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This paper presents a review on the analytical results obtained by laser-induced breakdown spectroscopy (LIBS).
In the first part, results on identification and classification of samples are presented including the risk of misclas-
sification, and in the second part, results on concentration measurement based on calibration are accompanied
with significant figures of merit including the concept of accuracy. Both univariate and multivariate approaches
are discussed with special emphasis on the methodology, the way of presenting the results and the assessment of
the methods. Finally, good practices are proposed for both classification and concentration measurement.
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1. Introduction

Laser-induced breakdown spectroscopy (LIBS) has been investigat-
ed since the invention of the laser in 1960 and during the first years
there was an impressive activity to render it mature and reliable [1].
LIBS has been applied to many fields with specific adaptations and im-
provements concerning the related instrumentation. Thus, in addition
to standard laboratory conditions, LIBS analyses have been carried out
at long distance in order to analyze potentially hazardous materials [2]
and this technique has even been employed also to analyze the surface
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of Mars [3]. In an opposite approach, LIBS has been exploited at the
micro scale in order to provide chemical mapping of a given sample
[4,5] and for high spatial resolution [6]. Moreover, many portable or
transportable LIBS instruments have been developed in order to open
the way to on-site measurements [7-9]. LIBS has thus been applied to
e.g. medical science [10], geomaterials [11], explosives [12], recycling
[13], forensics [14] and agriculture [15]. It is difficult to quote an exhaus-
tive list of LIBS applications, however the most significant ones can be
found in the specialized literature [16,17] and recent review papers
[18,19]. It should be noticed that LIBS allows analyzing solids, liquids,
aerosols and gases in various experimental conditions. Consequently,
LIBS is potentially one of the most promising methods for elemental
analysis.
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Nowadays, LIBS is considered to be a well-established analytical
technique when considering instrumentation and experimental condi-
tions, despite of the large variety of experimental setups and conditions.
Moreover, several handheld LIBS systems are already commercialized
for on-site measurements. However, the treatment of the LIBS spectra
is still often subject to endless discussions and finally the actual ability
of the technique is not sufficiently assessed. Based on this observation,
we propose in this review paper to give a general outline about LIBS
data processing including the methods commonly applied, the way
the results are usually presented and also how the reliability of the
LIBS analysis is assessed. The first part of this review is dedicated to
qualitative LIBS, including identification of species (ions, atoms and
molecules) as well as classification and sorting. We present how the re-
sults have been obtained and presented, and how the reliability has
been determined. Finally, the risk of misclassification is also discussed.
The second part concerns concentration measurement by LIBS based
on calibration [20]. Indeed, self-calibrated or calibration-free methods
[21] have been discussed elsewhere since they are based on physical
models involving specific physical parameters playing a role in the accu-
racy. Thus, the predictive ability of LIBS analysis is emphasized through
the selection of significant figures of merit. And finally, a selection of
good practices is proposed for both classification and concentration
measurement by LIBS.

2. Identification and classification

In the frame of decision-making, one may want to classify a series of
samples against the presence/absence of a given element or against the
concentration of this element relative to a threshold value. In principle,
such classification could be achieved from a single variable or predictor
x selected as the most relevant for the decision. In LIBS, the predictor is
usually the intensity or the peak area of the relevant atomic or ionic line
[22], or even the one of the relevant molecular lines [23]. Moreover, in
order to overcome some experimental effects, it is common to prefer
the ratio of two spectral lines [24] as a kind of normalization.

In LIBS, the first question concerns the identification of each spectral
line. Actually, it may be not necessary to identify each single line sepa-
rately since elements such as iron or titanium for example display
hundreds of lines. Thus, when iron is present, it is easy to verify its pres-
ence but it is not helpful to strictly identify each individual line. The real
question to be discussed concerns the ability to detect by LIBS any
chemical element of the periodic table. The most popular atomic
database is the one of the NIST [25] but it should be noticed that some
complementary data could be found in the Kurucz database [26]. In
addition, some research groups and companies have built their own
LIBS database from LIBS experiments. As an example, the company
Applied Photonics [27] edited a LIBS database in the form of the periodic
table based on selected LIBS papers in which each element has been ac-
tually detected. Whatever the database, element identification requires
a method to assign the relevant spectral lines to the chemical elements.
Ideally, this step should be automated. In this context, Amato et al. [28]
presented an algorithm inspired by text retrieval for unassisted element
identification from LIBS spectra. In addition, molecular bands have also
been observed in LIBS spectra. The most commonly reported ones are
the C, and CN bands [29-31].

When no line is detected in the LIBS spectrum for a given element, it
doesn't necessarily mean that the element is absent from the sample's
composition. It might be present at a concentration lower than the
limit of detection of the instrument. This limit is very dependent on
the experimental parameters and consequently one should never
conclude that an element is absent, but rather that its concentration is
below the limit of detection. In addition, spectral interferences some-
times observed in the LIBS spectra could drive to wrong conclusions
[32]. To overcome this problem, it is highly recommended to take
advantage of the redundancy by checking the coexistence of a series
of different lines related to the same element. Finally, the spectral

range available for analysis is determined by the spectrometer. As a
consequence, interesting spectral lines might fall outside of the avail-
able spectral range and the related element not detected. Thus, the
spectral range is also an important parameter for successful element
identification.

It has been reported that classification of unknown samples in two
classes regarding their LIBS spectra was possible through the identifica-
tion of a significant element. For example, in-situ LIBS analysis of white
pigments used in painting [33] has been achieved via the detection of
the spectral lines of lead (Pb I) at 357.27, 363.96, 368.35, 373.99, and
405.78 nm and titanium (Ti 1) at 429.87-430.59, 445.74, 453.32-
453.60, and 498.17-503.99 nm. The presence of lead allowed classifying
original paintings while titanium was related to the retouched parts. It
should be noted that in this work, the authors didn't provide any figures
of merit. The detection of different lines of lead (Pb I) was simply corre-
lated to the first type of white pigment based on lead carbonate
2PbCO5- Pb(OH),. Similarly, the detection of different lines of titanium
(Ti I) was simply correlated to the second type of white pigment
based on titanium dioxide TiO,.

Another example concerns the classification of treated and untreat-
ed wood samples by LIBS [34]. Thanks to the analysis of the emission
lines of As I at 228.8 nm and Cr II at 267.7 nm, it was possible to proof
the presence of chromated copper arsenate (CCA), which is a character-
istic of treated wood. Indeed, for untreated wood, there was no peak at
these two wavelengths. Thus, it was straightforward to separate the
samples into two classes. In addition, the authors analyzed average
values of intensity for the two spectral lines of interest and presented
error bars corresponding to 3 times the standard deviation over 600
measurements, i.e. the 600 points of each single sample image, in
order to overcome possible issues with heterogeneity of the samples.
However, it should be noticed that no figures of merit were given to as-
sess the real ability of classification of the method.

Moreover, classification of samples by LIBS has been performed by
the use of multiple LIBS data simultaneously. For example, the ratios Ca
(396.847 nm)/K (766.491 nm) and Cu (327.39 nm)/K (766.491 nm)
were compared for both normal and malignant tissues [35]. Malignant
tissues were identified since the concentration of potassium was kept
unchanged while the concentration of calcium was higher and that of
copper was lower in malignant tissues. But in this study, again, no figures
of merit were given and this paper was mainly presented as a demon-
stration. Moreover, in the context of biomedical applications, the ratios
H (656.7 nm)/C (247.9 nm) and Ca (310.9 nm)/C (247.9 nm) have
been compared in order to identify organic and inorganic compounds
in kidney stones [36]. This approach allowed discriminating hydroxyap-
atite from other stones. By extension, other ratios were calculated in
order to identify different types of stones. This work based on the calcu-
lation of selected ratios was also presented as a demonstration and no
figures of merit were given. At the opposite, in the field of forensics, it
is common to provide statistical parameters such as the type I and type
I errors, which are related to false positive and false negative, respective-
ly. For example Naes et al. [37] used these two types of errors to
discriminate glass fragments.

However, the authors decided to implement methods of
chemometrics such as principal component analysis (PCA) and partial
least square-discriminant analysis (PLS-DA) in order to enhance the con-
fidence of classification. They presented their results of classification by a
confusion matrix (see Table 1). Unfortunately, they didn't compare the
ability of multivariate analysis to the one of the univariate approach. In

Table 1
Confusion matrix in the simplest case of classification into two classes.

Reference results

Positive Negative
LIBS results Positive TP FP
Negative FN TN




addition, Kongbonga et al. [38] demonstrated that it was possible to
discriminate the palm oil from other oils through the value of the ratio
C, (516.6 nm)/C1(247.8 nm). The results of this study were interpreted
by the analysis of variance (ANOVA).

Multivariate analyses have been already widely applied to LIBS
data for classification purposes [39,40]. In this case, one should
consider a matrix X of predictors instead of a single value x. First of
all, the X-matrix is usually described through PCA calculation [41].
Once the principal components are calculated, a second step consisting
in measuring the distances between the points is necessary to conclude
about the presence of classes. This approach represents with PLS-DA [42,
43] the most popular multivariate method for classification. PCA is not
supervised and provides results about similarities and differences be-
tween a series of samples without knowing anything about them. This
method based on the calculation of the covariance of the X-matrix of
predictors allows for projecting most of the information from the
original dataset into a compressed subspace of a few principal compo-
nents. In LIBS, PCA has been demonstrated to be very efficient to detect
outliers, i.e. samples which display spectra that are very different from
all the others and have been successfully applied to the classification
of LIBS data [44]. PLS-DA is similar to PCA but is supervised. It relates
the predictors to numbers arbitrarily set for classification, each number
being associated with a class. This technique being supervised, it needs a
learning step prior to its application to unknown samples. PLS-DA has
also been applied to the classification of LIBS data [45,46]. In addition,
one should also notice other multivariate methods of classification
such as independent component analysis (ICA) [47], support vector ma-
chine (SVM) [48,49], artificial neural networks (ANN) [50], hierarchical
cluster analysis (HCA) [50], soft independent modeling of class analogy
(SIMCA) [51], and the method of the k-nearest neighbors (KNN) [52].

The common advantage of all the chemometric techniques is to si-
multaneously take advantage of different features within the LIBS spec-
tra. As an example, in the framework of forensics, different biological
tissues such as chicken brain, liver, kidney, spleen, lung and skeletal
muscle were classified after LIBS analysis [50]. The authors exploited
three chemometric methods, namely HCA, PLS-DA and ANN. Then,
they calculated both the rates of correct and incorrect classification.
This evaluation was done via samples analyzed by LIBS during an exper-
imental run different from the calibration. The conclusion was not easy
because each method presented specific advantages: ANN demonstrat-
ed a lower rate of incorrect classification for muscle and spleen since PLS
demonstrated best results for the brain, liver and kidney.

More generally, the methodology implemented for classification
purpose should be detailed. Indeed, a learning step is always required
first and then the classification model can be evaluated during a second
step. These two steps can be run from a single dataset by implementing
the methods of leave-one-out (LOO) or leave-many-out (LMO) [49,54,
55]. These methods consist in excluding one sample or more from the
dataset, then building the model, and finally checking the ability of the
model to correctly classify the rejected sample(s). Finally, each sample
is iteratively excluded from the calibration set and exploited at least
once for validation. These methods are known as cross-validation
methods [54]. They are implemented by default in many algorithms of
chemometric methods. However, a more robust approach than cross-
validation consists in preparing two separate subsets from the original
dataset: the calibration set dedicated to the construction of the model
and the validation set dedicated to its evaluation. This approach is
known as external validation. It has been exploited in forensics [50]
and revealed some advantages to avoid any risk of over-fitting and
allows for checking if the calibration set or training set was correctly
chosen to describe all the variability of the samples.

However, in order to implement either internal or external valida-
tion, one needs to calculate some figures of merit. For classification
purposes, one may want to know if the samples are correctly classified
or not. This assessment can only be done by comparing the results of
the LIBS data processing and the ones provided by another method,

which is considered as the reference method. Consequently, the latter
results are considered as “true” values. Finally, any test of classification
should be assessed via an appropriate question, e.g. of the type: is this
patient healthy? Is this sample polluted by lead? Is this sample made
of recycled material? When the answer to the question is yes, as expect-
ed, the result is categorized as true positive (TP). Symmetrically, when
the answer is no, as expected, the result is categorized as true negative
(TN). At the opposite, when the answer is different from the expected
one, one should consider false positive (FP) as well as false negative
(FN) results. Table 1 displays the so-called confusion matrix [56]
including the four figures of merit given before.

By extension, the confusion matrix can be implemented in order
to assess the classification when more than two classes are present.
In this case, the diagonal of the confusion matrix displays the results
of correct classification, i.e. the values of TP related to each class and
often normalized in order to present percentage values while the
out-of-diagonal values indicate the cases of incorrect classification.
Thus, in the case of 5 classes for example, the confusion matrix becomes
a 5 x 5 matrix [36]. Some examples of confusion matrices are given in
Refs. [36,55,57]. It should be noticed that a confusion matrix designed
for more than two classes doesn't display the values of TN, FP and FN
as described in Table 1 but necessarily contains more detailed informa-
tion about the distribution of the misclassified samples into the other
classes.

In order to reduce the risk of misclassification, some authors intro-
duced an additional threshold value. Thus, once the predicted value is
found to be close to the target value corresponding to a given class
according the tolerance given by the threshold value, the sample
under study is attributed to this class. In addition, it is sometimes pre-
ferred to obtain unclassified instead of misclassified samples. This can
be done by simply adding a class meaning “all that is not belonging to
any of the classes explicitly defined” [44,49]. More generally, while
hard classification, which consists in classifying each sample in a single
class, is the most commonly applied, soft classification, which consists in
calculating the probability of membership of each sample to each class,
also provides very interesting results in LIBS. As an example, soft classi-
fication has been successfully applied to the LIBS analysis of soil samples
[53]. Thus, the soil samples were located inside a ternary diagram after
the calculation of factors related to the probability of belonging to each
of the three major types of soils, namely silicates, calcareous and ores.
This approach of soft classification was very efficient prior to concentra-
tion measurements.

In Table 2, we present a compilation of the most common figures of
merit that have been exploited for classification purposes based on LIBS
data processing.

Table 2
Figures of merit exploited for classification by LIBS.

Figure of merit  Calculation Reference

Rate of correct ~ Percentage of samples correctly classified for a [46,54]
classification  given class

Rate of wrong Percentage of samples incorrectly classified for a [46,54]
classification  given class

Rate of no Percentage of samples not classified in any class [46,54]
classification

Overall accuracy Number of samples correctly [55,56]
(%) classified (all classes)/total number of samples

Sensitivity TP/(TP + EN) for a given class [46,56]

Specificity TN/(TN + FP) for a given class

[56]

Negative TN/(TN + FN) for a given class
predictive [56]
value

Positive TP/(TP + FP) for a given class
predictive [56]
value

Robustness After suppression of a given class, the rate of wrong [41,46]

classification of the samples in the other classes




It should be noticed that the rate of no classification is given by the
samples for which the result of the LIBS data processing is out of the
intervals delimited by the threshold values for all the classes under
study. The overall accuracy is by definition less descriptive than the
complete confusion matrix but it allows partially assessing the methods
of classification. Sensitivity is given by the rate of correctly classified
samples for each class, while specificity determines how the model is
able to predict that a sample does not belong to a specific class.
Robustness can be calculated by: i) eliminating all the samples of a
given class and ii) testing afterward if the model of classification is really
able to conclude that all these leftover samples are not incorrectly
affected to any class. Of course, a model is considered as robust when
the rate of misclassification is low.

In the field of plastic recycling [58,59], the results of classification of
polymer samples after LIBS analysis have been presented through
several figures of merit given in Table 2. The authors presented two
relevant statistical parameters, namely the Mahalanobis distance
(or M-distance) and the spectral residual, i.e. the square of the
difference between the original and the simulated spectra. For a series
of samples belonging to the same class, the M-distance is expected to
be small as well as the spectral residual values and the results presented
in [58,59] were in good agreement with this statement. The authors
defined the best threshold for the M-distance and the result was
evaluated through the so-called receiver-operating characteristic often
called the ROC curve, and displaying the sensitivity versus the quantity
(1 — specificity). They obtained a sensitivity of 90% and specificity
above 76% for the four classes.

Classification after LIBS analysis has also been successfully
demonstrated in security applications. Different explosive residues
(RDX, TNT, etc.) have been classified by PLS-DA [60], and the results
were presented through the sensitivity that the authors defined as the
true positive rate TPR and the false positive rate which is given by
FPR = (1 — specificity). The best model obviously corresponds to
TPR = 100% and FPR = 0%. After optimal selection of the input data for
PLS-DA, the authors obtained TPR = 99.5% and FPR = 0.16% for
different models.

The evaluation of any model of classification should be carried out by
analyzing unknown samples. Different methods of validation have been
implemented, namely cross-validation methods such as i) the leave-
one-out procedure (LOO) [41,49], ii) the k-fold method (or LMO) [40],
and iii) the leave-one-subject-out procedure (LOSO) [61] and also
external validation based on the use of an independent dataset for
testing the model [50,60]. It should be emphasized that in the case of
LOSO, no replicate of any given sample could be found in both the
learning and the validation sets. As a consequence, LOSO is expected
to be more robust by construction than LOO and LMO. Actually, Remus
et al. [61] demonstrated that LOSO was better than the k-fold method
for generalizing the classification to unknown samples. As a conclusion,
external validation should be systematically preferred in order to obtain
robust models for classification.

Finally, the choice of the predictors is of major importance.
Cisewski et al. [48] classified spore samples and highlighted the
importance of removing outliers prior to any calculation. This recom-
mendation had also been stated by other studies [50]. Nowadays, the
coupling between different multivariate approaches has become
quite common in order to build robust models. Thus, PCA could be
used to compress the original dataset into a reduced number of
factors before introducing them into the model of classification. As
an example, PCA was used prior to HCA [50] and PCA was also
applied to compress the LIBS data related to different classes of
proteins, prior to their treatment by SVM [62]. One can conclude
that the results of classification strongly depend on the choice of
the predictors. And in this context, Corsi et al. [63] proposed a very
original approach for analyzing ancient copper artifacts. Indeed,
they first calculated the concentrations of several elements (Ag, Pb, As,
Fe, Sb) via calibration-free LIBS and exploited these values of

concentrations as input data of a PCA model. The scores plot clearly
revealed the separation between two classes of samples.

It should be also pointed out that results of classification are sensitive
to data preprocessing. As an example, Sahoo et al. [64] studied the inter-
est of outlier removal before classification applied to LIBS spectra thanks
to different approaches, namely PCA, dendograms, nearest neighbors
and distance matrix. The average classification accuracy was thus
increased for high energy materials (HEM). Dimensionality reduction
was also successfully applied as an alternative to outlier removal for
both HEM and non-HEM classification.

Concluding on this first section dedicated to the identification and
classification by LIBS, it should be noted that the corresponding scientif-
ic papers have become more and more descriptive, most of them
presenting now significant figures of merit required for objective
assessment. Nevertheless, few papers still present classification results
in an insufficient way. Indeed, the very important point of validation is
often insufficiently described and thus it can be difficult to generalize
the reported results. Consequently, we highly recommend for the future
work on classification by LIBS to adopt in generally a series of good
practices based on: i) clever selection of predictors, ii) separation of
the original dataset into independent subsets, iii) calculation of the
classification ability of the model by external validation, and iv) presen-
tation of the relevant figures of merit.

3. Concentration measurement

In the case of concentration measurement, one should build a
regression model establishing the best relationship between the
predictors, namely the LIBS data (X), and the concentration values
(Y) of the analyte. The simplest case of regression model is univariate,
which means that only one predictor x per sample is exploited instead
of the X-matrix and only the concentration values of one single analyte
are predicted, and referenced as y. In this case, both x and y are vectors
of dimension N, N being the number of samples exploited for calibration.
The corresponding graphical display is the so-called calibration curve,
which consists in plotting the measured signals against the analyte's
concentrations. In LIBS, the signal corresponds usually to the intensity
or the peak area of the most relevant line, namely exempt of spectral
interferences and self-absorption effects and with a good signal-to-noise
ratio [65]. To overcome experimental effects, the ratio between two
lines is usually preferred. In addition, normalization by an internal
standard is widely applied in LIBS in the case of a series of samples
characterized by a single matrix [66,67].

3.1. Univariate analysis

In order to get a first understanding of the relationship between the
physical parameters, namely the peak intensity or the peak area on one
hand, given by x, and the analyte's concentration on the other hand,
given by y, it is common to calculate the correlation factor also called
the Pearson coefficient, assuming a linear relationship between x and
y, which is given by [68]:

%) (yi —;)
R=
VEL 622 [T (5-5)°

where x; is the value of the LIBS signal for the sample i, and X the average
value of x; over the N samples. Similarly, y; is the reference value of the
analyte's concentration for sample i, and y the average value of j; over N
samples. The Pearson coefficient can vary between — 1 and + 1. Values
close to 0 are synonym of poor correlation while values close to + 1
reveal strong correlation and values close to — 1 reveal strong anti-
correlation.



Most of the LIBS papers report R?, the value of the square of the
Pearson coefficient. Indeed, the R? factor provides fast information
about the correlation of the data and consequently a fast first knowledge
about the prediction ability of the model since poor correlation
necessarily implies poor predictive ability. As a first example, in the
case of quantitative LIBS analysis of palladium, a very good correlation
characterized by R? = 0.99 has been reported [69]. In addition, the values
of concentrations were equally distributed along the whole calibration
range, indicating that the value of R was really significant. High values
of R? have also been reported by other authors [20,70]. At the opposite,
very poor correlation characterized by R? = 0.01 has been reported for
aluminum in the frame of LIBS analysis of soil samples [71].

However, A. Golbraikh et al. [72] demonstrated that a model with a
value of R? close to 1 may indeed have a poor accuracy for prediction.
Therefore, the authors introduced a new factor, namely RZregv in order
to calculate the correlation between the values deduced from the
regression (on the fitting curve) and from the reference values, and
they recommend having simultaneously R? and Rzreg close to 1. In fact,
R? could be close to 1 in the case of low degrees of freedom, or variable
multi-collinearity [54].

Another figure of merit, Q2 allows evaluating the ability of a model
to predict values of concentrations close to the reference value [54]. Q?
is given by:

N o2
01— > Ty @

S ()

wherey; are the reference values of concentration, y; the predicted ones,
and y the average value of j; over N samples in the dataset. The values of
R? and Q? can be separately calculated for the calibration, the validation
and the test datasets. Ideally, R? and Q? values should be equal to 1,
however some authors considered that a model was acceptable once
Q%> 0.5 and R? > 0.6 [54,72,73]. Moreover, the Q? value could be high
for the calibration dataset and for cross-validation, but the related
model could have poor predictive ability in the case of external
validation, especially in case of non-linear behavior [72]. Consequently
R? and Q? are definitely not sufficient to assess the predictive ability of
a model. It should be noticed that the Q? factor has been rarely applied
in the case of univariate calibration.

Finally, it is mandatory to estimate the accuracy of a quantitative
method [74]. Accuracy simultaneously contains trueness, which is
related to systematic error and measured by the value of bias, and
precision, which is related to random error and measured by the value
of standard deviation. In most of the LIBS analyses, the accepted “true”
values are given by ICP-AES or ICP-MS analyses. While trueness is
simply given by the difference between the value of concentration
retrieved after LIBS analysis and the “true” value, precision [75] includes
instrument and independent repeatability as well as intermediate
precision and reproducibility [ 74]. Precision is described by the standard
deviation (SD) or by the relative standard deviation (RSD in %), which is
a very common figure of merit in the framework of LIBS analysis [20,39].
These two factors are given by:

N —\2
SD:,/M 3)

and:

RSD(%) = % x 100 (4)

where ¥ and SD represent the mean value and the standard deviation of
the y; predicted concentrations of the N samples.

Furthermore, once the quantitative model is built, it provides
predicted values of concentrations. Thus, it becomes possible to
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compare the predicted values with the “true” ones provided by the
reference method. Consequently, it is possible to define new figures of
merit based on the error of prediction [20]. The root mean square
error (RMSE) is thus given by:

N - 2
RMSE — \/721':1 (I\;;,-—y 0 (5)

where y; are the reference values of concentration, y; the predicted ones,
and N the number of samples in the dataset. It should be noticed that the
unit of RMSE is identical to the unit of the concentrations y;. Thus, if the
concentrations y; are given in part per million (ppm), RMSE will be
also obtained in ppm. In addition, the quantity (j/,-—yi)2 is expected
to be higher for the highest concentrations. This means that the
high values of concentration have a strong influence on the RMSE
value.

Another way to evaluate the error between the predicted and the
actual values of concentration consists in calculating the mean relative
error [8,39] defined as:

1w iyl
RE(%):]OONZi:] 151,- i, (6)

In this case, the percentage error is calculated for each value of
concentration. So both low concentrations and high concentrations
have the same influence on the result. Consequently, RE (%) appears
to be an adequate factor to estimate the ability of a quantitative model
to correctly predict the analyte's concentrations. For real-life applica-
tions, this factor can be easily and rapidly calculated. For example, on-
site LIBS quantitative analysis of polluted soils has been achieved with
RE < 20%, which was considered as a satisfying result for on-site analysis
[8]. Other authors calculated the relative error for each sample, namely
the quantity 22! x 100 and finally identified the maximum of these
values over all the dataset (MRE) [76]:

MRE(%) = Max <—‘y i;y il 100). 7)
1

Lietal. [76] reported MRE = 13.61% with their method of standard-
ization in the case of LIBS analysis of carbon in coal. They concluded that
their original method of normalization provided a significant enhance-
ment of the predictive ability. Another way to evaluate the predictive
ability of a quantitative model consists in calculating its limits of confi-
dence [77-79]. These limits are detailed in Ref. [68]. Briefly, let us
consider a linear regression between the values of concentration x and
the LIBS data y, described by the equation y = bx + a. It should be noticed
that the notation might be confusing since x was previously defined as the
LIBS signal and y the value of concentration. At the opposite, in the latter
mathematical expression, x represents the analyte's concentration and y
the LIBS signal. So the reader is invited to pay attention to this alert.

The slope (b) of the resulting straight line is given by [68]:

_ ZL Xi=X) Vi—Ym)

b= . (8)
SN xi—x)’
And the intercept (a) is given by:
a=yn—bx, 9

where y,, is the mean value of the LIBS data, x,, the mean value of the
concentrations, N the number of samples and x; the reference value of
the concentration of the sample i. Then, the residual standard deviation
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between the measured values of the LIBS signal and the values deduced
from regression is given by [68]:

Z:\I: (yi_yc)z
S— == (10)

where y; is the mean value of the replicates of the measured LIBS signals
recorded for a given value of concentration x;; y. is the value deduced
from regression at the value of concentration x; and considering the de-
gree of freedom being N — 2. Based on this description, Mermet [68] ex-
plained that an uncertainty always exists when determining the slope
and the intercept of the regression line. Indeed, for a given value of con-
centration x,, the corresponding mean value of the LIBS signal y, can be
determined by the regression law within a confidence limit of +¢ - s,
giving:

Yo=0a+bx,+t-s, (11)

where t is the Student's coefficient t(1 — ¢/ 2) at a given risk cc or at a
confidence percentage of [100(1 — «)%] and N — 2 the degree of
freedom. The value of s, is given by:

(12)

Finally, following the detailed calculation proposed by Mermet [68],
and applying relevant approximations, it becomes possible to calculate
the uncertainty range of concentration. Thus, for any unknown sample,
one may measure in a first time the LIBS signal y,, and deduce two values
of concentration given by:

t-S/1 1\1/2

X1 :Xu_—b (1—)+N> (]3)
t-S/1 1\V2

Xz:xu‘T(ﬁ*N) (14)

where p represents the number of replicates.

Graphically, these limits are represented by hyperbolas surrounding
the regression line [78]. This type of advanced analysis about accuracy
allows for understanding that the predictive ability of any quantitative
model is always better in the middle of the range of concentrations. At
the end, two relevant parameters, namely the limit of detection and
the limit of quantification can be calculated in order to describe the
lower limits of a quantitative model [74]. In the case of a linear regres-
sion described by equation y = bx + a, where y describes the values
of the LIBS data and x the values of concentrations, the definition of
the limit of detection the most frequently used is [70,74,80]:

LoD = 3% (15)
b
And the limit of quantification is generally defined by [74]:
LOQ:lOl;I". (16)

It should be noticed that the LOQ is rarely presented in LIBS.
Moreover, the definitions of LOQ and LOD are not unique [74] and the
discussion regarding these two factors is not specific to LIBS but
concerns all techniques of analytical chemistry. Finally, it should be
mentioned that the experimental response, i.e. the LIBS signal versus
the concentration of the analyte might be nonlinear, especially for
relatively high values of concentrations. As a consequence, the linear
regression could be misfit and a quadratic regression might be

Table 3
Figures of merit exploited for univariate quantitative LIBS.
Abbreviation Full description References
R? Correlation coefficient [62,66]
Q? Prediction ability
[66]
RSD (%) Relative standard deviation [19,36]
RMSE Root mean square error [19,70]
RE (%) Relative error [19,36]
LOD Limit of detection
[68]
LOQ Limit of quantification
[68]
Uncertainty (limits of confidence)
[62]

advantageous. In this latter case, some figures of merit such as R?, S,
and the confident limits have to be revisited [74]. Table 3 gives a compi-
lation of the figures of merit commonly exploited in the case of univar-
iate quantitative LIBS and examples of related papers.

After this general introduction about the relevant figures of merit
that should be used for presenting results in the frame of concentration
measurement by LIBS, we propose to observe how the results of LIBS
experiments have been reported through a selection of recent papers,
all based on univariate analysis. It should be mentioned that the only
ambition of this short list of articles is to show some examples of
practices in data processing and assessment, in order to finally propose
few recommendations for better valorization of the results.

In a study dedicated to the analysis of arsenic [80], the experimental
parameters were optimized in order to get the best signal-to-noise ratio
and the As I line at 228.812 nm was normalized by the Al I line at
235.1256 nm since aluminum was considered as an internal standard.
Then, a calibration curve was built but in a reduced range of concentra-
tions (here 0-50 ppm) in order to avoid any risk nonlinear behavior due
to possible saturation effects. And finally, figures of merit such as the
coefficient R?, the intercept and the slope of the calibration curve were
calculated. Moreover, the limit of detection was also calculated but it
is interesting to notice that the method for calculating it was not
presented. We can conclude that the authors correctly describe the ori-
gin of the input data and the results extracted from their linear model of
calibration. However, the predictive ability and the robustness of the
model are insufficiently discussed and the definition of LOD is missing.

In a work focused on fluoride detection in commercial toothpaste
[81], a linear calibration curve was built from the fluorine line at
731.102 nm and the authors calculated a limit of detection different
from the one given in Table 3, with a factor of 2 instead of 3. This new
definition of LOD clearly highlights the necessity for each author to
carefully define the statistical indicators they calculate. Indeed, only
rigorous description of each figure of merit will allow to successfully
run further interlaboratory comparisons. In this article, again, after
careful description of the way to get the best input data, the LOD is cal-
culated but the predictive ability and the robustness of the model are
not sufficiently discussed.

In another study dedicated to the quantification of palladium in
water by LIBS, the peak intensity of the 340.46 nm Pd I line was analyzed
[69]. In addition, due to very specific experimental conditions, the hit
frequency defined as the ratio of the number of recorded hits to the
total number of laser shots, was calculated as a relevant indicator.
Finally, the coefficient of R? was calculated and a limit of particle-size
detection. This paper illustrates that the figures of merit reported in
Table 3 may be not sufficient in some specific cases for which the hit
probability of the particle-sample is very low.

As a last example, Xiu et al. [70] analyzed different elements
contained in thin oil layers covering a pure aluminum substrate. They
presented different analytical figures of merit: R?, RSD, slope and
intercept of the calibration curve, SD, and LOD for 10 elements: Fe,
Mg, Sn, Si, Cu, Ag, Ti, Ni, Cr, and Pb. It should be mentioned that in



addition to the usual LOD, this article also provides interesting discus-
sions about precision of the LIBS measurement. Thus, the height of oil
on the surface of the aluminum substrate and the lens-to-sample
distance were accurately taken into account. In addition, the experimen-
tal parameters were optimized in order to get the best signal-to-noise
ratio and the spectral lines carefully selected in order to avoid spectral in-
terferences and self-absorption. As preprocessing, continuous
background was removed and the areas of the spectral lines were
calculated after fitting by Lorentzian profiles. In addition, the experimen-
tal fluctuations were evaluated thanks to the analysis of 8 replicates per
sample and advantage of normalization by internal standard was also
assessed. Based on this very careful methodology, the authors presented
a calibration curve based on the average values and error bars
corresponding to the RSD values, calculated over the 8 replicates.
The concentration range for the calibration model was limited to 20-
400 pg/g, in order to eliminate any risk of nonlinear behavior. Then,
the linear regression coefficient R?, the intercept and the slope of
the calibration curve were presented. Finally, this article provides
most of the relevant information one could expect in the frame of
concentration measurement by LIBS and is a good guidance paper for
presenting LIBS results.

As a conclusion, the results presented in the LIBS articles are most
of the time partially discussed and often insufficiently assessed.
Thus, in order to finally propose good practices, we first present the
multivariate approach, which brings nowadays important added-
value to the LIBS.

3.2. Multivariate analysis

A very important issue in LIBS concerns the well-known matrix
effects. Indeed, for real-life analyses, a wide diversity of matrices can
be encountered and consequently the results of concentration measure-
ment can be drastically affected. This drawback could make LIBS
analyses unacceptable for on-line or on-site measurements. This has
been evidenced in the frame of copper smelting industry where Pb,
Cu, Al and Ni should be quantified on-line in lead brass alloy samples
[82]. Strong matrix effects prevented to apply simple calibration curves
and consequently, a multivariate approach was applied.

Generally speaking, the most common chemometric technique
applied to concentration measurement by LIBS is partial least square
regression (PLS) [83-86]. This method has been implemented either
to calculate the concentrations of a single element (PLS-1 algorithm)
or to simultaneously calculate the concentrations of more than one
element (PLS-2 algorithm). PLS is a linear method since it is based on
linear algebra calculations. Among linear methods, LIBS analyses have
also been achieved by multi-linear regression (MLR) and principal
component regression (PCR) [87]. One should also notice the methods
called least-absolute-shrinkage-and-selection-operator (LASSO) [84,
88] and sparse multivariate-regression-with-covariance-estimation
(MRCE) [88]. In 2014, a new method has been applied to LIBS data,
namely the wavelet transform-hybrid model [89], and was considered
as being more efficient than PLS. In addition, few authors also applied
nonlinear methods such as artificial neural networks (ANN) to take
into account the possible nonlinear relationship between the X and Y
values [39,71,90]. For instance, in the case of copper smelting reported
above [82], the PLS-2 method based on the simultaneous regression of
the four elements was applied. Other authors reported comparisons
between the calibration curve on one hand and multivariate analysis
on the other hand. Among them, Andrade et al. [85] analyzed brass
samples by LIBS and X-ray fluorescence (XRF) and applied both the
calibration curves and the PLS regression for each single element of
the following list: Zn (250.199 nm), Fe (238.204 nm), Sn (242.948 nm),
Pb (405.781 nm) and Cu (330.795 nm). But it should be pointed out
that multivariate quantitative analyses present a high risk of overfitting.
As a consequence, it is very important to properly establish and then to
properly evaluate the quantitative models.

3.2.1. Subsets of data and validation

Any regression model should be evaluated through a relevant
validation method as already commented in the case of classification.
This can be done by internal validation or cross-validation methods
such as LOO (leave-one-out) or LMO (leave-many-out), namely by
excluding one or more samples from the calibration set by a series of
consecutive permutations in order to use it or them a posteriori in
order to test the model. The permutations are realized in a way to
exclude each sample at least once from the calibration set [54]. But
external validation can also be performed by preparing a dataset fully
independent from the calibration one and dedicated to the evaluation.
Following this strategy, Anderson et al. [91] built two sets of data, a
training set and a test set, in order to evaluate the ability of PLS. In the
case of ANN and genetic algorithm methods, the use of an external
dataset has been highly recommended for testing the models and
insuring both fast learning and optimization of the models [92]. In
order to fulfill this requirement, the initial dataset should be split into
three parts: the calibration set, the validation set and the test set. The
calibration set is the dataset that is used to elaborate the model itself,
namely to find the best fit between the predictors and the output
values. The validation set is used to compare the different models by
checking the risk of over fitting. Thanks to the validation dataset, it
becomes possible to determine which model - built from the calibration
set - is the best. Finally, the test set is required to post-evaluate the
model. The samples to be included into each dataset should be
considered on a case-to-case basis, i.e. not only their number but also
their distribution over the whole range of concentrations. Thus, we
should emphasize that each of the three datasets should not be built
randomly but rather cleverly selected in order to include a larger
range of concentrations of the analyte into each dataset. Finally, the
data included in the test set should be totally independent, namely
with no replicates of samples exploited in the other datasets. This
methodology theoretically provides the best compromise to get both
good learning and correct evaluation of the model. It has been already
recommended by other authors in the case of quantitative nonlinear
models like ANN, pointing out that the only satisfying method to
validate an ANN model was the training-validation-testing approach
[93]. Indeed, in the case of ANN, one should understand that the calibra-
tion set is used to train the ANN models, and the validation set to
determine the best ANN model as a function of adjustable parameters,
namely the number of layers and nodes, the learning speed and
momentum and the number of iterations. Finally the test set is
exploited to post-evaluate the best model. More precisely, the
prediction of independent datasets is the only way to correctly assess
the risk of overfitting during the training process. As an example, in
the case of soil analysis, a series of ANN models were built and an
independent validation set was used in order to select the best one,
which was finally applied to a third independent dataset in order to
get the performance of the model [53]. However, it should be
mentioned that internal cross-validation is still commonly applied,
especially in the case of linear models. It consists in mixing the
calibration and validation sets and, in this case, the risk of overfitting
can only be assessed afterward through the prediction of concentra-
tions for samples of an independent dataset [94]. This methodology is
completely general and depends neither on the nature of data nor on
the type of the quantitative model. We suggest that all the future
work about quantitative LIBS adopts this approach.

Finally, even when the right methodology is applied, one should pay
attention to the number of data contained into each subset before
extracting general results. As an example, ANN was reported to present
better predictive ability than the univariate regression model [95], but
this result was established with only one sample for the external
validation. In this case, the number of samples appears to be too low
for a complete generalization of the results. When considering in more
detail the work already mentioned about copper smelting industry
[82], and based on the use of the PLS-2 method, it appears that the
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evaluation of the model was based on the use of replicates of samples
exploited for the calibration. This is not the best way of evaluating the
method and independent samples should be preferred in order to
properly evaluate the ability of the model. In the work of Andrade
et al. [85] who analyzed brass samples, the PLS method was evaluated
through the LOO cross-validation method. For each analyte, they plotted
the predicted values of concentration versus the reference ones, and
they found a slope of 0.75 instead of 1 in the case of lead. This result
was explained by the fact that the values of concentration were close
to the lower range limit of concentrations. It should be emphasized
that, even if the question of building subsets of data and validating the
models is essential in the case of multivariate approaches, this protocol
should also be applied to the case of univariate analysis and thus consti-
tutes a common step that should be applied to all the cases.

3.2.2. Figures of merit

In the frame of multivariate analysis, the predictors are multiple and
consequently it is impossible to calculate the Pearson coefficient of a
predictor x and the concentration values y. In this case, we should
directly exploit the correlation coefficient R? relating the predicted
and the reference values of concentration as defined earlier. For
instance, Martin et al. [96] presented the factor R? between the
concentration values of total inorganic carbon (TIC) in soils predicted
by PLS and the concentration values considered as reference values
and calculated as the difference between the total amount of carbon
present in untreated soils and the total amount of organic carbon (TOC).
Both the values of TOC and total carbon were measured by ICP-MS.
They reported R? = 0.9445 for the calibration set and R?> = 0.8713 for
the validation set.

The mathematical expressions of the other factors given in Table 3,
namely Q?, SD, RSD (%), RMSE, and RE (%) are kept unchanged while
exploiting a multivariate approach. These figures of merit allowed
Doucet et al. [87] comparing MLR, PCR and PLS with special highlight
on the preprocessing step. The comparison was performed through
the predictive residual error sum of squares (PRESS), the root mean
square error of calibration (RMSEC), the root mean square error of
prediction (RMSEP) and the square of the Pearson coefficient (R?). In
addition, Barbieri Gonzaga et al. [97] compared multivariate and
univariate approaches by the evaluation of relative errors (%), and Li
et al. [98] calculated R?, RSD, RMSEP and the maximum relative error
(MRE) in order to evaluate the best preprocessing prior to PLS. Based
on the regression law y = by + a, the mathematical expression of the
limits of detection (LOD) and quantification (LOQ) are also kept
unchanged. However, they don't correspond to the same physical
meaning that in the case of univariate analysis [39,99-101].
Consequently, it is absolutely necessary to build all the regression
models on the same basis, namely giving the predicted vs. reference
values of concentration prior to any comparison.

3.3. Evaluation and limits

3.3.1. Y-randomization

One should take into account that in some cases, quantitative
models could fit the data reasonably well but only by chance and
without the existence of true correlation. To avoid this risk, the so-
called Y-randomization method has been applied [102] since it is
considered to be the most powerful validation procedure [103]. Indeed,
the cross-validation and external validation methods only assess the
predictive ability of a model but not the statistical significance of the
estimated results, which can only be given by the Y-randomization
procedure. For LIBS analysis, the Y vector is composed of an ordered list
of concentration values of the analyte. If this list is randomly reorganized,
there is no reason for the model to be able to predict the new list of con-
centrations with comparable success. This approach is actually an elegant
way to evaluate the quantitative model and to demonstrate the existence
of a true correlation between the predictors X and the output values Y.

Consequently, Y-randomization should be systematically applied to
quantitative LIBS analysis. In practice, for a given dataset (X) introduced
into a quantitative model, the output values (Y) are randomly permuted
and the figures of merit R?, Q* and RMSE are calculated after each permu-
tation. The permutation procedure should be repeated many times in
order to get a statistical meaning. Rucker et al. recommended to repeat
the permutation procedure at least 25 times [102]. Obviously, the values
of R? and Q? should be higher in the case of the best-optimized
model than the ones calculated after Y-randomization, while the
values of RMSE should be lower. If this is the case, one can conclude
that the best model is statistically significant. To guarantee the result of
the Y-randomization method, some authors introduced quantitative
criteria, namely R? < 0.3 and Q? < 0.05 [73]. The Y-randomization method
allows for concluding that the quantitative model converges on the basis
of real physical parameters, and not by chance. These requirements
should allow avoiding not only over-fitting but also any chance of physi-
cally meaningless good agreement between the data to finally obtain a
robust and efficient model. The Y-randomization procedure has been
successfully applied in the frame of LIBS analysis of soil samples based
on ANN models [94]. In this study, the authors obtained, after random
permutation of the concentration values during the training step, very
low values of R? et Q? and very high values of errors of prediction.

3.3.2. Applicability domain

Another important point to consider in the frame of quantitative
analysis is the applicability domain of the model. Indeed, the upper
and lower limits of applicability of the model should be determined
[54]. Considering that any quantitative model based on calibration
exploits a series of known samples, one may want to conclude that
both the upper and the lower limits of applicability should be
deduced from the extreme values of the calibration set. This is
actually the case for the upper limit since the model could deviate
from its initial trend and consequently, it would become impossible
to predict any value of concentration higher than the maximum
value of concentration of the calibration set. However, for the
lower limit, it is common to extrapolate the model to values lower
than the minimum value of the calibration set. This extrapolation is
possible because the model is always considered as linear for the
lowest values of concentration. This extrapolation allowed defining
the limit of detection (LOD) and the limit of quantification (LOQ),
according to the definitions given above. Finally, the applicability
domain should also be considered regarding the matrix of the
sample. This means that the matrix of any unknown sample should
be similar to the matrices considered during the calibration step of
the model otherwise the quantitative model might be not adapted
for the quantification of the unknown sample.

More generally, it should be mentioned that the applicability
domain is a question of major interest in the frame of the quantitative
models, whatever the application fields [104]. Technically, the applica-
bility domain can be determined by the calculation of threshold values
well established in a guidance document [105]. As an example of direct
application of this guide, in the frame of gas chromatography applied to
the analysis of essential oils, Qin et al. [94] defined the applicability
domain by leverage and thus guaranteed that their study met the
OECD principle #3 of the guidance document. Basically, a sample related
to a value above a given threshold was considered as outlier and
consequently out of the applicability domain. Moreover, in another
study dedicated to the exploitation of NIR and fluorescence spectra by
quantitative models based on genetic algorithm coupled to PLS, the
authors discussed the question of applicability domain through the
calculation of average prediction error [106]. Finally, it should be
noticed that applicability domain refers not only to the limits of the
concentration range but also to the nature of unknown samples com-
pared to the samples belonging to the calibration set, namely to the
matrix effect.



3.3.3. Influence of the predictors

Similarly to the classification purpose, concentration measurement
should be based on the optimal choice of the predictors and on the
optimal preparation of the raw data. As a consequence one should select
one or few spectral lines in the LIBS spectra as the future predictors,
namely either raw or preprocessed data. Moreover, one should split
the original dataset into three different subsets: the calibration set, the
validation set and the test set as already mentioned. Both the choice of
predictors and data subsets can have huge consequence on the
predicting ability of the quantitative model. The general rule is that
one should select from the original dataset accurate, precise, and
consistent experimental data [54,72,73]. As a consequence, one may
want to optimize the signal-to-noise ratio or signal-to-background
ratio of the LIBS experiment and may prefer selecting specific atomic
or ionic (or even molecular) lines with “good” properties, i.e. with a
minimum risk of spectral interference and self-absorption [67].
Moreover, the samples should ideally be homogeneous. This is typically
the case for metal alloy or liquid samples but not for soil samples clearly
considered as heterogeneous at the scale of the laser spot size. In this
latter case, one should introduce into the model a mean value resulting
from a series of repetitions of LIBS experiments at different locations on
the sample surface. In addition, the sample should be ideally plane and
with similar physical properties from one point to the other. Finally,
statistics over the values of the predictors for the series of samples or
for a series of repeated measurements on the same sample may reveal
outliers, namely samples related to LIBS data statistically very different
from the others. Rejecting outliers at the early stage of the processing
allows minimizing the influence of abnormal data and consequently
optimizing the results of the model [107], since outliers have a negative
effect on the quantitative ability of the models [74]. As an example,
Cisewski et al. [48], who classified samples as spores or not spores,
removed outliers during the first step of preprocessing. This procedure
of removing outliers was also applied by Yueh et al. [50] in the frame of
tissue classification. In addition, R.C. Wiens et al. [86] also exploited
some preprocessing prior to PLS analysis of LIBS spectra provided by
the ChemCam instrument involved in the analysis of Mars geology.
The authors thus removed outliers by using independent component
analysis (ICA) and calculated after each outlier removal the new error
value (RMSE) in order to find an optimum. Indeed, since a large number
of data is required for good calibration and good ability to generalize the
predictions, removing input data could potentially decrease the
accuracy of the model.

Moreover, for quantitative purpose, all the samples should ideally
come from the same matrix since huge matrix effects have been report-
ed in LIBS [108-110] with dramatic consequences on the predictive
ability of the quantitative model. Nevertheless, when it is not possible
to classify the samples prior to quantitative analysis, one should
calibrate the model from data revealing all the diversity of the matrices
that could be encountered, otherwise the model could be unable to
predict a part of the samples. In addition, as already mentioned, the
selection of the calibration samples should not be random since an
optimized selection allows taking into account all the diversity of the
original dataset while a random selection could be somehow restrictive.
It is well established that this approach of optimized instead of random
selection of the input data provides better statistical predictive ability
[54]. To illustrate this point, it has been demonstrated, in the frame of
multivariate analysis of soil samples that introducing in the quantitative
model spectral data from the matrix in addition to those related to the
analyte was very efficient for rising up the prediction ability of the
model [71]. Regarding the classification of salt samples by PCA, the
authors demonstrated that selecting reduced spectral windows and
excluding the lines related to potassium were advantageous. Moreover,
they also found that including the lines related to aluminum allowed
recognizing the method of production and that normalizing by a CN
band as a preprocessing step was very helpful for classification [57].
Other types of preprocessing have been applied to the LIBS data; they
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consist in smoothing the spectra, subtracting the background and fitting
the spectral lines with the Lorentzian function [36]. The selection of the
most relevant data has also been achieved by the method of wavelet
compression [48] prior to their introduction into a SVM model.
Moreover, in the frame of soil analysis, each individual LIBS spectrum
was first pre-treated by the method known as Standard Normal Variate
(SNV). Then the average spectrum for each sample was calculated, the
data were compressed by wavelet compression and finally three tech-
niques of variable selection were applied, namely genetic, successive
projections, and stepwise algorithms [55]. Furthermore, principal com-
ponent analysis (PCA) has also been used to compress the initial data
before their introduction into a model of cluster analysis [50], and PCA
was also used to compress the LIBS data of different types of proteins be-
fore their introduction into a SVM model [62].

The selection of the relevant data was also achieved by variable
importance in projection (VIP), which estimates the importance of
variables in the model. Then, the variables selected by VIP were
introduced into PLS-DA and SVM models and VIP was recognized to
decrease the time of training of the models [43]. The authors thus
classified rocks through the VIP variables, which were the wavelengths
of the elements representing the rock matrix, i.e. Al Si, Ca, Mg, K, and O.
The k-fold cross validation method was finally applied in order to
evaluate the models. Finally, in the frame of classification of explosive
residues, it was also demonstrated that introducing the VIP variables
into a PLS-DA model was very advantageous [60]. PCA has also been
exploited in order to class samples prior to univariate quantitative
analysis [111]. Moreover, Anderson et al. [91] applied different methods
of classification before quantitative analysis achieved by PLS.

Finally, the selection of predictors should be clearly documented,
especially in the case of complex datasets requiring the use of multivar-
iate analysis. This may allow useful verification of the results and inter
laboratory comparisons. As an example, ANN appears to be a very
efficient method but very sensitive to the input data. However, this
essential information about the input data is often not provided or
insufficiently detailed, preventing any complete evaluation. As an
example, Mukhono et al. [90] presented results about quantitative
analysis by PLS and ANN of trace elements such as As, Cr, Cu, Pb, and
Ti present in soils and rocks. This study was conducted in the frame of
high background radiation areas (HBRA), namely areas characterized
by high background natural radioactivity compared to the recommend-
ed dose limit. In this article, despite of good description of the models,
the discussion about the selection of input data was missing as well as
error values for ANN. Finally, the predicted values of concentration
were given for only one soil and one rock, which is clearly not sufficient
to fully assess the models.

4. Conclusion

We presented a review about classification and concentration
measurement after LIBS analysis based on a selection of papers, which
was obviously not exhaustive. We concluded that the results were
often insufficiently assessed by the relevant figures of merit. In the
frame of classification, we recommended to systematically present the
confusion matrix in order to properly evaluate the ability of the models.
And since preprocessing was found to be highly influent on the results
of the classification models, we also recommended that this important
step should be much more detailed in the scientific papers. This
additional information could allow performing in the future accurate
comparison between the different methods. The predictors should
also be carefully selected and the outliers should be removed, since
the classification ability of any model is potentially strongly influenced
by the input data.

Similarly, in the case of quantitative analysis, we recommended to cal-
culate a series of statistical indicators in order to properly evaluate the
models. As a general advice, we emphasized that the evaluation of the
models should be based on the exploitation of three independent subsets
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of data and on external validation. Finally, we pointed out that any quan-
titative model should be evaluated through the test of Y-randomization in
order to verify that the predictive ability of the model is really based on
the correlation between the data and not obtained by chance. The appli-
cability domain should also be systematically discussed, considering not
only the range of concentrations but also the nature of the samples, name-
ly the matrix effects. We finally pointed out that the selection of input
data including preprocessing and outlier removal should be considered
in detail since it has a very high impact on the results of LIBS experiments.
And obviously, because the input data must have the best quality, it is
highly recommended to optimize the experimental parameters and to
control them along the LIBS measurements, as a very first but essential
step to perform good LIBS analyses.
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