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Abstract

The quantitative evaluation of image segmentation is an important and di�cult task that is required for making a decision
on the choice of a segmentation method and for the optimal tuning of its parameter values. To perform this quantitative
evaluation, dissimilarity criteria are relevant with respect to the human visual perception, contrary to metrics that have been
shown to be visually not adapted. This article proposes to compare eleven dissimilarity criteria together. The �eld of retina
vessels image segmentation is taken as an application issue to emphasize the comparison of �ve speci�c image segmentation
methods, in regard to their degrees of consistency and discriminancy. The DRIVE and STARE databases of retina images
are employed and the manual/visual segmentations are used as a reference and as a control method. The so-called ε criterion
gives results in agreement with perceptually based criterions for achieving the quantitative comparison.
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1 Introduction

Image segmentation is one of the most important and hard-to-address steps in image analysis. An image segmentation process
consists in partitioning the spatial support of an image into adjacent parts that are pairwise disjoint. When dealing with a 2-D
image, that is to say with a 2-D support, such parts are either regions (two dimensional sets), contours (one dimensional sets)
or isolated points (zero dimensional sets). Only Euclidean sets will thus be considered. Moreover, only binary images will be
considered without the loss of generality for the purpose of this paper. The general segmentation case (segmentation into n
di�erent sets) will not be discussed as it implies di�erent processes, like for example pairing the sets together (see also [22]).

The relevance of an image segmentation is �rstly and mainly that of the resulting binary image. Comparing such resulting
binary images coming from various segmentation methods (automatically or manually/visually performed by a computer and a
human expert, respectively) is therefore required. Since these methods have been selected as performing in front of a particular
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imaging application issue, they often output similar binary images, which makes their comparative study more tedious. The
reader could refer to [18, 29, 30, 21] to have a view on some methods for segmentation evaluation.

The quantitative comparative evaluation either deals with the region-based paradigm or with the contour-based paradigm
[17]. It can be performed by resorting to a reference method or not (see [3]). To perform this comparison, numerous criteria have
been reported in the specialized literature. In this article, eleven numerical criteria are employed. They are supervised criteria, as
they compare a binary image with a ground truth (usually performed manually/visually by an expert). In fact, the quantitative
evaluation by means of comparative criteria is the so-called �rst-order comparative problem, since it is criterion-dependent.
Consequently, this article also addresses the second-order comparative problem consisting in the quantitative comparison of the
eleven criteria themselves. This article focuses on the so-called summary measures [22]. Although ROC curves are a lot richer,
their comparison is not straightforward. It is not evident for example to decide whether it is preferable to have false negatives
instead of false positives.

The �eld of ophthalmology with the segmentation of the blood vessels of retinal images is addressed here. Five image
segmentation methods reported in the literature as particularly adapted to such an application issue have been arbitrarily
selected. They are not state of the art methods, but they will provide di�erent results for performing a comparison of the
criteria. The article is organised in six sections. First, the image segmentation is described from a geometrical viewpoint. In
section 2, the mathematical notions of metric and dissimilarity are presented and discussed, showing the relevance of the second
one. Section 3 focuses on the eleven dissimilarity criteria used in this article for supervised segmentation evaluation. In section 4,
�ve selected image segmentation methods are presented. Quantitative comparisons are detailed in section 5. Finally, a concluding
discussion and perspectives end the article.

1.1 Image segmentation

An image segmentation process refers to the action of partitioning the spatial domain of an image into adjacent regions, each of
them preserving a certain homogeneity with respect to a given criterion.

This article deals with the case where the image segmentation result is a binary image which partitions the spatial support
S (that will be considered as a bounded set in R2) such that S =

⋃
i∈I Ri where I is �nite and the regions (Ri)i∈I are pairwise

disjoint (typically open) sets.

2 Metrics and dissimilarities

In many real applications, it is useful to compare segmentations together. This can be done for evaluating the e�ciency of
segmentation methods together or comparing them to a reference method (see [3]). Many approaches exist, mostly involving
region criteria [30, 21]. Usually, these methods are mathematically based on distance functions, e.g., metrics.

Distance functions are adapted to perform comparisons of (mathematical) objects belonging to an �object collection� ξ (for
example, ξ is the family of the segmentations on a given image, e.g., with a given de�nition domain S). A metric is a particular
distance function d that is de�ned on ξ2 and valued in R+ (set of all positive real numbers) , satisfying the four following axioms
(see [6]):

(identity) ∀x ∈ ξ, d(x, x) = 0

(separation) ∀x, y ∈ ξ, d(x, y) = 0⇒ x = y

(symmetry) ∀x, y ∈ ξ, d(x, y) = d(y, x)

(triangle inequality) ∀x, y, z ∈ ξ, d(x, y) ≤ d(x, z) + d(z, y)

Nevertheless, metrics are not necessarily the adapted notion. Indeed, it has been shown [26, 27, 10] that the metric notion is
not consistent with the human visual perception. To be more precise, the three last axioms of separation, symmetry and triangle
inequality do not hold for the human visual system:

• two objects of the same kind (for example, a computer-drawn square and a manually-drawn square) are considered as
visually similar although di�erent from a set-theoretic point of view.

• the order of observation of two di�erent objects is important, thus, the symmetry is not veri�ed by the human visual
system.

• the triangle inequality is not veri�ed. The Fig. 1 illustrates this assertion.
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A B C

Figure 1: Illustration of the triangle inequality axiom from a visual point of view. The human visual system does not verify the
triangle inequality, because A and B are partly close, B and C are also partly close, but A and C are really di�erent Thus, if d
is the visual comparative criterion, yields d(A,C) > d(A,B) + d(B,C).

Dissimilarity is the relevant notion, which de�nes a positive real valued function of two variables: a zero value means that
two objects are similar, and a large value implies a high dissimilarity.

As the human expertise plays an important role in image segmentation evaluation, the reader should notice that there are
two categories of segmentation evaluation: supervised and unsupervised [30]. The unsupervised evaluation involves an absolute
criterion that characterizes the accuracy of the segmentation. The supervised evaluation is based on a distance between a
reference segmentation result (called gold-standard in several applications �elds; it can be the result given by an automatic
reference method or by a human expert) and another segmentation result (generally computed).

3 Eleven dissimilarity criteria for supervised segmentation evaluation

The following notations are �rst introduced: M (as Manual) is the binary result of a reference segmentation method and X is
the result of the evaluated segmentation method.

This section introduces some classical and recent dissimilarity criteria that will be considered for binary segmentation evalu-
ation. This list is not exhaustive, interesting ideas and criteria can be found for example in [2, 15, 28], for general segmentation
evaluation.

3.1 Figure of merit

One of the mostly used criterion for evaluating segmentation is the so-called ��gure of merit� (fom) ([1, 25]) de�ned in Eq. 1.
Be aware that the original de�nition does not involve a di�erence to 1. It has been introduced in this paper so that the fom
criterion becomes a dissimilarity.

fomM (X) = 1− 1

max{#(M),#(X)}
∑
p∈X

1

1 + d2(p,M)
(1)

where d(p,M) is the Euclidean distance between the pixel p ∈ X to the closest pixel of M and # designates the cardinality,
namely the number of pixels of the considered sets M or X.

3.2 Dice coe�cient

Another widely used criterion is the Dice coe�cient [7], related to the Jaccard index [14], and de�ned by Eq. 2:

diceM (X) = 1− 2#(M ∩X)

#(M) + #(X)
(2)

As for the �gure of merit (fom), the original de�nition of the Dice coe�cient does not involve the di�erence to 1, but this
has been also introduced to become a dissimilarity.

3.3 Five criteria with pixel classi�cation

Performance results can also be compared with the use of pixels classi�cation (see Table 1) into four categories:

• True Positive (TP ),

• False Positive (FP ),
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• True Negative (TN),

• False Negative (FN).

Positive or Negative refer to the detection, true or false refer to the reference from the ground truth. Then, several criteria are
de�ned in Table 2, by evaluating the number of pixels in each category:

• sensitivity (measures the proportion of actual positives which are correctly identi�ed as such, e.g. the percentage of pixels
present in the ground truth which are correctly segmented , also known as recall rate ),

• speci�city (measures the proportion of negatives which are correctly identi�ed, e.g. the percentage of pixels absent of the
ground truth which are present in the segmentation),

• positive predictive value (the proportion of detected pixels that are true positives, also known as precision ),

• negative predictive value (the proportion of negative pixels that will not be present in the segmentation result),

• accuracy (measures the closeness of measurements of a quantity to that quantity's actual (true) value).

Notice that the Dice coe�cient can also be expressed in terms of pixel classi�cation as dice = 2TP
2TP+FN+FP .

hhhhhhhhhhhhhhhevaluated X
reference M

Pixel value= 1 Pixel value = 0

Pixel value = 1 True Positive (TP ) False Positive (FP )
Pixel value = 0 False Negative (FN) True Negative (TN)

Table 1: Pixels classi�cation. Each category set (TP , FP , FN or TN) represents a number of pixels.

Sensitivity

Se =
TP

TP + FN

Speci�city

Sp =
TN

TN + FP

Positive predictive value

Ppv =
TP

TP + FP

Negative predictive value

Npv =
TN

TN + FN

Accuracy

Acc =
TP + TN

TP + FN + TN + FP

Table 2: Some evaluation criteria based on pixel classi�cation (Table 1 ).

3.4 The ε dissimilarity criterion

The ε dissimilarity criterion is based on the symmetric di�erence of sets, but involves a tolerance with the help of the Minkowski
addition [20]. It is an extension of the Jaccard index [14] treated in [11], where a detailed study of its properties (tolerance to
under- or over-segmentation, translation or distortion, smoothing and visual tolerance as well as mathematical properties) has
been reported.

4



The ε dissimilarity criterion with the tolerance ρ applied to segmented images is de�ned by the following equation (Eq. 3,
see also [11]):

ερM (X) =
#{(X \M ⊕ ρN) ∪ (M \X ⊕ ρN)}

#{M ⊕ ρN}
(3)

with N being the disk of radius 1 (as structuring element) and # designating the number of pixels within the set. The Minkowski
addition symbol, denoted ⊕, is equivalent to the morphological dilation, N being symmetric, where N is called a structuring
element (for example a disk). Practically, ρ is the radius of the ball used to dilate the binary images.

3.5 Fuzzy Jaccard index

In the same objective of being perceptually relevant and visually tolerant, [18] proposes a so-called fuzzy Jaccard index. X and
M are the segmented sets and the reference (manual) segmentation, respectively, Xc and M c are the complements of these sets.
Let Nx be the 8-neighborhood of a point x ∈ Z2.

BX = {x : x ∈ X ∧ {Nx ∩Xc 6= ∅}}

BM = {x : x ∈M ∧ {Nx ∩M c 6= ∅}}

A membership function, called fuzzy border pixel maps in [18], is de�ned as follows, for K = X or M :

B̃K(x) = exp

(
−‖ x− x̂ ‖

2

2σ2

)

x̂ = argmin
y∈K

‖ x− y ‖

The parameter σ is the �fuzzy� parameter, used to introduce a tolerance, and similar to ρ for the ε parameter. Then, the
fuzzy Jaccard index is de�ned as:

FJ = 1−

∑
xmin

(
B̃X(x), B̃M (x)

)
∑
xmax

(
B̃X(x), B̃M (x)

)
Notice that the values are between 0 and 1. This de�nition is slightly modi�ed from the original de�nition from [18] to get 0

for an exact match.

3.6 Perceptually-weighted evaluation criterion

An evaluation criterion that tries to be perceptually signi�cant, adapted to object present in videos, is proposed in [29]. For the
purpose of binary image segmentation, we will restrict the de�nition to the static part of this criterion qms, which is de�ned for
a �xed frame as follows:

QMs = QMs+ +QMs−

where

QMs+ =

D+
max∑
d=1

w+(d) ·#
[
M+
d ∩X

]

QMs− =

D−
max∑
d=1

w+(d) ·#
[
M−d ∩X

c
]

and with the de�nitions (see [29]):

• d: distance to the reference mask border;

• D+
max

and D−
max

: biggest distance d for, respectively, false positives and false negatives;

• w+(d): weighting function for false positives according to distance d, expressed as w+(d) = B1 +
B2

d+B3
;

• w−(d): weighting function for false negatives, expressed as w−(d) = FS · d, with FS a constant factor;
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• M+
d and M−d : sets of pixels situated at distance d from the reference mask border, outside or inside the mask, respectively

(dist is the distance from pixel x to a set):

M+
d = {x|x ∈M c, dist(x,M) = d}

M−d = {x|x ∈M,dist(x,M c) = d}

• X is the segmentation result.

Finally,

qms =
QMS

#M

. Practically, the histogram of the distances to the reference mask of all pixels is used to compute this evaluation criterion.

4 Presentation of the �ve selected human retina vessels image segmentation

methods

Five image segmentation methods (see Fig. 2) that speci�cally address the human retina vessels extraction have been selected
for the di�erent tests on the dissimilarity criteria. This section presents them quickly.

4.1 Chaudhuri et al. method (Method 1)

This method [5] is based on the assumption that the retina vessels' intensity distributions may be approximated by the following
equation (Eq. 4, where f is the intensity pro�le in the image along a line perpendicular to a vessel):

f(x, y) = A
(
1− ke−d

2/2σ2
)

(4)

where d is the perpendicular distance between the point (x, y) and the straight line passing through the center of the blood
vessel in the direction along its length, σ denotes the thickness of the vessel, L designates the length of the vessels and is used in
Method 1, and A and k are real number constants re�ecting the gray level intensity of the local background and the re�ectance
of the vessel. A matched �lter (a correlation) is applied with these constraints (σ = 2 and L = 10 are the parameters of the
algorithm) and the result is �nally binarized.

The Chaudhuri et al method is summarized in Method 1.

Data : Input← Grayscale image of retina.
σ ← Thickness of detected vessels (pixels).
L← Length of detected vessels (pixels).
Direction← Di�erent orientations.
Result : S: Segmentation of the retina image.

1 begin

2 foreach Direction do

3 Matched �lter: emphasize linear segments of length L and thickness σ;
4 end

5 Take the minimum result for all directions;
6 Threshold and remove spurs to get a clean binary image;
7 Apply a mask of the region of interest, if necessary;
8 end

Method 1: Retina image segmentation from [5]. For the tests, the color images are converted into grayscale by only taking
the Green channel. The values of σ and L are experimentally �xed at 2 and 10.

4.2 Chanwimaluang et al. method (Method 2)

This second segmentation method ([4]) is based on the previous one, beginning by the same matched �lter. The thresholding
method changes (see Method 2): the connected components with a too small length are removed since it is based on a local
entropy measure (see [4] for precisions).
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(a) Original image of retina.

(b) Manual segmentation of (a). (c) Segmentation of (a) by the
algorithm of Chaudhuri et al.
[5] (Method 1).

(d) Segmentation of (a) by the
algorithm of Chanwimaluang
et al. [4] (Method 2).

(e) Segmentation of (a) by the
algorithm of Soares et al. [23]
(Method 3).

(f) Segmentation of (a) by the
algorithm of Mendonça et al.
[19] (Method 4).

(g) Segmentation of (a) by the
algorithm of Marin et al. [16]
(Method 5).

Figure 2: Retina image (eye fundus) and its segmentations (from DRIVE database [24] and STARE database [12], by using the
�ve presented methods of Chaudhuri et al. [5], Chanwimaluang et al. [4]), Soares et al. [23], Mendonça et al. [19] and Marin et
al. [16].

Data : Input← Grayscale image of retina.
Result : S: Segmentation of the retina image.

1 begin

2 Apply the matched �lter as in Method 1. The parameters are �xed;
3 Local entropy thresholding ;
4 Length Filtering (considers small connected components as misclassi�ed pixels);
5 end

Method 2: Retina image segmentation from [4].

7



4.3 Soares et al. method (Method 3)

Soares et al. [23] proposed a method applied on the (inverted) green channel and based on wavelet decomposition and pixel
classi�cation. The method is summarized in Method 3.

Data : Input← Inverted green channel of image of retina.
Result : S: Segmentation of the retina image.

1 begin

2 Preprocessing: extending the Region of Interest (ROI);
3 Wavelet decomposition (using 2D-Gabor wavelet);
4 For each scale, keep the maximum value for all directions;
5 Feature normalization (avoid dimensionality problems);
6 Supervised classi�cation (with manual segmentation on a training set);
7 end

Method 3: Retina image segmentation from [23].

4.4 Mendonça et al. method (Method 4)

A fourth segmentation method has been proposed by [19]. The main stages are presented in Method 4.

Data : Input← image of retina.
Result : S: Segmentation of the retina image.

1 begin

2 Preprocessing: background normalization and thin vessel enhancement;
3 Vessel centerline detection phase (Di�erence of O�set Gaussians �lters);
4 Vessel segmentation phase (based on mathematical morphology �lters);
5 end

Method 4: Retina image segmentation from [19].

4.5 Marin et al. method (Method 5)

The �fth segmentation method presented in this article has appeared recently ([16]). The method is summarized in Method 5.

Data : Input← image of retina.
Result : S: Segmentation of the retina image.

1 begin

2 Preprocessing: background homogenization and vessel enhancement;
3 Feature extraction;
4 Classi�cation by Neural Networks;
5 Postprocessing (�lling pixel gaps);
6 end

Method 5: Retina image segmentation from [16].

5 Quantitative comparisons

The DRIVE database [24] is constituted of retina images and their segmentations. It contains two families of retina images
(Fig. 2) : the test family and the training family. They contain images and their manual segmentations either performed by
two experts (test set) or by only one (training set). The STARE database [12] also contains 20 images of segmented vessels of
retina, with the manual reference given by two experts, denoted ah and vk.

This section presents the results of the evaluation of the di�erent segmentations on both databases. The �rst subsection will
begin a discussion on the tolerance parameter of the ε dissimilarity criterion. Then, all segmentation methods have been applied
to the 40 images of the test set of the DRIVE database and of the STARE database. One manual segmentation is employed as
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a reference (ground truth) and the second manual segmentation is presented as a control method. The results will be presented
in di�erent tables for the di�erent dissimilarity criteria. The degrees of consistency and discriminancy (see Defs. 5.1 and 5.2
in Sect. 5.3) of the dissimilarity criteria together will be computed and presented to emphasize the good behaviour of the ε
dissimilarity criterion.

5.1 Choice of the tolerance parameter of ε

The ε dissimilarity criterion satis�es the identity and separation properties of a metric, but neither obeys the symmetry nor
the triangle inequality axioms. For the symmetry property, it is justi�ed by the fact that the reference segmentation already
introduces a dissymmetry in the evaluation. Indeed, the ε dissimilarity criterion can almost be interpreted as a percentage of
misdetected pixels. The triangle inequality property is more complicated to interpret in the case of segmentations. It has been
deeply discussed in [11].

The monotonicity is the main property. Indeed, the ε dissimilarity criterion is decreasing in regard to the tolerance parameter
ρ (Eq. 5).

∀(ρ1, ρ2) ∈ R2
+, ρ1 > ρ2 ⇒ ερ1M (X) ≤ ερ2M (X) (5)

As in every spatial analysis method where a scale factor is employed, the choice of the tolerance parameter is crucial and
depends on the application issue. This section proposes a way to choose it. The test set of the DRIVE database is used to
make the choice of the tolerance parameter value (two persons, trained by an expert and thus also considered as experts, have
drawn the contours of the same retina image). The ε dissimilarity criterion has been used to compare every manual segmentation
to the other. The mean value of the ε dissimilarity criterion is represented in the Fig. 3.

The reader can consider that two experts should always draw the contours at the same location, but within a certain spatial
tolerance, depending on the image size and the precision of the drawing tool. The choice of the tolerance parameter then consists
in determining the criterion value under which two segmentations are considered as identical.

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

tolerance

 

 

criterion

Figure 3: Method for �xing the tolerance parameter value. Two experts have manually segmented the 20 training images of the
DRIVE database, and the ε dissimilarity criterion has been applied between the segmentation results. The average value for all
the results is shown in the graph. In this example, ρ is in pixels, and there is a strong gap between no tolerance (ρ = 0) and a
tolerance of one pixel (ρ = 1).

For this (DRIVE) database and the considered size of images (565 × 583 pixels), if we admit that an ε dissimilarity value
such that ε < 0.02 means �identical segmentations�, we should then take a tolerance of ρ = 4 (see Fig. 3). The same value will be
taken for image from the STARE database, as the scale of observation of the vessels is similar to those in the DRIVE database.

5.2 Comparison of the �ve segmentation methods by means of the eleven dissimilarity criteria

The 40 images from the databases have been segmented using the �ve methods, and their results have been compared to the
reference (which is the �rst manual segmentation). The second manual segmentation is also included and compared to the
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reference. As the two manual segmentations were performed in the same conditions, they should give similar results for their
evaluations by the considered criteria.

The summary of the comparison is presented in the di�erent subtables of Tables 3 and 2. The absolute values comparison
between the criterions are not su�cient to evaluate a segmentation result. However, the relative comparison of the values
obtained by the di�erent segmentation methods is meaningful. The Figs. 4 and 5 illustrate in a visual way the results of Tables 3
and 2. The values are normalized for each criterion with the maximal value obtained among the di�erent methods for the 40
images of the DRIVE and STARE database. This graph (Fig. 4) shows that Sp and Ppv criteria do not classify the manual
segmentation as the best segmentation (i.e., with the lower dissimilarity value). Moreover, these two criteria do not sort the
image segmentation methods in the same order as the others. Fig. 4 also shows that the ε dissimilarity criterion is shown to be
more discriminating than the others. This is not true in the Fig. 5. It also highlights that it is very di�cult to make a (visual)
di�erence between the methods from Soares and Mendonça. The next subsection 5.3 will quantify these visual facts.

mean std. dev. median

Chaudhuri et al 0.18 0.05 0.17
Chanwimaluang et al 0.12 0.07 0.09
Marin et al 0.08 0.03 0.08
Soares et al 0.06 0.05 0.05
Mendonca et al 0.07 0.07 0.05
Manual segmentation 0.04 0.02 0.03

(a) ε criterion, with ρ = 4

mean std. dev. median

Chaudhuri et al 0.60 0.12 0.57
Chanwimaluang et al 0.32 0.10 0.29
Marin et al 0.35 0.11 0.35
Soares et al 0.31 0.13 0.28
Mendonca et al 0.32 0.15 0.28
Manual segmentation 0.25 0.10 0.22

(b) fom criterion

mean std. dev. median

Chaudhuri et al 0.50 0.12 0.48
Chanwimaluang et al 0.35 0.07 0.33
Marin et al 0.29 0.07 0.28
Soares et al 0.27 0.07 0.24
Mendonca et al 0.30 0.12 0.27
Manual segmentation 0.24 0.04 0.23

(c) dice criterion

mean std. dev. median

Chaudhuri et al 0.62 0.12 0.60
Chanwimaluang et al 0.35 0.09 0.35
Marin et al 0.39 0.10 0.39
Soares et al 0.35 0.10 0.33
Mendonca et al 0.37 0.14 0.32
Manual segmentation 0.29 0.09 0.28

(d) Se criterion

mean std. dev. median

Chaudhuri et al 0.01 0.01 0.01
Chanwimaluang et al 0.03 0.02 0.03
Marin et al 0.01 0.01 0.01
Soares et al 0.01 0.01 0.01
Mendonca et al 0.01 0.01 0.01
Manual segmentation 0.01 0.01 0.01

(e) Sp criterion

mean std. dev. median

Chaudhuri et al 0.18 0.13 0.14
Chanwimaluang et al 0.31 0.13 0.27
Marin et al 0.13 0.07 0.13
Soares et al 0.15 0.11 0.15
Mendonca et al 0.18 0.15 0.17
Manual segmentation 0.15 0.09 0.16

(f) Ppv criterion

Table 3: Mean results of the eleven criteria for the �ve segmentation methods (and the second manual segmentation, which is a
segmentation from another expert), over all images of DRIVE and STARE databases. Continues on Table 2 on page 11.

5.3 Comparison of the eleven dissimilarity criteria

The quantitative comparison of dissimilarity criteria is not an easy task. This article makes use the de�nition of consistency and
discriminancy [8], more precisely the degree of consistency and the degree of discriminancy, as proposed in [13].

Intuitively, the degree of consistency evaluates the agreement between the di�erent criteria, and the degree of discriminancy
evaluates their capacity to distinguish the di�erent methods. We have chosen not to used nonparametric tests (Friedman,
Quade... see [9]) because the approach are similar (based on ranking methods together) and it would complicate the task of the
reader.

De�nition 5.1 (Degree of Consistency). For two dissimilarity criteria f and g de�ned on the domain ξ (ξ is the family of the
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mean std. dev. median

Chaudhuri et al 0.06 0.02 0.06
Chanwimaluang et al 0.04 0.01 0.04
Marin et al 0.04 0.02 0.03
Soares et al 0.04 0.02 0.03
Mendonca et al 0.04 0.02 0.03
Manual segmentation 0.03 0.02 0.03

(g) Npv criterion

mean std. dev. median

Chaudhuri et al 0.07 0.02 0.07
Chanwimaluang et al 0.07 0.02 0.06
Marin et al 0.05 0.02 0.04
Soares et al 0.05 0.02 0.04
Mendonca et al 0.05 0.02 0.04
Manual segmentation 0.04 0.01 0.04

(h) Acc criterion

mean std. dev. median

Chaudhuri et al 0.44 0.14 0.40
Chanwimaluang et al 0.21 0.10 0.19
Marin et al 0.20 0.09 0.19
Soares et al 0.18 0.10 0.15
Mendonca et al 0.19 0.13 0.13
Manual segmentation 0.13 0.08 0.12

(i) F1 criterion

mean std. dev. median

Chaudhuri et al 0.66 0.10 0.65
Chanwimaluang et al 0.46 0.06 0.47
Marin et al 0.44 0.10 0.45
Soares et al 0.36 0.10 0.36
Mendonca et al 0.35 0.11 0.34
Manual segmentation 0.29 0.09 0.28

(j) FJ criterion

mean std. dev. median

Chaudhuri et al 32.91 21.05 26.40
Chanwimaluang et al 11.64 6.22 9.98
Marin et al 8.78 4.77 7.43
Soares et al 5.26 2.87 4.34
Mendonca et al 5.48 3.91 4.22
Manual segmentation 3.58 2.28 2.70

(k) qms criterion

Table 2: Continued from Table 3. Mean results of the eleven criteria for the �ve segmentation methods (and the second
manual segmentation, which is a segmentation from another expert), over all images of DRIVE and STARE databases. Notice
that median and standard deviation values do not provide more information than the mean value does. The second manual
segmentation is expected to be the best segmentation, i.e. to get the lowest value.

segmentations on a given image, X1 and X2 are two segmentations belonging to ξ), let the sets R and S be de�ned by:

R = {(X1, X2)|X1, X2 ∈ ξ,
f(X1) > f(X2) and g(X1) > g(X2)}

S = {(X1, X2)|X1, X2 ∈ ξ,
f(X1) > f(X2) and g(X1) < g(X2)}

The degree of consistency of f and g is d◦C (0 ≤ d◦C ≤ 1), where

d◦C =
#R

#R+#S

(# stands for the number of elements of the sets). [13] precises that the degree of consistency d◦C is symmetric, i.e. d◦C(f, g) =
d◦C(g, f).

De�nition 5.2 (Degree of Discriminancy). For two dissimilarity criteria f and g de�ned on the domain ξ, let

P = {(X1, X2)|X1, X2 ∈ ξ,
f(X1) > f(X2) and g(X1) = g(X2)}

Q = {(X1, X2)|X1, X2 ∈ ψ,
g(X1) > g(X2) and f(X1) = f(X2)}
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Figure 4: Quantitative comparison of the six image segmentation methods evaluated with the eleven dissimilarity criteria, for
the images of the DRIVE database. The results have been normalized (i.e. the value 1 is given to the highest value for each
dissimilarity criterion). The mean values (on all images) have been represented. The choice of representing the values with lines
has been done because it emphasizes the fact that methods are consistent or not. In this graph, the comparison of numerical
values has no sense. Instead, the rankings (see Def. 5.1) of the segmentation methods can be compared for the di�erent criterions,
as well as their discriminancy (see Def. 5.2). Continues with images of the STARE database on Fig. 5.

The degree of discriminancy for f over g is

d◦D =
#P

#Q

Notice that the degree d◦D is not symmetric.

It is stated in [13] that a criterion can be considered as better as another one if d◦C > 0.5 (consistency) and d◦D > 1
(discriminancy).

In the present paper, these two degrees are calculated on the 40 segmented images of DRIVE and STARE databases, evaluated
for each dissimilarity criterion with the �rst manual segmentation taken as the ground truth.

The degrees of consistency are presented in Tables 3 and 4, the criteria can be separated into two groups (by taking values
above 0.5): the �rst group is constituted of ε, fom, dice, Se, Npv and Acc, whereas the second group is composed of Sp and
Ppv.

To compute the degree of discriminancy, as the values are �oat numerical values, the equality condition is subject to a
small tolerance. The choice has been made to consider that two values are equal if their di�erence is lower than 5% (with the
normalized values). The degrees of discriminancy are presented in Tables 5 and 6.

The Table 7 is the summary of this analysis. It shows that the ε dissimilarity criterion is a good choice. It has indeed a
good consistency with FJ and qms. One should notice that Sp is considered as di�erent, because not consistent with the other
criteria. As expected, because they try to have a perceptual justi�cation, FJ , qms, fom and ε give good results. The Acc
criterion does not seem to be a good criterion.

As a discussion, the choice of one segmentation as a reference is arbitrary. It has no in�uence in the DRIVE database,
because both experts propose almost similar segmentations, but references for the DRIVE database are really dissimilar (vk
segmentations present a lot more details than ah segmentations). Thus, the global results show a di�erent classi�cation of the
segmentation methods (see Figs. 4 and 5). The di�erence between the FJ and the ε dissimilarity are less evident. The computed
values of the degree of consistency are presented in Tables 3 and 4.
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(a) The comparison is retricted to values of the STARE database, for expert 'ah'.
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(b) The comparison is retricted to values of the STARE database, for expert 'vk'.

Figure 5: Continued from Fig. 4. The rankings are really di�erence, depending on the choosen expert. The manual segmentation
is not always given the lowest value, because both references from experts 'ah' and 'vk' are really di�erent (one contains detailed
vessels, whereas the other is less detailed).
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ε fom dice Se Sp Ppv Npv Acc F1 FJ qms

ε 1.00 0.85 0.93 0.86 0.45 0.57 0.87 0.87 0.90 0.97 0.97
fom 0.85 1.00 0.86 0.86 0.34 0.46 0.86 0.79 0.92 0.86 0.84
dice 0.93 0.86 1.00 0.85 0.47 0.59 0.86 0.92 0.91 0.93 0.92
Se 0.86 0.86 0.85 1.00 0.33 0.44 0.99 0.78 0.87 0.86 0.87
Sp 0.45 0.34 0.47 0.33 1.00 0.89 0.34 0.55 0.41 0.45 0.45
Ppv 0.57 0.46 0.59 0.44 0.89 1.00 0.45 0.66 0.52 0.57 0.56
Npv 0.87 0.86 0.86 0.99 0.34 0.45 1.00 0.79 0.88 0.87 0.88
Acc 0.87 0.79 0.92 0.78 0.55 0.66 0.79 1.00 0.84 0.88 0.87
F1 0.90 0.92 0.91 0.87 0.41 0.52 0.88 0.84 1.00 0.91 0.90
FJ 0.97 0.86 0.93 0.86 0.45 0.57 0.87 0.88 0.91 1.00 0.98
qms 0.97 0.84 0.92 0.87 0.45 0.56 0.88 0.87 0.90 0.98 1.00

Table 3: Degree of consistency d◦C between the di�erent dissimilarity criteria, for the DRIVE database. If d◦C > 0.5, the two
dissimilarity criteria are consistent. This evaluation is symmetric.

ε fom dice Se Sp Ppv Npv Acc F1 FJ qms

ε 1.00 0.82 0.87 0.61 0.64 0.68 0.62 0.87 0.79 0.90 0.87
fom 0.82 1.00 0.84 0.68 0.55 0.59 0.68 0.76 0.86 0.85 0.81
dice 0.87 0.84 1.00 0.68 0.59 0.64 0.69 0.85 0.83 0.85 0.88
Se 0.61 0.68 0.68 1.00 0.27 0.32 0.99 0.53 0.58 0.63 0.73
Sp 0.64 0.55 0.59 0.27 1.00 0.95 0.28 0.74 0.65 0.63 0.54
Ppv 0.68 0.59 0.64 0.32 0.95 1.00 0.33 0.79 0.67 0.66 0.58
Npv 0.62 0.68 0.69 0.99 0.28 0.33 1.00 0.54 0.58 0.64 0.74
Acc 0.87 0.76 0.85 0.53 0.74 0.79 0.54 1.00 0.82 0.84 0.79
F1 0.79 0.86 0.83 0.58 0.65 0.67 0.58 0.82 1.00 0.82 0.76
FJ 0.90 0.85 0.85 0.63 0.63 0.66 0.64 0.84 0.82 1.00 0.87
qms 0.87 0.81 0.88 0.73 0.54 0.58 0.74 0.79 0.76 0.87 1.00

(a) Degree of consistency d◦C for the STARE database, with expert 'ah'.

ε fom dice Se Sp Ppv Npv Acc F1 FJ qms

ε 1.00 0.77 0.91 0.76 0.61 0.68 0.78 0.87 0.76 0.92 0.93
fom 0.77 1.00 0.83 0.91 0.39 0.46 0.91 0.73 0.95 0.79 0.77
dice 0.91 0.83 1.00 0.83 0.55 0.62 0.85 0.89 0.82 0.88 0.87
Se 0.76 0.91 0.83 1.00 0.39 0.45 0.98 0.73 0.87 0.79 0.78
Sp 0.61 0.39 0.55 0.39 1.00 0.93 0.41 0.66 0.40 0.55 0.58
Ppv 0.68 0.46 0.62 0.45 0.93 1.00 0.47 0.73 0.46 0.62 0.64
Npv 0.78 0.91 0.85 0.98 0.41 0.47 1.00 0.75 0.86 0.81 0.79
Acc 0.87 0.73 0.89 0.73 0.66 0.73 0.75 1.00 0.72 0.80 0.83
F1 0.76 0.95 0.82 0.87 0.40 0.46 0.86 0.72 1.00 0.77 0.74
FJ 0.92 0.79 0.88 0.79 0.55 0.62 0.81 0.80 0.77 1.00 0.92
qms 0.93 0.77 0.87 0.78 0.58 0.64 0.79 0.83 0.74 0.92 1.00

(b) Degree of consistency d◦C for the STARE database, with expert 'vk'.

Table 4: Degree of consistency d◦C between the di�erent dissimilarity criteria, for the STARE database. If d◦C > 0.5, the two
dissimilarity criteria are consistent. This evaluation is symmetric.
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ε fom dice Se Sp Ppv Npv Acc F1 FJ qms

ε NaN 3.00 19.00 4.67 7.33 3.06 5.00 14.60 3.80 0.07 Inf
fom 0.33 NaN 2.26 2.08 2.92 1.16 2.38 2.65 0.90 0.17 2.50
dice 0.05 0.44 NaN 0.71 1.81 0.51 0.81 2.40 0.37 0.03 1.20
Se 0.21 0.48 1.40 NaN 2.07 0.76 5.00 1.83 0.50 0.10 1.50
Sp 0.14 0.34 0.55 0.48 NaN 0.23 0.53 0.84 0.32 0.06 0.64
Ppv 0.33 0.86 1.95 1.31 4.42 NaN 1.46 2.57 0.81 0.17 1.92
Npv 0.20 0.42 1.23 0.20 1.90 0.68 NaN 1.67 0.43 0.09 1.35
Acc 0.07 0.38 0.42 0.55 1.19 0.39 0.60 NaN 0.31 0.05 0.68
F1 0.26 1.11 2.73 2.00 3.09 1.24 2.33 3.22 NaN 0.13 3.23
FJ 14.00 5.78 34.50 10.50 15.83 5.80 11.17 21.25 7.83 NaN Inf
qms 0.00 0.40 0.83 0.67 1.56 0.52 0.74 1.48 0.31 0.00 NaN

Table 5: Degree of discriminancy d◦D between the di�erent dissimilarity criteria, for the DRIVE database. If d◦D > 1, the criterion
presented in column is more discriminant than the criterion presented in row (NaN stands for Not a Number. Inf stands for
in�nity; it is obtained when Q = 0, which means that there is no value where g(X1) > g(X2) and f(X1) = f(X2)), for f and g
two criterions, X1 and X2 two segmentation results.

ε fom dice Se Sp Ppv Npv Acc F1 FJ qms

ε NaN 0.63 0.54 0.13 4.95 0.40 8.60 15.86 0.50 0.26 0.00
fom 1.58 NaN 0.90 0.25 8.23 0.67 18.86 15.38 0.76 0.43 0.00
dice 1.87 1.11 NaN 0.28 8.38 0.74 16.88 24.40 0.83 0.44 0.00
Se 7.50 4.00 3.60 NaN 55.50 2.33 Inf 66.00 2.67 1.50 0.00
Sp 0.20 0.12 0.12 0.02 NaN 0.00 1.76 1.58 0.05 0.05 0.00
Ppv 2.50 1.50 1.36 0.43 Inf NaN 17.50 41.67 1.17 0.64 0.00
Npv 0.12 0.05 0.06 0.00 0.57 0.06 NaN 0.85 0.04 0.02 0.00
Acc 0.06 0.07 0.04 0.02 0.63 0.02 1.17 NaN 0.01 0.02 0.00
F1 2.00 1.31 1.20 0.38 20.80 0.86 22.67 121.00 NaN 0.53 0.00
FJ 3.88 2.33 2.25 0.67 22.20 1.56 46.67 43.33 1.88 NaN 0.00
qms Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf NaN

(a) Degree of discriminancy for the STARE database, with expert 'ah'.

ε fom dice Se Sp Ppv Npv Acc F1 FJ qms

ε NaN 0.65 1.07 0.84 2.28 1.60 1.32 2.20 0.89 0.40 19.25
fom 1.55 NaN 2.05 2.11 3.96 2.54 7.20 3.21 3.17 0.93 6.69
dice 0.94 0.49 NaN 0.74 2.09 1.50 1.41 2.22 0.81 0.56 6.46
Se 1.20 0.47 1.36 NaN 2.66 1.85 Inf 2.14 1.14 0.72 6.06
Sp 0.44 0.25 0.48 0.38 NaN 0.19 0.58 0.66 0.38 0.28 1.41
Ppv 0.63 0.39 0.67 0.54 5.17 NaN 0.83 0.98 0.56 0.39 2.26
Npv 0.75 0.14 0.71 0.00 1.71 1.21 NaN 1.27 0.47 0.45 3.50
Acc 0.45 0.31 0.45 0.47 1.51 1.02 0.78 NaN 0.50 0.31 3.13
F1 1.12 0.32 1.23 0.88 2.67 1.79 2.12 2.00 NaN 0.67 5.59
FJ 2.50 1.08 1.79 1.38 3.54 2.59 2.21 3.25 1.48 NaN 19.80
qms 0.05 0.15 0.15 0.16 0.71 0.44 0.29 0.32 0.18 0.05 NaN

(b) Degree of discriminancy for the STARE database, with expert 'vk'.

Table 6: Degree of discriminancy d◦D between the di�erent dissimilarity criteria, for the STARE database, using two di�erent
experts as the reference.
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ε fom dice Se Sp Ppv Npv Acc F1 FJ qms

ε * * * * * * * *
fom * * * * * * *
dice * * * * *
Se * * * *
Sp *
Ppv * * *
Npv * *
Acc * *
F1 * * * *
FJ * * * * * * * * * *
qms

(a) Results on images of both databases.

ε fom dice Se Sp Ppv Npv Acc F1 FJ qms

ε * * * * * * * *
fom * * * * *
dice * *
Se * * * *
Sp

Ppv * * * *
Npv * * *
Acc *
F1 * * * * * * *
FJ * * * * * * * * *
qms *

(b) Results on images of the DRIVE database only.

Table 7: As stated in [13], the criterion f is statistically consistent and more discriminating than g if and only if d◦C > 0.5 and
d◦D > 1. In this case, we assert that f is a better dissimilarity criterion than g, which is represented with a star/green cell.
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6 Concluding discussion and perspectives

6.1 Concluding discussion

The purpose of this article was to address the quantitative evaluation of image segmentation methods by means of comparative
criteria (�rst-order comparative problem) and the quantitative comparison of the criteria themselves (second-order comparative
problem). The application issue of retina vessels' image segmentation has been addressed with �ve speci�c segmentation methods
and eleven dissimilarity criteria reported in the specialized literature.

This articles emphasizes the problem using expert's manual reference, in the case of the STARE database the two experts
give really di�erent segmentations. To enhance this study, it would be interesting to have a relative rank of all the methods
given by one or several experts, so that the consistency and discriminancy values could re�ect the experts analysis.

It has been shown that the ε dissimilarity criterion is consistent with other perceptually based criterions. The practical results
on the DRIVE and STARE databases of retina images highlight its properties, particularly its tolerance to small variations in
the binary images, and its robustness to various small perturbations in the initial images. The ε dissimilarity criterion ranks the
manual segmentation with the lowest value, which means that it is in agreement with the visual perception.

Moreover, a pathway is now open to select the more appropriate image segmentation method for a particular application
issue (e.g., the retina vessels extraction in the present article), in addition to choose the best parameter values for optimally
tuning the algorithms of the segmentation methods.

6.2 Perspectives

In future studies, the ε dissimilarity criterion will be used to compare the results of some segmentation methods dedicated to
corneal endothelium images, as well as the tuning of the parameter values.
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