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Abstract We analyze the control by electromagnetic fields of quantum sys-
tems with infinite dimensional Hilbert space and a discrete spectrum. Based
on recent mathematical results, we rigorously show under which conditions
such a system can be approximated in a finite dimensional Hilbert space. For
a given threshold error, we estimate this finite dimension in terms of the used
control field. As illustrative examples, we consider the cases of a rigid rotor
and of a harmonic oscillator.
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1 Introduction

Since the pioneering works dating back from the eighties, the control of quan-
tum systems by electromagnetic fields, e.g. laser fields, has become a well rec-
ognized topic with a variety of applications in physics and in chemistry [1–3].
The experimental developments of pulse shaping techniques have largely con-
tributed to this success over the past few years [4,5]. Different theoretical tools
ranging from the controllability concept [6–11] (i.e. the possibility of finding a
control field bringing the system from a given initial state to a target) to the
design of optimal control solutions [12–15] have been introduced at the same
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time in this community. All these methods can be applied to the case of finite
dimensional quantum systems [1]. However, the dynamics of most of quantum
systems is described by Hilbert space with an infinite dimension [16], which
renders problematic the use of the preceding approach. Some standard exam-
ples are given by the rovibronic degrees of freedom of atoms and molecules,
whereas the spin coordinates are described by true finite dimensional quantum
systems [17–22]. Note that the original definition of Hilbert spaces was made
for infinite dimensional spaces, but it will be used also in this paper for spaces
with a finite dimension [23].

To overcome this difficulty of treatment of the infinite dimension, a natural
strategy in quantum control consists of truncating the Hilbert space to a finite
dimensional one, called in mathematics a Galerkin approximation [24]. This
approximation, which can be physically justified by the finite amount of energy
transferred to the system by a realistic electromagnetic field, can be checked
numerically by considering different subspaces of finite dimension. In spite of
its efficiency, its brute force approach is not satisfactory since there is no proof
of the validity of the approximation made. Indeed, one should be aware that
the dynamics of the infinite dimensional system can be very different from the
behavior of its finite-dimensional approximations. A first example of possible
deceptive behavior of such approximations is given by high frequency exci-
tations, that induce a transition between the ground state and high energy
levels. This dynamics is practically invisible in small dimensional approxima-
tions and could erroneously let think the system passed the numerical tests.
Another example is given by a standard quantum harmonic oscillator driven
by an electromagnetic field. This system is known to be not controllable, in
any reasonable sense, while all of its finite dimensional approximations are
[25]. Moreover, even in the favorable cases where the approximation gives ac-
curate results, it can be time consuming to find the right dimension of the
finite subspace and, in the absence of analytic proof, one relies on the physical
intuition to justify it.

Our aim in this article is to make a step towards the justification of this
technique. The proof finds its origin in recently developed mathematical tools
for the controllability of quantum systems with infinite dimensional Hilbert
space [24]. We consider a family of quantum systems with a discrete spectrum,
the weakly-coupled systems which have the properties to be well approximated
by systems with finite dimensional Hilbert space. The introduction of this class
of systems gives the correct mathematical framework of this approximation.
Note that this family contains most of the standard systems in quantum con-
trol such as the rigid rotor and the harmonic oscillator which will be taken as
illustrative examples. The main output of our method is a rigorous framework
to apply the powerful computational tools of finite-dimensional quantum con-
trol, extending from matrix algebra to optimal control techniques for ordinary
differential equations [1,3].

For the sake of readability, we present the general method on an explicit ex-
ample (a planar rotator) for which we obtain easily computable and practically
usable, a priori upper bound of the neglected modulus of the components of the
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wave function in terms of the used control field. The first step will consist in a
rough (but rigorous) preliminary approximation by a finite (but high) dimen-
sional systems. In a second step, straightforward computations then provide
fine (low dimensional) approximation results that can be used for practical
control of the original system. Finally, we point out that some mathematical
details of the proofs have been voluntarily ignored in order to render acces-
sible this new approach to a broad audience. In this respect, this paper can
be viewed as a pedagogical introduction which may subsequently help the in-
terested reader to enter into a more specialized mathematical literature [26,
27].

The paper is organized as follows. In Sec. 2, we present the model system.
Fixing a threshold error, we derive an upper bound for the finite dimension of
the Hilbert space of the system. Some explicit examples are treated in Sec. 3.
Conclusion and prospective views are given in Sec. 4. Some finite dimensional
technical computations are reported in the Appendix A.

2 Finite approximation of weakly-coupled systems.

We consider a quantum system with an infinite dimensional Hilbert space,
whose dynamics is governed by the following time-dependent Schrödinger
equation written in atomic units (with ~ = 1):

i
d

dt
|ψ(t)〉 = [H0 + u(t)H1]|ψ(t)〉, (1)

where H0 is the field-free Hamiltonian of the system and H1, the interaction
operator. The control is exerted through the application of a time-dependent
external field u(t), which is assumed to be scalar. The operators H0 and H1

act on the infinite dimensional Hilbert space H. The aim of the control is to
find a field u(t) within a class of experimentally realizable processes, such that
the time evolution of the initial state |ψ0〉 goes to the target state |ψf 〉.

The family of weakly-coupled systems is defined from the properties of the
operators H0 and H1. For such systems, H0 has a purely discrete spectrum
Ek, k ∈ N, such that 0 ≤ E0 ≤ E1 ≤ · · · ≤ Ek ≤ · · · and the sequence
(Ek) tends to infinity as k goes to infinity. We denote by |φk〉 the eigenstates
associated with the energies Ek. We also assume that there exist an integer k
and a constant C depending upon H0 and H1 such that

|〈ψ|[Hk
0 , H1]|ψ〉| ≤ C〈ψ|Hk

0 |ψ〉, (2)

and that H1 is dominated by H
(k−1)/2
0 , i.e. ||H1|ψ〉|| ≤ d||H(k−1)/2

0 |ψ〉|| for
any |ψ〉 ∈ H for which the action of H0 and H1 can be defined. Note that d is
a positive constant which does not depend on the state |ψ〉.

These different conditions are commonly satisfied by the physical systems
of interest in quantum control (see below for explicit examples). To avoid
technical developments about operator domains, we assume in the following
that the operator H1 is bounded, i.e. k = 1 or ||H1|ψ〉|| ≤ d

√

〈ψ|ψ〉 for any



4 E. Assémat et al.

|ψ〉 ∈ H. Up to mathematical details, the basic argument given below remains
the same for unbounded coupling terms [26,27].

Physical intuition tells us that a quantum system with an infinite dimen-
sional Hilbert space can be approximated in a finite dimensional one if the
amount of energy transferred from the field u(t) is bounded. Hence, we con-

sider a pulse u(t) defined on [0, T ] such that
∫ T

0
|u(t)|dt ≤ K, where K is

a constant. This bound on the amplitude of the field induces that the total
energy transfer is also bounded. We start from the relation

d

dt
〈H0〉(t) = −iu(t)〈ψ(t)|[H0, H1]|ψ(t)〉, (3)

which is derived from the Schrödinger equation (1). Using Eq. (2), we deduce
that

| d
dt

〈H0〉(t)| ≤ C|u(t)|〈H0〉(t). (4)

This inequality can be integrated from Gronwall’s lemma [28], which states
that, if the derivative of a function f is lower than the function (up to a time
dependent factor β(t)) in a given time interval [0, t], f ′(t) ≤ β(t)f(t), then

f(t) ≤ f(0) exp[
∫ t

0
β(s)ds]. Applying this lemma to Eq. (4) leads to

〈H0〉(T ) ≤ eC
∫

T
0

|u(t)|dt〈H0〉(0). (5)

Finally, since u(t) is bounded, we obtain:

eC
∫

T
0

|u(t)|dt〈H0〉(0) ≤ eCK〈H0〉(0). (6)

The expectation value ofH0 is thus bounded by a constant which depends only
on the parameters K and C and on the initial state |ψ0〉 of the system. The
result (5) allows us to understand the origin of the relation (2), which gives a
condition on H0 and H1 to limit the growth of the energy of the system when
a control field is applied.

We have now all the tools in hand to show that one can restrict the dynam-
ics of the system to a finite dimensional Hilbert spaceH(N), which is generated
by the N first eigenstates of H0. We assume that |ψ0〉 and |ψf 〉 belong to H(N)

and we introduce the projector P (N) on the subspace H(N), which allows us to

define the reduced operators H
(N)
0 = P (N)H0P

(N) and H
(N)
1 = P (N)H1P

(N)

and the projections |ψN 〉 = P (N)|ψ〉, |ψ̃〉 = (1−P (N))|ψ〉 of the state |ψ〉, with
1 the identity operator. |ψ̃〉 corresponds here to the part of the wave function
outside the finite dimensional Hilbert space H(N). We denote by U(t, 0) the
propagator in the infinite dimensional space and by U (N) the one of the dy-
namics projected onto H(N). The fundamental question raised by the finite
dimension is to which extent the dynamics ruled by

i
d

dt
|ψN (t)〉 = [H

(N)
0 + u(t)H

(N)
1 ]|ψN (t)〉 (7)
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in H(N) is a good approximation of the exact dynamics (1) in H. An upper
bound of the error can be derived as follows. Using the fact that d

dt |ψN 〉 =

PN
d
dt |ψ〉, we get the exact relation:

i
d

dt
|ψN (t)〉 = [H

(N)
0 + u(t)H

(N)
1 ]|ψN (t)〉 +H2|ψ〉, (8)

where H2|ψ〉 = u(t)P (N)H1|ψ̃〉 is the neglected term in the dynamics of Eq.
(7). The general solution of Eq. (8) can be written as:

|ψN (t)〉 = U (N)(t, 0)|ψ0〉 − i

∫ t

0

U (N)(t, τ)H2(τ)|ψ(τ)〉dτ, (9)

which can be derived by computing the time derivative of U (N)(t, 0)†|ψN (t)〉.
The error at time T between the exact dynamics projected onto H(N),

which is described by the solution |ψN (t)〉 of Eq. (9), and the approximate
one in H(N) corresponding to U (N)(t, 0)|ψ0〉 (i.e. the solution of (7)), is the

norm of the integral term
∫ T

0 U (N)(t, τ)H2(τ)|ψ(τ)〉dτ . We can estimate this

error by using the majorization (6). Let |ψ〉 =
∑+∞

j=0 cj |φj〉 be a state of H.

A first step is to bound ||H1|ψ̃〉||, which expresses physically the influence on
the first energy levels of the loss of probability density outside H(N). Since H1

is bounded, it is sufficient to consider a bound on 〈ψ̃|ψ̃〉. From the ordering of
the energy levels, we deduce:

|〈ψ̃|ψ̃〉| ≤
∞
∑

l=N

|cl|2
El

EN
=

1

EN
〈ψ̃|H0|ψ̃〉. (10)

Using this result together with Eq. (6), we get:

||H1|ψ̃〉|| ≤
d√
EN

eCK/2
√

〈H0〉(0), (11)

which is lower than any error threshold for N sufficiently large since EN →
+∞. We can also deduce how close the dynamics in the finite subspace is to
the original dynamics in the infinite space. Using the relation

||
∫ T

0

U (N)(T, τ)H2|ψ〉dτ || ≤ ||
∫ T

0

u(τ)H1|ψ̃〉dτ ||, (12)

a straightforward computation leads to:

||
∫ T

0

U (N)(T, τ)H2|ψ〉dτ || ≤ K||H1|ψ̃〉||, (13)

then, with Eq. (13) and the fact that H1 is bounded, we finally obtain:

||
∫ T

0

U (N)(T, τ)H2|ψ〉dτ || ≤
dK

√

〈H0〉(0)e
CK
2

√
EN

, (14)
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which gives an estimate for any weakly quantum system of size N of the finite
dimensional subspace to consider. Inversely, for a given threshold error ε, N

has to satisfy EN > 〈H0〉(0)(KdeCK/2

ε )2. Note that this bound does not depend
on the target state |ψf 〉, i.e. we get the same bound for any choice of target
that would require the same value of K to achieve a given accuracy. However,
reaching higher excited states would require to increase K, and the bound
would be changed. As pointed out in the introduction, this bound is however
too large and not interesting in practice (see below for an example), but its
existence is a necessary first step in order to establish the stronger and useful
bound presented in the following. In other words, the interest of this bound
is to provide a finite dimensional framework where efficient finite-dimensional
computational tools can be applied.

3 Application to standard quantum systems.

3.1 Examples of weakly-coupled systems

We consider now the family of quantum systems for which the interaction
Hamiltonian matrix has a tri-diagonal structure in the eigenbasis {|φk〉} of
H0. This means that the only non zero real coupling terms of H1 are of the
form 〈φj+1|H1|φj〉 = 〈φj |H1|φj+1〉 = bj+1,j . If we assume, in addition, that
there exist an integer k and a constant C such that

|bj+1,j |(Ek
j+1 − Ek

j ) ≤ CEk
j , (15)

j ∈ N, then the condition (2) is satisfied with the same parameter C. This
can be shown straightforwardly in the case k = 1 by using 〈ψ|[H0, H1]|ψ〉 =
∑

j(Ej+1−Ej)ℑ[c∗j+1cj ]bj+1,j and the relation ℑ[c∗j+1cj ] ≤ (|cj |2+ |cj+1|2)/2.
The relation (15) allows us to construct weakly-coupled systems simply by
examining the matrix elements of H0 and H1.

In this spirit, we analyse two standard examples of this family of systems
which satisfy the condition (15), namely the control of a rigid rotating molecule
confined in a plane and the control of a one dimensional harmonic oscillator.
These two systems can be viewed as simple models describing the rotational
[29–34] and the vibrational dynamics of linear molecules [16,25]. The two
dynamics are respectively governed by the following Schrödinger equations:

i
d

dt
|ψ(t)〉 = [− ∂2

∂θ2
+ u(t) cos θ]|ψ(t)〉, θ ∈ S1,

i
d

dt
|ψ(t)〉 = [− ∂2

2∂x2
+
x2

2
+ u(t)x]|ψ(t)〉, x ∈ R,

where a dipolar interaction between the quantum system and the control field

is assumed. The operators H0, i.e. − ∂2

∂θ2 and − ∂2

2∂x2 + x2

2 , have a discrete
spectrum given by k2, k ∈ N, and n+1/2, n ∈ N, for the first and second cases
respectively, which satisfy the hypothesis of the theorem. The non zero matrix
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elements of the interaction operators are 〈φk+1| cos θ|φk〉 = 1/2 (only the
Hilbert subspace with the odd eigenfunctions is considered) and 〈φn+1|x|φn〉 =√
n. These two systems are weakly coupled and the integer k and the constant

C can be taken as 1 and 3/2 for the rotation and 2 and 8 for the harmonic
oscillator. The initial state is chosen as |ψ0〉 = |φ1〉 for the two examples. Using

the estimation (14), the resulting size N for the finite subspace is Ke3K/2

ε and
K2e16K

ε2 since d = 1 in the two cases. For K = 3 and ε = 10−4, this leads to
N = 2.7 × 106 and N = 2.38× 1015, which is a very rough approximation of
the dimension of the finite subspace.

Thanks to the first majorization, a better estimate can be derived by us-
ing standard matrix algebra based on the tridiagonal form of H1. For sake of
clarity, the details of the proof for the planar rotor are presented in the Ap-
pendix A. Using this second bound, we deduce that, for the rotating molecule,

N has to satisfy N ! ≥ KN+1

2ε . For the same values of K and ε as above, we
obtain a size N = 14 which will be useful in practice as shown in Sec. 3.2.
Here again, we point out that the bound is independent on the target state,
which highlights its role in the understanding of the dynamics of the quantum
system. In other words, this bound can be viewed as a fundamental character-
istic of the controlled system under study, showing to which extend a finite-
dimensional approximation can be considered to describe the corresponding
dynamics. From a mathematical point of view, note that this second estimate
has been established using finite dimensional techniques detailed in Appendix
A. It cannot be derived directly from computations in the infinite dimensional
Hilbert space. This argument therefore justifies the determination of the first
large bound obtained in Sec. 2. A similar computation can be made for the har-

monic oscillator. In this case, we get the condition
√

N+1
(N−1)!2

2N+1/2KN+1 < ε,

which leads to N = 420.

3.2 Optimal control of quantum systems with infinite dimensional Hilbert
space.

In order to test the precision of the bound given in Sec. 3.1, we consider the
optimal control problem of transferring the state of the planar rotator from
the ground state to some excited state in a given time, while minimizing the
required energy of the electromagnetic field. This problem is well known and
has been solved in many physical systems with different numerical methods [1,
3,17,35]. Here, we choose to solve it with a monotonically convergent algorithm
(see Refs. [13,15,14,36,37] for the technical details).

As an example, we investigate the transfer from the ground state to the first
excited state with a control duration T = π. We first set arbitrarily the size of
the truncated Hilbert space to N = 50. By adjusting its free parameters [13,15,
14,36,37], the algorithm produces an optimal control field such that K < 3.87.
The estimates of Sec. 3.1 ensure that the error made by truncating the infinite

dimensional Hilbert space at order N = 50 is less than ε = KN+1

2N ! < 2.10−36.
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Fig. 1 (Color online) Upper frame: Evolution of the populations during the controlled
dynamics. The final distance 1− |〈ψ(T )|ψf 〉|

2 to the target state |ψf 〉 is 2× 10−3. Bottom
frame: the corresponding control field, with K = 3.86.

Indeed, it would have been enough to use N = 14, with the same control, to
guarantee an error less than 3× 10−3 during the dynamics. Using the optimal
control field, the target |ψf 〉 is reached with a precision ε = 1−| 〈ψf |ψ(T )〉 | =
2 × 10−3. We can see on Fig. 1 that only the three first levels have been
significantly populated during the dynamics. More precisely, we observe in
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Fig. 2 (Color online) Maxima of populations over the whole dynamics for each level of the
planar rotor. The horizontal dashed line indicates the position of the threshold error ε.

Fig. 2 that the level with k = 14 is never populated during the dynamics,
up to the machine precision. This confirms the validity of the bound. The
results of Fig. 2 show that the required value of N to obtain an accuracy lower
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than 10−3 is actually N = 6. Note that this difference between the theoretical
bound and the numerical result is the same for other target states, the values
of the parameters K and ε being fixed. This worst-case bound has therefore
to be considered as a first information on the system which cannot entirely
replace a systematic numerical investigation to define the size of the truncated
Hilbert space.

4 Conclusion.

In conclusion, we have introduced the family of weakly-coupled systems whose
dynamics can be approximated by a system with a finite dimensional Hilbert
space. An upper bound has been derived in the general case, but also for
two standard quantum systems, namely the planar rotor and the harmonic
oscillator by using the structure of the Hamiltonians. In all the examples, the
corresponding bound gives useful information about the finite dimensional ap-
proximation of the Hilbert space to consider in practice. This theory provides
a proof of most of the works done in quantum control up to date, in which a
brute-force truncation of the Hilbert space is made to simplify the numerical
computations.
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is supported by the Koshland Center for basic Research.

A Estimate of the dimension of the finite dimensional Hilbert space

We give in the appendix some indications about the way to compute a precise estimate of
the dimension of the finite dimensional Hilbert space in the case of a planar rotor.

For some ǫ, we find N according to (14) and we consider the dynamical evolution of the
system in the subspace H(N), which is governed by Eq. (7):

1

i

d

dt
|ψN (t)〉 = [H

(N)
0 + u(t)H

(N)
1 ]|ψN (t)〉.

Assuming that the initial state is |φ1〉, a general solution reads as follows:

|ψN (t)〉 =e−iH
(N)
0 t|φ1〉

+

∫ t

0
e−i(t−s)H

(N)
0 u(s)H

(N)
1 |ψN (s)〉ds. (16)
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Replacing |ψN (t)〉 in the integral term of Eq. (16) by its value given by the same equation
(16), we get:

|ψN (t)〉 =e−iH
(N)
0 t|φ1〉+

∫ t

0
e−i(t−s)H

(N)
0 u(s)H

(N)
1 e−iH

(N)
0 s|φ1〉ds

+

∫ t

0

∫ s1

0
e−i(t−s1)H

(N)
0 H

(N)
1

e−i(s1−s2)H
(N)
0 H

(N)
1 u(s1)u(s2)|ψN (s2)〉ds1ds2. (17)

For a fixed number p ≥ 2, we repeat this operation p− 1 times, which leads to:

|ψN (t)〉 =

e−iH
(N)
0 t|φ1〉

+

p−1
∑

k=1

∫

0≤sk≤sk−1≤···≤s1≤t
e−i(t−s1)H

(N)
0 H

(N)
1 · · ·

e−iH
(N)
0 (sk−1−sk)u(s1)u(s2) · · ·

u(sk)|φ1〉ds1ds2 · · · dsk

+

∫

0≤sp≤sp−1≤···≤s1≤t
e−i(t−s1)H

(N)
0 H

(N)
1 · · ·

e−iH
(N)
0 (sp−1−sp)H

(N)
1 u(s1)u(s2) · · ·

u(sk)|ψN (sk)〉ds1ds2 · · · dsk. (18)

We next compute the projection of this state onto |φp+1〉. Using the tridiagonal structure of

the operator H
(N)
1 , one deduces that the first two terms of the right-hand side of Eq. (18)

have no contribution. One finally arrives at:

〈φp+1|ψN (t)〉 =
∫

0≤sp≤sp−1≤···≤s1≤t
〈φp+1|e

−i(t−s1)H
(N)
0 H

(N)
1 · · ·

e−iH
(N)
0 (sp−1−sp)H

(N)
1

p
∏

i=1

u(si)|ψN (sp)〉ds1ds2 · · · dsp, (19)

where the integrand contains p factors H
(N)
1 . A majorization of this term is given by:

|〈φp+1|ψN (t)〉| ≤
∫

0≤sp≤sp−1≤···≤s1≤t
||H

(N)
1 ei(sp−1−sp)H

(N)
0 H

(N)
1 · · ·

eiH
(N)
0 (t−s1)|φl+1〉||

p
∏

i=1

|u(si)|
√

〈ψN (sp)|ψN (sp)〉ds1ds2

· · · dsp. (20)

For the planar rotor, we denote by c the absolute value of the coupling constant. Straight-
forward computations give

sup
s1,··· ,sp

||H
(N)
1 ei(sp−1−sp)H

(N)
0 H

(N)
1

· · · eiH
(N)
0 (t−s1)|φp+1〉|| ≤ 2pcp. (21)
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Indeed, the product H|ψ〉, with H tridiagonal, can always be written as H|ψ〉 = a|ψ1〉 +
b|ψ2〉+c|ψ3〉, where |〈ψi|ψi〉| ≤ |〈ψ|ψ〉| and (a, b, c) are the maxima of the nonzero diagonals.
In our case, one of the diagonal is void so ||H|ψ〉|| ≤ 2c. We can also show by induction that

∫

0≤sp≤sp−1≤···≤s1≤t

p
∏

i=1

|u(si)|ds1 · · · dsp =
1

p!
(

∫ t

0
|u(s)|ds)p, (22)

which leads to

|〈φp+1|ψN (t)〉| ≤ 2pcp
Kp

p!
. (23)

The estimate (23) is valid in H(N). If one considers the actual solution of the infinite
dimensional system in H, one yields, for ǫ and N chosen according to (14),

|〈φp+1|ψ(t)〉| ≤ 2pcp
Kp

p!
+ ε. (24)

Estimate (24) is correct for every ε > 0. Letting ε goes to zero, one finally gets

|〈φp+1|ψ(t)〉| ≤ 2pcp
Kp

p!
(25)

Estimate (25) can in turn be used to refine the condition (14). Since c = 1/2, we obtain:

|〈φp+1|ψ(t)〉| ≤
Kp

p!
, (26)

which gives an estimate of the probability of transitions outside the subspace H(p). If K ≤
(εp!)(1/p), then this probability is lower than ε. In addition, in the case Kp+1 < 2εp!, we

get Kp

p!
< 2ε

K
and

∫ t

0
||u(t)P (p)H1|ψ̃(τ)〉dτ || ≤

2ε

K

K

2
, (27)

i.e. the dynamics in the finite subspace H(p) is close to ε to the exact dynamics.
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