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Abstract- State estimation of stochastic discrete-time linear systems subject to 

unknown inputs or constant biases has been widely studied but no work has been 

dedicated to the case where a disturbance switches between unknown input and 

constant bias. We show that such disturbance can affect a networked control 

system subject to deception attacks and data losses on the control signals 

transmitted by the controller to the plant. This paper proposes to estimate the 

switching disturbance from an augmented state version of the intermittent 

unknown input Kalman filter recently developed by the authors. Sufficient 

stochastic stability conditions are established when the arrival binary sequence of 

data losses follows a Bernoulli random process.  
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1. Introduction

Recent technological advances are revolutionizing 

our ability to build massively distributed Networked 

Control Systems (NCS) exchanging information 

from communication networks. Critical 

infrastructures such that power grids, water 

distribution networks and transport systems are 

examples of Cyber-Physical Systems (CPS). These 

systems consist in large-scale physical processes 

monitored and controlled by SCADA (supervisory 

control and data acquisition) systems running over a 

heterogeneous set of communication networks and 

computers. The design of control systems taking into 

account random data losses and/or packet delays due 

to communication networks have been widely 

studied (see Hespanha et al. 2007 or Hu et al. 2012 

and references therein). Used for the NCS 

monitoring or in state feedback control laws based 

observers, the Kalman filtering with random lost of 

observations represented by Markovian or Bernoulli 

processes has been also widely studied (Sinopoli et 

al. 2004, Liu and Goldsmith 2004, Schenato et al. 

2007, Shi et al. 2010, Yang et al. 2011). More 

recently, the vulnerabilities analysis of CPS to 

attacks triggered through unreliable communication 

networks has received increasing attention 

(Cardenas et al. 2008). Attacks to NCS are 

summarized as follows: Denial of Service (DoS) 

attacks (Amin et al. 2009) when the adversary 

prevents the controller from received sensor 

measurement or the plant from received control law, 

deception attacks (Liu et al. 2009, Teixeira et al. 

2010, Pasqualetti et al. 2012) when the adversary 

sends false information on sensors or actuators, 

replay attacks (Mo and Sinopoli 2010), when the 

adversary generates artificial measurement delays, 

covert attacks (Smith 2011) when the adversary 

takes the control of the plant, and finally direct 

physical attacks on the plant (including sensors and 

actuators) closes to traditional faults taken into 

account by Fault Detection and Isolation (FDI) 

techniques (Chen and Patton 1996 and references 

therein).  

This paper assumes that an attacker located inside 

the network of the NCS can add false data on the 

control signal transmitted by the controller to the 

plant. Our goal is to solve the state filtering problem 

of NCS subject to mixed deception attack and 

random packet dropouts. When the corrupted control 

signal is received by the plant, the Unknown Inputs 

Kalman Filter (UIKF) (Kitanidis 1987, Chen and 

Patton 1996, Darouach and Zasadzinski 1997, Hou 

and Patton 1998) should be used to jointly estimate 

the state of the system and the exogenous unknown 

input (attacks are modeled as unknown inputs in a 

great number of papers, see Pasqualetti et al. 2012 

and references therein). When the corrupted control 

signal is blocked to its previous value at the 

occurrence times of data losses, the unknown input 

is transformed to a constant bias at the input of the 

plant. Even if the Augmented State Kalman Filter 

(ASKF) (Alouani et al. 1992, Kim et al. 2006, 

Ignagni 2000) should be used to estimate the 

constant bias, no work has been dedicated to 

estimate a disturbance that switches between 

unknown input and constant bias at the occurrence 

times of packet dropouts, probably because such 



 
 

 

disturbance leads to a variable dimensional state in 

the state model of the plant viewed by the controller. 

This paper avoids the use of a variable dimensional 

state model by forcing the intermittent unknown 

input to be the complementary state of the 

intermittent bias. The resulting fixed dimensional 

augmented state model of the plant is used to 

estimate the switching disturbance from an 

augmented state version of the Intermittent 

Unknown Input Kalman Filter (IIKF) (Keller and 

Sauter 2013). Necessary and sufficient stochastic 

stability conditions are established when the arrival 

sequence of data losses follows a Bernoulli random 

process.  

The paper is organized as follows: Section 2 

presents the augmented state model of the plant. 

Section 3 designs the Augmented State IIKF 

(ASIIKF) and studies its stochastic stability 

conditions. Section 4 gives a numerical example 

before to conclude at section 5. 

 

2. Problem statement 

Considers a plant represented by the following 

discrete-time stochastic linear system  

 kkk1k wBuAxx ++=+   (2.1) 

 kk
*
k Cxy ε+=    (2.2) 

where n
kx ℜ∈ , q

ku ℜ∈  and m*
ky ℜ∈  are the state,  input 

and measurement vectors and where n
kw ℜ∈  and 

m
k ℜ∈ε  are zero mean uncorrelated Gaussian random 

sequences with 
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The initial state 0x , uncorrelated with kw  and kv , is 

a Gaussian random variable with { } 00 xxE =  and 

{ } 0)xx)(xx(EP T
00000 ≥−−= . We assume m)C(rank = , 

q)B(rank = , )C,A(  detectable and mq)CB(rank ≤= . 

The plant is controlled in the following NCS: 
 
 
 

                                                                            
 
 
   

 
               
                 
 
 

 
    Fig.1: NCS subject to deception attacks and  
                        random data losses. 
 

The binary variable { }1,0k∈ρ  represents the 

acknowledgement signal indicating the status of 

reception/delivery (TCP for example) with 1k =ρ  

when the control signal *
ku  transmitted by the 

controller is received by the plant or 0k =ρ  when *
ku  

is lost on the unreliable network. 

 From the following blocking logic 

*
kk1kkk uu)1(u ρρ +−= −   (2.4) 

we consider that actuators use the past value of the 

control signal when *
ku  is lost. The study of *

ku  is not 

the purpose of this paper.  

We assume that the attacker can corrupt the control 

signal received by the plant as k
*
kk duu +=  when 1k =ρ  

where kd  represents the attack signal. The output of 

the plant *
ky  is transmitted to the controller via a 

reliable network ensuring *
kk yy =  at any time. 
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Under attack, (2.4) can be rewritten  

kkk uu ν+=   (2.5) 

*
kk1kkk uu)1(u ρρ +−= −  (2.6) 

kk1kkk d)1( ρνρν +−= −   (2.7) 

where ku  in (2.6) is known to the controller having 

access to the binary sequence { }k
0j

ρ  and where the 

hybrid disturbance kν  in (2.7) switches between 

unknown input kk d=ν  when 1k=ρ  and constant bias 

1kk −=νν  when 0k =ρ .  

By rewriting the hybrid disturbance (2.7) as a 

constant bias  
ρνν k1kk d+= −  (2.8) 

driven by a bias dependent intermittent unknown 

input   

)d(d 1kkkk −−= νρρ   (2.9) 

we can derive the following )qn( + -order linear (time-

invariant) state model of the plant  

kkkk1k wdFuBXAX +++=+
ρ

 (2.10) 

kkk XCy ε+=  (2.11) 

with qn
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[ ]0CC = , [ ]TT
kk 0ww =  and { } j,k

T
jk WwwE δ=  where ⎥⎦

⎤
⎢⎣

⎡= 00
0WW .  

This paper shows how to derive the unbiased 

minimum variance estimates k/1kˆ −ν  of the switching 

disturbance kν  from the ASIIKF designed on (2.10) 

and (2.11) and how to establish the sufficient 

stochastic stability conditions when kρ  follows a 

random Bernoulli process with ]1Pr[ k == ρλ . 

 

3. Switching disturbance reconstruction  
The implementation of the )qn( + -order ASIIKF is 

explained in the following theorem. 

 

Theorem 3.1: The ASIIKF is described by a 

standard Kalman filter  

kkk1k/kk
k/1k

k/k
k/k yK)d̂FX̂)(CKI(

ˆ
x̂

X̂ ++−=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
= −

−

ρ

ν  (3.1) 

T
kk

T
k

T
k1k/kkk/k KK)CKI)(FQFP)(CKI(P +−+−= −
ρ

 (3.2) 

kk/kk/1k uBX̂AX̂ +=+  (3.3) 

WAPAP T
k/kk/1k +=+  (3.4) 

with 1
k

T
1k/kk HCPK −
−=  and ICPCH T

1k/kk += −  updated 

online from the intermittent unknown input estimate 

ρ
kd̂  of covariance { } { }{ }Tkkkkk )d̂Ed̂()d̂Ed̂(EQ ρρρρρ −−=  with 

{ } ρρ
1kk dd̂E −=  given by 

)X̂Cy(H)CB(]CBH)CB[(d̂ 1k/kk
1
k

T11
k

T
1kk −

−−−
− −=ρρ

 (3.5) 

11
k

T
1kk ]CBH)CB[(Q −−
−=ρρ

 (3.6) 

The ASIIKF is initialized with ⎥
⎦

⎤
⎢
⎣

⎡
=− 0
xX̂ 01/0 , 

⎥⎦

⎤
⎢⎣

⎡=− 00
0PP 0

1/0  and 01=−ρ .  

 

Proof.  Consider the following linear state filter 

)X̂Cy(KX̂X̂ 1k/kkk1k/kk/k −− −+=  (3.7) 

T
kk

T
k1k/kkk/k KK)CKI(P)CKI(P +−−= −  (3.8) 

kk/kk/1k uBX̂AX̂ +=+  (3.9) 

WAPAP T
k/kk/1k +=+  (3.10) 

where 1k/kX̂ −  is the state prediction of covariance 

{ }T
1k/kk1k/kk1k/k )X̂X )(X̂X(EP −−− −−=  based on 

measurements available until time 1k−  and { } 1k
0j
−ρ , 



 
 

 

k/kX̂  the estimate of kX  of covariance matrix 

{ }Tk/kkk/kkk/k )X̂X)(X̂X(EP −−=  based on measurements 

available until time k  and { } 1k
0j
−ρ . The attack signal 

kd  and the binary variable kρ  are both considered as 

deterministic in the design of the filter: 

From (2.10), (3.1) and (3.3), the state prediction 

error 1k/kk1k/k X̂Xe −− −=  and the state estimation error 

k/kkk/k X̂Xe −=  propagate as 

1k1k1k/1k1k/k wdFeAe −−−−− ++= ρ
  (3.11) 

kk1k/kkk/k Ke)CKI(e ε−−= −   (3.12) 

At initial time, { } 0eE 0/0 = . Assume { } 0eE 1k/1k =−−  at 

time 1k− . From (3.11) and (3.12), we have 

{ } ρ
1kkk/k dF)CKI(eE −−=  and thus { } 0eE k/k =  if and only if 

kK  satisfies the algebraic constraint 0dF)CKI( 1kk =− −
ρ  

rewritten via (2.9) as 

0F)CKI( k =−   when 11k =−ρ  (3.13) 

The hybrid gain kK  minimizing )P(tr k/k  subject to 

(3.13) is given by  

1
k

T11
k

T
k1kkk H)CB(]CBH)CB[(F)CKI(KK −−−

− −+= ρ   (3.14) 

leading to the ASIIKF of theorem 3.1 after some 

manipulations (Keller and Sauter 2012).  

End of proof 

 

Note that data losses have a benefic filtering effect 

on the estimate k/1kˆ −ν , the algebraic constraint (3.13) 

disappearing when 01k =−ρ .  

The Riccati Difference Equation (RDE) of the 

ASIIKF is described by 

WAKKA)CKAA(P)CKAA(P TT
kk

T
k1k/kkk/1k ++−−= −+  (3.15) 

with kK  given by (3.14). Define the following Riccati 

operators  
T1TTT

0 AXC)ICXC(CXAWAXA)X(f −+−+=
!   (3.16)  

T1TTTT
1 A

~
XC
~

)C
~
XC
~
(C

~
XA
~

W
~

A
~
XA
~

)X(f −ΣΣ+−+=      (3.17)  

with C)CB(FAAA
~

+−= , TTT AF)CB()CB(FAWW
~

+++= , 

CC
~

Σ= , ))CB(CBI( +−=Σ β  and m,qm−ℜ∈β  so that 

qm)(rank −=Σ . As shown by Keller and Sauter (2013), 

the ASIIKF’s RDE (3.15) can take the form of a 

switching standard RDE  

)P(f)P(f)1(P 1k/k11k1k/k01kk/1k −−−−+ +−= ρρ       (3.18) 

Let { }k/1kPE +  the mathematical expectation of k/1kP +  

taken with respect to the random sequence { }k
0j

ρ  and 

cλ  the critical data arrival rate (Sinopoli et al. 2004) 

so that { } ∞<−∞→ 1k/kk
PElim  when cλλ≤  or { } ∞→−∞→ 1k/kk

PElim  

when cλλ> . 

 

Theorem 3.2: We have 

{ } ∞<+∞→ k/1kk
PElim  [ ]λλ

⌣
0∈∀   (3.19) 

if there exists m,qnK +ℜ∈ , qm,qnK
~

−+ℜ∈  and IY0 <<  so 
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λ

λ
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The lower bound λ
⌣

 of cλ  is solution to the LMI 

(Linear Matrix Inequality) feasibility problem 

⎭
⎬
⎫

⎩
⎨
⎧

>Ψ= 0)Y(maxarg λλ
λ
⌣ . Under 

1z,q2n
0C
FAIzrank ≥∀+=⎥
⎦

⎤
⎢
⎣

⎡ +−   (3.21) 

we have also 

∞<+∞→ k/1kk
Plim  [ ]10∈∀λ   (3.22) 



 
 

 

Proof. From (3.18), the mean covariance { }k/1kPE +  

gives 
 { } { } { })P(fE)P(fE)1(PE 1k/k11k/k0k/1k −−+ +−= λλ  (3.23) 

The Riccati operators (3.16) and (3.17) are 
concave, increase with X  and the Jensen’s 
inequality gives 

 { } { } { }1k/k11k/k0k/1k PE(fPE(f)1(PE −−+ +−≤ λλ  (3.24) 

A deterministic upper bound 1kS +  of { }k/1kPE +  so 

that { } 1kk/1k SPE ++ ≤  is then solution to the modified 

RDE  
)S(f)S(f)1(S k1k01k λλ +−=+
  (3.25)  

with 0PS 1/00 ≥= − . Let  

)S(f)S(f)1(S 10 λλ +−=  (3.26) 

the modified ARDE associated to (3.25). Sinopoli et 

al. (2004) have shown that there exists a stabilizing 

solution 0S≥  to (3.26) if there exists K , K
~

 and 0X >  

so that  

]W
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K
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A
~
[(

]WKK)CKA(X)CKA)[(1(X

TT

TT

+ΣΣ+−−+

++−−−>

λ

λ   (3.27)  

or equivalently if there exists K , K
~

 and IY0 ≤<  so 

that 0)Y( >Ψλ  with )Y(λΨ  given by (3.20). We have also 

k/1kk/1k PP ++ ≤
⌢

 where k/1kP +

⌢  is generated by the 

ASIIKF’s RDE (3.18) under 1k =ρ  0k≥∀  described by 

)P(fP 1k/k1k/1k −+ =
⌢⌢  with 0PP 1/01/0 ≥= −−

⌢
. Darouach and 

Zasadzinski (1997) have shown that ∞<+∞→ k/1kk
Plim
⌢

 

under the necessary and sufficient rank condition 

(3.21). 

End of proof 

When qm= , we have 0K
~
=  in (3.20) and the 

stochastic stability conditions of the ASIIKF become 

dual to those obtained by Sinopoli et al. (2004) for 

the Kalman filter with intermittent observations.  

4. Numerical example 

Considers the NCS of figure 1 and the following 

minimum phase plant 
⎥
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B , 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

1000
0010
0001

C , I01.0W = . Under (3.21), there exists no 

instable invariant zeros and the attacker cannot 

generate zero dynamic attacks (Teixeira et al. 2012). 

This explain why the attack signal [ ]T2k1
kk ddd =  is here 

chosen randomly and why our numerical simulation 

is restricted to a comparative study between the 

proposed ASIIKF and the standard unknown input 

Kalman filter (the standard unknown input Kalman 

filter, called here the ASUIKF, is derived from the 

ASIIKF with 1k =ρ  0k≥∀  in theorem 3.1), both used 

for the reconstruction of [ ]2k1
kk ννν = . The binary 

variable kρ  is plotted on figure 2 with 3.0=λ  chosen 

very low to accentuate the benefic effect of data 

losses on [ ]T2
k/1k

1
k/1kk/1k ˆˆˆ

−−− = ννν . Figure 3 shows 

)P(tr 1k/k − , its upper bound )P(tr 1k/k −

⌢  and the upper 

bound )S(tr k  of { })PE(tr 1k/k − . The switching 

disturbance 1
kν  and its one period time delayed 

estimate 1
k/1kˆ −ν  given by the ASIIKF are plotted on 

figure 4. Figure 5 shows the estimate 1
k/1kˆ −ν  

generated by the ASUIKF. The switching 

disturbance 2
kν  and its one period time delayed 

estimate 2
k/1kˆ −ν  given by the ASIIKF are plotted on 

figure 6. Figure 7 shows the estimate 2
k/1kˆ −ν  

generated by the ASUIKF. The state estimation 

errors 1
k/k

1
k

1
k/k x̂xe −= , 2

k/k
2
k

2
k/k x̂xe −= , 3

k/k
3
k

3
k/k x̂xe −=  and 



 
 

 

4
k/k

4
k

4
k/k x̂xe −=  obtained from the ASIIKF and the 

ASUIKF are plotted on figures 8, 9, 10 and 11. We 

can see that the ASIIKF gives better filtering results, 

especially under successive data losses. Figure 12 

also shows the accumulative state estimation error 

∑ ∑
= =

k

0j

4

1i
i
j/je . 
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  Fig. 2: Binary sequence kρ .  
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Fig. 3: )P(tr 1k/k − (solid line), )P(tr 1k/k −

⌢ (dotted line) 
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Fig. 4: 1

kν  (dashdot line) and its estimate 1
k/1kˆ −ν (solid 

line).  
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Fig. 5: 1

k/1kˆ −ν  given by the ASUIKF. 
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Fig. 6: 2
kν  (dashdot line) and its estimate 2

k/1kˆ −ν (solid 

line). 
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Fig. 7: 2

k/1kˆ −ν  given by the ASUIKF. 
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Fig. 8: First state estimation error: ASIIKF (solid 

line), ASUIKF (dotted line). 
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Fig. 9: Second state estimation error: ASIIKF (solid 

line), ASUIKF (dotted line). 
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Fig. 10: Third state estimation error: ASIIKF (solid 

line), ASUIKF (dotted line). 
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Fig. 11: Fourth state estimation error: ASIIKF (solid 

line), ASUIKF (dotted line). 
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Fig. 12: Accumulative state estimation errors:   

ASIIKF (solid line), ASUIKF (dotted line). 

 

The ASIIKF should be used to derive a model-

based attack detection method from statistical 

decision tests designed on k/1kˆ −ν . Further researches 

must be also realized in the worst case situation 

when the attacker can compute zero dynamic attacks 

on non minimum phase systems (data losses 

improving the switching disturbance estimate should 

also destroy the stealthy strategy of the attacker). 

 

5. Conclusion 

This paper has presented a state filtering for linear 

stochastic discrete-time systems subject to deception 

attacks and data losses on the control signals 

transmitted by the controller to the plant. A bias state 

dependent intermittent unknown input disabled at 

the occurrence time of data losses has been used to 

derive a fixed dimensional augmented state model of 

the plant allowing a direct application of the 

intermittent unknown input Kalman filter. An 

extension of the augmented state intermittent 

unknown input Kalman filter with incomplete 

information is currently under consideration by the 

authors. 
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