 ¼ 1 for uniaxial
tension). For incompressible materials, K1 ¼ 1, and then the strain
energy only depends on K2 and K3. Note that in this case H is
purely deviatoric, i.e. dev H ¼H. In this case, ðKiÞi ¼ 2;3 admit
simple expressions in terms of principal stretch ratios

K2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðln λ1Þ2þðln λ2Þ2þðln λ3Þ2

q
ð47Þ
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K3 ¼
3
ffiffiffi
6

p

K3
2

ln λ1 ln λ2 ln λ3: ð48Þ

Consider now a strain energy function written in terms of the
Hencky strain invariants WðK2;K3Þ. It is to note that in the
undeformed configuration, K2 ¼ 0, and then K3 is undetermined;
thus we set Wð0;K3Þ ¼ 0. The Cauchy stress is given by Criscione
et al. [7]

σ ¼ �pIþ 1
K2

∂W
∂K2

Hþ 1
K2

∂W
∂K3

Y ð49Þ

where the second-order tensor Y stands for

Y ¼ 3
ffiffiffi
6

p

K2
2

H2�3
K3

K2
H�

ffiffiffi
6

p
I: ð50Þ

As emphasized by Criscione et al. [7], the terms of the Cauchy
stress tensor in Eq. (49) are mutually orthogonal, i.e. I : H, I : Y and
H : Y are null. Then, the strain energy derivatives with respect to
K2 and K3 are given respectively by

∂W
∂K2

¼ 1
K2
σ : H ¼ σ1 ln λ1þσ3 ln λ3

K2

� �
; ð51Þ

and

∂W
∂K3

¼ K2

9ð1�K2
3Þ
σ : Y : ð52Þ

Remark 1. When K2
3 tends to one, Y tends to zero. Without

further assumptions, it is not possible to determine if ∂W=∂K3 is
finite or not when K2

3 ¼ 1. However, recalling that σ is finite and
considering Eq. (49), ∂W=∂K3Y tends to zero. The experimental
results for the quantity ∂W=∂K3 in the neighborhood of K2

3 ¼ 1 will
be investigated in the Results section.

Finally, invoking Eq. (41) the strain energy derivatives in Eqs.
(51)–(52) can be written in terms of the derivatives of W with
respect to the stretch ratios

∂W
∂K2

¼ 1
K2

λ1 ln λ1
∂W
∂λ1

þλ3 ln λ3
∂W
∂λ3

!
; ð53Þ

and

∂W
∂K3

¼ 1

9ð1�K2
3Þ

3
ffiffiffi
6

p

K2
ln λ1
� �2� ffiffiffi

6
p

K2�3K3 ln λ1

!
λ1
∂W
∂λ1

"

þ 3
ffiffiffi
6

p

K2
ðln λ3Þ2�

ffiffiffi
6

p
K2�3K3 ln λ3

 !
λ3

∂W
∂λ3

#
: ð54Þ

2.2.4. Summary
In the previous sections, we established the equations that give

the derivatives of the strain energy function with respect to
several mechanical quantities at the outer radius of a uniaxially
extended cylinder subjected to torsion using only the global
experimental results, i.e. the stretch λ, the angle of twist τ, the
force N and the torque M. More precisely, these calculations
necessitate the differentiation of N and M with respect to τ.
Moreover, once the derivatives calculated, it is possible to deter-
mine the components of the Cauchy stress tensor σ .

Table 1 summarizes all the previous results, emphasizing the
necessary equations for each quantity.

3. Results

The previous derivation is now applied to some experimental
data. Two different types of experiments are considered: pure
torsion, i.e. λ¼ 1, and uniaxial pre-stretching, i.e. λ41, followed

by pure torsion. First, our experimental procedure is briefly
described; then the equations summarized in Table 1 are applied
to experimental data. The stress–strain curves at the outer radius
are established to demonstrate the capability of our approach.
Finally, the derivatives of the strain energy functions with respect
to the different sets of invariants considered above are investigated.

3.1. Experimental procedure

As shown in Fig. 2, the specimens are dumbbells with a
substantial cylindrical center zone. These samples have been
especially designed for characterization under tension–torsion
tests as explained in detail in Lectez et al. [18]. Particularly, they
fulfill two mandatory requirements: the ability to reach large
strain and to match the analytical solution of the infinite cylinder.
Other convenient constraints have been considered in order to be
used in our tension–torsion machine, the Instron Electropuls
E10000; they are not detailed in the present paper.

The material studied here is a carbon black-filled Natural
Rubber (NR)- Styrene Butadiene Rubber (SBR) blend. Before each
test, Mullins effect is suppressed: the specimen is accommodated
during five simultaneous tension–torsion loading/unloading
cycles. The maximal imposed values are λmax ¼ 2:5 and τmax ¼
0:09 rad mm�1, where λmax and τmax are respectively the max-
imum axial stretch ratio and the maximum angle per unit of
length.

The strain rate during each test is set to 10�3 s�1, which can be
considered as quasi-static loading conditions. Three kinds of tests
are performed: pure torsion tests (the extension λ is maintained
equal to 1), pre-stretching followed by torsion, and simultaneous

Table 1
Necessary equations to calculate strain energy derivatives and Cauchy stress
components for tension–torsion experiments at the outer radius.

Quantity Equations

∂W=∂I1 (27), (29)
∂W=∂I2 (28), (29)

∂W =∂λ1 (36), (38), (40), (27)–(29)

∂W =∂λ3 (37), (38), (40), (27)–(29)

∂W=∂K2 (53), (47), (36)–(37), (38)–(40), (27)–(29)
∂W=∂K3 (54), (47)–(48), (36)–(37), (38)–(40), (27)–(29)

σθθ (20) for r¼a, (27)–(29)
σzz (21) for r¼a, (27)–(29)
σθz (13) for r¼a, (27)–(29)

Fig. 2. Specimen for tension–torsion tests with its steel mounting fixtures, 3D view
(left) and picture of the specimen in the tension–torsion machine (right).
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uniaxial tension–torsion tests. Extension and angle of twist are
prescribed and the corresponding torque and load are measured.
Data are filtrated in order to reduce noise; each experiment is
repeated three times and only the loading part of the cycles is
considered. As an example, Fig. 3 presents the measured load and
torque for an experiment that consists in pre-stretching
λmax ¼ 1:75 followed by torsion τmax ¼ 0:09 rad mm�1.

3.2. Cauchy stress tensor

Using the methodology described in Section 2, it is first possible to
obtain the stress–strain curves at the outer radius of the sample.
As stated by Eqs. (13)–(15) and (19)–(21), the only non-zero compo-
nents of the Cauchy stress tensor are the components in the tangential
plane to the surface ðeθ ; ezÞ, i.e. σθθ , σθz and σzz. Here, two cases are
analyzed: pure torsion, then pre-stretching followed by torsion.

Pure torsion: For pure torsion, there is no uniaxial extension
λ¼ 1, and only the angle of twist is prescribed. The corresponding
stress–strain curves are presented in Fig. 4. More precisely, it
depicts the non-zero Cauchy (true) stress components as functions
of the corresponding Hencky (true) strain components, i.e. Hθθ ,
Hθz and Hzz. It is revealed that for the studied strain range, each
Cauchy stress component varies linearly with the corresponding
Hencky strain. Moreover, we can also note that the axial stress
component σzz decreases as Hzz increases and is negative; it
reflects the well-know Poynting effect (see for example [2]).

Pre-stretching followed by torsion: This second type of loading
conditions consists in prescribing a uniaxial pre-stretching followed
by torsion. Two pre-stretching values are considered: λ¼ 1:75 and 2.5.
Fig. 5 shows the evolution of the non-zero components of the Cauchy
stress tensor with the angle of twist per unit of undeformed length τ; τ
is preferred to the components of H for more clarity in the drawings.
First, it is verified that the initial value of the axial stress σzz is equal to
the axial stress measured for the pure uniaxial experiment at the same
stretch level. Then, σzz decreases quickly before reaching an almost
constant value: this decrease in stress is induced by the relaxation of
the axial stress σzz due to viscous effects. Moreover, as σzz reaches an
almost constant level, it means that the contribution of torsion loading
conditions on the axial stress is negligible as compared to the
contribution of the pre-stretching; it is also observable by comparing
the values of σzz in Fig. 5 with the ones attained in pure torsion shown
in Fig. 4. Moreover σθθ admits the same evolution as σzz, beginning
from zero (uniaxial tension) and decreasing quickly before reaching a
constant value. As for σθz , it takes positive values and varies linearly
with τ. The slope increases with the pre-extension.

3.3. Derivatives of the strain energy function

In the next sections, the derivatives of the strain energy
functions with respect to the three mechanical quantities are
calculated using equations given in Table 1.

3.3.1. With respect to the classical Cauchy–Green strain invariants
ðIiÞi ¼ 1;2

Fig. 6 presents the evolution of W1 and W2 with respect to
the corresponding invariants. More precisely, Fig. 6(a) and (b)
corresponds to pure torsion and the abscissas are I1�3 and I2�3,
and Fig. 6(c) and (d) corresponds to pre-stretching followed by
torsion and the abscissas are the difference between the current
values of the invariants and their values at the end of the pre-
stretching, i.e. I1�ðλ2þ2λ�1Þ and I2�ð2λþλ�2Þ.

Pure torsion: In this case, I1 ¼ I2. As shown in Fig. 6(a) and
(b) respectively, W1 decreases very quickly to a constant positive
value while W2 increases very quickly to another constant positive
value. The decrease in W1 and the increase in W2 are almost
symmetrical about the horizontal axis. Moreover, the final values
of W1 and W2 are consistent with classical values of Mooney–
Rivlin parameters for such materials.

Similar results have been observed for example by Penn and
Kearsley [26], and Fukahori and Seki [8]: W1 and W2 seem
to tend to infinity as I1 and I2 tend to 3, i.e. the undeformed
configuration. To the authors' knowledge, only one published
model has been proposed to predict such behavior: Obata et al.
[23] defined W1 and W2 as functions of negative powers of ðI1�3Þ
and ðI2�3Þ. Nevertheless, such approach has never been further
investigated.

Pre-stretching followed by torsion: The evolution of W1 and W2

during torsion after pre-stretching is respectively shown in
Fig. 6(c) and (d) for two values of pre-stretching λ¼ 1:75 and
λ¼ 2:5. Similarly than for pure torsion, W1 and W2 seem to tend to
infinity for the lowest values of invariants, i.e. the values of the
invariants at the end of pre-stretching. The most noticeable
difference with pure torsion results is the change of sign of both
derivatives of the strain energy functions.

Finally, considering the infinite limits of the four curves in Fig. 6
and recalling that no hyperelastic constitutive equations are able
to reproduce such trends of ð∂W=∂IiÞi ¼ 1;2, the results raise ques-
tions on the relevance of the Cauchy–Green invariants in the
present context.

3.3.2. With respect to the stretch ratios ðλiÞi ¼ 1;3
Fig. 7 presents the evolution of the strain energy functions with

respect to the stretch ratios, i.e. W 1 ¼ ∂W=∂λ1 and W 3 ¼ ∂W=∂λ3,
for both pure torsion and pre-stretching followed by torsion.

Pure torsion: Fig. 7(a) and (b) shows the evolution of the strain
energy derivatives with respect to stretch ratios in the case of pure
torsion. W 1 is always negative and decreases linearly with λ1,
while W 3 is positive and increases as λ3 increases. Contrary to W1

and W2, no singularities are observed.
Pre-stretching followed by torsion: After pre-stretching, as the

deformation state is uniaxial the only non-zero stress is σzz, and
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λ3 ¼ λ and λ1 ¼ λ�1=2. Then, recalling Eq. (41),

W 1 ¼ σθθ ¼ 0 and W 3 ¼
σzz

λ
: ð55Þ

The initial values of W 1 and W 3 in Fig. 7(c) and (d) respectively
correspond to those of σθθ and σzz in Fig. 5. Then, during torsion,
W 1 and W 3 evolve with τ similarly than σθθ and σzz: first we
observe a fast decrease due to the tensile stress relaxation, then
they stabilize to a quite constant value explained by the negligible
contribution of torsion on the stress as compared to the one of
pre-stretching.

3.3.3. With respect to the Hencky strain invariants ðKiÞi ¼ 2;3
Finally, we study the derivatives of the strain energy with respect

to the Hencky strain invariants. The results are presented in Fig. 8.
The quantities are denoted WK2 ¼ ∂W=∂K2 and WK3 ¼ ∂W=∂K3.

Pure torsion: In the case of pure torsion, K3 ¼ 0, WK2 and WK3 are
plotted with respect to K2 as shown in Fig. 8(a) and (b). Unlike the
derivatives with respect to ðIiÞi ¼ 1;2, there is no singularity especially
at low angles, i.e. low K2: both WK2 and WK3 tend to zero as K2 does.
Finally, one can note that WK2 varies linearly with K2.

Pre-stretching followed by torsion: Fig. 8(c) and (d) shows the
evolution of the above-mentioned quantities with τ during torsion
after pre-stretching λ¼ 1:75 and 2.5. First, in Fig. 8(c), initial values of
WK2 are those corresponding to the ones attained at the end of pre-
stretching. During torsion, WK2 first decreases due to stress relaxa-
tion, then it increases as τ increases. It is to note that during torsion,
K3 changes from 1, which corresponds to uniaxial tension, to 0.993.

Second, Fig. 8(d) exhibits a singularity: WK3 tends to infinity as
K3 tends to 1. Nevertheless, we have checked that the term WK3Y

tends to 0 as K3 tends to 1, then it has no influence on the measure
of stress (see Eq. (49) and Remark 1). In order to explain the
behavior of WK3 in the neighborhood of τ¼ 0, two assumptions
can be invoked:

� either WK3 actually tends to infinity as K3 tends to 1, but slower
than Y tends to 0,

� or the measurement error is amplified during the calculation of
WK3 as argued by Criscione [6]. Thus, in this case the experi-
mental determination of WK3 is irrelevant.

In order to decide between these two possibilities, we investigate
the theoretical response of a neo-Hookean material (C¼0.35)
subjected to a deformation process during which K2 remains equal
to 2, and K3 varies. The corresponding evolution of WK3 with
respect to K3 is presented in Fig. 9. This figure does not present any
singularity: WK3 varies linearly with K3. Even if this example does
not constitute a rigorous proof, we are inclined to consider that
the second above-mentioned assumption is the right one: con-
sidering experimental values of WK3 in the neighborhood of K3 ¼ 1
is not relevant. Thus, it corroborates the conclusion drawn by
Criscione [6].

4. Discussion

Three methods are available to identify the hyperelastic con-
stitutive equation for a given rubber-like material with tension–
torsion experimental results. In the following, they are presented
from the most to the less restrictive, i.e. from the one that
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necessitates the more assumptions to the one that necessitates
the less.

Perform simultaneous tension–torsion experiments and focus on
measured load and torque: In this case, it is not possible to directly
calculate the derivatives of the strain energy function, and then
the stresses. However, one can postulate a priori the strain energy
function. Then, by replacing W1 and W2 by their explicit forms in
terms of the material parameters and the strain in load and torque
expressions given by Eqs. (25)–(26), the material parameters can
be determined by a classical fitting method. From an experimental
point of view, this method is obvious and has already been
considered by several authors (see for example [27,11]). However,
from a theoretical point of view it is questionable because the
early choice of the strain energy function renders it very restric-
tive. Indeed, it is well-known that the choice of a hyperelastic
constitutive equation able to predict the response of rubber-
like material under multiaxial loading conditions is a complex
problem [20].

Perform pre-stretching followed by torsion experiments and focus
on the derivatives of the strain energy function: When the uniaxial
extension λ is kept constant during torsion, the calculation of the
derivatives of the strain energy function from experimental
measurements of N and M at the outer radius of the cylinder
becomes possible. However, it has been exhibited that the experi-
mental determination of the derivatives of the strain energy
function with respect to the classical Cauchy–Green strain invar-
iants I1 and I2 is irrelevant at low strains as shown for example in
Fig. 6. Many other authors have encountered the same difficulties
with tension–torsion tests [26,22] and biaxial tests [1,23,34,14,
15,8,17,5]. In most of these cases, authors have excluded experi-
mental values at low strain arguing that it is the consequence of
measurement errors. In fact, this difficulty is inherent to the

mutual dependency between the terms that appear when the
derivative of the strain energy function with respect to B is
decomposed into the derivatives of the strain energy function
with respect to I1 and I2. This problem has been thoroughly
investigated by Criscione [6] for biaxial loading conditions. Cris-
cione demonstrated that for incompressible hyperelastic materials
the calculation errors in the derivatives of the strain energy
function are magnified by the factor k given by

k¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�RCðdev B;dev B�1Þ2

q ; ð56Þ

where the function RcðP;Q Þ quantifies the covariance amongst
tensors P and Q as

RCðP;Q Þ ¼ absðP : Q Þffiffiffiffiffiffiffiffiffiffiffi
P : P

p ffiffiffiffiffiffiffiffiffiffiffiffi
Q : Q

p : ð57Þ

Practically, RC takes values in ½0;1� and the higher the covariance
the higher the mutual dependency. So, if RCðdev B;dev B�1Þ tends
to 1 then k tends to infinity and consequently the calculation
errors in the derivatives of W are very high. We now apply this
approach to the special case of tension–torsion: Fig. 10 presents
the values of RC as a function of the loading conditions λ and τ.
Clearly, for most of the pairs ðλ; τÞ RC is very close to 1, especially
for low values of the angle of twist. Thus, for tension–torsion
experiments, the use of the Cauchy–Green invariants I1 and I2
leads to large calculation errors.

In contrast with Cauchy–Green invariants, for both the princi-
pal stretch ratios λ1 and λ3, and the Hencky strain invariants K2

and K3 the terms involved in the expression of the Cauchy stress
tensor are mutually orthogonal, i.e. RC¼0. This property guaran-
tees the independence of the corresponding derivatives of the
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strain energy functions. To give a simple illustration of this
analysis, consider the case of uniaxial tension for which the only
non-zero Cauchy stress is σzz. Recalling Eqs. (9), (41)2 and (49), σzz
is given by

σzz ¼ 2ðλW1þW2Þ λ� 1

λ2

� �
¼

ffiffiffi
3
2

r
WK2 ¼ λ3W 3: ð58Þ

Consider that σzz has been obtained from experimental data, then
Eq. (58)1 shows that W1 and W2 remain undetermined, Eq. (58)2
immediately leads to WK2 while WK3 is undetermined, and
Eq. (58)3 immediately gives W 3 while W 1 ¼ 0 is deduced from
σθθ ¼ 0.

To conclude, this method requires some experimental and
theoretical restrictions, but it is the most appropriate to collect
relevant information to choose the strain energy function. Never-
theless, the choice of the set of invariants to consider is of
importance to apply the method:

� ðIiÞi ¼ 1;2 induce a covariance equal to 1 for stress terms and then
lead to calculation errors for small torsional strain,
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� ðKiÞi ¼ 2;3 lead to orthogonal stress terms and then permit a
satisfactory determination of WK2, but the determination of
WK3 is flawed as K3 is close to 1, i.e. for uniaxial tension,

� λi ¼ 1;3 is the most relevant set of invariants to determine the
derivatives of the strain energy function.

Perform pre-stretching followed by torsion experiments and focus
on stresses: Experiments are the same as the previous method: the
uniaxial extension must remain constant during torsion. Whatever
the set of invariants chosen, the Cauchy stress tensor can be
determined at the outer radius of the cylinder. It is calculated from
strain energy derivatives with respect to I1 and I2. The combination
of both strain energy derivatives allows us to bypass above-
mentioned problems at small strain. This simple calculation
extends the work of Penn and Kearsley [26] to the determination
of the Cauchy stress tensor.

5. Conclusion

It is well-recognized that the best method to determine hyper-
elastic constitutive equation of a given rubber-like material consists
in calculating the derivatives of the strain energy. In this paper, it
has been established that the strain energy derivatives can be easily
calculated using experimental data issued from pre-stretching
followed by torsion tests if a relevant set of mechanical quantities
(strain invariants, stretch ratios) is adopted. This result is particu-
larly useful to compare the efficiency of hyperelastic constitutive
equations, i.e. strain energy functions, for a given rubber-like
material, and to determine the most appropriate one to predict its
response under quasi-static multiaxial loading conditions.

The starting point of the study was the application of the Penn
and Kearsley [26] method to calculate the derivatives of the strain
energy with respect to the Cauchy–Green strain invariants (ðIiÞi ¼ 1;2)
to pure torsion and pre-extension followed by torsion experimental
results. It has been shown that this set of invariants does not permit
to determine the derivatives of the strain energy because they are
highly correlated. Considering a similar method, we have demon-
strated that two other sets of mechanical quantities, i.e. the
principal stretch ratios ðλiÞi ¼ 1;3 and the Hencky strain invariants
(ðKiÞi ¼ 2;3) introduced by Criscione [6], are theoretically well-suited
for the derivation of strain energy derivatives because they are
associated to mutually orthogonal terms in Cauchy stress tensor
components. Nevertheless, as measurement errors are highly ampli-
fied for the strain energy derivatives with respect to K3 when K2

3
tends to 1, i.e. for uniaxial tension, the best set of mechanical
quantities to retain is the one of principal stretch ratios.

Finally, we have established that Cauchy stress components
can be directly calculated from force and torque measurements.
In fact this calculation is independent from the discussion on well-
conditioned representation of strain states and leads to the same
results for each set of invariants. This result is noticeable because it
applies to heterogeneous deformation and does not require to
presuppose the form of the constitutive equation. Moreover, it
pursues the results of the pioneering work of Penn and Kearsley
[26]. It is worth noting that this method can be used for
compressible materials [21] and could also be applied to hyper-
viscoelastic constitutive equations based on summation of strain
energy functions.
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