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ABSTRACT
We introduce in this paper LocFaults, a new flow-driven
and constraint-based approach for error localization. The
input is a faulty program for which a counter-example and
a postcondition are provided. To identify helpful informa-
tion for error location, we generate a constraint system for
the paths of the control flow graph for which at most k con-
ditional statements may be erroneous. Then, we calculate
Minimal Correction Sets (MCS) of bounded size for each of
these paths. The removal of one of these sets of constraints
yields a maximal satisfiable subset, in other words, a max-
imal subset of constraints satisfying the post condition. To
compute the MCS, we extend the algorithm proposed by
Liffiton and Sakallah [21] in order to handle programs with
numerical statements more efficiently. The main advantage
of this flow-driven approach is that the computed sets of
suspicious instructions are small, each of them being asso-
ciated with an identified path. Moreover, the constraint-
programming based framework of LocFaults allows mix-
ing Boolean and numerical constraints in an efficient and
straightforward way. Preliminary experiments are quite en-
couraging.
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nostics, Error handling and recovery

General Terms
Verification, Algorithms

1. INTRODUCTION
Error localization from counter-examples and associated

execution traces is a crucial issue in the software develop-
ment process. Indeed, when a program P contains errors,
a model checker usually provides a counter-example and an
execution trace that is too long and too difficult to under-
stand. This kind of outputs is therefore of limited interest
for the programmer who has to debug the program. Thus,
identifying code portions that may contain errors is often
a difficult and expensive process, even for experienced pro-
grammers.

That is why we introduce here a new flow-driven and cons-
traint-based approach for error localization. This new ap-
proach takes advantage from the structure of the Control
Flow Graph (CFG) as well as from the flexibility provided by
the constraint-programming framework. The process starts
with a faulty program and a counter-example violating the
postcondition. To provide helpful information for finding po-
tential errors, we generate a constraint system for the paths
of the CFG for which at most k conditional statements may
be erroneous. Then, we calculate Minimal Correction Sets
(MCS) of bounded size for each of these paths. In other
words, we bound both the number of suspected assignments
on the initial path, and the number of deviations from that
path. To compute MCS, we extend the algorithms intro-
duced by Liffiton and Sakallah [21, 20] to be able to handle
programs with numerical statements more efficiently. Note
that LocFaults may miss some errors since the number of
deviations as well as the size of the MCS are bounded to
limit combinatorial explosion.

To sum up, we take advantage of the information of the
CFG for computing small sets of suspicious instructions,
each of them being associated to an identified path. More-
over, this constraint-programming based framework provides
an efficient and straightforward way for mixing Boolean and
numerical constraints.

The rest of the paper is organized as follows. Section 2
illustrates how LocFaults works on a small example. Sec-



tion 3 goes into detail of the LocFaults framework. Sec-
tion 4 reports experimental results on a number of bench-
marks and problems, comparing our approach with BugAs-
sist, a state-of-the art error localization framework [17, 18].
Section 5 discusses related work, summarizes the contribu-
tions and presents future research directions.

2. MOTIVATING EXAMPLE
Consider program AbsMinus (see fig. 1). The inputs are

integers {i, j} and the expected output is the absolute value
of i − j. An error has been introduced in line 10, thus for
the input data {i = 0, j = 1}, program AbsMinus returns
−1. The postcondition here is just result = |i− j|1.

1 class AbsMinus {
2 /∗returns | i−j|,the absolute value of i minus j∗/
3 /∗@ ensures
4 @ ((i < j) ==> (\result == j−i)) &&
5 @ ((i >= j) ==> (\result == i−j)); ∗/
6 int AbsMinus (int i, int j) {
7 int result;
8 int k = 0;
9 if (i <= j) {
10 k = k+2; } // error : k = k+2 instead of k=k+1
11 if (k == 1 && i != j) {
12 result = j-i; }
13 else {
14 result = i-j; }
15 return result;
}

}

Figure 1: Program AbsMinus

The CFG of program AbsMinus and a faulty path are de-
picted in figure 2. This faulty path corresponds to the input
data : {i = 0, j = 1}. First, LocFaults collects on path
2.(b) the constraint set C1 = {i0 = 0, j0 = 1, k0 = 0, k1 =
k0 +2, r1 = i0−j0}2. Then, LocFaults computes the MCS
of C1. It is important to stress that the constraints defining
the assignments of the input variables cannot belong to the
computed MCS. Indeed, relaxing these constraints, rather
corresponds to the generation of some test cases that satisfy
the postcondition. So, only one MCS can be found in C1:
{r1 = i0− j0}. In other words, if we assume that the condi-
tional statements are correct, the only suspicious statement
on this faulty path is statement 14.

Then, LocFaults starts the deviation process. The first
deviation (see figure 3.(a), green path) still produces a path
that violates the postcondition. Thus, it is rejected. The
second deviation (see figure 3.(b), blue path) produces a
path that satisfies the postcondition. So, LocFaults col-
lects the constraints on the part of path 3.(b) which precedes
the deviated condition, that is C2 = {i = 0, j = 1, k0 =
0, k1 = k0 + 2}. Then LocFaults searches for an MCS of
C2∪¬(k = 1∧ i 6= j).That is to say, one tries to identify the
assignments which must be modified to force the program to
follow a path that satisfies the postcondition. Therefore, for

1Specifications are written in JML http://www.eecs.ucf.
edu/~leavens/JML/index.shtml
2Before collecting the constraints, a variable renaming is
required. More precisely, the program has to be transformed
in DSA form [2] which ensures that every variable is assigned
at most once along any path.

this second deviation two suspicious statements are identi-
fied:

• The conditional statement in line 11;

• The assignment in line 10 since the corresponding con-
straint is the only MCS of C2 ∪ ¬(k = 1 ∧ i 6= j).

Then, LocFaults goes on and tries to deviate a second
condition. The only possible path is the one where both con-
ditions of program AbsMinus are deviated. However, since it
has the same prefix than the first deviated path, we discard
it.

This example shows that LocFaults produces relevant
and helpful information on each faulty path. Unlike to
BugAssist, a state of art system, it does not merge all
suspicious statements in a single set, which may be difficult
to exploit by the user.

3. THE LocFaults FRAMEWORK
In this section we first introduce the formal definitions

of MUS, MSS and MCS which are the basis of our error-
localization framework. Then, we give an overview of BMC
(Bounded Model Checking) based on constraint program-
ming. Finally, we detail how we compute some MCS of
bounded size along the program paths, using a depth-first
search on the CFG of the program.

3.1 Error localization and MCS computation
Since we encode the set of statements of a faulty path as

a set of constraints, the error localization problem is similar
to the problem of finding a correction set for an inconsis-
tent constraint system. This problem has been addressed
both in the operational research community and constraint
community. When searching useful information to correct
inconsistent constraint systems, one may look for two kinds
of information:

1. How many constraints in an unsatisfiable set of con-
straints can be satisfied ?

2. Which part of the constraint system is unsatisfiable ?

To answer these questions, the notion of MUS, MSS and
MCS have been introduced by Liffiton and al [21].
A Minimal Unsatisfiable Subsets of constraints (MUS), also
called “unsatisfiable cores” is an unsatisfiable system of con-
straints such that removing any one of its elements makes
the remaining set of constraints satisfiable:

M ⊆ C is a MUS ⇔ M is UNSAT
and ∀c ∈M : M \ {c} is SAT.

A Maximal Satisfiable Subset (MSS) is a generalization of
MaxSAT and MaxCSP where we consider the maximality
instead of the maximum cardinality

M ⊆ C is an MSS ⇔ M is SAT
and ∀c ∈ C \M : M ∪ {c} is UNSAT.

The definition of the MSS is very close to that of IIS (Ir-
reducible Inconsistent Subsystem) used in operational re-
search [5, 6, 7].
An MCS is a subset of the constraints of an infeasible con-
straint system whose removal yields a satisfiable set of con-
straints (“correcting” the infeasibility). Furthermore it is
minimal in the sense that any proper subset does not satisfy
this property [21].

M ⊆ C is an MCS ⇔ C \M is SAT



(a) (b)
Figure 2: CFG and faulty path – Program AbsMinus

(a) (b)
Figure 3: Paths with one deviation – Program AbsMinus

and ∀c ∈M : (C \M) ∪ {c} is UNSAT.
There is a duality relationship between the set of MUS and
the set of MCS [4, 21]

Different algorithms have been proposed for calculating
IIS/MUS et MCS, e.g. Deletion Filter, Additive Method,
Additive Deletion Method, Elastic Filter [5, 26, 6, 7].
Junker [19] proposed an algorithm based on a generic ”Divide-
and-Conquer” strategy to efficiently compute IIS or MUS
when the cardinality of the conflict-subsets is much smaller
than the one of the whole constraint set.
The algorithm introduced by Liffiton and Sakallah [21] first
calculates all MCS in an increasing order, then all MUS by
using the above property mentioned. The algorithm pre-
sented in section 3.4 is derived from that algorithm.

Various improvements of these algorithms [10, 20, 23] have
been proposed during the last years but they are closely
related to the specificity of SAT solvers, and thus, they are
quite difficult to transpose to numeric constraint solvers.

Next section introduces the BMC framework we use to
collect the constraints on a faulty or suspicious path.

3.2 Constraint based BMC
Constraint based BMC is a BMC approach that uses con-

straints for modeling the program and its specification, and
constraint solving for checking if the program conforms its
specification [8, 9]. BMC uses a bound b to unfold loops:
they are replaced with conditional statements of depth b.
If an error is found for a given b, then the program does

not conform its specification. Otherwise, b is increased for
searching a deeper error, until a maximum value of b has
been reached.

Let PROGb be the program after being unfolded b times.
One BMC step checks the Hoare triplet {PRE,PROGb,POST}
where PRE is the precondition and POST is the postcon-
dition. PROGb does not conform its specification if the
formula Φ = PRE ∧ PROGb ∧ ¬POST is satisfiable. An
instantiation of the variables of Φ is then a counter-example
because it satisfies both the precondition and the program,
but it does not satisfy the postcondition.

CPBPV [8] is a BMC tool based on constraint program-
ming. CPBPV translates PRE and POST into constraints,
and transforms PROGb into a CFG whose nodes are the
conditions and assignments of the program translated into
constraints3. CPBPV builds the constraint system CSP
associated to formula Φ on the fly, using a depth-first search
on the data structure of the graph. At the initial state, CSP
contains the constraints based from PRE and ¬POST . Then
the constraints of a path are added during the graph explo-
ration. When the last node has been reached on a path,
the satisfiability of CSP is checked. When CSP has a solu-
tion, an error has been found in the program thus the BMC
process is stopped. Otherwise, another branch is explored.
When all the branches have been explored without finding

3To avoid the problem of multiple definition of variables, we
use the DSA (Dynamic Single Assignment) form [2].



any solution, then PROGb is conform with its specification.

3.3 MCSs on a path
In this paper, we extend our BMC approach to locate

which part of the program may be responsible for the er-
ror found during the BMC step. More precisely, let CE
be a counter-example found during the BMC step. CE is
the solution of CSP which contains the constraints from
the precondition, the negation of the postcondition, and the
constraints based on the assignments collected on the faulty
path. Let PATH denote this last set of constraints. Then
the constraint system Cpath = CE∪PRE∪PATH∪POST
is UNsatisfiable since CE is a counter-example that satis-
fies ¬ POST . An MCS of Cpath is a set of constraints which
must be removed in order to make Cpath satisfiable. By def-
inition, such an MCS is a possible error localization on the
faulty path. This first localization step assumes that the
error is an assignment on the counter-example path. But
the program can also be wrong because of a bad choice on a
conditional node. LocFaults also computes bonded MCS
on paths which are built by changing some conditions on the
initial faulty path.

3.4 Algorithm scheme
The inputs of our algorithm are the CFG of the program,

CE the counter-example, bcond, a bound on the number of
conditions which are diverted and bmcs a bound on the num-
ber of MCS which are computed on each path. CE is a set of
values of the input variables of the program. Roughly speak-
ing, our algorithm traverses the CFG using CE to select one
or the other branch of each conditional node, and collects
the constraints associated with the assignments on the in-
duced path. It changes zero, one or at most bcond decisions
on this path. At the end of a path, the set of constraints
which have been collected is unsatisfiable, and at most bmcs

MCSs are computed on this CSP .
More precisely LocFaults proceeds as follows :

• It first propagates CE on the CFG until the end of
the faulty path has been reached. Then it computes
atmost bmcs MCSs on the current CSP . This is a first
localization on the counter-example path.

• Then LocFaults tries to divert one condition. When
the first conditional node cond is reached, LocFaults
takes the opposite decision as the one induced by CE,
and continues to propagate CE to the last CFG node.
If the CSP built from this diverted path is satisfiable,
there are two kinds of suspicious error set :

– the first one is the condition cond itself. Indeed,
changing the decision for cond makes CE satisfies
the postcondition POST ,

– another possible cause of the error is that a bad
assignment before cond had produced a wrong de-
cision. Thus LocFaults also computes atmost
bmcs MCSs on the CSP that contains the con-
straints collected on the path that reaches cond.

This process is repeated on each conditional node of
the counter-example path.

• A similar process is then applied for diverting k condi-
tions for all k ≤ kmax. To increase efficiency, the con-
ditional nodes which correct the program are marked

with the number of diversions which have been made
before they had been reached. For a given step k,
if changing the decision of a conditional node cond
marked with value k′ with k′ ≤ k corrects the pro-
gram, this correction is ignored. In other words, we
only consider the first time where a conditional node
corrects the program.

4. EXPERIMENTS
To evaluate the capabilities of our approach we experi-

mented with two sets of Benchmarks : the well known TCAS
suite from Siemens[25], and a set of variations of the Tri-

type program. We compared the results of LocFaults with
the one of BugAssist.

TCAS is an aircraft collision avoidance system. The pro-
gram contains 173 lines of C code with almost no arithmetic
operations. The suite contains 41 faulty versions .

The Tritype program is a standard benchmark in test
case generation and program verification since it contains
numerous non-feasible paths because of complex conditional
statements in the program. The program takes three posi-
tive integers as inputs (i, j, k) the triangle sides, and returns
the value 2 if the inputs correspond to an isosceles triangle,
the value 3 if they correspond to an equilateral triangle, the
value 1 if they correspond to some other triangle, and the
value 4 otherwise. The Tritype program is also a decision
problem but we derived from the initial program two ver-
sions with more arithmetic operations. The first returns the
product of the length of the sides, whereas the second one
computes the square of the surface of the triangle by using
Heron’s formula.

The results of these experiments are detailed in the next
subsections. All experiments were done on an Intel Core
Core i7-3720QM at 2.6 GHz with 8 GB of memory running
64-bit Linux. LocFaults uses the IBM solvers CP OPTI-
MIZER and CPLEX 4.

4.1 TCAS suite
The results of the experiments are reported on Table 1.

First column specifies the TCAS version number, the sec-
ond one the number of errors in the program and the third
column gives the number of the generated counter-examples.
The two last columns provide the number of errors that have
been found by LocFaults and BugAssist. Some of the
versions are omitted because the errors correspond to array
index out of bound and we still cannot handle this kind of
overflow errors. We didn’t report the computation times
because there is no significant difference. The reported re-
sults for LocFaults have been obtained with at most one
deviation; except for version V41 where two deviations were
required.

The size of the set of suspicious instructions identified by
BugAssist is in general larger than the sum of the sizes of
the sets of suspicious instructions generated by LocFaults
but BugAssist identifies a bit more errors than LocFaults.
More importantly, since LocFaults reports a set of MCS for
each faulty path, the error localization process is much more
easier than with the single set of suspicious errors reported
by BugAssist.

In all, the performances of LocFaults and BugAssist

4http://www-01.ibm.com/software/commerce/
optimization/cplex-cp-optimizer/



Version Nb E Nb CE LF BA

V1 1 131 131 131
V2 2 67 67 67
V3 1 23 23 13
V4 1 20 4 20
V5 1 10 9 10
V6 1 12 11 12
V7 1 36 36 36
V8 1 1 1 1
V9 1 7 7 7
V10 2 14 12 14
V11 2 14 12 14
V12 1 70 45 48
V13 1 4 4 4
V14 1 50 50 50
V16 1 70 70 70
V17 1 35 35 35
V18 1 29 28 29
V19 1 19 18 19
V20 1 18 18 18
V21 1 16 16 16
V22 1 11 11 11
V23 1 41 41 41
V24 1 7 7 7
V25 1 3 2 3
V26 1 11 7 11
V27 1 10 9 10
V28 1 75 74 58
V29 1 18 17 14
V30 1 57 57 57
V34 1 77 77 77
V35 1 75 74 58
V36 1 122 120 122
V37 1 94 21 94
V39 1 3 2 3
V40 2 122 72 122
V41 1 20 16 20

Table 1: Results on TCAS

are very similar on this benchmark well adapted for a Boolean
solver.

4.2 Variations on the Tritype program
The results of the experiments on the different variations

of the Tritype program5 are reported in Table 2. In that
table, the numbers are the line numbers and the red num-
bers are the injected errors that have been found by the
tools. For LocFaults, the underlined numbers are condi-
tions, one line corresponds to a path through the CFG, and
contains either a condition alone, or condition and the as-
signments before that condition which allow to change the
branch. For example, for TritypeV1 in column = 1 where
one condition is diverted, LocFaults first locates the condi-
tion 26 as being erroneous. Then it locates condition 48 and
locates the assignments 30 or 25 which can be responsible
of the bad decision on 48.

Versions 1 to 5 of Tritype correspond to the standard
Tritype program where we injected different kinds of errors.

• TritypeV1 : the error was introduced in the last as-
signment statement of the program. LocFaults iden-

5The source code of these benchmarks can be found
at: http://users.polytech.unice.fr/~rueher/Benchs/
LocF/

tified this error in the first step, without deviating any
condition.

• TritypeV2 : the error is in a nested condition, just be-
fore the last assignment. LocFaults finds the relevant
suspicious statement after 4 deviations. BugAssist
identifies also the relevant suspicious statement.

• TritypeV3 : the error is an assignment and will entail
a bad branching. Here again, LocFaults only finds it
after 4 deviations but all suspicious set contains only
one statement.

• TritypeV4: the error is in a condition, at the beginning
of the program. LocFaults finds it very quickly. Even
the first identified suspicious statement may be helpful
: it is an assignment, just after the wrong condition.

• TritypeV5 : there are two wrong conditions in this
program. LocFaults needs to divert 3 conditions to
find the two errors, while BugAssist only finds the
first one.

• TritypeV6 : is a variation that returns the perimeter
of the triangle. LocFaults identified this error in the
first step, without deviating any condition.

Versions 7 and 8 of Tritype are some variations of the
original program that return non linear expressions. They
have the same control structure as Tritype. TritypeV7 com-
putes the product of the three sides and TritypeV8 computes
the square of the area of the triangle. The specification of
TritypeV8 uses the Heron formula

√
s(s− i)(s− j)(s− k)

where s = (i+ j + k)/2. To ensure that the returned value
is an integer, we compute the square of the area and we as-
sume as precondition that s is even. Moreover, the returned
value varies according to the triangle type. For example, if
the triangle is isosceles and i == j, the returned value is
s(s − i)(s − i)(s − k), and if the triangle is equilateral, the
returned value is (3× i4)/16.

Computations times are very short for all programs but
TritypV7 and TritypV8. Table 3 reports the times for these
two programs. P stands for the pre-processing time6 whereas
the other rows contain the solving time. LocFaults is an or-
der of magnitude faster than BugAssist on these two bench-
marks. This clearly shows the benefit of using a constraint
solver for programs containing non-trivial numerical state-
ments. Indeed, these numerical constraints are much more
difficult to handle by the SAT solver used in BugAssist
than by the CSP solver used in LocFaults.

On all these benchmarks, the size of the set of suspicious
instructions identified by BugAssist is similar to the sum
of the sizes of the sets of suspicious instructions generated
by LocFaults. But these benchmarks also show that the
debugging process is much easier with the small set pro-
vided by LocFaults than with the global set of suspicious
instructions computed by BugAssist. Our approach is a
flow-based approach, that generates the sets of suspicious
instructions in an incremental way. It finds errors along the
path of the counter-example, and reports some explanations
in an order that can help the user to find the bug. This
is more appropriate for debugging than a global approach
like BugAssist which computes a single set of suspicious
instructions.
6For LocFaults this is the time needed for the JDT Eclipse
parser to build the AST from the Java program.



Program Counter-example Errors
LocFaults

BugAssist
= 0 = 1 = 2 = 3

TritypeV1 {i = 2, j = 3, k = 2} 54 {54} {26} {29, 32}
/

{26, 27, 32,

{48},{30},{25} {53, 57},{30},{25} 33, 36, 48,
57, 68}

TritypeV2 {i = 2, j = 2, k = 4} 53 {54}

{21}
{29, 57}

/

{21, 26, 27,

{26}
{32, 44}

29, 30, 32,

{35},{27},{25} 33, 35, 36,

{53},{27},{25} 33, 35, 36,
53, 68}

TritypeV3 {i = 1, j = 2, k = 1} 31 {50}

{21}

{33, 45} /

{21, 26, 27,{26}
29, 31, 33,{29}
34, 36, 37,{36},{31},{25}
49, 68}{49},{31},{25}

TritypeV4 {i = 2, j = 3, k = 3} 45 {46} {45},{33},{25} {26, 32}
{32, 35, 49} {26, 27, 29,

{32, 35, 53} 30, 32, 33,

{32, 35, 57} 35, 45, 49,
68}

TritypeV5 {i = 2, j = 3, k = 3} 32,45 {40} {26}
{32, 45}

/
{26, 27, 29,

{29}
{35, 49},{25}

30, 32, 33,{35, 53},{25}
35, 49, 68}{35, 57},{25}

TritypeV6 {i = 2, j = 1, k = 2} 58 {58} {31}
/ /

{28, 29, 31,

{37},{32},{27} 32, 35, 37,
65, 72}

TritypeV7 {i = 2, j = 1, k = 2} 58 {58} {31}
/ /

{72, 37, 53,

{37},{27},{32}
49, 29, 35,
32, 31, 28,
65, 34, 62}

TritypeV8 {i = 3, j = 4, k = 3} 61 {61} {29}
/ /

{19, 61, 79,

{35},{30},{25}

35, 27, 33,
30, 42, 29,
26, 71, 32,
48, 51, 54}

Table 2: Tritype benchmark

Programme
LocFaults BugAssist

P
L

P L
= 0 ≤ 1 ≤ 2 ≤ 3

TritypeV7 0, 722s 0, 051s 0, 112s 0, 119s 0, 144s 0, 140s 20, 373s
TritypeV8 0, 731s 0, 08s 0, 143s 0, 156s 0, 162s 0, 216s 25, 562s

Table 3: Computation times for non linear programs

5. DISCUSSION

5.1 Related work
Various techniques to support error localisation have been

proposed in the test and verification community.
The problem of error localization was first addressed in the

test community where many systems have been developed.
The most famous one is Tarantula [16, 15] that uses different
metrics to rank suspicious statements detected while run-
ning a battery of tests. The critical point of this approach is
that it requires an oracle for deciding whether the test result
is correct or not. To avoid this problem, we consider here
the Bounded-Model Checking (BMC) framework where we
only require a postcondition or an assertion to check.

In this BMC context Bal et al [1] developed one of the first
error localization system. Roughly speaking, they perform
multiple calls to a model checker and compare the trace of
generated counter-examples with a correct execution trace.
Transitions that are not included in the correct trace are
reported as a possible cause of the error. Their algorithm
has been implemented in the of SLAM BMC framework that
verifies temporal safety properties of C programs.

More recently, approaches based on the derivation of cor-
rect traces were introduced in Explain[14, 13]. Explain
works as follows:

1. Calling the model-checker CBMC7 to find an execu-
tion that violates the postcondition;

2. Using a pseudo-Boolean solver for searching the near-
est correct execution;

7http://www.cprover.org/cbmc/

3. Computing the difference between both traces.

Then, Explain produces a propositional formula S asso-
ciated with program P but whose assignments do not vio-
late the specification. Finally, Explain extends S with con-
straints defining an optimization problem the goal of which
is to find a satisfying assignment that is as close as possible
to the counter example; proximity is measured by a distance
on the execution of P.

An approach similar to one of Explain was introduced in
[24] but it is based on testing rather than on model checking:
the authors use a series of correct and incorrect tests and a
distance metrics to select a correct test from a given set
of test data. This approach assumes that a full oracle is
available.

In [11, 12], the authors also start from a counter-example,
but they use the specification to derive a correct program
for the same input data. Each identified statement can be
used to correct errors. This approach ensures that the er-
rors are inside the set of suspicious statements (assuming
that the error is in the considered erroneous model). In
other words, their approach identifies a super set of erro-
neous statements. To reduce the number of potential er-
rors, the process is restarted for various counter-examples
and the intersection of the sets of suspicious statements are
calculated. However, this approach suffers from two major
problems:

• The search space may be very large since every expres-
sion can be modified;

• It generates numerous spurious diagnoses since any
change in an expression is possible (for example, chang-



ing the last assignment of a function to return the ex-
pected result).

To overcome these problems, Zhang et al [28] proposed
to change only predicates of the control flow. The intuition
behind this approach is that by switching the results of a
predicate and modifying the control flow, the program state
cannot only be inexpensively modified, but in addition, it is
often possible to reach a successful state. Liu et al [22] gen-
eralized this approach by editing multiple predicates. They
also propose a theoretical study of debugging algorithm for
RHS errors, that is, errors in predicate control and in the
right hand side of assignments.

In [3], the authors address the problem of analyzing the
trace of a counter-example and of error localization in the
context of formal verification of hardware systems. They
use the notion of causality introduced by Halpern and Pearl
to formally define a set of causes of the violation of the
specification by a counter-example.

Manu Jose and Rupak Majumdar [17, 18] have addressed
this problem differently: they introduced a new algorithm
that uses a MAX-SAT solver to calculate the maximum
number of clauses of a Boolean formula that can be satisfied
by an assignment. Their algorithm works in three steps:

1. They encode a trace of a program by a Boolean formula
F that is satisfiable if and only if the trace is satisfiable;

2. They build a false formula F ′ by requiring that the
postcondition is true (the formula F ′ is unsatisfiable
because the trace models a counter-example that vio-
lates the postcondition);

3. They use MAXSAT to compute the maximum number
of clauses that can be satisfied in F ′ and display the
complement of this set as a potential cause of errors.
In other words, they calculate the complement of a
MSS (Maximum Satisfiable Subset).

Manu Jose and Rupak Majumdar [17, 18] have implemented
their algorithm in BugAssist, a state-of-art verification
tool based on CBMC.

Si-Mohamed Lamraoui and Shin have recently developed
SNIPER, a tool that generalizes the approach of BugAs-
sist in order to improve error localization in programs with
multiples faults. SNIPER calculates the MSS of a formula
ψ = EI ∧ TF ∧ AS where EI encodes the erroneous in-
put values, TF denotes a formula modelling all paths of
the program, and AS is the violated assertion. The MCSs
are obtained by taking the complement of the calculated
MSS. The implementation is based on the intermediate rep-
resentation LLVM and the SMT solver Yices. The authors
compared SNIPER with BugAssist on the Siemens test
suite TCAS. SNIPER identified by anywhere 5% more er-
rors than BugAssist but required about much more times
than BugAssist on this benchmark. More importantly,
their approach assumes that a set of inputs that triggers all
faults in the program is available.

In [27], the authors propose to compute irreducible infea-
sible subsets of constraints. They use a constraint solver to
derive the MCS from these sets but the number of single
fault candidates they generate is rather large.

There are some similarities between the approach we pro-
pose here and the framework introduced by Manu Jose and
Rupak Majumdar. The main differences are:

1. We use the control flow graph to collect the constraints
on the path from the counter example, as well as on the
derived paths from the path of the counter-example by
assuming that at most k conditional statements may
contain errors. So, we do not transform the whole
program into a system of constraints.

2. We use more general algorithms than MAXSAT that
make it easier to deal with numerical constraints.

5.2 Contribution and future work
Our flow-based and incremental approach is a good way

to help the programmer with bug hunting since it locates the
errors around the path of the counter-example. Further work
concerns programs with loops where scalability may be an
issue. We plan also to develop an interactive version of our
tool that provides the localizations one after the others, and
takes benefit from the user knowledge to select the condition
that must be diverted.

Furthermore, the constraint-based framework that we have
introduced is well adapted for handling arithmetic opera-
tions. Moreover, it can be extended in straightforward way
for error-localization in programs with floating-point num-
bers computations. Such an extension would be more diffi-
cult in SAT-based framework of BugAssist, or in SNIPER
where the whole program is transformed in anLLVM inter-
mediate representation.
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