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Abstract

The cornea is the front of the eye. Its inner cell layer, called the endothelium, is important because closely

related to the light transparency of the cornea. An in vivo observation of this layer is performed by using

specular microscopy to evaluate the health of the cells: a high spatial density will result in a good transparency.

Thus, the main criterion required by ophthalmologists is the cell density of the cornea endothelium, mainly

obtained by an image segmentation process.

Different methods can perform the image segmentation of these cells, and the three most performing are

studied here. The question for the ophthalmologists is to choose the best algorithm and to obtain the best

possible results with it. This article presents a methodology to compare these algorithms together. Moreover,

by the way of geometric dissimilarity criteria, the algorithms are tuned up, and the best parameter values are

thus proposed to the experts ophthalmologists.
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1 Introduction

1.1 Human eye and cornea

The eye is the first sense organ responsible for human vision. The human eye functions like a camera to refract light

and produce a focused image which stimulates neural responses transmitted to the brain vision centers. crystalline

lens is made of compacted protein fibers and is anchored in place by muscles attached the wall of the eyeball.

Contraction of these muscles causes the lens to change its shape and curvature, thus improving the focusing power.

Refracted light passes through the eye cavity and strikes the inner surface at the back, known as the retina. The

retina contains the specialized nerve cells called rods and cones that detect the intensity and the frequency of the

incoming light. Light stimulates the rods and cones, which creates neural impulses that are transmitted to the

brain through a network of nerve cells bunched together to form the optic nerve that exits from the back of the

eyeball and passes to the brain.

1.1.1 The human cornea

The cornea is the transparent, spherical surface covering the front of the eye. It is a powerful refractive surface,

providing about 2/3 of the eye’s focusing power. Healthy cornea has no blood vessel, which accounts for its clarity.

But it is rich in nerve endings and so is extremely pain sensitive. The tears and aqueous humor, a watery fluid

circulating in the cavity behind it that contains glucose and several electrolytes nourish the cornea. The cornea is

a highly organized tissue consisting of cells and protein arranged in three main layers:

• Epithelium: This is the outermost layer comprising about 10% of the total thickness. Along with the tear

film that bathes the outer surface of the eye, it provides a protective function preventing the entry of foreign

material into the eye.

• Stroma: It makes up to 90% of the corneal thickness. It consists primarily of water (78%) and layered

collagen fibers (16%) that give the cornea its strength, elasticity and shape. It also contains cells scattered

between the fibers that produce the stromal constituents. The lattice-like arrangement and uniform spacing

of the collagen fibers are essential for corneal transparency.

• Endothelium: This is the innermost layer facing the aqueous and consists of a single layer of hexagonal cells.

It pumps water out of the cornea, hence plays a vital role to keep it in a dehydrated state. Without this

pumping action, the stroma would accumulate water, become hazy, and finally opaque (corneal oedema)

leading to loss of vision.

1.1.2 Physiology of the human corneal endothelium

The cornea must remain transparent to refract light properly and the corneal endothelium ensures the integrity

and transparency of the cornea.
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The corneal endothelium consists of a single layer of closely packed, flat, hexagonally shaped cells covering

the back surface of the cornea. In the human cornea at birth, there are more than 4000 cells/mm2. With age,

the number of endothelial cells gradually decreases, but because they cannot regenerate, neighboring cells spread

out to fill the gap leading to an alteration of cell shape (pleomorphism) and size (polymegathism). The mean

endothelial cell density (ECD) in adults is generally between 500-3500 cells/mm2. Cell density, as well as variation

in size and shape, can be examined by specular microscopy in living human subjects. These methods permit early

diagnosis of any damage of the corneal endothelium.

1.2 Principles of specular microscopy

Since the cornea is transparent, cornea cells can easily be observed in vivo with a specular microscope. This

technology comes from the early 1980s. Those optical microscopes can acquire an image of the cells on a very

little surface (0.08mm2 compared to the endothelium surface of about 100mm2, see Fig. 5). The image is then

analyzed by a computer software (embedded in the microscope) to provide both cell density and morphometry.

The physical principle of this type of microscope is the specular reflection (i.e. the same reflection as for a mirror).

As the light goes through the several different layers of the cornea, it is reflected at each interface ([4, 12]). The

deeper the layer is in the cornea, the darker it appears on the image. This explains the intensity variations within

the images, which physically corresponds to the superposition of several different layers.

1.3 Quality criteria of the corneal endothelium

It is necessary to evaluate the quality of the human corneal endothelium in several circumstances (for example

after accidents, surgery or trauma). The main cause is corneal grafting.

The two criteria required for the evaluation are:

• the endothelial cell density (ECD, in cells/mm2). There are several threshold values: for example, an ECD

lower than 400 cells/mm2 does not enable to maintain the cornea transparency. An ECD lower than 1000

cells/mm2 is a contraindication for using intraocular lens implants.

• the morphometry of endothelial cells. Their size regularity (called the polymegathism, i.e. the variation of

areas of the cells) and their shape regularity (called the pleomorphism, i.e., the percentage of hexagon-like

cells) induce a good quality of the cornea.

2 Three image segmentation methods

Different methods exist to perform the segmentation of images of endothelial cells. Among those, three methods

give the better results ([6]). The present article first recalls their related algorithms and will then compare their

results with regard to several criteria.

The presented algorithms have a common structure. First, they filter the original image. Second, they aim

to find some markers of the cells, and then they perform a morphological operation (a watershed, see [3]) to get
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closed contours for each cell. Notice that these three algorithms make important use of mathematical morphology

operators (see, e.g., [16]).

2.1 Vincent and Master’s method

This method has been proposed in [20]. It is based on the fact that cell borders’ intensities are lower than the

cell interiors’ intensities, and represent somehow a local maximum of intensity that is retrieved by a morphological

operation called a h-maxima ([16]). To avoid the problem of noise, a first filtering process is performed by the way

of a morphological alternate sequential filter. It involves two parameters:

• h is a value for the h-maxima operation (an intensity), that gives the final markers of the cells.,

• o is the order of the morphological alternate sequential filter.

The algorithm is summarized in algorithm 1.

Data: Input← Greyscale image of cornea endothelial cells.

o← Order of alternate sequential filter.

h← Value for the h-maxima.

Result: S: Segmentation of the cornea endothelial cells.

1 begin

2 ASF ← Alternate Sequential Filter of order o of Input;

3 M ← h-maxima of ASF and binarization (threshold 0) ;

4 W ← Watershed constrained by M on Input image;

5 S ← Pruning of W to eliminate the lines touching the borders of the image;

6 end

Algorithm 1: Vincent and Masters’s algorithm for detecting the human corneal endothelium cells ([20]).

2.2 Angulo and Matou’s method

This method is more recent than the previous one ([2]). The cell markers are detected by the mean of a distance

map after some filtering process (performed by a morphological opening and a morphological top-hat). The

difference with Vincent and Masters’s algorithm is that a first segmentation of the contours is performed and then

is improved by the use of the watershed [3]. The algorithm 2 details the algorithm. Five parameters are required.

Th three first ones, s1, s2 and g, are used for the filtering process. The last two ones, t and h are used to get the

markers that will be used by the watershed.

2.3 Gavet and Pinoli’s method

This is the most recent method proposed in [6]. The improvements to the other methods comes from the fact that

the first segmentation of the borders of the cells better performs due to the elimination of non-linear parts of the

skeleton (see details of algorithm 2 and algorithm 3). The Gavet and Pinoli’s method requires five parameters,
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Data: Input← Greyscale image of cornea endothelial cells.

s1, s2 ← Structuring element sizes.

g ← Size of gaussian filter.

t← Treshold value.

h← Value for the h-maxima.

Result: S: Segmentation of the cornea endothelial cells.

1 begin

2 G← Gaussian filter of Input;

3 O ← Opening of G with s1;

4 T ← Top-Hat of O with s2;

5 B ← Binarization of T with threshold t;

6 S ← Skeletonization of T ;

7 DM ← Distance Map from skel;

8 M ← h-maxima of DM (markers);

9 W ← Watershed constrained by the markers M in the inverse of DM ;

10 S ← Pruning of W to eliminate the lines touching the borders of the image;

11 end

Algorithm 2: Angulo and Matou’s algorithm for detecting the cells ([2]).

and its algorithm is summarized in algorithm 3. After a filtering process (parameter o), the contours are first

roughly detected by the use of the openings by segments (parameters ts and then o,c,e). This operators intend to

detect linear cell contours. Then, these contours are corrected by the mean of a distance map and a constrained

watershed (parameter s), as proposed by the two previous methods.

2.4 Summary of the control parameters

The Table 1 summaries the control parameters used by the three presented image segmentation methods. The

main problem here is: how to select the values of these parameters? The following section will try to answer to

this problem by using two comparison criteria (namely the dissimilarity criteria ǫ and fom), and by using them

on an image database to find the best parameter values.

3 Image segmentation evaluation

The evaluation of a segmentation quality is a common problem encountered when developing a segmentation

method. Like the segmentation methods themselves, the image segmentation evaluation criteria can be classified

into region-based or contour-based approaches, although they usually can be adapted from one class to the other.

The segmentation processes of the corneal endothelium result in the contours of the cells, but the proposed

comparison methods are also suitable of segmented regions.
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Data: Input← Greyscale image of corneal endothelial cells.

o← Order of alternate sequential filter.

ts ← Length of segments.

c← Structuring element size for a closing operation.

s← Structuring element size for an opening operation.

Result: Segmentation of the cornea endothelial cells.

1 begin

2 ASF ← Alternate Sequential Filter of size o of Input;

3 R← (Input−ASF ) < 0 (residu computation);

4 U ← Supremum (union) of Openings of R by segments of length ts;

5 C ← Closing of U (size c);

6 SK ← Skeletonization of C;

7 DM ← Distance Map of SK ;

8 M ← Regional Maxima of DM ;

9 M2 ← Opening of M of size s;

10 W ← watershed constrained by markers M2 on inverse of DM ;

11 S ← Pruning of W to eliminate the lines touching the borders of the image;

12 end

Algorithm 3: Gavet and Pinoli’s algorithm for detecting the cornea endothelial cells.

Method Parameters p Description

Vincent and Masters algorithm 1 {o, h} o: order of filter

h: h-maxima

Angulo and Matou algorithm 2 {s1, g, s2, t, h} s1: opening

g: Gaussian filter

s2: top-hat

t: threshold

h: h-maxima

Gavet and Pinoli algorithm 3 {c, ts, o, s} c: closing

ts: length of segments

o: order of filter

s: opening

Table 1: Summary of the control parameters of the three presented image segmentation algorithms.
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This article deals with supervised segmentation evaluation, i.e. involving a criterion that compares the result

of the segmentation process to a ground truth image (usually manually segmented by an expert of the application

field). This is usually preferred to unsupervised evaluation (where some kind of intra-region homogeneity is

involved), but the bias introduced by the expert do not have to be neglected (see Sect. 3.4).

3.1 Basic notations

The following notations are first introduced: IR and IX represent two binary images that correspond to a reference

segmentation method R and the evaluated segmentation method X , respectively. Both IR and IX are considered

as sets of contours. In this article, R and X may be employed for IR and IX in order to alleviate the notations

and more deeply for emphasizing the geometrical problems. A point p ∈ IX or p ∈ IR means a point present in

the related segmented binary image.

3.2 Classical dissimilarity criteria

This article will not present an exhaustive view of supervised evaluation of segmentation criteria. The reader can

have a look at [7] for a more complete presentation and a comparison.

The two detailed criteria have been chosen because they are tolerant to spatial variations. One could also use

other frequently used criteria proposed in the literature [8, 15, 11], like the Hausdorff distance, the Dice coefficient

(also known as the Jaccard index), or classification criteria (specificity, sensibility). The main drawback of these

criteria is that a small noise (like a misdetected point) implies a high comparison value. This is why people

introduced a distance ponderation, like the p-th point in the Hausdorff distance, or the following figure of merit.

The figure of merit ([1, 17]), is defined by:

fomR(X) = 1−
1

max{#(M),#(X)}

∑

p∈X

1

1 + d2(p,R)

where d(p,R) is the Euclidean distance between the pixel p ∈ X to the closest pixel of R, and # the number of

pixels of the considered segmentation result R or X (which are non-empty images, at least for R).

3.2.1 Partitioning

An image segmentation process refers to the action of partitioning the spatial domain of an image into adjacent

regions, each of them preserving a certain homogeneity following a given criterion. Thus, a computer program is

able to answer to the following binary question: is this pixel inside the region of interest or not?

To formalize this mathematically, let S be a binary image resulting from a segmentation process, defined by

the number of regions (number of labels L, K = [1;L]) that partitions the spatial domain D and by the set R of

adjacent regions Ri that fulfill D:

∀(i, j) ∈ K, i 6= j,Ri ∩Rj = ∅ (1)

and

R =
⋃

Ri, i ∈ K (2)
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This article deals with the case where contours are detected and the segmentation result is a binary image, i.e.,

L = 2,K = [1; 2] (label 1 stands for the background, label 2 for the detected contours).

3.3 The ǫ dissimilarity criterion

The ǫ dissimilarity criterion is based on the symmetric difference ∆ of sets, but this latter lacks some tolerance,

which is introduced by the Minkowski addition.

3.3.1 Symmetric difference set

First, let us recall that the symmetric difference set between two segmentations R and X (R ⊂ D and X ⊂ D),

denoted ∆(R,X), is defined by Eq. 3:

∆(R,X) = (R ∪X) \ (R ∩X)

= (R \X) ∪ (X \R) (3)

3.3.2 Minkowski addition

The Minkowski addition ([13]) defines an algebraic operation between sets in the n-dimensional Euclidean space

R
n. It will be used to spatially “enlarge” the segmentations X or R to be compared, in order to be less sensitive

to small spatial variations or noises.

If X is a set (segmentation result) and B is another set (generally the unit ball), the Minkowski sum of X and

B, denoted X ⊕B, is then defined by:

X ⊕B = {x+ b|x ∈ X, b ∈ B}

X ⊕B =
⋃

b∈B

{x+ b|x ∈ X} (4)

where ⊕ is the Minkowski addition symbol. In the field of Mathematical Morphology ([16]), it is equivalent to the

dilation, and B is called a structuring element (for example the unit ball).

3.3.3 Definition

In [14], each pixel in the segmentation result is attributed a distance value to the reference segmentation, and an

histogram of these distances is thus computed. Then, a statistical analysis of this histogram is performed. In the

same spirit, we propose a dissimilarity criterion that is tolerant to small spatial variations. The ǫ dissimilarity

criterion with the tolerance ρ applied to segmented images is defined in the case of discrete images (R is the

reference segmentation result and X is the considered segmented image) by the Eq. 5 ([7]):

ǫρR(X) =
#{(X \ (R ⊕ ρN)) ∪ (R \ (X ⊕ ρN))}

#{R⊕ ρN}
(5)

with N being the structuring element of radius 1 (typically the unit ball) and # designating the number of pixels in

the set (# is the cardinal operator, counting the number of non zero valued pixels in the sets X or R). Practically,

ρ is the radius of the ball used to dilate the binary images, thus forming a tolerance tube around the original set

X or R. This article will propose a way of selecting the right value for ρ.
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The main properties of ǫ are:

• ǫρR(R) = 0, which means that when R is compared to itself, the numerical result is 0,

• ǫρR(R) −→
ρ→∞

0, which means that if the tolerance increases, the numerical value tends to 0.

• ρ is the tolerance value, thus ǫ is tolerant to small spatial variations (like translations, rotations, over- and

under-segmentations).

3.3.4 Discussion about the notion of metric

The usual concept to compare mathematical objects is the metric notion, defined by four axioms (identity, sepa-

ration, symmetry and triangle inequality, see [5]). If a metric has important mathematical properties, it has been

proved that the human visual system does not follow them ([18, 19]). For example, the human visual system does

not always consider two distinct objects as different (the separation property is thus not verified). This is also true

for the triangle inequality and the symmetry property ([7]). This is important to notice that ǫ is not a metric:

separation, symmetry and triangle inequality are not verified. This is why it is called a dissimilarity criterion.

3.4 Bias in experts manual segmentation: choice of the tolerance value

The problem of the experts reference segmentation is crucial because subject to variations between experts and

sometimes also for one expert. To deal with this problem, some articles use an average result, like [9]. Some others

do not take these into account and use only one reference segmentation as an absolute truth. The proposed ǫ

dissimilarity criterion deals with this problem by the choice of the tolerance parameter ρ. The ρ value will in fact

reflect the precision of the manual segmentation of the expert.

For one original gray-tone image, the experts have several times manually drawn their segmented image, and

the ǫ dissimilarity criterion have been used to compare every manually segmented image to the others. The mean

value of the ǫ dissimilarity criterion is represented in the Fig. 1. The reader can consider that an expert will always

(try to) draw the contours at the same location within a certain spatial tolerance (i.e., within the tolerance tube),

depending on the image size and the precision of the drawing tool. From Fig. 1, we conclude that a reasonable

tolerance value is typically ρ = 2 is the present application.

Thus, the ǫ dissimilarity criterion is able to deal with the bias in the experts reference segmentation as well

with the noises present in the segmentation results themselves. The next section will focus on cornea endothelium

images and their segmentations.

4 Image segmentation method tuning

The different segmentation algorithms presented in the previous sections require to setup the values of the so-

called control parameters. The choice of the control parameter values for a specific application issue is generally

not trivial, especially for non image analysis experts. This section explains the generic way of selecting the best

parameters in average for the considered three image segmentation methods.
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Figure 1: Method for fixing the tolerance parameter. In this example, ρ is in pixels, and there is a strong gap

between no tolerance (ρ = 0) and a tolerance of one pixel (ρ = 1). The scale is logarithmic.
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4.1 Method

4.1.1 Definitions

Let p be the control parameters set of a given algorithm A. For example, for algorithm 1, p = {s, h}. Then, Ap(I)

is the result of the segmentation process by algorithm A with the parameter set p on the input image I.

Let C denote the criterion used to compare the segmentation results with the reference. In this article, C will

be either the dissimilarity criterion ǫ or fom.

Let Q be an evaluation function of the quality of the segmentation, depending on the considered criterion C,

defined as follows:

QC(Ap, I) = C(Ap(I), R)

where R is the reference segmentation of the image I. To simplify the notations, R will be used instead of R(I).

4.1.2 Best parameter set

In the following, we consider an image database of N gray-tone images, each being associated with a reference

segmented image. What we are looking for is the best parameter set, i.e., the parameter set that will result in the

best segmented images considering the reference R and a specific comparison criterion (among the two considered

criteria, fom and ǫ).

Let p̂ be the best parameter set regarding the mean of all quality values on the N gray-tone images of the

database, yielding to:

p̂(A,C) = argmin
p

{

1

N

∑

I

QC(Ap, I)

}

= argmin
p

{

mean
I

QC(Ap, I)
}

Let Q̂ be the minimal mean value of Q on the N images of the database, yields:

Q̂(A,C) = min
p

{

1

N

∑

I

QC(Ap, I)

}

= mean
I

QC(Ap̂, I)

This way of finding the best parameter set is also called leave-one-out cross validation.

4.1.3 Trimmed mean

Some noise may be present in the computed values (mainly because of a too poor image quality). To be more

tolerant to these perturbations, the trimmed mean (sometimes called truncated mean) is also employed: in the

addressed application issue, given parts of the sample are discarded at the high end.

If k ∈ [0; 0.5] is the percentage of discarded values, then:

p̂k(A,C) = argmin
p

{

Tmean
I,k

QC(Ap, I)

}

Q̂k(A,C) = min
p

{

Tmean
I,k

QC(Ap, I)

}
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Notice that the trimmed mean corresponds to the classical mean for k = 0, namely:

p̂0 = p̂

Q̂0 = Q̂

4.1.4 Median

The median of Q, denoted medQ, is also a classical way to avoid noise perturbations in such measurements,

yielding to:

p̃(A,C) = argmin
p

{

med
I

Q(Ap, I)
}

Q̃(A,C) = min
p

{

med
I

Q(Ap, I)
}

4.1.5 Projection

In order to observe the influence of one control parameter in the segmentation results, it is interesting to fix every

control parameter but the considered one, and see if there is an impact on the quality of the segmentation. Let P

be a parameter of the set p. Let Q̂P
k be the (trimmed) mean evolution of Q when the parameter P is varying and

the other parameters are fixed at values of p̂k. The parameters are chosen among those defined in Table 1.

4.1.6 K-fold cross validation

The K-fold cross validation consists in validating the learning process by splitting the database into K folds, using

K − 1 folds as the learning database and the last one as the test database [10]. This is repeated K times such

that each fold will be used as the test database. The result is a discrepancy value that reflects the pertinence of

the learning. It will be noticed CV in the different result tables, which is the mean result value over each test

partition.

The results will be presented in tables in Sect. 4.3 in details. For each method and for each partition, the learned

parameter values are presented as well as the corresponding result of the criterion value for the test partition. Let

QCV
i be the value of the criterion for the partition i, and QCV = mean

i
{QCV

i }.

For comparison purposes, we also provide the best criterion value that could have been obtained on the test

partition, denoted Q̃CV
i (for partition i), and Q̃CV for the mean on all partitions. The value of Q̃CV should be

only a little smaller than QCV .

4.2 Quantitative comparison results

This section presents the results for the three aforementioned image segmentation methods.

An image database of N = 30 gray-tone images of the human corneal endothelium acquired with a specular

microscope is employed to evaluate the segmentation processes realized by the different algorithms. This im-

age database (see Fig. 5) contains gray-tone images and also the related experts’ segmented images (manually

performed).
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4.2.1 Vincent and Masters’ method

The summary of the optimal control parameters values is presented in Table 2.

It appears that ǫ and fom do not provide the same results for the optimal value of parameter h. One shall

notice that the value of Q̂h
0.5 does not vary a lot for both ǫ and fom criteria (see Figs. 2(b) and 2(c)). This means

that the choice of h appears as not crucial.

Criterion
Optimal parameters Trimmed mean (k = 0.5) Median

QCV

p̂ Q̂ p̂0.5 Q̂0.5 p̃ Q̃

ǫ {2, 12} 0.11 {2, 5} 0.08 {2, 5} 0.10 0.115

fom {2, 19} 0.52 {2, 19} 0.47 {2, 23} 0.50 0.520

Table 2: Results for algorithm 1, method of Vincent and Masters, where the control parameters are p = {o, h}.

See Fig. 2 for illustrations.
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Figure 2: Projection on the optimal values of the control parameters o and h for the method of Vincent and

Masters. See Table 2 for numerical values.

4.2.2 Angulo and Matou’s method

The results are presented in Table 3. Both ǫ and fom give the same results. In addition, the projections (Figs. 3(e)

and 3(c)) show that s2 and h are useless. Thus, the top-hat transform can be avoided, and the h-maxima operation

can be replaced by the computation of the maxima of the distance map.

4.2.3 Gavet and Pinoli’s method

The summary of the optimal control parameter values is presented in Table 4.
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Criterion
Optimal parameters Trimmed mean (k = 0.5) Median

QCV

p̂ Q̂ p̂0.5 Q̂0.5 p̃ Q̃

ǫ {4, 4, 1, 28, 1} 0.15 {3, 4, 1, 22, 1} 0.08 {4, 3, 1, 16, 1} 0.11 0.150

fom {3, 4, 1, 21, 1} 0.54 {3, 4, 1, 21, 1} 0.46 {3, 4, 1, 8, 1} 0.51 0.525

Table 3: Results for algorithm 2, method of Angulo and Matou, where the control parameters are p =

{s1, g, s2, t, h}. See Fig. 3 for illustrations.
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Figure 3: Projection on the optimal values of the control parameters for the method of Angulo and Matou. See

Table 3 for numerical values.
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For both fom and ǫ criteria, the optimal control parameter values are identical. The filtering parameter o used

in the alternate sequential filter must be higher than 4. This parameter is linked to the length of an edge of a cell,

and thus, some corneal endothelium with big cells would get a better result with a higher value of o (this explains

the almost constant values that can be observed in Fig. 4(c)).

The control parameter s used for filtering markers must be chosen with a low value (less than 7). In this case,

the effect is not really noticeable.

The control parameter ts is strictly related to the length of the cells edges (its purpose is to retrieve the linear

parts of the detected borders and thus eliminate the noise).

Criterion
Optimal parameters Trimmed mean (k = 0.5) Median

QCV

p̂ Q̂ p̂0.5 Q̂0.5 p̃ Q̃

ǫ {2, 7, 4, 6} 0.10 {2, 7, 4, 6} 0.06 {2, 7, 4, 6} 0.08 0.099

fom {2, 7, 4, 7} 0.50 {2, 7, 4, 7} 0.45 {2, 7, 4, 8} 0.49 0.506

Table 4: Results for algorithm 3, method of Gavet and Pinoli, where the control parameters are p = {c, ts, o, s}.

See Fig. 4 for illustrations.
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Figure 4: Projection on the optimal values of the control parameters for the method of Gavet and Pinoli. See

Table 4 for numerical values.

4.3 Comments

According to the numerical values, the method of Gavet and Pinoli outperforms the methods from Vincent and

Masters, and Angulo and Matou (see the values of QCV , Q̂, Q̂0.5 or Q̃). Clearly, the superiority of this method

comes from the extraction of the linear parts of the cell borders.
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The K-fold cross-validation (see Tables 5,6,7,8,9,10) shows that the learning is not far from the optimal value,

in terms of ǫ or fom, as well as in terms of optimal parameter values. This can be concluded from comparing

the mean ǫ or fom value from the test partitions (QCV ) to the best possible value (Q̃CV ): there is only a small

difference between these values.

Moreover, the optimal parameter values obtained for the different training partition do not vary a lot, and are

really similar to those proposed in Tables 2, 3 and 4.

Partition number Optimal parameter values QCV
i Q̃CV

i

1 {2, 8} 0.146 0.118

2 {2, 12} 0.099 0.096

3 {2, 9} 0.110 0.109

4 {2, 12} 0.117 0.115

5 {2, 12} 0.104 0.104

mean QCV = 0.115 Q̃CV = 0.108

Table 5: Cross validation informations for algorithm 1, method of Vincent and Masters, with ǫ criterion.

Partition number Optimal parameter values QCV
i Q̃CV

i

1 {2, 19} 0.512 0.512

2 {2, 18} 0.524 0.510

3 {2, 19} 0.490 0.488

4 {2, 19} 0.533 0.533

5 {2, 19} 0.540 0.540

mean QCV = 0.520 Q̃CV = 0.516

Table 6: Cross validation informations for algorithm 1, method of Vincent and Masters, with fom criterion.

Partition number Optimal parameter values QCV
i Q̃CV

i

1 {4, 5, 1, 25, 1} 0.162 0.148

2 {4, 4, 1, 28, 1} 0.157 0.155

3 {4, 4, 1, 28, 1} 0.141 0.141

4 {4, 4, 1, 28, 1} 0.109 0.109

5 {4, 4, 1, 30, 1} 0.180 0.158

mean QCV = 0.150 Q̃CV = 0.142

Table 7: Cross validation informations for algorithm 2, method of Angulo and Matou, with ǫ criterion.
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Partition number Optimal parameter values QCV
i Q̃CV

i

1 {3, 4, 1, 21, 1} 0.510 0.510

2 {3, 4, 1, 21, 1} 0.565 0.558

3 {3, 4, 1, 21, 1} 0.624 0.598

4 {3, 4, 1, 21, 1} 0.448 0.443

5 {3, 4, 1, 21, 1} 0.479 0.479

mean QCV = 0.525 Q̃CV = 0.518

Table 8: Cross validation informations for algorithm 2, method of Angulo and Matou, with fom criterion.

Partition number Optimal parameter values QCV
i Q̃CV

i

1 {2, 7, 4, 6} 0.078 0.078

2 {2, 7, 4, 6} 0.100 0.099

3 {2, 7, 4, 5} 0.111 0.093

4 {2, 7, 4, 6} 0.109 0.101

5 {2, 7, 4, 7} 0.100 0.091

mean QCV = 0.099 Q̃CV = 0.092

Table 9: Cross validation informations for algorithm 3, method of Gavet and Pinoli, with ǫ criterion.

Partition number Optimal parameter values QCV
i Q̃CV

i

1 {2, 7, 4, 8} 0.506 0.502

2 {2, 7, 4, 7} 0.490 0.486

3 {2, 7, 4, 8} 0.486 0.480

4 {2, 7, 4, 7} 0.484 0.477

5 {2, 7, 4, 7} 0.562 0.548

mean QCV = 0.506 Q̃CV = 0.498

Table 10: Cross validation informations for algorithm 3, method of Gavet and Pinoli, with fom criterion.
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5 Conclusion and perspectives

In this article, three segmentation methods suitable for binarizing the optical specular microscopy gray-tone im-

ages of human corneal endotheliums have been presented. These methods involve different control parameters.

This is always a hard problem for the user because he has no time to manually tune up his computer softwares

(and especially his image segmentation softwares). Two dissimilarity criteria have been employed (ǫ dissimilarity

criterion [7] and Pratt’s figure of merit fom [1]) to tune up the segmentation algorithms in regard to the expert

manual segmentation. As a result, this article proposes the optimal control parameter values to use for these

images. It also proposes to avoid some operations since their parameters do not really influence the segmentation

results. More generally, this article highlights the relevance of the ǫ dissimilarity criterion with a spatial tolerance,

suitable to handle the problem of the bias in the reference segmentation. This ǫ dissimilarity criterion is adapted

to compare binary contour images as well as binary sets, for 2D or even 3D images. In a near future, we expect to

report such a criterion to compare gray-tone images.
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