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Parallel Repetition of Entangled Games with Exponential Decay

via the Superposed Information Cost

André Chailloux1 and Giannicola Scarpa2

1 SECRET Project Team, INRIA Paris-Rocquencourt
2 CWI, Amsterdam

Abstract. In a two-player game, two cooperating but non communicating players, Alice and Bob,
receive inputs taken from a probability distribution. Each of them produces an output and they win
the game if they satisfy some predicate on their inputs/outputs. The entangled value ω∗(G) of a game
G is the maximum probability that Alice and Bob can win the game if they are allowed to share an
entangled state prior to receiving their inputs.
The n-fold parallel repetition Gn of G consists of n instances of G where the players receive all the
inputs at the same time and produce all the outputs at the same time. They win Gn if they win each
instance of G.
In this paper we show that for any game G such that ω∗(G) = 1 − ε < 1, ω∗(Gn) decreases ex-
ponentially in n. First, for any game G on the uniform distribution, we show that ω∗(Gn) = (1 −

ε2)
Ω
(

n
log(|I||O|)

−| log(ε)|
)

, where |I | and |O| are the sizes of the input and output sets. From this result,

we show that for any entangled game G, ω∗(Gn) ≤ (1− ε2)
Ω( n

Q log(|I||O|)
−

| log(ε)|
Q

)
where p is the input

distribution of G and Q =
|I|2 maxxy p2xy

minxy pxy
. This implies parallel repetition with exponential decay as long

as minxy{pxy} 6= 0 for general games. To prove this parallel repetition, we introduce the concept of
Superposed Information Cost for entangled games which is inspired from the information cost used in
communication complexity.

1 Introduction

A two-player (nonlocal) game is played between two cooperating parties Alice and Bob which are not allowed
to communicate. This game G is characterized by an input set I, an output set O, a probability distribution
p on I2 and a result function V : O2 × I2 → {0, 1}. The game proceeds as follows: Alice receives x ∈ I, Bob
receives y ∈ I where (x, y) is taken according to p. Alice outputs a ∈ O and Bob outputs b ∈ O. They win
the game if V (a, b|x, y) = 1. The value of the game ω(G) is the maximum probability, over all strategies,
with which Alice and Bob can win the game.

The n-fold parallel repetition Gn of G consists of the following. Alice and Bob get inputs x1, . . . , xn
and y1, . . . , yn, respectively. Each (xi, yi) is taken independently according to p. They output a1, . . . , an and
b1, . . . , bn, respectively. They win the game if and only if ∀i, V (ai, bi|xi, yi) = 1. In order to win the n-fold
repetition, Alice and Bob can just take the best strategy for G and use it n times. If they do so, they will
win Gn with probability (ω(G))n which shows that ω(Gn) ≥ (ω(G))n.

Parallel repetition of games studies how the quantity ω(Gn) behaves. For example, if ω(Gn) = (ω(G))n

for each n then we say that G admits perfect parallel repetition. However, there are some games for which
this does not hold, for example the CHSH game [7] repeated two times. It was a long-standing open question
to determine whether the value of ω(Gn) decreases exponentially in n. This was first shown by Raz [24].
Afterwards, a series of works showed improved results for specific types of games [14,23,1]. Parallel repetition
for games has many applications, from direct product theorems in communication complexity [22] to hardness
of approximation results [3,10,12].

In the quantum setting, it is natural to consider games where Alice and Bob are allowed to share some
entangled state at the beginning of the game. In this case we talk about entangled strategies. The maximum
probability that Alice and Bob can win a game G, over all the entangled strategies, is the entangled value
ω∗(G). Some entangled games are witnesses for the phenomenon of quantum non-locality, as they are special
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cases of the so-called Bell inequality violations. (We have a Bell inequality violation whenever ω∗(G) > ω(G).)
The study of entangled games is also greatly related to our understanding of quantum entanglement.

Perfect parallel repetition has been shown for entangled XOR games [8]. It was also shown that entangled
unique games [16] admit parallel repetition with exponential decay. Finally, it was shown that any entan-
gled game admits (a variant of) parallel repetition [17]. However, this last parallel repetition only shows a
polynomial decay of ω∗(Gn). It was unknown for a large class of games whether this decay is exponential or
not. Very recently two more works have been presented: a parallel repetition result with exponential decay
for entangled projection games [9] and an independent work [15] similar to this one.

1.1 Contribution

The main contribution of this paper is the following theorem.

Theorem 1. For any game G on the uniform distribution with ω∗(G) ≤ 1− ε, we have:

ω∗(Gn) = (1− ε2)Ω(
n

log(|I||O|)
−| log(ε)|).

where |I| and |O| are respectively the size of the input and the output sets.

The class of entangled games with a uniform distribution is a large class of entangled games for which
such parallel repetition was unknown. We can extend this result to any entangled game.

Corollary 1. For any game G such that ω∗(G) ≤ 1− ε, we have that

ω∗(Gn) ≤ (1 − ε2)Ω( n
Q log(|I||O|)

− | log(ε)|
Q

),

where I and O are respectively the input and output sets and Q =
k2 maxxy p2

xy

minxy pxy
.

This corollary can be obtained directly from the previous theorem. It is not as strong as usual parallel
repetition theorems with exponential decay because of this dependency on Q. Notice however that Q depends
only on the game G and not on n.

Remark: In a previous version of this paper, we had a different claim which had a flaw in the proof. We
replaced it by the above Corollary which is weaker in the sense that it gives non trivial bounds only for the
case where minxy{pxy} 6= 0.

1.2 Superposed Information cost

In order to prove the main theorem, we introduce the concept of Superposed Information Cost of a game,
an insightful concept and the cornerstone of our proof.

This concept is derived from the notion of information cost widely used in communication complexity
[6,2,4,18]. In the setting of communication complexity, we consider a function f(x, y) and suppose that Alice
has some input x and Bob some input y. They want to determine the outcome of f(x, y) for a certain function
f with the minimal amount of communication. The interactive information cost IC of f describes the least
amount of information that Alice and Bob need to have about each other’s inputs in order to compute
f(x, y).

We want to follow a similar approach for entangled games. In entangled games, the quantum state Alice
and Bob share is independent of the inputs x, y. We now give extra resources to Alice and Bob: advice states.
Alice and Bob are given an advice state |φxy〉 that can depend on their inputs. This can greatly increase
their winning probability. For example, Alice could have perfect knowledge of Bob’s input y, and vice-versa.

We define (informally) the information cost of a game as follows:
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Information Cost for entangled games
Alice and Bob are given advice states |φxy〉 to share that can depend on their inputs. What is the
minimal amount of information that these states have to give Alice and Bob about each other’s
input, in order to allow them to win the game with probability 1?

This is a natural extension of the information cost to entangled games. However, it is a limited notion
since we cannot relate it to the entangled value of the game. (A simple counterexample can be obtained
from the CHSH game.) Therefore, we extended this notion to the case where we allow the players to be in
a superposition of their inputs.

Superposed Information Cost (SIC) for entangled games
We extend the notion of information cost by allowing the players to have a superposition of their
inputs. We then consider the amount of information that advice states have to give Alice and Bob
about each other’s input, in order to allow them to win with probability 1.

These notions are defined precisely in Section 3.1.

Lower bounding the value of entangled games using the superposed information cost. The reason
we introduce the superposed information cost for entangled games is that we want to have an information
theoretic characterization of the value of entangled games. The next theorem states that the value of any
entangled game on the uniform distribution can be lower bounded by the superposed information cost (this
does not hold for the non-superposed one).

Theorem 2. For any game G with a uniform input distribution, we have SIC(G) ≥ 1−ω∗(G)
32 ln(2) or equivalently

ω∗(G) ≥ 1− 32 ln(2) · SIC(G).

The Superposed information cost is additive under parallel repetition:

Proposition 1. SIC(Gn) = nSIC(G).

Putting these two results together, we have SIC(Gn) ≥ n(1−ω∗(G))
32 ln(2) . This result shows that SIC(Gn)

is large when n increases and can be seen as evidence that the game Gn is hard to win and that ω∗(Gn)
decreases fast.

Using SIC to show our parallel repetition theorem. We fix a game G with ω∗(G) = 1 − ε and
ω∗(Gn) = 2−t for some t. In order to prove our theorem, we consider a quantity S which is strongly related
to SIC(Gn). We show that

Ω(nε) ≤ S ≤ O

(

t log(|I||O|)
ε

)

. (1)

The lower bound is a natural extension of the above argument about the additivity of SIC. The ingredient
we need to show the upper bound is the following communication task :

– The players use an optimal strategy for Gn and win with probability ω∗(Gn) = 2−t.

– Alice sends m = O( t log(|I||O|)
ε ) bits to Bob.

– Using this message, Bob’s goal is to determine with high probability whether they won most of the games
or not.

Switching to a communication task and to a related quantity S seems much weaker than showing directly
an upper bound on SIC(Gn), but it will be enough for us. Combining these two results, we conclude that

t = Ω( nε2

log(|I||O|)) or equivalently, for ε close to 0, ω∗(Gn) = (1− ε2)Ω( n
log(|I||O|)

).
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1.3 Organization of the paper

Section 2 contains preliminaries about entangled games. In Section 3, we define the key concept of the
superposed information cost for a game and show that this quantity is additive when repeating games in
parallel. In Section 4, we provide a brief organization of the main proof. In Section 5, we show Theorem 2
and some generalizations. In Section 6 we derive the upper bound of (1) (the lower bound is proven in the
main paper). Finally, in Section 7 we prove our main theorem. Many proofs are deferred to the Appendix.

2 Entangled Games

The value of an entangled game

Definition 1. An entangled game G = (I, O, V, p) is defined by finite input and output sets I and O as well
as an accepting function V : O2 × I2 → {0, 1} and a probability distribution p : I2 → [0, 1].

A strategy for the game proceeds as follows. Alice and Bob can share any quantum state. Then, Alice
receives an input x ∈ I and Bob receives an input y ∈ I where these inputs are sampled according to p.
They can perform any quantum operation but are not allowed to communicate. Alice outputs a ∈ O and
Bob outputs b ∈ O. They win the game if V (a, b|x, y) = 1.

The entangled value of a game G is the maximal probability with which Alice and Bob can win the game.
From standard purification techniques, we have that w.l.o.g., Alice and Bob share a pure state |φ〉 and their
optimal strategy consists of projective measurements Ax = {Ax

a}a∈O and By = {By
b }b∈O on |φ〉. This means

that after receiving their inputs, they share a state of the form ρ =
∑

x,y∈I pxy|x〉〈x| ⊗ |φ〉〈φ| ⊗ |y〉〈y|, for
some state |φ〉.

Definition 2. The entangled value of a game G is

ω∗(G) = sup
|φ〉,Ax,By

∑

x,y,a,b

pxyV (a, b|x, y)〈φ|Ax
a ⊗By

b |φ〉.

Definition 3. A game G = (I, O, V, p) is on the uniform distribution if I = [k] for some k and ∀x, y ∈
[k], pxy = 1

k2 . We write p = Unif. when this is the case.

Value of a game with advice states Consider a game G = (I, O, V, p). We are interested in the value of
the game when the two players share an advice state |φxy〉 additionally to their inputs x, y. This means that
Alice and Bob share a state of the form ρ =

∑

x,y,a,b pxy|x〉〈x| ⊗ |φxy〉〈φxy| ⊗ |y〉〈y|.

Definition 4. The entangled value of G, given that Alice and Bob share the above state ρ is

ω∗(G|ρ) = max
Ax,By

∑

x,y

pxyV (a, b|x, y)〈φxy |Ax
a ⊗By

b |φxy〉.

Repetition of entangled games In the n-fold parallel repetition of a game G, each player gets n in-
puts from I and must produce n outputs from O. Each instance of the game will be evaluated as usual by
the function V . The players win the parallel repetition game if they win all the instances. More formally,
for a game G = (I, O, V, p) we define Gn = (I ′, O′, V ′, q), where I ′ = I×n, O′ = O×n, qxy = Πi∈[n]pxi,yi

and V ′(a, b|x, y) = Πi∈[n]V (ai, bi|xi, yi). While playing Gn, we say that Alice and Bob win game i if
V (ai, bi|xi, yi) = 1.

Majority game For a game G = (I, O, V, p) and a real number α ∈ [0, 1] we define Gn
α = (I ′, O′, V ′, p′)

as follows: I ′ = I×n, O′ = O×n, p′xy = Πi∈[n]pxi,yi
as in Gn. We define V ′(a, b|x, y) = 1 ⇔ #{i :

V (ai, bi|xi, yi) = 1} ≥ αn.
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3 Advice states, superposed players and information cost

The notion of information cost has been very useful for communication complexity. Here we derive a similar
notion for entangled games.

Consider a game with advice state as defined in Section 2. The advice state can potentially greatly
help the players. For example, Alice could know y and Bob could know x. We ask ourselves the following
question:
For a game G = (I = [k], O, V, p) such that ω∗(G) = 1 − ε < 1 and a state ρ =

∑

x,y∈[k] pxy|x〉〈x|X ⊗
|φxy〉〈φxy |AB⊗|y〉〈y|Y , what is the minimum dependency that the states {|φxy〉}xy must have on x, y to have
ω∗(G|ρ) = 1?

There are different ways of characterizing this dependency on x, y. A first possibility would be to consider
the information that Alice has about y and Bob has about x while sharing ρ. However, there are cases
where Alice and Bob can win a game with probability 1 using an advice state while still not learning
anything about each other’s input. For example, take the CHSH game [7] and consider the states |φ00〉 =
|φ01〉 = |φ10〉 = 1√

2
(|00〉 + |11〉)AB and |φ11〉 = 1√

2
(|01〉 + |10〉). If the two players share the state ρ =

∑

x,y∈{0,1} 1/4|x〉〈x|X ⊗|φxy〉〈φxy |AB⊗|y〉〈y|Y , Alice has no information about y and Bob has no information
about x. On the other hand, if both players measure their registers A and B in the computational basis
and output the results, they will win the CHSH game with probability 1 hence ω∗(CHSH |ρ) = 1 while
ω∗(CHSH) = cos2(π/8).

We must consider a slightly different scenario so that Alice or Bob can learn something about the other
player’s input. When considering the amount of information that Alice has about Bob’s input y, we allow
Alice to have a coherent superposition of her inputs. Similarly, we will be interested in the amount of
information Bob has about x when he has a coherent superposition of his inputs.

This scenario is motivated as follows: if Alice and Bob have a common procedure to create |φxy〉 from
their respective inputs x and y, Alice can create a superposition of her inputs and they can perform the
same procedure. This scenario has for example been in order to show optimal bounds for quantum bit
commitment [5].

This approach leads to the definition of the superposed information cost of a game. In the next section,
we give formal definitions of this notion.

3.1 The superposed information cost

Consider a family of states {|φxy〉}xy and a probability distribution {pxy}xy. Let px· =
∑

y pxy and p·y =
∑

x pxy.

Let |LB
x 〉 = 1√

px·

∑

y
√
pxy|φxy〉|y〉 and |LA

y 〉 = 1√
p·y

∑

x
√
pxy|x〉|φxy〉. Consider the two superposed states:

σA =
∑

y∈[k]

p·y|LA
y 〉〈LA

y |XAB ⊗ |y〉〈y|Y

σB =
∑

x∈[k]

px·|x〉〈x|X ⊗ |LB
x 〉〈LB

x |ABY .

Here σA (resp. σB) corresponds to ρ where Alice’s input (resp. Bob’s input) is put in a coherent superpo-
sition. We first define the superposed information cost of a family of states with a probability distribution.

Definition 5. The superposed information cost SIC({|φxy〉, pxy}xy) is defined as SIC({|φxy〉, pxy}xy) =
I(Y : XA)σA + I(X : BY )σB .

Remark: This definition has good properties when the input distribution is a product distribution or
close to a product distribution. One may want to consider a more general definition when considering any
distribution.

We also define the superposed information cost of a shared state ρ of the form ρ =
∑

xy∈[k] pxy|x〉〈x| ⊗
|φxy〉〈φxy | ⊗ |y〉〈y|.
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Definition 6. SIC(ρ) = inf{SIC({|φxy〉, pxy}xy)} where the infimum is taken over all families {|φxy〉, pxy}xy
s.t. ρ =

∑

xy∈[k] pxy|x〉〈x| ⊗ |φxy〉〈φxy | ⊗ |y〉〈y|.
Remark: Notice that a state ρ doesn’t uniquely define states {|φxy〉, pxy}xy because it doesn’t capture the
phases in the states |φxy〉.

We now define the superposed information cost of an entangled game.

Definition 7. For any entangled game G = (I, O, V, p), we define SIC(G) = inf{SIC({|φxy〉}xy, {pxy}xy)}
where the infimum is taken over all ({|φxy〉}xy, {pxy}xy) such that the associated state ρ =

∑

xy pxy|x〉〈x| ⊗
|φxy〉〈φxy | ⊗ |y〉〈y| satisfies ω∗(G|ρ) = 1.

The superposed information cost behaves nicely under parallel repetition. In Appendix B, we show

Proposition 2. For any game G, we have SIC(Gn) = n · SIC(G).

4 Organisation of the proof of Theorem 1

In Section 5, we show how to use the Superposed Information Cost of a game G to bound its entangled value
ω∗(G). We first show:

Theorem 2. For any game G on the uniform distribution, SIC(G) ≥ 1−ω∗(G)
32 ln(2) .

We also extend this theorem as follows:

Theorem 3. There exists a small constant c0 such that for any game G = (I = [k], O, V,Unif.) satisfying
ω∗(G) = 1 − ε, for any game G′ = (I = [k], O, V, p) satisfying 1

2

∑

x,y |pxy − 1
k2 | ≤ c0ε and any state

ρ =
∑

xy pxy|x〉〈x| ⊗ |φxy〉〈φxy | ⊗ |y〉〈y| such that ω∗(G′|ρ) ≥ 1− ε
4 , we have that SIC(ρ) = Ω(ε).

If ω∗(G) = 1 − ε, Theorem 2 claims that SIC(G) ≥ ε
32 ln(2) which gives by additivity of the superposed

information cost that SIC(Gn) ≥ nε
32 ln(2) . Ideally, we would like to upper bound SIC(Gn) with a function

of ω∗(Gn). Unfortunately, we are not able to do this directly. In Section 6, we show the following weaker
statement:

Theorem 4. Consider a game G = (I, O, V,Unif.) such that ω∗(G) = 1 − ε and ω∗(Gn) = 2−t. Let
Gn

1−ε/32 = (In, On, V ′,Unif.) as defined in Section 2. There exists a game G′ = (In, On, V ′, p) and a state

ξ =
∑

xy pxy|x〉〈x| ⊗ |φxy〉〈φxy | ⊗ |y〉〈y| satisfying the following properties:

1. H(XY )ξ ≥ 2n log(k)− t− 1
2. ω∗(G′|ξ) ≥ 1− ε/32

3. SIC(ξ) ≤ 32 log(|I||O|)
ε ((t+ 1) + | log(ε)|+ 5) + 2t+ 2.

The first condition states that p is in some sense close to the uniform distribution hence G′ is close to
Gn

1−ε/32. This theorem is weaker than an upper bound on SIC(G′) which itself is weaker than an upper

bound on SIC(Gn), but this kind of upper bound will be enough.
In Appendix E, we prove the following matching lower bound.

Theorem 5. Consider a game G = (I = [k], O, V,Unif.) such that ω∗(G) = 1 − ε and ω∗(Gn) = 2−t with
t = o(nε). Let also Gn

1−ε/32 = (In = [kn], On, V ′,Unif.) as defined in Section 2. For any game G′ = (I ′ =

[kn], O′, V ′, p) and any state ρ =
∑

x,y∈[kn] pxy|x〉〈x|X ⊗ |φxy〉〈φxy |AB ⊗ |y〉〈y|Y , satisfying
1. H(XY )ρ ≥ 2n log(k)− t− 1
2. ω∗(G′|ρ) ≥ 1− ε/32

we have SIC(ρ) ≥ Ω(nε).

In Section 7, we show how to use the two above theorems to conclude:

Theorem 1. For any game G = (I, O, V,Unif.) with ω∗(G) ≤ 1− ε, we have

ω∗(Gn) = (1− ε2)Ω(
n

log(|I||O|)
−| log(ε)|).
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5 Overview of Theorem 2

Theorem 2. For any game G on the uniform distribution, SIC(G) ≥ 1−ω∗(G)
32 ln(2) .

We sketch the proof as follows. We fix a game G = (I = [k], O, V,Unif.) and a state ρ =
∑

x,y
1
k2 |x〉〈x|X ⊗

|φxy〉〈φxy |AB ⊗ |y〉〈y|Y such that ω∗(G|ρ) = 1. As in Section 3.1, we define |LA
y 〉, |LB

x 〉, σA, σB. Let ρAy =

TrB|LA
y 〉〈LA

y | and ρBx = TrA|LB
x 〉〈LB

x |. Intuitively, ρAy (resp. ρBx ) corresponds to the input-superposed state
that Alice (resp. Bob) has, conditioned on Bob getting y (resp. Alice getting x). Let F denote the fidelity of
quantum states. We prove the following three inequalities.

1. First we show that SIC(ρ) ≥ 1
4 ln(2) (1 − 1

k2

∑

y,y′ F 2(ρAy , ρ
A
y′) + 1− 1

k2

∑

x,x′ F 2(ρBx , ρ
B
x′))

2. Then we show that

1− 1

k2

∑

y,y′

F 2(ρAy , ρ
A
y′) + 1− 1

k2

∑

x,x′

F 2(ρBx , ρ
B
x′) ≥ 1

8
(1−max

|Ω〉

∑

x,y∈[k]

1

k2
|〈Ω|Ux ⊗ Vy |φxy〉|2)

for some (sets of) unitaries {Ux}x, {Vy}y.
3. Finally, we show that (1−max|Ω〉

∑

x,y∈[k]
1
k2 |〈Ω|Ux ⊗ Vy |φxy〉|2) ≥ 1− ω∗(G).

Putting the three inequalities together, we get

SIC(ρ) ≥ 1

4 ln(2)
(1− 1

k2

∑

y,y

F 2(ρAy , ρ
A
y′) + 1− 1

k2

∑

x,x′

F 2(ρBx , ρ
B
x′))

≥ 1

32 ln(2)
(1 −max

|Ω〉

∑

x,y∈[k]

1

k2
|〈Ω|Ux ⊗ Vy|φxy〉|2) for some {Ux}x{Vy}y

≥ 1− ω∗(G)

32 ln(2)
.

Since this holds for any ρ satisfying ω∗(G|ρ) = 1, we have SIC(G) ≥ 1−ω∗(G)
32 ln(2) .

6 Overview of Theorem 4

In this section we sketch the proof of Theorem 4. The construction of the state ξ will directly be inspired by
a communication task that we now present.

The communication task Fix a gameG = (I, O, V,Unif.) satisfying ω∗(G) = 1−ε. LetGn = (In, On, Vn,Unif.)
such that ω∗(Gn) = 2−t for some t. We now consider the following task H(p,m).

Task H(p,m)

– Alice and Bob are allowed to share any quantum state |φ〉.
– Alice and Bob get inputs x = x1, . . . , xn and y = y1, . . . , yn, with x, y ∈ In, following the

uniform distribution.
– Alice is allowed to send m bits to Bob
– Then Alice outputs some value a ∈ On and Bob outputs some value b ∈ On or ’Abort’.

For each index i, we say that Alice and Bob win game i if Bob does not abort and V (ai, bi|xi, yi) =
1. We require the following

1. Pr[Bob does not abort] ≥ p
2. Pr[Alice and Bob win ≥ (1 − ε/32)n games | Bob does not abort] ≥ (1− ε/32).

7



Showing how to perform this task with a small amount of communication is a first step towards the
construction of ξ. We consider the following protocol P that efficiently performs this task.

Protocol P for the task H(p,m)

1. Let v ≤ n be an integer, to be determined at the end of this section. Alice and Bob have shared
randomness that correspond to v random (not necessarily different) indices i1, . . . , iv ∈ [n] as

well as a state |φ〉 that allows them to win Gn with probability at least ω∗(Gn)
2 = 2−(t+1).

2. Alice and Bob receive uniform inputs x, y. They perform a strategy that wins all n games
with probability 2−(t+1) and have some outputs a = a1, . . . , an and b = b1, . . . , bn.

3. For each index i ∈ {i1, . . . , iv}, Alice sends xi and ai to Bob.
4. For each of these indices i, Bob looks at xi, yi, ai, bi and checks whether they win on all of

these v games, i.e. , he checks that for all these indices, V (ai, bi|xi, yi) = 1.
5. If they do win on all of these games, Bob outputs b. Otherwise, Bob outputs ’Abort’.

Proposition 3. The above protocol performs the task H(p,m) with p ≥ 2−(t+1) and m = 32 log(|I||O|)
ε ((t+

1) + | log(ε)|+ 5).

Proof. We have:

Pr[Bob does not abort] = Pr[Alice and Bob win Gi ∀i ∈ {i1, . . . , iv}]
≥ Pr[Alice and Bob win Gi ∀i ∈ [n]] = 2−(t+1),

hence p ≥ 2−(t+1). For a uniformly random index i, we have:

Pr[Alice and Bob win Gi| Alice and Bob win ≤ (1− ε/32)n games ] ≤ 1− ε/32.

Since the indices in {i1, . . . , iv} are independent random indices in [n], we have

Pr[Bob does not abort | Alice and Bob win ≤ (1 − ε/32)n games]

= Pr[Alice and Bob win Gi ∀i ∈ {i1, . . . , iv}| Alice and Bob win ≤ (1− ε/32)n games]

≤ (1− ε/32)v.

Next, we have:

Pr[A and B win ≤ (1− ε/32)n games | B does not abort] · Pr[B does not abort]

= Pr[B does not abort | A and B win ≤ (1− ε/32)n games] · Pr[A and B win ≤ (1− ε/32)n games]

≤ Pr[B does not abort | A and B win ≤ (1− ε/32)n games]

≤ (1 − ε/32)v.

This gives us:

Pr[A and B win ≤ (1 − ε/32)n games | B does not abort] ≤ (1− ε/32)v

Pr[B does not abort]

≤ (1 − ε/32)v

2−(t+1)
.

We can take v = 32
ε ((t+ 1) + | log(ε)|+ 5), such that we have

Pr[A and B win ≤ (1− ε/32)n games | B does not abort] ≤ ε/32.
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Notice that m = v · log(|I||O|). Therefore, if Alice sends m = 32 log(|I||O|)
ε ((t+ 1) + | log(ε)|+ 5) bits to Bob,

Pr[A and B win ≥ (1− ε/32)n games | B does not abort] ≥ 1− ε/32.

Using the communication task to prove Theorem 4

The idea is the following: Alice and Bob perform protocol P for the task H(p,m) performing everything in
superposition, including the messages and their shared randomness. The advice state we consider is the state
ρNA Alice and Bob share conditionned on Bob not aborting. This state ρNA can be written as

ρNA =
∑

xy

qxy|x〉〈x|X ⊗ |φxy〉〈φxy | ⊗ |y〉〈y|Y

To prove the theorem, we must show the following properties for ρNA.

1. H(XY )ρNA
≥ 2n log(k)− t− 1.

2. ω∗(G′|ρNA) ≥ 1− ε/32 where Gn
1−ε/32 = (I ′, O′, V ′,Unif.) and G′ = (I ′, O′, V ′, q).

3. SIC(ρNA) ≤ 32 log(|I||O|)
ε ((t+ 1) + | log(ε)|+ 5) + 2t+ 2.

The ideas behind the proofs of these three properties are as follows:

1. In task H(p,m), Pr[Bob does not abort] ≥ p = 2−t, when conditionning on Bob winning, we remove at
most t bits of entropy from the (uniform) inputs in X,Y , the 1 in the inequality is there for technical
reasons.

2. In the task H(p,m), Pr[Alice and Bob win ≥ (1 − ε/32)n games | Bob does not abort] ≥ (1 − ε/32).
This directly implies the second property

3. In protocol P, before Alice sends her message, Bob has no information about x. Alice sends a message
of size m, which gives m bits of information about Alice’s input. Conditionning on Bob winning gives

him an extra 2t bits of information. Since m = 32 log(|I||O|)
ε ((t + 1) + | log(ε)| + 5) from the previous

Proposition, we can conclude.

7 Final Theorem

Theorem 1. For any game G = (I, O, V,Unif.) with ω∗(G) ≤ 1− ε, we have:

ω∗(Gn) = (1− ε2)Ω(
n

log(|I||O|)
−| log(ε)|).

Proof. Let Gn
1−ε/32 = (In = [kn], On, Vn,Unif.) as defined in Section 2. Using Theorem 4, we know there

exists a state ξ =
∑

xy pxy|x〉〈x| ⊗ |φxy〉〈φxy | ⊗ |y〉〈y| and a game G′ = (In, On, Vn, p) satisfying

1. H(XY )ξ ≥ 2n log(k)− t− 1
2. ω∗(G′|ξ) ≥ 1− ε/32

3. SIC(ξ) ≤ 32 log(|I||O|)
ε ((t+ 1) + | log(ε)|+ 5),

where 2−t = ω∗(Gn). We now distinguish two cases

– If t = Ω(εn) then ω∗(Gn) = (1− ε)Ω(n) and the theorem holds directly.
– If t = o(εn), we need the following argument. The state ξ satisfies all the properties of Theorem 5 which

implies that SIC(ξ) = Ω(nε). We combine the two inequalities and obtain

Ω(nε) ≤ SIC(ξ) ≤ 32 log(|I||O|)
ε

((t+ 1) + | log(ε)|+ 5).
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It follows that t = Ω
(

nε2

log(|I||O|) − | log(ε)|
)

, which allows us to conclude

ω∗(Gn) = 2−t ≤ (1 − ε2)O(
n

log(|I||O|)
−| log(ε)|).

Finally, we extend the result to games with complete support (i.e. , games on distributions p such that
6 ∃(x, y) for which pxy = 0). This bound is weaker than the main result, because it depends also on p.

Corollary 1. Let G = (I, O, V, p) be a game with complete support and ω∗(G) = (1− ε). Then,

ω∗(Gn) ≤ (1 − ε2)Ω( n
Q log(|I||O|)

− | log(ε)|
Q

),

where Q =
k2 maxxy p2

xy

minxy pxy
.

The proof of the above Corollary is in Appendix F.
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A Preliminaries

A.1 Useful facts about the fidelity and trace distance of two quantum states.

We start by stating a few properties of the trace distance ∆ and fidelity F between two quantum states.
These two notions characterize how close two quantum states are.

Trace distance between two quantum states

Definition 8. For any two quantum states ρ, σ, the trace distance ∆ between them is given by ∆(ρ, σ) =
∆(σ, ρ) = 1

2‖ ρ− σ ‖tr.

Here the used trace norm may be expressed as ‖ X ‖tr =
√
X†X = maxU |tr(XU)|, where the maximiza-

tion is taken over all unitaries of the appropriate size.

Proposition 4. For any two states ρ, σ, and a POVM E = {E1, . . . , Em} with pi = tr(ρEi) and qi =
tr(σEi), we have ∆(ρ, σ) ≥ 1

2

∑

i |pi − qi|. There exists a POVM (even a projective measurement) for which
this inequality is an equality.

Proposition 5. [13] Suppose Alice has a uniformly random bit c ∈ {0, 1}, unknown to Bob. She sends a
quantum state ρc to Bob. We have

Pr[Bob guesses c] ≤ 1

2
+
∆(ρ0, ρ1)

2
.

There is a strategy for Bob that achieves the value 1
2 + ∆(ρ0,ρ1)

2 .

Fidelity of quantum states

Definition 9. For any two states ρ, σ, their fidelity F is given by F (ρ, σ) = F (σ, ρ) = tr(

√

ρ
1
2σρ

1
2 )

Proposition 6. For any two states ρ, σ, and a POVM E = {E1, . . . , Em} with pi = tr(ρEi) and qi =
tr(σEi), we have F (ρ, σ) ≤∑i

√
piqi. There exists a POVM for which this inequality is an equality.

Definition 10. We say that a pure state |ψ〉 in A⊗B is a purification of some state ρ in B if TrA(|ψ〉〈ψ|) =
ρ.

Proposition 7 (Uhlmann’s theorem). For any two quantum states ρ, σ, there exists a purification |φ〉
of ρ and a purification |ψ〉 of σ such that |〈φ|ψ〉| = F (ρ, σ).

Proposition 8. For any two quantum states ρ, σ and a completely positive trace preserving operation Q, we
have F (ρ, σ) ≤ F (Q(ρ), Q(σ)).

Proposition 9 ([25,21]). For any two quantum states ρ, σ

max
ξ

(

F 2(ρ, ξ) + F 2(ξ, σ)
)

= 1 + F(ρ, σ).

Proposition 10 ([11]). For any quantum states ρ, σ, we have

1− F (ρ, σ) ≤ ∆(ρ, σ) ≤
√

1− F 2(ρ, σ).

As direct corollaries of Proposition 9, we have

Proposition 11. Let |A〉, |B〉, |C〉 be three quantum states. We have

|〈A|C〉| ≥ |〈A|B〉|2 + |〈B|C〉|2 − 1.
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and

Proposition 12. For any 3 quantum states ρ1, ρ2, ρ3, we have

(1− F (ρ1, ρ2)) + (1− F (ρ2, ρ3)) ≥
1

2
(1 − F (ρ1, ρ3)),

or equivalently F (ρ1, ρ3) ≥ 1− 2(1− F (ρ1, ρ2) + 1− F (ρ2, ρ3)).

Proof. Using Proposition 9, we have

1 + F (ρ1, ρ3) = max
ξ

(

F 2(ρ1, ξ) + F 2(ξ, ρ3)
)

≥ F 2(ρ1, ρ2) + F 2(ρ2, ρ3),

which gives

1− F (ρ1, ρ3) ≤ 1− F 2(ρ1, ρ2) + 1− F 2(ρ2, ρ3) ≤ 2(1− F (ρ1, ρ2)) + 2(1− F (ρ2, ρ3)).

Hence 1− F (ρ1, ρ2) + 1− F (ρ2, ρ3) ≥ 1
2 (1 − F (ρ1, ρ3)).

Proposition 13. For two quantum states ρ =
∑

x px|x〉〈x| ⊗ ρx and ρ′ =
∑

x p
′
x|x〉〈x| ⊗ ρ′x, we have

F (ρ, ρ′) =
∑

x

√
pxpx′F (ρx, ρx′).

Proof. We use the following definition of the fidelity: F (ρ, ρ′) = ||√ρ√ρ′||1. From there, we immediately
have that

F (ρ, ρ′) =
∑

x

√
pxpx′ ||√ρx

√

ρ′x||1 =
∑

x

√
pxpx′F (ρx, ρx′).

A.2 Information Theory

For a quantum state ρ, the entropy of ρ is H(ρ) = −tr(ρ log(ρ)). For a quantum state ρ ∈ X ⊗ Y, H(X)ρ
is the entropy of the quantum register in the space X when the total underlying state is ρ. In other words,
H(X)ρ = H(TrY(ρ)).

H(X |Y )ρ = H(XY )ρ −H(Y )ρ is the conditional entropy of X given Y on ρ and I(X : Y )ρ = H(X)ρ +
H(Y )ρ −H(XY )ρ is the mutual information between X and Y on ρ.

We define Hmin(ρ) = − log(λmax) where λmax is the maximum eigenvalue of ρ. For ρ in X ⊗Y, we define

Hmin(X |Y )ρ = max
σ∈Y

sup{λ : ρ ≤ 2−λIX ⊗ σ}

We have Hmin(X |Y )ρ ≤ H(X |Y )ρ [20]. In the case where Alice and Bob share ρ =
∑

x px|x〉〈x|X ⊗ ρ(x)Y ,
where Alice has register X and Bob has register Y, we have Hmin(X |Y )ρ = − log(Pr[Bob can guess x]).

Claim (Subadditivity of the conditional entropy).

H(AB|C) ≤ H(A|C) +H(B|C)

Claim ([19]).

I(A : B)ρ ≥ 2

ln(2)
(1− F (ρ, ρA ⊗ ρB))

where ρA = TrB(ρ) and ρB = TrA(ρ)

Claim (from [26]). For any distribution p on a universe U , if H(p) ≥ log(|U |)−ε then ∆(p,Unif.) ≤ ε, where
Unif. is the uniform distribution.
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B Additivity of the superposed information cost

Our goal here is to prove the additivity of the superposed information cost, i .e. that SIC(Gn) = nSIC(G).
Before the proof, we introduce some notation and prove a lemma.

Let G = (I, O, V, p) and let Gn = (In, On, Vn, q). For a string x = x1, . . . , xn ∈ In, let x−i be the string
in In−1 where we remove xi from x. Let ρ =

∑

x,y∈In qxy|x〉〈x|⊗ |φxy〉〈φxy |⊗ |y〉〈y| satisfying ω∗(Gn|ρ) = 1.

As in Section 3.1, we define |LA
y 〉, |LB

x 〉, σA, σB for ρ. We first prove the following Lemma:

Lemma 1. For all i ∈ [n] we have that

I(Yi : XA)σA + I(Xi : Y B)σB ≥ SIC(G).

Proof. By definition of Gn, we have qxy = Πjpxj ,yj
. We define q−i

xy = Πj 6=ipxj,yj
. For each i, we can rewrite

ρ as:

ρ =
∑

x,y∈In

qxy|xi〉〈xi|Xi
⊗ |x−i〉〈x−i|X−i

⊗ |φxy〉〈φxy|AB ⊗ |y−i〉〈y−i|Y−i
⊗ |yi〉〈yi|Yi

.

We define

|Zi
xi,yi

〉 =
∑

x′,y′∈In:x′
i=xi,y′

i=yi

√

q−i
x′y′ |x′−i〉 ⊗ |φx′y′〉 ⊗ |y′−i〉.

Let ρi =
∑

xi,yi∈I pxi,yi
|xi〉〈xi| ⊗ |Zi

xi,yi
〉〈Zi

xi,yi
| ⊗ |yi〉〈yi|. ρi corresponds to ρ where the registers in

X−i,Y−i are put in superposition. Hence, Alice and Bob can go from ρi to ρ by measuring the registers X−i

and Y−i in the computational basis. Using ρ, Alice and Bob can win the ith instance of G with probability
1. This means that they can also win this ith instance of G when sharing ρi and ω

∗(G|ρi) = 1.
We define

|LB
xi
(i)〉 = 1

√
pxi·

∑

yi∈I

√
pxi,yi

|Zi
xi,yi

〉|yi〉

|LA
yi
(i)〉 = 1

√
p·yi

∑

xi∈I

√
pxi,yi

|xi〉|Zi
xi,yi

〉.

We now also define the two new superposed states of ρi

σB
i =

∑

xi∈I

pxi·|xi〉〈xi|Xi
⊗ |LB

xi
(i)〉〈LB

xi
(i)|X−iABY

σA
i =

∑

yi∈I

p·yi
|LA

yi
(i)〉〈LA

yi
(i)|XABY−i

⊗ |yi〉〈yi|Yi
.

ω∗(G|ρi) = 1 implies SIC(ρi) ≥ SIC(G) hence

I(Yi : XA)σA
i
+ I(Xi : BY )σB

i
≥ SIC(G).

σA
i corresponds to σA where the input registers Y−i are put in a coherent superposition. From there, we

have TrY−i
(σA

i ) = TrY−i
(σA) and I(Yi : XA)σA

i
= I(Yi : XA)σA . Similarly, we have I(Xi : BY )σB

i
= I(Xi :

BY )σB , which gives

I(Yi : XA)σA + I(Xi : Y B)σB ≥ SIC(G).

We can now prove our proposition:
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Proposition 2. SIC(Gn) = nSIC(G).

Proof. We have:

SIC(ρ) = I(Y : XA)σA + I(X : BY )σB

= H(Y )σA −H(Y |XA)σA +H(X)σB −H(X |BY )σB

=
∑

i∈[n]

H(Yi)σA −H(Y |XA)σA +
∑

i∈[n]

H(Xi)σB −H(X |BY )σB

≥
∑

i∈[n]

H(Yi)σA −
∑

i∈[n]

H(Yi|XA)σA +
∑

i∈[n]

H(Xi)σB −
∑

i∈[n]

H(Xi|BY )σB

=
∑

i∈[n]

I(Yi : XA)σA + I(Xi : BY )σB

≥ nSIC(G),

where the first inequality comes from the subadditivity of the quantum conditional entropy and the last
inequality comes from Lemma 1. Since this holds for any state ρ satisfying ω∗(Gn|ρ) = 1, we conclude that
SIC(Gn) ≥ nSIC(G).

We can also notice that SIC(Gn) ≤ nSIC(G). Indeed, consider a state ρ such that ω∗(G|ρ) = 1. We
have ω∗(Gn|ρ⊗n) = 1. Moreover, SIC(ρ⊗n) = nSIC(ρ). From there, we have SIC(Gn) ≤ nSIC(G). We
conclude that SIC(Gn) = nSIC(G).

C Proof of Theorems 2 and 3

The organisation and an overview of the proof can be found in Section 5.

C.1 First inequality

We will show this inequality for any input distribution. Let ρ =
∑

x,y∈[k] pxy|x〉〈x|X ⊗|φxy〉〈φxy |AB⊗|y〉〈y|Y .
As in Section 3.1, we define |LA

y 〉, |LB
x 〉, σA, σB. Let ρAy = TrB|LA

y 〉〈LA
y | and ρBx = TrA|LB

x 〉〈LB
x |. Intuitively,

ρAy (resp. ρBx ) corresponds to the input-superposed state that Alice (resp. Bob) has, conditioned on Bob
getting y (resp. Alice getting x). We prove the following.

Proposition 14. SIC(ρ) ≥ 1
4 ln(2) (1−

∑

y,y′ p·yp·y′F 2(ρAy , ρ
A
y′) + 1−∑x,x′ px·px′·F 2(ρBx , ρ

B
x′)).

Proof. Let ξA = TrB(σ
A) and ξB = TrA(σ

B). This means that ξA =
∑

y p·yρ
A
y ⊗ |y〉〈y| and ξB =

∑

x px·|x〉〈x| ⊗ ρBx . We have SIC(ρ) = I(XA : Y )ξA + I(X : BY )ξB . Using Claim A.2, we get

SIC(ρ) ≥ 2

ln(2)
(1 − F (ξA, ξAXA ⊗ ξAY ) + 1− F (ξB , ξBX ⊗ ξBBY)). (2)
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where ξAXA =
∑

y p·yρ
A
y and ξAY =

∑

y p·y|y〉〈y|. Next, using Proposition 13, we have F (ξA, ξAXA ⊗ ξAY ) =
∑

y p·yF (ρ
A
y , ξ

A
XA). From there, we have:

1− F (ξA, ξAXA ⊗ ξAY ) = 1−
∑

y∈[k]

p·yF (ρ
A
y , ξ

A
XA)

=
1

2
(1−

∑

y∈[k]

p·yF (ρ
A
y , ξ

A
XA) + 1−

∑

y′∈[k]

p·y′F (ρAy′ , ξAXA))

=
1

2

∑

y,y′∈[k]

p·yp·y′ [1− F (ρAy , ξ
A
XA) + 1− F (ρAy′ , ξAXA)]

≥ 1

4

∑

y,y′∈[k]

p·yp·y′(1− F (ρAy , ρ
A
y′)) using Proposition 12

≥ 1

8

∑

y,y′∈[k]

p·yp·y′(1− F 2(ρAy , ρ
A
y′))

Similarly, we can show that 1−F (ξB, ξBX ⊗ξBBY) ≥ 1
8

∑

x,x′∈[k] px·px′·(1−F 2(ρBx , ρ
B
x′)). Combining these with

Eq. 2, we conclude that

SIC(ρ) ≥ 1

4 ln(2)
(1−

∑

y,y′

p·yp·y′F 2(ρAy , ρ
A
y′) + 1−

∑

x,x′

px·px′·F
2(ρBx , ρ

B
x′)).

C.2 Second inequality

Let ρ = 1
k2

∑

x,y∈[k] |x〉〈x|X ⊗ |φxy〉〈φxy|AB ⊗ |y〉〈y|Y . As in Section 3.1, we define |LA
y 〉, |LB

x 〉, σA, σB . Let

ρAy = TrB|LA
y 〉〈LA

y | and ρBx = TrA|LB
x 〉〈LB

x |. We define:

εA = 1−
∑

y,y′

1

k2
F 2(ρAy , ρ

A
y′) = 1− E

y,y′
[F 2(ρAy , ρ

A
y′)]

εB = 1−
∑

x,x′

1

k2
F 2(ρBx , ρ

B
x′) = 1− E

x,x′
[F 2(ρAx , ρ

A
x′)].

The expectations will always be taken over the uniform distribution. We first show the following lemma.

Lemma 2. There exist i, j ∈ [k] as well as unitaries {Ux}x and {Vy}y acting respectively on A and B such
that if we define |Ωxy〉 = (Ux ⊗ Vy)|φxy〉, we have:

E
xy
[|〈Ωxy|Ωxj〉|2] ≥ E

y,y′
[F 2(ρAy , ρ

A
y′)] = 1− εA

E
xy
[|〈Ωxy|Ωiy〉|2] ≥ E

x,x′
[F 2(ρBx , ρ

B
x′)] = 1− εB.

Proof. Let j ∈ [k] that maximizes Ey′ [F 2(ρAj , ρ
A
y′)]. We have

E
y′
[F 2(ρAj , ρ

A
y′)] ≥ E

y,y′
[F 2(ρAy , ρ

A
y′)] ≥ 1− εA. (3)

For each y, consider the unitary Uy acting on B such that |〈LA
j |(IXA⊗Uy)|LA

y 〉| = F (ρAj , ρ
A
y ). Such a unitary

exists by Uhlmann’s theorem. We also choose Uj = IB. Since |LA
j 〉 = 1√

k

∑

x |x〉|φxj〉 and (IXA ⊗ Uy) acts

only on space B, we can write (IXA ⊗ Uy)|LA
y 〉 = 1√

k

∑

x |x〉|ξxy〉 for some |ξxy〉. Therefore, we have:

F (ρAj , ρ
A
y ) = |〈LA

j |(IXA ⊗ Uy)|LA
y 〉| = |1

k

∑

x

〈ξxy|φxj〉| = |E
x
[〈ξxy |φxj〉]| ≤ E

x
[|〈ξxy |φxj〉|].
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Since we took Uj = IB, we have |ξxj〉 = |φxj〉 for all x. We can hence rewrite for all y

F (ρAj , ρ
A
y ) ≤ E

x
[〈ξxy |ξxj〉]. (4)

We now analyze Bob’s side of the state similarly. Let |MB
x 〉 =∑y

1√
k
|ξxy〉|y〉. We have |MB

x 〉 = (
∑

y IA⊗
Uy ⊗ |y〉〈y|)|LB

x 〉. Let νBx = TrA|MB
x 〉〈MB

x |. We have νBx = (
∑

y U
†
yUy ⊗ |y〉〈y|) · ρBx . Hence for all x, x′, we

have

F (νBx , ν
B
x′) = F (ρBx , ρ

B
x′). (5)

Let i ∈ [k] such that Ex′ [F 2(νBi , ν
B
x′)] is maximal. We have

E
x′
[F 2(νBi , ν

B
x′)] ≥ 1− εB. (6)

For each x, consider the unitary Vx acting on A such that |〈MB
i |(Vx ⊗ IBY)|MB

x 〉| = F (νBi , ν
B
x ). Such a

unitary exists by Uhlmann’s theorem. We take Vi = IA. Since |MB
x 〉 = 1√

k

∑

y |ξxy〉|y〉 and (Vx ⊗ IBY) acts

only on space A, we can write (Vx ⊗ IBY)|MB
x 〉 = 1√

k

∑

y |Ωxy〉|y〉 for some |Ωxy〉. Therefore, we have:

F (νBi , ν
B
x ) = |〈MB

i |(Vx ⊗ IBY)|MB
x 〉| = |1

k

∑

y

〈ξiy |Ωxy〉| = |E
y
[〈ξiy |Ωxy〉]| ≤ E

y
[|〈ξiy |Ωxy〉|].

Using F (νBi , ν
B
i ) = 1, we have |ξiy〉 = |Ωiy〉 for all y. Using Eq. 5, we can hence rewrite for all x:

F (ρBi , ρ
B
x ) = F (νBi , ν

B
x ) ≤ E

y
[|〈Ωiy |Ωxy〉|]. (7)

Note finally that for all x, (Vx⊗IB)(|ξxy〉) = |Ωxy〉 hence we have for all x and for all y 〈Ωxy|Ωxy′〉 = 〈ξxy|ξxy′〉.
Using Eq. 4, we have

F (ρAj , ρ
A
y ) = E

x
[|〈ξxy|ξxj〉|] = E

x
[|〈Ωxy|Ωxj〉|]. (8)

Equations 7 and 8 give

F 2(ρAj , ρ
A
y ) = E

x
[|〈Ωxy|Ωxj〉|]2 ≤ E

x
[|〈Ωxy|Ωxj〉|2]

F 2(ρBi , ρ
B
x ) = E

y
[|〈Ωxy|Ωiy〉|]2 ≤ E

x
[|〈Ωxy|Ωiy〉|2].

Combining this with equations 3 and 6, we conclude

1− εA ≤ E
y
[F 2(ρAj , ρ

A
y )] ≤ E

xy
[|〈Ωxy|Ωxj〉|2]

1− εB ≤ E
x
[F 2(ρBi , ρ

B
x )] ≤ E

xy
[|〈Ωxy|Ωiy〉|2].

We can now prove the main proposition of this section.

Proposition 15. For any state ρ = 1
k2

∑

x,y∈[k] |x〉〈x| ⊗ |φxy〉〈φxy | ⊗ |y〉〈y|, there exist unitaries {Ux}x and

{Vy}y such that

εA + εB ≥ 1

8
(1 −max

|Ω〉

∑

x,y∈[k]

1

k2
|〈Ω|Ux ⊗ Vy|φxy〉|2),

where εA = 1−∑y,y′
1
k2F

2(ρAy , ρ
A
y′) and εB = 1−∑x,x′

1
k2F

2(ρBx , ρ
B
x′).
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Proof. Fix ρ = 1
k2

∑

x,y∈[k] |x〉〈x| ⊗ |φxy〉〈φxy | ⊗ |y〉〈y|. Using Lemma 2, let {Ux}x, {Vy}y, i, j such that

E
xy
[|〈Ωxy|Ωxj〉|2] ≥ 1− εA

E
xy
[|〈Ωxy|Ωiy〉|2] ≥ 1− εB,

with |Ωxy〉 = Ux ⊗ Vy|φxy〉. Using Proposition 11, we have

E
x,y,y′

[|〈Ωxy|Ωxy′〉|] ≥ E
x,y,y′

[|〈Ωxy|Ωxj〉|2 + |〈Ωxj |Ωxy′〉|2]− 1

≥ 1− εA + 1− εA − 1 = 1− 2εA.

It follows that

E
x,y,y′

[|〈Ωxy|Ωxy′〉|2] ≥ E
x,y,y′

[|〈Ωxy|Ωxy′〉|]2 ≥ (1− 2εA)2 ≥ 1− 4εA.

Similarly, we get Ex,x′,y[|〈Ωxy|Ωx′y〉|2] ≥ 1− 4εB. Using Proposition 11 again, we have

E
x,x′,y,y′

[|〈Ωxy|Ωx′y′〉|] ≥ E
x,x′,y,y′

[|〈Ωxy|Ωx′y〉|2 + |〈Ωx′y|Ωx′y′〉|2]− 1

≥ 1− 4εA + 1− 4εB − 1 = 1− 4(εA + εB).

This gives us

E
x,x′,y,y′

[|〈Ωxy|Ωx′y′〉|2] ≥ E
x,x′,y,y′

[|〈Ωxy |Ωx′y′〉]2 ≥ (1− 4εA − 4εB)2 ≥ 1− 8εA − 8εB.

Using

E
x,y,x′,y′

[|〈Ωxy|Ωx′y′〉|2] ≤ max
x′y′

E
x,y

[|〈Ωxy|Ωx′y′〉|2] ≤ max
|Ω〉

E
x,y

[|〈Ωxy|Ω〉|2],

we have
max
|Ω〉

E
x,y

[|〈Ω|Ωxy〉|2)] ≥ E
x,x′,y,y′

[|〈Ωxy|Ωx′y′〉|2] ≥ 1− 8εA − 8εB,

hence

εA + εB ≥ 1

8
(1 −max

|Ω〉
( E
x,y

[|〈Ω|Ωxy〉|2])) =
1

8
(1 −max

|Ω〉
( E
x,y

[|〈Ω|Ux ⊗ Vy |φxy〉|2])).

C.3 Last inequality

Proposition 16. Consider a game G = (I, O, V, p) and a state

ρ =
∑

x,y∈I

pxy|x〉〈x| ⊗ |φxy〉〈φxy| ⊗ |y〉〈y|

such that ω∗(G|ρ) = 1. We have that max|Ω〉
∑

x,y∈I pxy|〈Ω|φxy〉|2 ≤ ω∗(G).

Proof. Consider strategies {Ax
a}x∈I,a∈O and {By

b }y∈I,b∈O such that

∑

x,y,a,b

pxyV (a, b|x, y)〈φxy|Ax
a ⊗By

b |φxy〉 = 1.
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Let |Ω0〉 that maximizes
∑

x,y∈I pxy|〈Ω0|φxy〉|2. For any x, y, since
∑

ab V (a, b|x, y)〈φxy|Ax
a ⊗By

b |φxy〉 = 1, we have:

∑

a,b

V (a, b|x, y)〈Ω0|Ax
a ⊗By

b |Ω0〉 ≥ |〈Ω0|φxy〉|2.

From there, we have:

ω∗(G) ≥
∑

xyab

pxyV (a, b|x, y)〈Ω0|Ax
a ⊗By

b |Ω0〉

≥
∑

xy

pxy|〈Ω0|φxy〉|2 = max
|Ω〉

∑

xy

pxy|〈Ω|φxy〉|2.

This proposition has a useful corollary:

Corollary 2. Consider a game G = (I, O, V, p) and a state

ρ =
∑

x,y∈I

pxy|x〉〈x|X ⊗ |φxy〉〈φxy|AB ⊗ |y〉〈y|Y

such that ω∗(G|ρ) = 1. We have

max
|Ω〉,{Ux},{Vy}

∑

x,y∈I

pxy|〈Ω|(Ux ⊗ Vy)|φxy〉|2 ≤ ω∗(G),

for unitaries {Ux}x and {Vy}y acting respectively on A and B.

Proof. Let {Ux}x,{Vy}y that maximize max|Ω〉
∑

x,y∈I pxy|〈Ω|(Ux⊗Vy)|φxy〉|2. Let |ψxy〉 = Ux⊗Vy|φxy〉. Let
η =

∑

xy pxy|x〉〈x|⊗ |ψxy〉〈ψxy|⊗ |y〉〈y|. Since Alice and Bob can go from η to ρ by applying respectively U †
x

and V †
y , we conclude that ω

∗(G|η) = ω∗(G|ρ) = 1. Using Proposition 16, we have max|Ω〉
∑

x,y∈I pxy|〈Ω|(Ux⊗
Vy)|φxy〉|2 = max|Ω〉

∑

x,y∈I pxy|〈Ω|ψxy〉|2 ≤ ω∗(G).

We now prove a similar statement in the case ω∗(G|ρ) < 1.

Proposition 17. Consider a game G = (I, O, V, p) and a state

ρ =
∑

x,y∈I

pxy|x〉〈x| ⊗ |φxy〉〈φxy | ⊗ |y〉〈y|.

If ω∗(G|ρ) ≥ 1− γ and max|Ω〉
∑

x,y∈I pxy|〈Ω|φxy〉|2 ≥ 1− γ′, then

ω∗(G) ≥ 1− 2(γ + γ′).

Proof. Consider strategies {Ax
a}x∈I,a∈O and {By

b }y∈I,b∈O such that

∑

x,y,a,b

pxyV (a, b|x, y)〈φxy|Ax
a ⊗By

b |φxy〉 = 1− γ.

LetMxy =
∑

a,b V (a, b|x, y)Ax
a⊗By

b and let |Cxy〉 = Mxy |φxy〉
||Mxy|φxy〉|| . We have tr(Mxy|φxy〉〈φxy |) = |〈Cxy|φxy〉|2.

Let qxy = |〈Cxy|φxy〉|2. This gives us immediately

∑

x,y

pxyqxy = 1− γ.
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Let |Ω〉 such that
∑

x,y∈I pxy|〈Ω|φxy〉|2 ≥ 1 − γ′. Also, let rxy = |〈Ω|φxy〉|2 and sxy = |〈Ω|Cxy〉|2. We
have that

∑

xy

pxyrxy ≥ 1− γ′,

as well as

ω∗(G) ≥
∑

xy

pxytr(M
xy|Ω〉〈Ω|) ≥

∑

xy

pxy|〈Ω|Cxy〉|2 =
∑

xy

pxysxy.

Using Proposition 11, we have that for all x, y sxy ≥ (qxy + rxy − 1)2. Let mxy = 1− qxy + 1− rxy. We have
by defintion that

∑

xy pxymxy ≤ γ + γ′. Moreover, we have:

∑

xy

pxysxy ≥
∑

xy

pxy(qxy + rxy − 1)2

=
∑

xy

pxy(1−mxy)
2

≥
∑

xy

pxy(1− 2mxy) ≥ 1− 2(γ + γ′).

We conclude that ω∗(G) ≥∑xy pxysxy ≥ 1− 2(γ + γ′).

We derive two corollaries from this proposition.

Corollary 3. Consider a game G = (I, O, V, p) and a state

ρ =
∑

x,y∈I

pxy|x〉〈x|X ⊗ |φxy〉〈φxy |AB ⊗ |y〉〈y|Y .

If ω∗(G|ρ) ≥ 1− γ and

max
|Ω〉,{Ux},{Vy}

∑

x,y∈I

pxy|〈Ω|(Ux ⊗ Vy)|φxy〉|2 ≥ 1− γ′,

for unitaries {Ux}x and {Vy}y acting respectively on A and B, then

ω∗(G) ≥ 1− 2(γ + γ′).

Proof. Let {Ux},{Vy} such that max|Ω〉
∑

x,y∈I pxy|〈Ω|(Ux ⊗ Vy)|φxy〉|2 = 1− γ′. Let |ψxy〉 = Ux ⊗ Vy |φxy〉.
Let η =

∑

xy pxy|x〉〈x|⊗ |ψxy〉〈ψxy|⊗ |y〉〈y|. Since Alice and Bob can go from η to ρ by applying respectively

U †
x and V †

y , we conclude that ω∗(G|η) = ω∗(G|ρ) ≥ 1− γ. Using Proposition 17, we conclude that ω∗(G) ≥
1− 2(γ + γ′).

Taking a counterpostitive of the above Corollary we get the following

Corollary 4. Consider a game G = (I, O, V, p) and a state

ρ =
∑

x,y∈I

pxy|x〉〈x|X ⊗ |φxy〉〈φxy |AB ⊗ |y〉〈y|Y .

If ω∗(G|ρ) ≥ 1− γ and ω∗(G) ≤ 1− ε, then

max
|Ω〉,{Ux},{Vy}

∑

x,y∈I

pxy|〈Ω|(Ux ⊗ Vy)|φxy〉|2 ≤ 1− (ε/2− γ),

for unitaries {Ux}x and {Vy}y acting respectively on A and B.
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C.4 Putting it together

We can now show our theorems

Theorem 2. For any game G with a uniform input distribution, we have SIC(G) ≥ 1−ω∗(G)
32 ln(2) .

Proof. Consider a game G = (I = [k], O, V,Unif.) and ρ = 1
k2

∑

x,y |x〉〈x| ⊗ |φxy〉〈φxy| ⊗ |y〉〈y| such that
ω∗(G|ρ) = 1. Using Proposition 14 and Proposition 15, take {Ux}x and {Vy}y such that

SIC(ρ) ≥ 1

32 ln(2)
(1−max

|Ω〉

∑

xy

1

k2
|〈Ω|(Ux ⊗ Vy)|φxy〉|2).

Using Corollary 2, we have

max
|Ω〉

∑

xy∈[k]

1

k2
|〈Ω|(Ux ⊗ Vy)φxy〉|2 ≤ ω∗(G).

From there, we have SIC(ρ) ≥ 1−ω∗(G)
32 ln(2) . Since this holds for any ρ satisfying ω∗(G|ρ) = 1, we can conclude

that SIC(G) ≥ 1−ω∗(G)
32 ln(2) .

We now proceed to prove a similar result for the case where ω∗(G|ρ) < 1.

Proposition 18. For any game G with a uniform input distribution, and any state ρ such that ω∗(G|ρ) =
1− γ, we have SIC(ρ) ≥ 1

32 ln(2) (
ε
2 − γ) where ε = 1− ω∗(G).

Proof. The proof will be similar to the previous one. Consider a game G = (I = [k], O, V,Unif.) and
ρ = 1

k2

∑

x,y |x〉〈x|⊗ |φxy〉〈φxy|⊗ |y〉〈y| such that ω∗(G|ρ) = 1−γ. Using Proposition 14 and Proposition 15,
take {Ux} and {Vy} such that

SIC(ρ) ≥ 1

32 ln(2)
(1−max

|Ω〉

∑

xy

1

k2
|〈Ω|(Ux ⊗ Vy)φxy〉|2).

Using Corollary 4, we have that

1−max
|Ω〉

∑

xy

1

k2
|〈Ω|(Ux ⊗ Vy)φxy〉|2 ≥ ε

2
− γ,

where ε = 1 − ω∗(G). From there, we have SIC(ρ) ≥ 1
32 ln(2) (

ε
2 − γ). Since this holds for any ρ satisfying

ω∗(G|ρ) = 1, we can conclude that SIC(G) ≥ 1−ω∗(G)
32 ln(2) .

Our last extension is the following theorem, which is the one we will use for parallel repetition.

Theorem 3. There exists a constant c0 > 0 such that for any game G = (I = [k], O, V,Unif.) satisfying
ω∗(G) = 1 − ε, for any game G′ = (I = [k], O, V, p) satisfying 1

2

∑

x,y |pxy − 1
k2 | ≤ c0ε and any state

ρ =
∑

xy pxy|x〉〈x| ⊗ |φxy〉〈φxy | ⊗ |y〉〈y| such that ω∗(G′|ρ) ≥ 1− ε
4 , we have that SIC(ρ) = Ω(ε).

Proof. Fix any G,G′, ρ. We also fix a small constant c0 that will be specified later in the proof. Let ρ(U) =
1
k2

∑

xy |x〉〈x| ⊗ |φxy〉〈φxy | ⊗ |y〉〈y|.
Let σA, σB the superposed states of ρ. As in Proposition 14, we define ξB = TrA(σB). This means that

ξB =
∑

x px·|x〉〈x| ⊗ ρBx for some ρBx . Let also ξ
B
X = TrBY (ξ

B) and ξBBY = TrX(ξB).
Similarly, let σA(U), σB(U) the superposed states of ρ(U) and let ξB(U) = TrA(σB(U)). This means that

ξB(U) = 1
k

∑

x |x〉〈x| ⊗ ρBx (U) for some ρBx (U). Let also ξBX (U) = TrBY (ξ
B(U)) and ξBBY(U) = TrX(ξB(U)).

We want to upper bound SIC(ρ) = I(Y : XA)σA + I(X : BY )σB . Let δ = 1
2

∑

x,y |pxy − 1
k2 | ≤ c0ε. We

proceed as in Proposition 14. Using Claim A.2, we have I(X : BY )σB ≥ 2
ln(2)(1 − F (ξB , ξBX ⊗ ξBBY)). Notice
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that ∆(σB , σB(U)) ≤ δ which implies ∆(ξB(U), ξB) ≤ δ ; ∆(ξBX (U), ξBX ) ≤ δ and ∆(ξBBY(U), ξBBY) ≤ δ.
The two last inequalities give us ∆(ξBX (U) ⊗ ξBBY(U), ξBX ⊗ ξBBY) ≤ 2δ. From there, by using Claim A.2 and
Propositions 10 and 12, we have:

I(X : BY )σB = I(X : BY )ξB ≥ 2

ln(2)
(1− F (ξB , ξBX ⊗ ξBBY))

≥ 2

ln(2)
(
1

2
(1− F (ξB(U), ξBX ⊗ ξBBY))− (1 − F (ξB, ξB(U))))

≥ 2

ln(2)
(
1

2
(1− F (ξB(U), ξBX ⊗ ξBBY))− δ).

Then, we have:

1− F (ξB(U), ξBX ⊗ ξBBY) ≥
1

2
(1− F (ξB(U), ξBX (U)⊗ ξBBY(U)))− (1− F (ξBX ⊗ ξBBY , ξ

B
X (U)⊗ ξBBY(U)))

≥ 1

2
(1− F (ξB(U), ξBX (U)⊗ ξBBY(U)))− 2δ,

which gives us

I(X : BY )σB ≥ 2

ln(2)
(
1

4
(1− F (ξB(U), ξBX (U)⊗ ξBBY(U)))− 2δ).

Let εB = 1− 1
k2

∑

x,x′ F 2(ρBx (U), ρBx′(U)). As in Proposition 14, we can show that

(1 − F (ξB(U), ξBX (U)⊗ ξBBY(U))) ≥ εB

8
,

hence I(X : BY )σB ≥ 2
ln(2) (

εB

32 − 2δ). Similarly, if we define εA = 1 − 1
k2

∑

y,y′ F 2(ρAy (U), ρAy′(U)) we can

show that I(Y : XA)σA ≥ 2
ln(2) (

εA

32 − 2δ), which gives

SIC(ρ) ≥ 2

ln(2)

(

εA + εB

32
− 4δ

)

.

Using Proposition 15, we have:

SIC(ρ) ≥ 2

ln(2)

(

1

256
max

|Ω〉,{Ux},{Vy}

1

k2

∑

x,y

|〈Ω|φxy〉|2 − 4δ

)

.

We have ω(G) = 1− ε and ω(G|ρ(U)) ≥ 1− ε/4− δ. Using Corollary 4, we have:

max
|Ω〉,{Ux},{Vy}

1

k2

∑

x,y

|〈Ω|φxy〉|2 ≤ 1− (ε/2− ε/4− δ) = 1− ε/4 + δ.

From there, we conclude:

SIC(ρ) ≥ 2

ln(2)
(

1

256
(ε/4− δ)− 4δ).

By taking c0 = 1
8092 , which implies δ ≤ ε

8092 , we obtain SIC(ρ) = Ω(ε).
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D Proof of Theorem 4

We first present the actual construction of ξ and then show it has the desired properties required for Theo-
rem 4.

– Alice and Bob perform protocol P where the inputs are classical but the randomness, the message and
the outputs are left in a quantum superposition. To maintain the “classicality” of the message sent by
Alice, we ask Alice to have a quantum register which acts as a copy of the message.

– We ask Bob to determine whether he aborts or not. The state ξ will be the state Alice and Bob share
conditioned on Bob not aborting.

– Using Proposition 3, we prove that ξ has the desired properties

Procedure for constructing ξ

1. Alice and Bob pick random inputs x, y ∈R In = [kn]. They also share a state
∑

r γr|r〉RA
⊗

|φ〉AB ⊗ |r〉RB
where |φ〉 is the same as in protocol P and r corresponds to the shared ran-

domness in protocol P .
2. Alice and Bob perform a strategy that allows them to win Gn with probability 2−(t+1) but keep

their outputs in a coherent superposition instead of measuring. They keep these outputs in
registers OA and OB. They hence share the state ρ1 =

∑

x,y
1

k2n |x〉〈x|X ⊗|Ω1
xy〉〈Ω1

xy |⊗|y〉〈y|Y ,
with

|Ω1
xy〉 =

∑

a,b,r

γxyrab|a〉OA
|r〉RA

|φxyab 〉AB|r〉RB
|b〉OB

,

for some states |φxyab 〉.
3. Alice sends the message M that depends on x, a, r corresponding to step 3 of protocol P to

Bob and keeps a copy of M to herself in superposition, which means that they share a state
ρ2 =

∑

x,y
1

k2n |x〉〈x| ⊗ |Ω2
xy〉〈Ω2

xy | ⊗ |y〉〈y|, with

|Ω2
xy〉 =

∑

a,b,r,M

γxyrabM |a〉OA
|M〉MA

|r〉RA
|φxyab 〉AB|r〉RB

|M〉MB
|b〉OB

.

4. Bob copies in a new register Z whether he aborts or not. This means that they share a state
ρ3 =

∑

x,y
1

k2n |x〉〈x| ⊗ |Ω3
xy〉〈Ω3

xy | ⊗ |y〉〈y|, with

|Ω3
xy〉 =

∑

a,b,r,M

γxyrabM |a〉|M〉|r〉|φxyab 〉|r〉|M〉|b〉|NA〉Z+

∑

a,r,M

γxyra,AB,M |a〉|M〉|r〉|φxya,AB〉|r〉|m〉|AB〉|AB〉Z .

We can write |Ω3
xy〉 =

√

γ′xy|Y NA
xy 〉|NA〉+

√

1− γ′xy|Y AB
xy 〉|AB〉, for some {γ′xy}xy and states

{|Y 〉NA
xy }xy and {|Y 〉AB

xy }xy.

Let ρ−Z = TrZ(ρ3). Since the probability of Bob not aborting is p, we can write

ρ−Z = p · ρNA + (1− p) · ρAB,

for some state ρAB. ρNA is of the form
∑

xy qxy|x〉〈x|⊗ |Y NA
xy 〉〈Y NA

xy |⊗ |y〉〈y|. We choose ξ = ρNA.
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In the above protocol, ρ2 corresponds to the state Alice and Bob share after Step 3 of protocol P ex-
cept that the randomness, message and outputs are kept in a quantum superposition in the way described
above.

Similarly, ξ = ρNA corresponds to the state at the end of protocol P , conditioned on Bob not aborting.
Again, the randomness, message and outputs are kept in a quantum superposition in the way described
above.

D.1 Showing the desired properties of ξ = ρNA

We now show that ξ = ρNA has the desired properties of Theorem 4.

1) H(XY )ξ ≥ 2n log(k)− t− 1.

Proof. H(XY )ρ−Z
= 2n log(k). Since Dim(XY ) = k2n, this means that Hmin(XY )ρ−Z

= 2n log(k). We have
pρNA ≤ ρ−Z hence Hmin(XY )ρNA

− log(p) ≥ Hmin(XY )ρ−Z
= 2n log(k). This gives us Hmin(XY )ρNA

≥
2n log(k)+log(p). Since p ≥ 2−(t+1), we conclude thatHmin(XY )ρNA

≥ 2n log(k)−t−1, henceH(XY )ρNA
≥

2n log(k)− t− 1.

2) ω∗(G′|ξ) ≥ 1− ε/32 where Gn
1−ε/32 = (I ′, O′, V ′,Unif.) and G′ = (I ′, O′, V ′, q).

Proof. This holds by construction of ξ. Indeed, ξ is the superposed version of the state Alice and Bob share
after protocol P conditionned on Bob not aborting. We know that in this case, Pr[Alice and Bob win ≥
(1− ε/32)n games | Bob does not abort] ≥ (1− ε/32). From there, we have ω∗(G′|ξ) ≥ (1− ε/32)

3) SIC(ξ) ≤ 32 log(|I||O|)
ε ((t+ 1) + | log(ε)|+ 5) + 2t+ 2.

Proof. We upper bound the superposed information cost of the state ξ = ρNA. We are interested in the
superposed states σA

NA, σ
B
NA of ξ as defined in Section 3.1. Recall that ρNA =

∑

xy qxy|x〉〈x|⊗|Y NA
xy 〉〈Y NA

xy |⊗
|y〉〈y| for some qxy. Let A′ = OA ⊗ MA ⊗ RA ⊗ A and B′ = OB ⊗ RB ⊗ B. We have SIC(ξ) = I(X :
MBB

′Y )σB
NA

+ I(Y : XA′)σA
NA

. Let also σA
2 , σ

B
2 the superposed states of ρ2.

To proceed with the proof, we need the following lemmas and proposition.

Lemma 3. I(X :MBB
′Y )σB

NA
≤ n log(k)−Hmin(X |MBB

′Y )σB
2
+ t+ 1

Proof. We have:

I(X :MBB
′Y )σB

NA
= H(X)σB

NA
−H(X |MBB

′Y )σB
NA

≤ n log(k)−H(X |MBB
′Y )σB

NA

≤ n log(k)−Hmin(X |MBB
′Y )σB

NA
.

By definition, we haveHmin(X |MBB
′Y )σB

2
= − log(Pr[ Bob guesses x | Alice and Bob share σB

2 ]). When

Alice and Bob share σB
2 , if Bob tries to determine whether he aborts or not, the state he shares with Alice

conditioned on not aborting is σB
NA. Since Bob doesn’t abort with probability greater than 2−t+1, we have

Pr[Bob guesses x | Alice and Bob share σB
2 ]) ≥ 2−(t+1) Pr[Bob guesses x | Alice and Bob share σB

NA]

From there, we have

Hmin(X |MBB
′Y )σB

2
= − log(Pr[ Bob guesses x | Alice and Bob share σB

2 ])

≤ − log(Pr[ Bob guesses x | Alice and Bob share σB
NA]) + t+ 1

= Hmin(X |MBB
′Y )σB

NA
+ t+ 1.

We conclude that I(X :MBB
′Y )σB

NA
≤ n log(k)−Hmin(X |MBB

′Y )σB
NA

≤ n log(k)−Hmin(X |MBB
′Y )σB

2
+

t+ 1.
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We now prove the following:

Lemma 4. Hmin(X |MBB
′Y )σB

2
≤ n log(k)−m.

Proof. Let σ′
XMBB′Y = TrA′(σB

2 ), σ′
XB′Y = TrA′MB(σ

B
2 ), and σ′

B′Y = TrXA′MB(σ
B
2 ). We haveHmin(X |MBB

′Y )σB
2
=

Hmin(X |MBB
′Y )σ′

XMBB′Y
. First notice that

σ′
XB′Y =

IX
kn

⊗ σ′
B′Y . (9)

Moreover, we can write σ′
XMB′Y =

∑

M∈[m] rM |M〉〈M |⊗η(M)XB′Y for some states {η(M)}M and
∑

M rM =

1. Notice that σ′
XB′Y =

∑

M rMη(M). We have:

σ′
XMBB′Y =

∑

M∈[m]

rM |M〉〈M | ⊗ η(M)XB′Y ≤ IMB
⊗ σ′

XB′Y . (10)

Using Equations 9 and 10, we have:

σ′
XMBB′Y ≤ IMB

⊗ σ′
XB′Y ≤ 1

kn
IX ⊗ IMB

⊗ σ′
B′Y

≤ 2m

kn
IX ⊗

(

IMB

2sm
⊗ σ′

B′Y

)

.

By definition of Hmin(Section A.2), this gives Hmin(X |MBB
′Y )σ′

XMBB′Y
≤ n log(k)−m.

We now put everything together and prove the following.

Proposition 19. I(X :MBB
′Y )σB

NA
≤ m+ t+ 1.

Proof. Combining Lemma 3 and Lemma 4, we have

I(X :MBB
′Y )σB

NA
≤ n log(k)−Hmin(X |MBB

′Y )σB
2
+ t+ 1 ≤ m+ t+ 1.

Now let’s analyze σA
NA. Here, Alice does not receive any message from Bob hence I(Y : XA′)σA

2
= 0. As

in Lemma 3, we can show that I(Y : XA′)σA
NA

≤ I(Y : XA′)σA
2
+ t+ 1 = t+ 1.

Putting this all together, we have:

SIC(ξ) = I(Y : XA′)σA
NA

+ I(X :MBB
′Y )σB

NA
≤ m+ 2t+ 2.

To conclude the proof, recall from Section 6 that m = 32 log(|I||O|)
ε ((t + 1) + | log(ε)| + 5). From there, we

conclude that

SIC(ξ) ≤ 32 log(|I||O|)
ε

((t+ 1) + | log(ε)|+ 5) + 2t+ 2,

which concludes the proof.

We showed that ξ satsfies all the desired properties of Theorem 4.
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E Proof of Theorem 5

We now give a lower bound complementary to the upper bound described in Theorem 4.

Theorem 5. Consider a game G = (I = [k], O, V,Unif.) such that ω∗(G) = 1 − ε and ω∗(Gn) = 2−t with
t = o(nε). Let also Gn

1−ε/32 = (In = [kn], On, V ′,Unif.) as defined in Section 2. For any game G′ = (I ′ =

[kn], O′, V ′, p) and any state ρ =
∑

x,y∈[kn] pxy|x〉〈x|X ⊗ |φxy〉〈φxy | ⊗ |y〉〈y|Y , satisfying

1. H(XY )ρ ≥ 2n log(k)− t
2. ω∗(G′|ρ) ≥ 1− ε/32

we have SIC(ρ) ≥ Ω(nε).

Proof. Fix any state ρ of the form

ρ =
∑

x,y∈[kn]

pxy|x〉〈x|X ⊗ |φxy〉〈φxy | ⊗ |y〉〈y|Y ,

satisfying properties 1. and 2. above. Property 2 tells us that there is strategy that allows Alice and Bob to
win G′ with high probability. We make them perform this strategy.

We first show that there is a large number of indices i such that Alice and Bob win game i with high
probability with this stratagy and H(Xi,Yi)ρ is large.

Lemma 5. Let pi = Pr[Alice and Bob win game i using ρ]. Let K = {i : pi ≥ 1 − ε/4}. Let L = {i :
H(Xi, Yi)ρ ≥ 2 log(k)− 4t

n }. We have

|K| ≥ 3n/4, |L| ≥ 3n/4, which implies |K ∩ L| ≥ n/2.

Proof. 1
n

∑

i∈[n] pi corresponds to the average number of games won by Alice and Bob. They win G′ if they

win at least (1 − ε/32) games. Since they can win G′ with probability at least 1 − ε/32, we know that
1
n

∑

i∈[n] pi ≥ (1 − ε/32)(1− ε/32) ≥ 1− ε/16. We have:

∑

i

pi =
∑

i∈K

pi +
∑

i/∈K

pi ≤ |K|+ (n− |K|)(1 − ε/4) = n− (n− |K|)ε/4,

since
∑

i pi ≥ n(1− ε/16), we have n− (n− |K|)ε/4 ≥ n(1− ε/16) and |K| ≥ 3n
4 .

Similarly, we have:

∑

i

H(XiYi)ρ =
∑

i∈L

H(XiYi)ρ +
∑

i/∈L

H(XiYi)ρ

≤ 2|L| log(k) + (n− |L|)(2 log(k)− 4t

n
)

= 2n log(k)− (n− |L|)4t
n
.

Since
∑

iH(XiYi)ρ ≥ H(XY )ρ = 2n log(k) − t, we have 2n log(k)− (n− |L|)4tn ≥ 2n log(k)− t which gives
|L| ≥ 3n

4 .
Putting this together, we have |K ∩ L| = |K|+ |L| − |K⋃L| ≥ |K|+ |L| − n ≥ n/2.

The final step of the proof will be very similar to the proof of Proposition 2.
We start with a few notations. For a string x = x1, . . . , xn ∈ [kn], let x−i be the string in [kn−1] where

we remove xi from x. As in Section 3.1, we define |LA
y 〉, |LB

x 〉, σA, σB. Also, let

px· =
∑

y∈[kn]

pxy ; p·y =
∑

x∈[kn]

pxy
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and

pixi,yi
=

∑

x′,y′:x′
i=xi,y′

i=yi

px′y′ ; p−i
x−i,y−i

=
∑

x′,y′:x′
−i=x−i,y′

−i=y−i

px′y′ .

For each i, we rewrite ρ as:

ρ =
∑

x,y∈[kn]

pxy|xi〉〈xi|Xi
⊗ |x−i〉〈x−i|X−i

⊗ |φxy〉〈φxy |AB ⊗ |y−i〉〈y−i|Y−i
⊗ |yi〉〈yi|Yi

.

We define
|Zi

xi,yi
〉 =

∑

x′,y′∈[kn]:x′
i=xi,y′

i=yi

√

p−i
x′
i,y

′
i
|x′−i〉X−i

⊗ |φx′y′〉 ⊗ |y′−i〉Y−i
.

Now, let γi =
∑

xi,yi∈[k] p
i
xi,yi

|xi〉〈xi| ⊗ |Zi
xi,yi

〉〈Zi
xi,yi

| ⊗ |yi〉〈yi|. The state γi corresponds to ρ where the
inputs in registers X−i,Y−i are in coherent superposition. In particular, Alice and Bob can go from γi to ρ
by measuring the registers X−i and Y−i in the computational basis.

Using ρ, Alice and Bob can win the ith instance of G with probability pi. This means that they can win
this ith instance of G when sharing γi with probability at least pi.

Now, consider σA
i , σ

B
i the 2 superposed states of γi as defined in Section 3.1. We first show the following:

Lemma 6. If t ≤ c0εn
4 then ∀i ∈ K ∩ L, I(Yi : XA)σA

i
+ I(Xi : BY )σB

i
= Ω(ε).

Proof. Consider i ∈ K ∩ L. Since i ∈ L, we have H(XiYi)γi
≥ 2 log(k) − 4t/n ≥ 2 log(k) − c0ε. Using

Claim A.2, we have ∆(pi,Unif.) ≤ c0ε or in other words that 1
2

∑

xi,yi∈[k] |pixi,yi
− 1

k2 | ≤ c0ε. Since i ∈ K,

we have ω∗(G′
i|γi) ≥ 1 − ε/4 for G′

i = (I, O, V, pi). Using Theorem 3, we conclude that SIC(γi) = I(Yi :
XA)σA

i
+ I(Xi : BY )σB

i
= Ω(ε).

We can now finish the proof. The above lemma holds for our t since t = o(εn). First notice that TrY−i
(σA

i ) =
TrY−i

(σA) hence I(Yi : XA)σA
i
= I(Yi : XA)σA . Similarly, we have I(Xi : BY )σB

i
= I(Xi : BY )σB which

gives

I(Yi : XA)σA
i
+ I(Xi : BY )σB

i
= I(Xi : BY )σA + I(Yi : XA)σB

and hence

∀i ∈ K ∩ L, I(Xi : BY )σA + I(Yi : XA)σB = Ω(ε).

To conclude, firs we write

SIC(ρ) = I(Y : XA)σA + I(X : BY )σB

= H(Y )σA −H(Y |XA)σA +H(X)σB −H(X |BY )σB

≥ H(XY )ρ −H(Y |XA)σA −H(X |BY )σB

≥ 2n log(k)− t−H(Y |XA)σA −H(X |BY )σB

≥
∑

i∈[n]

H(Yi)σA −H(Y |XA)σA +
∑

i∈[n]

H(Xi)σB −H(X |BY )σB − t

≥
∑

i∈[n]

H(Yi)σA −H(Yi|XA)σA +
∑

i∈[n]

H(Xi)σB −H(Xi|BY )σB − t

=
∑

i∈[n]

I(Yi : XA)σA + I(Xi : BY )σB − t

≥
∑

i∈K∩L

I(Yi : XA)σA + I(Xi : BY )σB − t

= Ω(nε)− t = Ω(nε) since |K ∩ L| ≥ n/2 and t = o(nε).
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F Games with complete support

In this Appendix we prove Corollary 1. The idea is the following. Starting from any game G with complete
support, we define a new game H that can be interpreted as follows:

– With some probability Alice and Bob play GU , a variant of G on the uniform distribution

– If they are not in the previous case, they win no matter what they answer

– They know in which case they are thanks to an extra input bit

– If they ignore the extra bit of information, they play the original game.

In Lemma 7 we prove that Hn has a larger value than Gn, which intuitively follows from the fact that players
can just ignore the extra bits. Since the difficulty of winning Hn comes from the indices where Alice and
Bob must play GU , in Lemma 8 we show that the winning probability of Hn is bounded by the winning
probability of a parallel repetition of GU . We have an exponential decay because GU meets the requirements
of Theorem 1. To finish, we relate ω∗(G) to ω∗(GU ) in Lemma 9 and we prove Corollary 1.

Let us start with some definitions. Let G = (I, O, V, p) with |I| = k. Let αmin = minxy{k2pxy} and
αmax = maxxy{k2pxy}. We have:

∀(x, y) ∈ I2
αmin

k2
≤ pxy ≤ αmax

k2
.

Let U be the uniform distribution on I2. By seeing p and U as vectors indexed by (x, y), we can rewrite
the above as αminU ≤ p ≤ αmaxU . Let p′ the probability distribution satisfying p = αminU + (1− αmin)p

′.
Let Ĩ = {0, 1} × I and q be the distribution on Ĩ2 such that q0x0y = αmin

k2 , q1x1y = (1 − αmin)p
′
xy and

q0x1y = q1x0y = 0. We have:

q0x0y + q1x1y =
αmin

k2
+ (1− αmin)p

′
xy = pxy.

We define the game H = (Ĩ , O, Ṽ , q) with the following winning predicate:

– Ṽ (ab|0x0y) = V (ab|xy) for all a, b ∈ O2.

– Ṽ (ab|1x1y) = 1 for all a, b ∈ O2.

This means that if Alice and Bob’s extra bit is 0 the predicate is the same than the predicate of G, while
if the extra bit is 1 they always win. Notice that for each c ∈ {0, 1}, we have Ṽ (ab|cxcy) ≥ V (ab|xy). Now
consider the parallel repetition. Let x̃, ỹ ∈ Ĩn, where we write x̃i = cixi and ỹi = ciyi with xi, yi ∈ I and ci
being the extra bit. Let Ṽ ′ and V ′ be the predicates for Hn and Gn, respectively. Then for all a, b, we have

Ṽ ′(ab|x̃ỹ) = Πi(Ṽ (aibi|x̃iỹi)) ≥ Πi(V (aibi|xy)) = V ′(ab|xy). (11)

Lemma 7. ω∗(Gn) ≤ ω∗(Hn).

Proof. Fix an optimal strategy for Gn. Let P (ab|xy) the probability that Alice and Bob output a, b ∈ On

on inputs x, y ∈ In when applying such strategy for Gn. We have

ω∗(Gn) =
∑

xyab

pxyP (ab|xy)V ′(ab|xy).

Define the following strategy for Hn. Alice and Bob, on inputs x̃, ỹ ∈ Ĩn according to qn, ignore the extra bit
and apply the above optimal strategy for Gn on inputs x, y. Let P̃ (ab|x̃ỹ) the probability of outputs a, b on
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inputs x̃ỹ with this strategy. We have P̃ (ab|x̃ỹ) = P (ab|xy). Also note that for all x, y ∈ In and c ∈ {0, 1}n
we can write qcxcy = pxyrxyc where rxyc ≥ 0 and

∑

c rxyc = 1. It follows from above and (11) that

ω∗(Hn) ≥
∑

xyab

∑

c

qcxcyP̃ (ab|x̃yc)V ′n(ab|cxyc)

≥
∑

xyab

pxy
∑

c

rxycP (ab|xy)V ′n(ab|cxyc)

≥
∑

xyab

pxy
∑

c

rxycP (ab|xy)V n(ab|xy)

=
∑

xyab

pxyP (ab|xy)V n(ab|xy) = ω∗(Gn).

We now want to upper bound ω∗(Hn). Let GU the game G on the uniform distribution and let εU =
1− ω∗(GU ). We prove the following.

Lemma 8. ω∗(Hn) ≤ (1 − ε2U )
Ω(

nαmin
log(|I||O|)−αmin| log(ε)|).

Proof. Thanks to the extra bit, we can interpret H as follows:

– With probability αmin, Alice and Bob play GU

– With probability 1− αmin, they win on any output

– They know in which case they are

If there are k instances of GU , Alice and Bob win the whole game if and only if they win these k instances
of GU . The probability that i instances of GU occur is equal to

(

n
i

)

αi
min(1− αmin)

n−i. This gives

ω∗(Hn) ≤
n
∑

i=0

(

n

i

)

αi
min(1− αmin)

n−iω∗(Gi
U ).

Since GU is on the uniform distribution, we have that ω∗(Gi
U ) ≤ (1− ε2U )

Ω( i
log(|I||O|)−| log(ε)|) by Theorem 1.

This gives

ω∗(Hn) ≤
n
∑

i=0

(

n

i

)

αi
min(1 − αmin)

n−i(1 − ε2U )
Ω( i

log(|I||O|)
−| log(ε)|).

We can show by analytic calculations that

n
∑

i=0

(

n

i

)

αi
min(1 − αmin)

n−kY i = (αmin(Y − 1) + 1)n.

By plugging this in the above inequality, we obtain

ω∗(Hn) ≤ (1− ε2U )
Ω(

nαmin
log(|I||O|)

−αmin| log(ε)|).

Now we relate the values of G and GU . Let ω
∗(G) = 1− ε.

Lemma 9. ε ≤ αmaxεU .
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Proof. Fix an optimal strategy for GU and let P (ab|xy) the probability of outputs a, b on inputs x, y for this
strategy. We have

εU =
∑

xyab

1

k2
P (ab|xy)(1− V (ab|xy))

≥
∑

xyab

pxy
αmax

P (ab|xy)(1− V (ab|xy))

≥ ε

αmax
.

Finally, we combine all of the above in the final corollary

Corollary 1. Let G = (I, O, V, p) be a game with complete support and ω∗(G) = (1− ε). Then,

ω∗(Gn) ≤ (1 − ε2)Ω( n
Q log(|I||O|)

− | log(ε)|
Q

),

where Q =
k2 maxxy p2

xy

minxy pxy
.

Proof. By chaining the previous lemmas, we obtain

ω∗(Gn) ≤ ω∗(Hn) ≤ (1− ε2U )
Ω(

nαmin
log(|I||O|)

−αmin| log(ε)|)

≤ (1− ε2)
Ω(

nαmin

α2
max log(|I||O|)

−αmin| log(ε)|)

α2
max ≤ (1 − ε2)Ω( n

Q log(|I||O|)
− | log(ε)|

Q
).
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