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Quantum spin Hall insulators are characterized by topologically protected counterpropagating edge states.
Here we study the dynamical response of these helical edge states under a time-dependent flux biasing, in the
presence of a heat bath. It is shown that the relaxation time of the edge carriers can be determined from a
measurement of the dissipative response of topological insulator disks. The effects of various perturbations,
including Zeeman coupling and disorder, are also discussed.
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Introduction. The hallmark of two-dimensional (2D) quan-
tum spin Hall (QSH) topological insulators (TIs) consists in
the existence of dissipationless conducting edge states in the
absence of any time-reversal breaking perturbations [1]. Due
to spin-orbit coupling and a particular bulk band structure,
the edge carriers’ spin is tied to their momentum [2,3].
These helical edge states have been reported experimentally in
HgTe/CdTe [4] and InAs/GaSb [5] quantum wells. So far, most
of the studies have covered the equilibrium or ground-state
physics of helical edge states, while less is known about their
dynamics and the associated relaxation mechanisms. Only
recently, the problem of dissipation has gained attention in
the context of topological insulators (TI) [6] and topological
superconductors [7].

Recently, it has been proposed that the Floquet type of
TIs can be engineered by applying a proper external drive
on semimetals or trivial band insulators [8]. Floquet bands
have already been reported in time-resolved photoemission
experiments on three-dimensional TIs [9], and their topolog-
ical nature is under active debate. Relaxation phenomena are
crucial to establish such nonequilibrium steady states of matter,
and ensure the balance between the energy injected by the
drive and the energy dissipated towards microscopic degrees
of freedom of the environment.

Meanwhile, experimental progress has been achieved in
extracting typical relaxation times of carriers in coherent con-
ductors such as normal-superconducting (NS) rings [10,11].
In such experiments, a small coherent system, characterized
by a flux-dependent spectrum, is coupled to a multimode
superconducting resonator. The dissipative and nondissipative
magnetic susceptibility of unconnected samples is obtained
by measuring the energy shifts and quality factors of the
resonances as a function of frequency, temperature, and dc
magnetic flux. In this Rapid Communication, we suggest
that these techniques could be applied to extract the typical
relaxation times of helical edge carriers circulating around
disks of two-dimensional (2D) TIs.

In view of these experimental advances, this Rapid Com-
munication addresses the dynamical response of the generic
helical edge state of a 2D TI coupled to a thermal bath
and threaded by a time-dependent flux �(t), which is the
superposition of a dc flux φ and a small alternating flux at
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a single frequency ω (see experiments [10,11]). It is obtained
that the dissipative response of the helical edge state exhibits
a characteristic phase-dependent signature: a single peak is
located either at φ = 0 or at φ = φ0/2, depending on the
electronic filling. This peak has a maximal amplitude when the
frequency is equal to the relaxation rate of the edge carriers. In
contrast to standard metallic rings [12,13] or NS rings [10,11],
the extraction of the carrier lifetime is simplified by a selection
rule which forbids interband transitions between left and right
spin-polarized movers. This is a dynamical manifestation of
the edge states’ helical structure. These analytical results
are validated in a comparison with lattice simulations of
the Bernevig-Hughes-Zhang (BHZ) model for HgCd/CdTe
quantum wells [3]. Lastly, this Rapid Communication analyzes
the effects of a Zeeman spin-flip coupling and of disorder on
the predicted phenomena.

Model and formalism. Let us consider a disk of a 2D
TI under a perpendicular time-dependent uniform magnetic
field B(t) (Fig. 1). Here, the focus is on the response of
the helical edge liquid which encloses the time-dependent
magnetic flux �(t) = φ + δφ(t), φ being a constant flux and
δφ(t) = δφω cos ωt being a small oscillating flux. The ac
amplitude δφω is kept much smaller than the magnetic flux
quantum φ0 = h/e, h being the Planck constant and e the
absolute value of the electronic charge. The total Hamiltonian
H describing the system decomposes into a static and a
dynamic part as H = H0 + H ′(t), with

H0 = hvF

L

(
− i

∂

∂θ
+ φ

φ0

)
σ3, H ′(t) = evF

L
δφ(t)σ3. (1)

The Fermi velocity of the carriers is vF , the length of the edge
state, L, and the angular coordinate, θ . The σ3 matrix is the
standard diagonal spin Pauli matrix.

In the absence of a time-dependent drive [δφ(t) = 0],
the helical liquid is described by the low-energy effective
Hamiltonian H0, and it supports a robust persistent current
Iper(φ), characterized by a maximal amplitude I0 = evF /L

at zero temperature [14]. The flux-dependent energy levels
εnσ (φ) = εn(φ) = σ�ω0(n + φ/φ0) are discrete and identified
by an angular momentum n and a spin σ quantum numbers,
which are gathered in the notation n = (n,σ ). The corre-
sponding energy eigenstates solve the Schrödinger equation
H0|n〉 = εn(φ)|n〉, where |n〉 are the eigenspinors of σ3 times
einθ . The energy spacing between adjacent levels of a given
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FIG. 1. (Color online) A QSH TI disk under a time-dependent
perpendicular magnetic field B(t). The Hamiltonian (1) models the
counterpropagating edge states (red and blue) which enclose a flux
�(t) = φ + δφ(t). The dc flux φ is varied arbitrarily, while the time-
dependent oscillatory flux δφ(t) = δφω cos ωt has a small amplitude
with respect to the flux quantum. The edge carriers are exchanging
energy with a heat bath and the dynamical susceptibility χ (ω) gains
a dissipative component at finite frequency.

spin and flux is denoted by �ω0 = hvF /L. Each energy level
carries a flux-independent current in = −σI0 = −σevF /L.

Let us consider that the quantum edge states are coupled
to a thermal bath containing many degrees of freedom.
These degrees of freedom could have various distinct micro-
scopic origins: electromagnetic modes of the external circuit,
phonons, bulk states of the disk, etc. Then, in response to the
finite driving term δφ(t) = δφω cos ωt , the edge supports both
nondissipative (I ′

ac cos ωt) and dissipative (I ′′
ac sin ωt) ac steady

currents. This response is captured by a complex frequency-
dependent susceptibility χ (ω) = χ ′(ω) + iχ ′′(ω), defined by
χ ′(ω) = I ′

ω/δφω and χ ′′(ω) = I ′′
ac/δφω. In the present setup,

the TI disk is unconnected and therefore it only exchanges
energy with the environment, while the number of particles
remains fixed.

Here, we will not investigate the microscopic mechanisms
leading to dissipation, but rather provide a generic and
phenomenological model to describe it in the case of a
weak coupling to the environment. To this aim, we consider
the evolution of the system under the following kinetic
equation for the reduced (single-particle) density operator
ρ(t) (obtained after tracing out the environment degrees of
freedom [12,13,15]):

∂ρ(t)

∂t
+ i

�
[H (t),ρ(t)] = −γ [ρ(t) − ρqe(t)], (2)

where ρqe(t) = {exp[(H (t) − μ)/kBT ] + 1}−1 is the
quasiequilibrium density matrix at temperature T , kB being
the Boltzmann constant. The matrix γ phenomenologically
represents the relaxation rates for populations and coherences
in the density matrix operator. Because the system exchanges
only heat with the environment, the number of particles
is fixed. Consequently, the chemical potential μ is not
constant and generally depends on flux, number of particles,
temperature, and time. Nevertheless, μ can be taken here
constant in flux, due to the particular flux dependence of
the last occupied energy level for a given parity of electron
number. Moreover, the time dependence of μ brings only
a negligible contribution to the dissipative response in
comparison with other competing terms [16].

In the linear response approximation (δφω � φ0), the
master equation (2) is solvable, and the complex linear
susceptibility can be decomposed into three parts [12,13],

χ (ω,φ) = χper + χD(ω,φ) + χND(ω,φ). (3)

The static part of the susceptibility χper is purely real and it
is due to the persistent current in the system. The second and
third terms are called diagonal and nondiagonal with reference
to the H0 eigenstate basis. The diagonal susceptibility χD

describes only the intraband response of the system, while
the nondiagonal susceptibility χND is related to interband
transitions. Note that all the terms in Eq. (3) depend also on
temperature.

Helical edge states’ susceptibility. The static part of the
susceptibility χper = ∂

∂φ
(
∑

n infn) is the derivative of the
persistent current with respect to the dc flux φ. In this
case, the sum runs over the angular momentum and spin
quantum numbers. The functions fn represent henceforth the
Fermi-Dirac distribution function for static Hamiltonian H0,
fn = f (εn(φ)).

The perturbation H ′(t) commutes with H0 and it cannot
induce spin flips or changes in the angular momentum of the
electrons. Because the system does not exchange electrons
with the environment the spin and angular quantum num-
bers remain conserved. This selection rule forbids interband
transitions and it implies that the nondiagonal susceptibility
χND(ω,T ,φ) vanishes. Therefore, dissipation can occur only
through intraband relaxation processes.

This is a remarkable simplification with respect to the case
of multilevel systems encountered in experiments for normal
(and Josephson) rings, where separating the three contributions
in Eq. (3) is a difficult and subtle task [11,13,17]. Therefore,
the linear susceptibility of the helical edge contains only two
terms: χ (ω,φ) = χper + χD(ω). Furthermore, the dissipative
part of the susceptibility has only one term, χ ′′(ω) = χ ′′

D(ω),
since χper is purely real (nondissipative). Moreover, the
diagonal rates γnn are assumed to be all identical γnn = γD

and flux independent, since the energy levels are equidistant
and have the same absolute value of the level current. The
dissipative response χ ′′

D is given by the imaginary part of the
diagonal susceptibility [16],

χD(ω,φ) = γD

iω − γD

∑
n

i2
n
∂fn

∂εn
, (4)

and it is maximal for ω = γD (Fig. 2). The edge states’
lifetime γ −1

D can then be measured from dissipative response
by sweeping the driving frequency.

The explicit result for dissipative susceptibility as a function
of temperature, flux, frequency, and chemical potential μ reads
as [16]

χ ′′
D(ω,φ)

χ0
= 4ωγD

ω2 + γ 2
D

[
1

2
+

∞∑
m=1

mT/T ∗

sinh(mT/T ∗)

× cos

(
2πm

φ

φ0

)
cos

(
2πm

μ

�ω0

)]
, (5)

in units of χ0 = I0
φ0

= e2vF

hL
. The characteristic temperature

T ∗ is proportional to the level spacing, T ∗ = �vF /(πkBL).
It immediately follows that the dissipative susceptibility of
the current is peaked at zero flux (Fig. 2). If the fermionic
parity is changed by adding or subtracting a single particle,
the chemical potential changes by �ω0/2 and the peak moves
to half-integer flux φ/φ0 = ±0.5 [16].
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FIG. 2. (Color online) For the clean helical edge, the dissipative
susceptibility χ ′′

D(φ,ω) has a peak at zero flux φ = 0 (a) and is
maximal at frequency ω = γ −1

D [(b) and (c)]. The analytical result
(continuous lines) and the Bernevig-Hughes-Zhang (BHZ) lattice
model (markers) coincide (after multiplying by a factor 2 the single
helical edge result, in order to take into account the presence of
two edges in the lattice simulations). (d) In the lattice model,
there is a large nondiagonal contribution χ ′′

ND which is independent
of the temperature. Parameters of the system (unless otherwise
stated): temperature T = 0.5T ∗, frequency ω = ω0, and lattice size
(Lx,Ly) = (80,80)a. In the BHZ model (A,B,M) = (1,0.6,1).

Since the current matrix is diagonal, there is no damping
rate for coherences ρmn (m �= n), and the dissipation is entirely
captured by the evolution for the populations ρnn as in [18]. The
eventual contribution of bulk states in the insulating disk will
be discussed below in connection with the lattice simulations.

Comparison with the BHZ model. We now present numeri-
cal simulations supporting the analytical results above. We use
the Bernevig-Hughes-Zhang (BHZ) model on a square lattice,
described by the Hamiltonian [3]

H =
Lx Ly−1∑ ∑
x=1 y=1

c†xy

[(
A

2i
σ1τ3 + Bσ3τ0

)
ei

ϕ(t)
Lx cx+1y

+
(

A

2i
σ2 + Bσ3

)
τ0cxy+1 +

(
M

2
− 2B

)
σ3τ0cxy

]

+ H.c., (6)

A, B, and M being material parameters, and ϕ(t) =
2π�(t)/φ0 the time-dependent phase induced by the applied
flux (lattice constant a = 1). This model is a useful lattice
regularization of the effective 4-band Dirac model describing
the topological transition in HgTe/CdTe quantum wells [3].
The different terms are tensor products of the Pauli matrices
σ and τ describing internal degrees of freedom. We use the
hollow cylinder geometry, with base circumference Lx and
height Ly . The system is taken in a topological insulating
phase (bulk gap � 2A) and at half filling N1/2 = 2LxLy . Then
the model in Eq. (6) exhibits a pair of counterpropagating
helical edge states located at the bottom (y = 1) [and one at

the top (y = Ly)] base of the cylinder. At low energy, each pair
of edge states is described by the helical model in Eq. (1) with
vF = aA/�. The mapping between the two models requires
that the temperature kBT is taken much smaller than the BHZ
bulk gap and also that Ly is large enough to avoid overlap
between these two edge states.

In Figs. 2(a) and 2(b) the diagonal susceptibility shows a
peak at zero flux which is maximal when the frequency is
exactly equal to the relaxation rate γD . The magnetic signal
from the helical model [Eq. (1)] is scaled by a factor of 2
in order to account for the two helical edge liquids in the
lattice BHZ model (top and bottom of the cylinder). The
match between the helical and the BHZ models holds at
different driving frequencies, temperatures, or diagonal rates
γD . Indeed, the diagonal susceptibility depends crucially on
the states near the chemical potential and thus at half filling it
is well approximated by that of the edge states inhabiting the
gap, while the bulk contribution is negligible. The two pairs
of edge states must be well separated otherwise hybridization
of edge states leads to a vanishing zero-flux susceptibility.
Furthermore, the diagonal susceptibility in zero flux decreases
with temperature, but it maintains a maximum at ω = γD

[Fig. 2(c)]. If a pair of particles is added, the susceptibility-flux
characteristic is shifted by half-integer flux quantum, such that
the susceptibility peak moves to φ/φ0 = 0.5. At odd number
of particles the peaks are smaller and appear at both φ/φ0 = 0
and 0.5 [16].

In contrast with the 1D helical model Eq. (1), the 2D
lattice model allows transitions between the bulk states.
These transitions induce a large contribution only to the
nondiagonal susceptibility χ ′′

ND(ω) ∝ LxLy [Fig. 2(d)], which
scales with the number of electrons in the system, while the
diagonal contribution scales with the edge length, χ ′′

D(ω) ∝
Lx . Nevertheless, this large bulk-state contribution is almost
flux independent in the thermodynamic limit, thereby allowing
an easy extraction of the flux-dependent edge contribution [16]
and determination of the lifetime γ −1

D of the edge states.
Note that the nondiagonal dissipative response χ ′′

ND has been
evaluated under the assumption that all damping rates for
coherences [in Eq. (2)] are equal and constant in flux or
temperature, γmn = γND .

Disorder effects. The addition of scalar disorder does not
destroy the edge states. The signature peak in the dissipative
diagonal susceptibility slowly decreases; however it does not
vanish, if the disorder strength is smaller than the bulk gap
[�2A for the parameters in simulations of Fig. 3(d)]. As
disorder strength increases and becomes larger than the bulk
gap, dips can develop in the diagonal susceptibility in random
samples. On average, the susceptibility at large disorder
becomes more and more flat and flux independent [Fig. 3(d)].

It is important to remark that this situation is different from
the case of a regular system with nonrelativistic fermions.
Indeed, rings with nonrelativistic fermions present energy level
crossings in the ballistic limit which are not protected against
disorder: infinitesimal scalar disorder removes the degenera-
cies and yields a vanishing zero-flux diagonal susceptibility
(instead of the peak predicted in the topologically protected
edge state).

Effect of an in-plane field. An additionally static field
induces a Zeeman coupling between spin up and spin down.
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FIG. 3. (Color online) The dissipative susceptibility under the
effect a small uniform Zeeman field (a), (b), and (c), or under scalar
disorder with strength W (d). Both helical model (continuous lines)
and BHZ (markers) develop a nondiagonal susceptibility. (a), (b) The
diagonal part of the dissipative susceptibility vanishes in zero flux
even for a small perturbation V . (c) The dissipative nondiagonal
susceptibility χ ′′

ND contains a large flux-independent contribution
from BHZ bulk states. The response in the gapped helical model,
translated by a constant value, matches the lattice result. The usual
Zeeman energy is V = 0.1�ω0. Lattice size (Lx,Ly) = (80,80)a and
temperature T = 0.5T ∗. (d) The average diagonal susceptibility 〈χ ′′

D〉
over 200 disorder realizations. The temperature is T = 1.5T ∗ and
lattice size (Lx,Ly) = (8,60)a. The BHZ parameters are (A,B,M) =
(1,0.6.1), and the diagonal response is maximal for ω/γD = 1.

In the helical model, we consider a constant term proportional
to a spin-mixing matrix σ1, H = H0 + H ′(t) + V σ1. In this
case the edge states are gapped out in zero flux, leading to
a vanishing dissipative diagonal susceptibility. Moreover, the
in-gap states now bring a nondiagonal susceptibility χND [16].
The response will depend on the nondiagonal damping rates
γmn, which renders the analysis more difficult.

The agreement between the helical and BHZ models still
holds [Figs. 3(a) and 3(b)]. The bulk is largely unaffected by
the flux, and its contribution to susceptibility remains almost
constant in flux. The features in the nondiagonal susceptibility
can be accounted for by the edge state contribution, shifted

with a large constant dissipative bulk contribution [Fig. 3(c)].
Note that very small spin mixing still opens a gap at time-
reversal invariant fluxes. Then the vanishing level current leads
to a dip in diagonal susceptibility at zero flux. Only energy
states close to these flux values are affected for very small
Zeeman fields. These lead to dips in the diagonal susceptibility
of small width in comparison to the overall width of the signal.

Using the material parameters [4] of the HgTe/CdTe
quantum wells, we estimate the relevant quantities. The
Fermi velocity for HgTe/CdTe quantum wells of thickness
d � 7 nm is approximately vF � 5.5 × 105 m/s. Therefore
the characteristic temperature for a ring of size L = 0.5 μm is
T ∗ � 2.7 K. The distance between levels at the Fermi surface is
�ω0, which for our given wire sets the characteristic frequency
ω0 � 6.9 × 1012 s−1. The characteristic current for the same
ring length I0 � 176 nA. Therefore the characteristic dimen-
sional susceptibility reads χ0 � 4.26 × 107 H−1. In order to
explore the physics of the edge states, the temperature was
taken smaller than the gap [where the gap � 2 for (A,B,M) =
(1,0.6,1)]. Finally we note that the kinetic equation approach
is valid only for temperatures larger than the level broadening,
which is the case in all the simulations.

Conclusions. In this Rapid Communication, we have stud-
ied the dissipative response of a 2D QSH insulator under the
effect of a small time-dependent driving in flux. Using a helical
model for the edge states and exact diagonalization of a tight-
binding BHZ insulator, we have proven that the contribution of
the edge states and the bulk can be differentiated. Crucially, the
lifetime of the edge states can be identified by measuring the
frequency where the dissipative response is maximal. While
the bulk may bring a large contribution to susceptibility, it can
be eliminated by observing that it is almost constant in flux.

Moreover, the diagonal dissipative susceptibility is sensitive
to the gapping of the edge states (either due to hybridization
between pairs of edge states brought in spatial proximity or
due to a Zeeman fields at zero flux). The peak in the diagonal
susceptibility may split into two (or even more) peaks in these
cases.
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