Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations - Archive ouverte HAL
Article Dans Une Revue Computer Physics Communications Année : 2013

Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations

Résumé

In this paper, we begin with the nonlinear Schrödinger/Gross-Pitaevskii equation (NLSE/GPE) for modeling Bose-Einstein condensation (BEC) and nonlinear optics, and discuss their dynamical properties ranging from time reversible, time transverse invariant, mass and energy conservation, dispersive relation to soliton solutions. Then, we review and compare different numerical methods for solving the NLSE/GPE including finite difference time domain methods and time-splitting spectral method, and discuss different absorbing boundary conditions. In addition, these numerical methods are extendedto the NLSE/GPE with damping terms and/or an angular momentum rotation term as well as coupled NLSEs/GPEs. Finally, applications to simulate a quantized vortex lattice dynamics in a rotating BEC are reported.

Dates et versions

hal-01094312 , version 1 (12-12-2014)

Identifiants

Citer

Xavier Antoine, Weizhu Bao, Christophe Besse. Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations. Computer Physics Communications, 2013, 184 (12), pp.2621-2633. ⟨10.1016/j.cpc.2013.07.012⟩. ⟨hal-01094312⟩
245 Consultations
0 Téléchargements

Altmetric

Partager

More