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Abstract

We introduce a theory of timed symbolic dynamics unifying results
from timed automata theory and symbolic dynamics. The timed sofic
shift spaces we define are a way of seeing timed regular languages as
shift spaces on general alphabets (in classical symbolic dynamics, sofic
shift spaces correspond to regular languages). We show that morphisms
of shift space on general alphabet can be approximated by sliding block
codes resulting in a generalised version of the so-called Curtis-Hedlund-
Lyndon Theorem. We provide a new measure for timed languages by
characterising the Gromov-Lindenstrauss-Weiss metric mean dimension
for timed shift spaces and illustrate it on several examples. We revisit
recent results on volumetry of timed languages of Asarin, Degorre and
us in terms of timed symbolic dynamics. In particular we explain the
discretisation of timed shift spaces and their entropy.

1 Introduction

Timed automata were introduced in the early 1990’s to model continuous time
behaviours in a verification context. Since then they have been thoroughly stud-
ied from a theoretical standpoint, a common challenge being the lifting of results
from the well established automata theory. Symbolic dynamics is another broad
research field that can provide a source of interesting results to lift to the timed
world. Indeed, this theory has three interesting characteristics. (i) It is re-
ally close to automata theory and dealing with object very similar to regular
languages (namely the set of allowed block of sofic shifts) and having similar
results such as determinisation, minimisation, pumping lemma, etc. (ii) Sym-
bolic dynamics provides a quantitative analysis of regular languages with the
notion of entropy. Entropy measures the growth rate of the languages wrt. the
size of words considered. (iii) Symbolic dynamics considers regular languages as
dynamical systems called shift spaces and provides a topological point of view.
For instance the entropy of a shift space is a particular case of the so-called
topological entropy defined for general dynamical systems (see e.g. [12]). Thus

∗This research is supported in part by ERC Advanced Grant VERIWARE and was also
supported by the ANR project EQINOCS (ANR-11-BS02-004).

†The present article is an improved and extended version of Chapter 5 of [8].
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this theory is nicely placed within broad mathematical theories developed by
the pioneers Markov, Shannon, Kolmogorov.

We refer the reader to [15] for an extensive introduction to symbolic dynam-
ics and to [10] for an exposition of this theory in the context of automata theory
(written for and by computer scientists and available on-line1).

Recently Asarin and Degorre introduced volume and volumetric entropy
to quantify the size of timed languages and the information content of their
elements [4, 3, 5]. These exploratory works were inspired by the symbolic dy-
namics’ notion of entropy but left open several questions. What is the notion
of shift space for timed automata? How is the topological entropy of such an
hypothetical shift space linked to the volumetric entropy? What are the others
quantitative results that can be borrowed from symbolic dynamics?

Here, we propose a theory of timed symbolic dynamics that sheds a new light
on the underlying dynamics of timed regular languages (the languages recog-
nised by timed automata). The main difficulty here is that the natural shift
space for a timed language has an infinite, and even uncountable, alphabet.
Such shift spaces are quite different from those usually studied in symbolic dy-
namics. Thus we first define and characterise shift spaces on general alphabets
that are compact, metric and measurable spaces. Then we associate general
alphabet shift spaces to timed languages and study their properties; we call
timed sofic shift such shift spaces. As for size/complexity measures for timed
sofic shift, the standard approach based on topological entropy cannot work:
this entropy is infinite, and we study more relevant characteristics. The first
one is the Gromov-Lindenstrauss-Weiss metric mean dimension [16] that we
characterise for timed sofic shift. The second one is obtained by “renormalisa-
tion” of topological entropy, and turns out to coincide with Asarin and Degor-
res volumetric entropy of timed languages (thus we justify in terms of symbolic
dynamics the somewhat ad hoc definitions from [3]). We also investigate mor-
phisms for general alphabet shift spaces, namely, we state a generalisation of
the Curtis-Hedlund-Lyndon theorem after proving that the classical statement
cannot hold for general alphabet shift spaces.

This article is designed for readers with a basic knowledge of automata theory
or of symbolic dynamics. No specific knowledge of these fields is required to read
the paper.

2 Preliminaries

In this section we give topological definitions of shift spaces from symbolic dy-
namics (see [15, 12]) except that we generalise definitions from finite to compact
metric alphabets in Section 2.3. We use classical topology concepts whose defi-
nitions and properties can be found in textbooks such as [17].

2.1 Dynamical systems

Let (X, d) be a compact metric space. A subset Y ⊆ X is an ε-net of X if
every element of X is at most ε far apart from an element of Y (∀x ∈ X, ∃y ∈
Y such that d(x, y) ≤ ε). In a compact set, for all ε > 0, there exists a finite
ε-net of it. We denote by Nε(X, d) the minimal cardinality of ε-net of X. A

1http://arxiv.org/abs/1006.1265
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subset Y ⊆ X is ε-separated if all two different elements of Y are at least ε far
apart from each other (∀x, y ∈ Y, x 6= y ⇒ d(x, y) > ε). In a compact set,
all ε-separated set are of finite cardinality. We denote by Sε(X, d) the maximal
cardinality of ε-separated sets of X.

Lemma 1 ([14], see also [12] for an English version). Given a compact metric
space X the followings inequalities hold S2ε(X, d) ≤ Nε(X, d) ≤ Sε(X, d).

A discrete time dynamical system (just called dynamical system thereafter)
is a couple ((X, d), f) where (X, d) is a compact metric space and f is a homeo-
morphism ofX i.e. a continuous bijection fromX toX. Informally, we can seeX
as the state space of the system. The function f is the evolution law of the sys-
tem, it gives the dynamics: given a starting state x0, the states f(x0), f

2(x0), ...
are the successors of x, fn(x0) is the state at the “moment” n. The function f−1

permits one to go back in the past. A continuous function φ from a dynamical
system ((X, d), f) to another ((X ′, d′), f ′) that commutes with the dynamics
(i.e. g ◦ φ = φ ◦ f) is called a morphism.

2.2 ε-entropies and topological entropy

The topological entropy permits one to measure the complexity of a system.
Intuitively a system is complex when it is sensitive to initial conditions. There
are several equivalent ways to define topological entropy, here we give a definition
due to Bowen [11]. Let ((X, d), f) be a dynamical system. For all positive integer
n we define the distance between the n first iterations of f on x, y ∈ X by:

dn(x, y) = max
0≤k≤n−1

d(fk(x), fk(y)).

The idea is that two points x and y are ε far apart for dn if when iterating f
at most n times, we can distinguish them with a precision ε. An ε-net for dn is
thus an approximation of the system during n iterations and with precision ε.
The N -ε entropy hNε (X) measures the growth rate of these sets wrt. n:

hNε (X) = lim sup
n→∞

1

n
log2(Nε(X, dn)).

Similarly the S-ε-entropy is:

hSε (X) = lim sup
n→∞

1

n
log2(Sε(X, dn)).

The topological entropy is:

htop(X)
def
= lim

ε→0
hNε (X) = lim

ε→0
hSε (X). (1)

The second equality is due to Lemma 1. A real ε is called a discretisation step
if it is the inverse of a positive integer. In the following we consider wlog. only
reals ε that are discretisation steps (they provide sequences that tend to 0).

2.3 Shift spaces on general alphabet

In the broad field of research of symbolic dynamics (see [15]), the shift space
considered are on finite alphabets (we give an example in Section 2.4 below).
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Figure 1: A labelled graph (right) and its unlabelled version (left)

Here, we present shift spaces in a version extended to general alphabets being
compact metric spaces. The main instantiation in the following is the timed
alphabet [0,M ]×Σ where M ∈ N and |Σ| < +∞ with metric d((t, a), (t′, a′)) =
|t− t′|+1a 6=a′ . In the rest of the article (C, d) is a compact metric alphabet. We
denote by CZ the set of bi-infinite words over C (i.e. words of the form x = (xi)i∈Z

with xi ∈ C). One can define a metric d on CZ by d(x, x′) = supi∈Z

d(xi,x
′
i
)

2|i|
. The

shift map σ is defined by y = σ(x) when for all i ∈ Z, yi = xi+1.
It can easily be shown that ((CZ, d), σ) is a dynamical system, we call it the

full shift space on C and just denote it by CZ when d and σ are clear from the
context. A subspace X of CZ is called a sub-shift space of CZ whenever it is
topologically closed and shift invariant: σ(X) = X. We often just call shifts (or
shift spaces) the sub-shift spaces of full shift spaces.

Given a bi-infinite word x ∈ CZ and two indices i, j ∈ Z with i ≤ j, the finite
word xixi+1 · · ·xj is called a factor of x and is denoted by x[i..j]. For a shift
space X, the set of factors of length n of bi-infinite words of X is denoted by

Xn
def
= {x[i+1..i+n] | x ∈ X, i ∈ Z}.

2.4 Edge and sofic shifts from classical symbolic dynamics

Here, we recall the definitions of edge and sofic shift central in symbolic dynam-
ics. These definitions will be lifted to the timed setting in Section 4.

Let G = (Q,∆) be a finite graph with possibly multiple edges between two
vertices. Any edge δ ∈ ∆ goes from a starting vertex δ− ∈ Q to an ending
vertex δ+ ∈ Q. Let Σ be a finite alphabet and Lab : ∆ → Σ a labelling function
on edges. The pair (G, Lab) is called a labelled graph.

A finite (resp bi-infinite) path of G is a finite (resp bi-infinite) sequence of
consecutive edges δi such that for all i ∈ {1, . . . , n−1} (resp i ∈ Z) δi

+ = δi+1
−.

The set of bi-infinite paths of a graph G is a sub-shift of ∆Z called the
edge shift of G. The sofic shift of a labelled graph A = (G, Lab) is the set of

bi-infinite words that label bi-infinite paths of A: [A]
def
= {(Lab(δi))i∈Z | ∀i ∈

Z, δi
+ = δi+1

−}. It is a sub-shift of ΣZ. A labelled graph is called right-resolving
whenever for every vertex q, all edges starting from q have distinct labels.

Example 1. Consider the graph G on the left of figure 1 and Lab the labelling
function defined by Lab(δ) = 1 and Lab(δ′) = Lab(δ′′) = 0. The labelled graph
(G, Lab) is depicted on the right of figure 1, it is right-resolving and recognises
the sofic shift composed by bi-infinite words such that the number of 0 between
every two consecutive 1 is even.
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3 Factor based characterisations

In the previous section, we gave topological definitions of shift spaces, their
entropies and morphisms. Simpler characterisations of these objects based on
factors are available in symbolic dynamics (i.e. when the alphabet is finite).
In this section we generalise these characterisations to general alphabet shift
spaces. We carefully replace properties that implicitly use finite cardinality of
sets in symbolic dynamics by similar properties involving compactness or finite
measure of corresponding sets in our more general setting.

3.1 Factor based characterisation of general alphabet shift

spaces

We recall that the alphabet C considered in the following is a compact metric
space.

Definition 1. Given a family O = (On)n∈N∗ where all On are open sets of
Cn, we denote by F(O) the set of bi-infinite words not having factors in O :
F(O) = {x ∈ CZ | ∀i ∈ Z, ∀n ∈ N, x[i..i+n] 6∈ On}.

We have also the dual definition

Definition 2. Given a family F = (Fn)n∈N∗ where all Fn are closed sets of Cn,
we denote by B(F ) the set of bi-infinite words whose allowed factors are those
of F : B(F ) = {x ∈ CZ | ∀i ∈ Z, ∀n ∈ N, x[i..i+n] ∈ Fn}

Theorem 1. A subset of CZ is a shift space iff it can be defined as a F(O) iff
it can be defined as a B(F ).

This theorem is proved in Appendix A.1. Note that, in symbolic dynamics
(for which C is finite), there is no need of specifying which sets are open or
closed as all finite sets satisfy both properties.

Example 2. We introduce five running examples (indexed with roman number).

Let CI
def
= [0, 1] × {a} and the set of forbidden factors be given by OI

2
def
=

{(t, a)(t′, a) | t + t′ > 1}. The shift space XI def
= F(OI) is the set {(ti, a)i∈Z |

ti + ti+1 ≤ 1}.

Let CII
def
= [0, 1] × {a} and OII

1
def
= {(t, a) | t < 1}. The only element of the

shift space XII def
= F(OII) is (1, a)Z.

Let CIII
def
= [0, 1] × {a, b} and2 OIII

2
def
= {(t, a)(t′, b) | t < 1, t′ ∈ [0, 1]} ∪

{(t, l)(t′, l) | l ∈ {a, b}, t, t′ ∈ [0, 1]}. The shift space XIII def
= F(OIII) is the set

of bi-infinite words of the form [(ti, ai)(ti+1, bi+1)]i∈2Z or 2Z+1 with ti = 1 and
ti+1 ∈ [0.1].

Let CIV
def
= [0, 1] × {b} and OIV

n
def
= {(t1, b) · · · (tn, b) | t1 + . . . + tn > 1}. The

shift space XIV def
= F(OIV) is the set of bi-infinite words (ti, b)i∈Z satisfying the

(bi-infinite) Zeno condition
∑

i∈Z
ti ≤ 1.

Let CV
def
= [0, 1]×{a, b} and OV

1
def
= {(t, a) | t < 1} and OV

n
def
= {(t1, b) · · · (tn, b) |

t1 + . . . + tn > 1}. Every bi-infinite words of XV def
= F(OV) has its delays

corresponding to events a equal to 1 (as for XII) and the sum of delays of
blocks of consecutive b bounded by 1 (as for XIV).

2We recall that a set A is open in [0, 1] if it is of the form A = B ∩ [0, 1] with B an open
set of R (i.e. a union of open intervals). In particular [0, 1] is open in [0, 1].
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3.2 Entropies for general alphabet shift spaces

Topological entropy is very useful to compare dynamical systems. Unfortunately
it is infinite for shift spaces on infinite alphabet as remarked in [16].

Fact 1. Let C be a compact metric space with |C| > +∞ then htop(C
Z) = +∞.

A first approach to circumvent this issue is to generalise the following char-
acterisation of the entropy that holds for finite alphabet shift space X (see [15]),

htop(X) = lim
n→+∞

1

n
log2 |Xn|. (2)

Asarin and Degorre replaced cardinality measures by volume measures (ex-
plained below) to define an ad hoc notion of entropy for timed automata in
[3] called volumetric in later papers [9, 2, 7]. Here, we describe both entropies
(classical and volumetric) in a unified and more general framework.

The compact metric spaces C considered in this paper are endowed with a
“natural” measure µ and hence the set Cn has the product measure µn. For
example the measure on Σn, for finite Σ, is the counting measure, that on
[0,M ]n is the n-dimensional volume (aka. Lebesgue measure) and the measure
on ([0,M ] × Σ)n ∼= [0,M ]n × Σn also called volume is the product of the two
preceding measures. More precisely, a subset E of ([0,M ] × Σ)n can be seen
as a formal sum of subsets E|w ⊆ [0,M ]n associated with w ∈ Σn as follows
E|w = {(t1, . . . , tn) | (t1, w1) . . . (tn, wn) ∈ E}. The volume of E is just the sum
of the volumes of E|w: Vol(E) =

∑

w∈Σn Vol(E|w).
We now give our general defintion of entropy for general alphabet shift

spaces:

Definition 3. Given a compact metric space C and a measure µ on it, the
entropy of a subshift X ⊆ CZ is

H(X) = lim
n→+∞

1

n
log2 µ

n(Xn). (3)

Applying Fekete’s lemma ([13]) on subbadditive sequence to (log2 µ
n(Xn))n∈N

ensures that the limit exists in R ∪ {−∞,+∞}.
Another way of circumventing the problem of the infinite topological entropy

is to consider an asymptotic expansion of the ε-entropy instead of its limit when
ε tends to 0 in (1). This has been done fruitfully for volumetric entropy of timed
automata in [9] (recalled in Theorem 7 below).

3.3 Sliding block codes for general alphabet shift spaces

In this section C and C′ denote two compact metric alphabet shift-spaces, X and
Y denote sub-shifts of CZ and C′Z respectively. Given a function ψ from X to
C′ we denote by ψ∞ : X → C′Z the function defined by (ψ∞(x))i = ψ∞(σi(x)).
Such functions are those that commute with the shifts (i.e. σ ◦ φ = φ ◦ σ) and
are thus morphisms if and only if continuous.

We say that ψ is a (2m+ 1)-block function when for every x, ψ(x) depends
only on the (2m + 1)-central factor x[−m..m], i.e. there exists a function f :
C2m+1 → C′ such that for every x, ψ(x) = f(x[−m..m]). One can remark that
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ψ is continuous iff so is f . A function φ that is equal to some ψ∞ with ψ a
(continuous) block function is called a (continuous) sliding block code.

The following famous theorem gives a characterization of the morphisms of
finite-alphabet shift spaces as sliding block codes.

Theorem 2 (Curtis-Hedlund-Lyndon). Let X and Y be two finite-alphabet shift
spaces. A function ϕ : X → Y is a morphism if and only if it is a sliding block
code.

In the case of general alphabet, as shows the result below, there are mor-
phisms which are not sliding block codes.

Proposition 1. Let ψ : [0, 1]Z → [0, 1] be defined by ψ(x) = 1
3

∑

i∈Z

xi

2|i|
. Then

ψ∞ is an endomorphism of [0, 1]Z (which is not a sliding block code).

An adapted version of Theorem 2 can however be stated as follows.

Theorem 3. Every morphism φ from a shift space X to a full shift CZ is the
uniform limit of a sequence of continuous sliding block codes (φm)m∈N from X
to CZ, that is supx∈X d(φ(x), φm(x)) →m→+∞ 0 where d is the metric on CZ.

This theorem is proved in Appendix A.4

4 Timed shift spaces and their measures

In this section we define and study timed sofic shifts which are a way to see
regular timed languages [1] as (general alphabet) shift spaces.

4.1 Timed shift spaces

4.1.1 Timed graphs.

Informally, a timed graph is to a timed automaton what a graph is to an automa-
ton: an automaton without initial, final states as well as labels on transitions.
Formally, a timed graph (TG) is a tuple G = (C,Q, S,∆) such that (i) C is a
finite set of bounded clocks which are variables ranging over [0,M ] withM ∈ N;
(ii) Q is a finite set of locations; (iii) S is the set of states which are couples of
a location and a clock vector (by default S = Q × [0,M ]C); (iv) ∆ is a finite
set of transitions. Any transition δ ∈ ∆ goes from a starting location δ− ∈ Q
to an ending location δ+ ∈ Q; it has a set r(δ) of clocks to reset when firing δ
and a closed guard g(δ), that is a conjunction of inequalities of the form x ∼ c
or x ∼ y + c, where x and y are clocks, ∼∈ {≤,=,≥} and c ∈ {0, . . . ,M}.

4.1.2 Successor actions.

A timed transition is an element (t, δ) of A
def
= [0,M ] × ∆. The time delay t

represents the time before firing the transition δ.
Given a state s = (q, ~x) ∈ S and a timed transition α = (t, δ) ∈ A the

successor of s by α is denoted by s ⊲ α and defined as follows. Let ~x′ be the
clock vector obtained from ~x + (t, . . . , t) by resetting clocks in r(δ) (x′i = 0 if
i ∈ r(δ), x′i = xi + t otherwise). If δ− = q and ~x + (t, . . . , t) satisfies the guard
g(δ) then s ⊲ α = (δ+, ~x′) else s ⊲ α = ⊥.
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4.1.3 Runs and their shifts.

A bi-infinite run of a timed graph G is a bi-infinite word (si, αi)i∈Z ∈ (S× A)Z

such that si+1 = si ⊲αi 6= ⊥ for all i ∈ Z. Consider the timed graph GI depicted
on Figure 2 (left) and a bi-infinte words whose ith letter is αi = (ti, δi) with
δi = δ if i is even and δi = δ′ otherwise and such that ti + ti+1 ∈ [0, 1] for every
i ∈ Z; define for even i, si = (p, (ti−1, 0)) and si+1 = (q, (0, ti)) then (si, αi)i∈Z

is a run of GI.

Proposition 2. The set of bi-infinite runs of G is a sub-shift of (S× A)Z.

4.1.4 Timed edge shift and timed sofic shift.

We are now ready to define the timed generalisation of edge shift and sofic shift.

Proposition-definition 1 (timed edge shift). The following set is a sub-shift
of AZ called the timed edge shift of G and denoted by [G]:

[G] = {(αi)i∈Z | ∃(si)i∈Z ∈ SZ, ∀i ∈ Z, si+1 = si ⊲ αi}

When adding to a TG G a labelling function Lab : ∆ → Σ from the set of
transition ∆ to a finite alphabet of event Σ we obtain a labelled timed graph
(LTG) A = (G, Lab). Abusing the notation we extend the labelling function to
timed transitions and runs as follows: Lab(α) = (t, Lab(δ)) when α = (t, δ) and
Lab ((si, αi)i∈Z) = (si, Lab(αi))i∈Z. Thus we use two kinds of timed alphabet :
alphabet of timed transitions A = [0,M ] × ∆ and alphabets of timed letters
Lab(A) = [0,M ]× Lab(∆).

Proposition-definition 2 (timed sofic shift). Let A = (G, Lab) be a labelled
closed timed graph then the set [A] = {Lab ((αi)i∈Z) | (αi)i∈Z ∈ [G]} is a sub-
shift of (S× Lab(A))Z called the timed sofic shift of A.

An LTG is called right resolving if every two different transitions labelled by
the same letter and starting from the same location have pairwise incompatible
guards. As for classical symbolic dynamics, being right-resolving is the same
thing as being deterministic less the property of having a unique initial state
(see [1] for the usual definition of determinism in timed automata context).
The LTGs of Figure 2 are right-resolving, they recognise the shift spaces of
Example 2.

4.2 Discretisation of a shift space and its entropy

Several definitions of ε-entropy for compact metric alphabet shift spaces were
recalled in Section 2.2. Here, we give a simpler definition of ε-entropy for timed
shift spaces which is asymptotically linked to the other ε-entropies in Proposition
4. This new definition of ε-entropy is based on discretisation of the timed shift
space we explore now.

We call ε-discrete the different objects involving delays and clocks multiple
of ε (i.e vector of delays of Rn, timed words, bi-infinite timed words, runs,
etc.). The ε-discretisation of a set B denoted by Bε is the set of its ε-discrete
elements. For instance, for A = [0,M ]×∆, Aε = {0, ε, . . . ,M}×∆; for X ⊆ AZ,
Xε = X ∩ AZ

ε .
The following proposition states a discretisation of timed shift spaces, the

resulting shift space being a finite alphabet shift space.
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Figure 2: From left to right LTGs Ai = (Gi, Lab) for i = I..V with Lab(δ) =
Lab(δ′′) = a and Lab(δ′) = b. They recognise timed sofic shift of Example 2.

Proposition 3. If X is a sub-shift of BZ where B is a timed alphabet, then Xε

is a sub-shift of BZ
ε .

We define the ε-entropy of a shiftX ⊆ BZ as the entropy of the shiftXε ⊆ BZ
ε :

hε(X)
def
= htop(Xε) = lim

n→∞

1

n
log2 |Xε,n|.

Proposition 4. For every two discretisation steps ε′ ≥ ε, for every timed sofic
shift X, it holds that h2ε′(X) ≤ hS2ε(X) ≤ hNε (X) ≤ hε(X).

Let A = (G, Lab) be a right-resolving LTG. The discretisation of the timed
sofic shift [A] is the sofic shift of a right-resolving finite labelled graph Aε ob-
tained from A by a discretisation of its timed transitions and states as follows:
Aε = ((Qε,∆

′), Lab′) with Qε = S ∩ (Q × {0, ε, . . . ,M}d), Lab′ : ∆′ → Aε and

there is a transition δs,α,s′ ∈ ∆′ going from δs,α,s′
− def

= s to δs,α,s′
+ def

= s′ and

labelled by Lab′(δs,α,s′)
def
= Lab(α) iff s ⊲ α = s′.

Proposition 5. Let A be a right-resolving LTG, then [Aε] = [A]ε.

As a corollary the computation of the ε-entropy of a timed sofic shift reduces
to the computation of the entropy of a (finite alphabet) sofic shift.

Corollary 1. Let A = (G, Lab) be a right-resolving LTG, its ε-entropy is the
topological entropy of the sofic shift of Aε: hε([A]) = htop([Aε]). In particular,
hε([A]) can be computed as the logarithm of the spectral radius of the adjacency
matrix of Aε (This matrix has order O(|Q|/εd) where d is the number of clocks).

In [4], a similar approach was used to over- and under-approximate the
quantity H(A) + log2(1/ε) for a timed automaton A without guarantee of con-
vergence. The asymptotic equality of this quantity with the ε-entropy was later
proved in [9] (Theorem 7 below).

The following theorem justifies that one can focus on TGs rather than right-
resolving LTGs without loss of generality for the entropies.

Theorem 4. Let A = (G, Lab) be a right-resolving LTG, then H([A]) = H([G])
and hε([A]) = hε([G]).

A proof of this Theorem can be found in Appendix A.9.
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4.3 Metric mean dimension of timed sofic shifts

Given a timed graph G, a path π and n = |π|, it is well known that the set

of delay vectors [G]
|π
n

def
= {(t1, . . . , tn) | (t1, π1) . . . (tn, πn) ∈ [G]n} is a polytope.

One can define the dimension dim(π) of a path, as the affine dimension of its
polytope, that is, the maximal number of affinely independent points in the
polytope minus 1 (see also [6]). A TG G is fleshy whenever all its path are full
dimensional, that is dim(π) = |π| for every paths π of G. It can happens that
when the length of paths considered tends to infinity the delays are more and
more constrained resulting in a null average choice. This kind of phenomena is
measured by metric mean dimension defined and illustrated on several examples
below.

The metric mean dimension [16] of a dynamical system ((X, d), f) is:

mdim(X) = lim inf
ε→0

log2 h
S
ε (X)

log2(1/ε)
= lim inf

ε→0

log2 h
N
ε (X)

log2(1/ε)

The second equality is due to Lemma 1. As a corollary of Proposition 4, we can
characterise the metric mean dimension of timed sofic shift explicitly in terms
of their ε-entropy as follows:

Corollary 2. The metric mean dimension of a timed sofic shift X is:

mdim(X) = lim inf
ε→0

log2 hε(X)

log2(1/ε)
(4)

Note that if X ⊆ Y then mdim(X) ≤ mdim(Y ) and that mdim(BZ) = 1
for every timed alphabet B. Thus mdim(X) ≤ 1 for every sub-shift X of BZ.

Example 3 (Example 2 and Figure 2 continued). The shift space XI has met-
ric mean dimension 1 since all the delays can be chosen independently in the
interval [0, 1/2]. The shift space XII contains only one element and has thus
metric mean dimension 0. The metric mean dimension of XIII is 1/2. This
corresponds to the intuition that a full choice can be made half of the time,
since delays before edges δ are always in the 0-dimensional singleton {1} while
delays before edges δ′ are to be chosen in the 1-dimensional interval [0, 1]. The

number of ε-discrete points in the polytope [GIV]
|π
n for the only path π of length

n is
(

n+1/ε
n

)

(Lemma 2 below) and thus the metric mean dimension of XIV is
null. Intuitively, there are less and less choices as n increases. Every path of
GV containing a δ yields a volume 0, the only path of length n that yields a
non-null volume is δ′

n
. This volume is Vol(XV

n) = 1/n! and hence the entropy
is H(XV) = −∞. The metric mean dimension of XV is 1. Indeed, for every
positive integer m, the paths in (δm−1δ′)∗ yield a metric mean dimension equal
to (m− 1)/m and thus mdim ≥ 1− 1/m for every m > 0.

Lemma 2 (Few points in a simplex). The number of ε-discrete points in a
simplex described by inequalities 0 ≤ u1 ≤ · · · ≤ un ≤ M (resp. by inequalities
∑n

i=1 ui ≤M and ui ≥ 0) is
(

n+M/ε
n

)

and (1/n) log2

[

(

n+M/ε
n

)

]

→n→+∞ 0.

One can generalise GIII by defining a cycle with k transition b and l − k
transition a for every naturals 1 ≤ k ≤ l. The resulting timed sofic shift
has metric mean dimension k/l. More surprisingly arbitrary rational metric
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mean dimensions lower than 1 can be obtained from timed graph that have full
dimensional sets of factors Xn for every length n.

Theorem 5. For every rational r ∈ Q∩ [0, 1], there exists a timed sofic shift X
recognised by a right-resolving fleshy LTG such that mdim(X) = r.

A proof of this Theorem is given in Appendix A.11.

4.3.1 The thick timed sofic shifts.

In [9], we characterised precisely a dichotomy between thin and thick timed
automata based on entropy, the former having infinite entropy (H = −∞) while
the latter having a finite one (H > −∞). Beyond its entropy based definition we
argued that this dichotomy is between bad behaving and well behaving TA. The
former are in some weak sense Zeno, are non robust against clock perturbations,
cannot be discretised well, etc. while the latter enjoy better properties such as a
good discretisation, a quantitative pumping lemma and the existence of so-called
forgetful cycles.

The metric mean dimension measurement gives a novel characterisation of
thickness in terms of maximal metric mean dimension:

Theorem 6. For timed sofic shifts X recognised by fleshy LTGs, thickness is
equivalent to maximal metric mean dimension: H(X) > −∞ iff mdim(X) = 1.

Note that XV satisfies both H(XV) = −∞ and mdim(XV) = 1. This means
that fleshiness is necessary in Theorem 6. Remark that regarding thickness,
fleshiness is assumed wlog. since pruning the transitions involving punctual
guards (e.g. x = 1) does not change the volume nor the entropy.

Beyond the pure dichotomy between thin and thick timed languages [9],
Theorem 5 and 6 provide a deeper insight of convergence phenomena among thin
timed languages. There is a whole continuum of thin timed languages between
the extremely narrow ones of metric mean dimension 0 where all delays of timed
words are constrained in a very stringent way, and the ones of dimension almost
1 for which full freedom in the delay is available at almost each transition.

For the sake of completness we recall one of the main theorems of our pre-
vious work [9] in terms of timed symbolic dynamics. This theorem ensures that
the approximation of the entropy by discretisation initiated in [4] converges.

Theorem 7 (A symbolic dynamics version of Theorem 4 of [9]). Let A be a
right-resolving fleshy thick LTG then its volumetric entropy can be approximated
by its ε-entropy as follows: hε([A]) = log2(1/ε) +H([A]) + o(1).

One can interpret as in [4, 2] H([A]) as the average information per event
and log2(1/ε) as the information necessary to represents with precision ε the
time between two events.

5 Conclusion and perspectives

In this paper, we introduced a theory of timed symbolic dynamics. We revisited
previous works on volumetry of timed languages [3, 4, 9] within this new theory.
We adapted to timed sofic shifts the metric mean dimension of Lindenstrauss,
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Weiss and Gromov [16]. We also stated a generalisation of the Curtis-Hedlund-
Lyndon theorem for compact alphabet shift spaces.

Fundamental objects of classical symbolic dynamics are so-called shifts of
finite types (SFT): the shift spaces that can be defined with a finite set of
forbidden factors. In fact such shifts are conjugated to edge shifts. That is why
we are able to lift results from classical symbolic dynamics to the timed case
without referring to SFTs (but referring to graphs and edge shifts). We left
open the question of what would be the good notion of timed SFT.

In [5], Asarin and Degorre introduced a mean dimension (that we call syn-
tactic) for timed automata and proposed an algebraic characterisation of it.
However this dimension only measures the proportion of non-punctual transi-
tions along runs but not the Zeno behaviours. For instance, every fleshy timed
graph has syntactic mean dimension 1 including GIV. It seems easy to show that
the syntactic mean dimension is upper bounded by the metric mean dimension.
The case of equality is more involved and still needs to be studied.

5.0.2 Acknowledgment.

We gratefully acknowledge Eugène Asarin, Aldric Degorre and Dominique Per-
rin for motivating discussions.
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A Appendix

A.1 Proof of Theorem 1

Poof that X is a shift space ⇔ it can be defined as a B(F )
⇒) Let X be a shift space. Let F = (Xn)n∈N∗ . By definition X ⊆ B(F ).

To show the converse inclusion, we take an x ∈ B(F ) and prove that it belongs
to X. As x[−n..n] ∈ X2n+1, there exists a bi-infinite word xn ∈ X such that
xn[−n..n] = x[−n..n]. The sequence (xn)n∈N converges to x. As this sequence
takes its values in the closed set X, its limit x is also in X. It remains to
prove that for all n ∈ N∗, Xn is closed. It suffices to show that for every
convergent sequence (wm)m∈N of Xn, its limit w belongs to Xn. For each n,
there exists an xm ∈ X such that xm[0..n−1] = wm. The sequence xm of the

compact CZ admits a subsequence which converges toward an x ∈ X. We have
x[0..n−1] = limn x

m
[0..n−1] = limn w

m = w and thus w belongs to Xn as a factor
of x ∈ X.

⇐) Let X = B(F ). X is shift invariant. It remains to show that X is closed.
It suffices to show that for every convergent sequence (xm)m∈N of X, its limit
x belongs to X. For all n ∈ N∗, m ∈ N and i ∈ Z, xm[i..i+n−1] ∈ Fn. As Fn is
closed, x[i..i+n−1] = limxm[i..i+n−1] belongs to Fn. Every factor of x belongs to

F thus x ∈ B(F ) = X. Hence X is closed.
Poof that X is a shift space ⇔ it can be defined as a F(O)

⇒) We take F = (Xn)n∈N∗ as above. We define O = (Cn \ Xn)n∈N∗ . For
each n, On is relatively open in Cn since Xn is closed. By definition of O,
B(F ) = F(0) which is equal to X.

⇐) Let X = F(O). X is shift invariant. Let us show that X is closed. It
suffices to show that for every convergent sequence (xm)m∈N of X, its limit x
belongs to X. For all n ∈ N and i ∈ Z, we have x[i..i+n−1] = limxm[i..i+n−1] 6∈ On

since On is open. Thus x ∈ F(O).

A.2 Characterising N-ε-entropy and S-ε-entropy using sets

of factors of a shift spaces.

The following proposition is needed in the proof of Proposition 4 but can be
interesting by itself.

The distance dn used in the definition of N -ε-entropy and S-ε-entropy are
quite uneasy to deal with. We give here definitions of ε-entropies based on
the product distances dn defined on n-length words by dn(x1 · · ·xn, y1 · · · yn) =
supi=1..n d(xi, yi). For this distance ε-balls are just hypercubes of side ε.

Proposition 6. Let X be a compact metric alphabet shift space. The N -ε-
entropy (resp S-ε-entropy) defined on bi-infinite words is equal to the following
ε-entropy of X defined using finite factors:

hNε (X) = lim sup
n→∞

1

n
log2(Nε(Xn, d

n));

hSε (X) = lim sup
n→∞

1

n
log2(Sε(Xn, d

n)).
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This proposition is a consequence of the four following lemmas. In these

Lemma we denote by diam(C) the diameter of C, that is, diam(C)
def
= maxx,x′∈C d(x, x

′).
This diameter exists and is finite due to the compactness of C.

Lemma 3. For all ε > 0 : Nε(Xn, d
n) ≤ Nε(X, dn).

Proof. Let R be an ε-net of X for dn. We define R′ = {x[0..n−1]| x ∈ R}. We
will show that R′ is an ε-net of Xn. For all y ∈ Xn, there exists y′ ∈ X such
that y′[0..n−1] = y. There exists x ∈ R such that dn(x, y

′) ≤ ε. In particular,

for all i ∈ {0, .., n − 1}, d(σi(x), σi(y)) ≤ ε thus maxi∈{0,..,n−1} d(xi, yi) < ε i.e
dn(x, y) ≤ ε.

Lemma 4. For all ε > 0, there exists l such that Nε(Xn+2l, d
n+2l) ≥ Nε(X, dn).

Proof. Let l ∈ N such that max|i|>l
diam(C)

2|i|
≤ ε. Let Rn+2l be an ε-net of Xn+2l.

For all x ∈ Rn+2l, we choose x̂ ∈ X such that x̂[−l..n+l−1] = x and we define

R̂ = {x̂ | x ∈ R}. We will show that R̂ is an ε-net of X for dn. Let y ∈ X,
there exists x ∈ Rn+2l such that dn+2l(y[−l..n+l−1], x) ≤ ε. Therefore, for all

k ∈ {0..n− 1} : maxi∈{−l...l}
d(xi+k,yi+k)

2|i|
≤ ε and thus supi∈Z

d(xi+k,yi+k)

2|i|
≤ ε i.e

dn(x, y) ≤ ε

Lemma 5. For all ε > 0 : Sε(Xn, d
n) ≤ Sε(X, dn).

Proof. Let S be an ε-net of Xn for dn. For all x ∈ S, we choose x̂ ∈ X such that
x̂[0..n−1] = x and we define Ŝ = {x̂ | x ∈ S}. We have, for all x̂, ŷ ∈ Ŝ dn(x̂, ŷ) =

maxk∈{0...n−1} supi∈Z

d(x̂i+k,ŷi+k)

2|i|
≥ maxk∈{0..n−1} d(xk, yk) = dn(x, y) > ε.

Thus Ŝ is ε-separated.

Lemma 6. For all ε > 0, there exists l such that Sε(Xn+2l, d
n+2l) ≥ Sε(X, dn).

Proof. Let l ∈ N such that max|i|>l
diam(C)

2|i|
≤ ε. Let S a ε-net of X for dn.

We define S′ = {x[−l..l+n−1] | x ∈ S}. We have, for all x, y ∈ S, dn(x, y) =

maxk∈{0...n−1} supi∈Z

d(xi+k,yi+k)

2|i|
> ε. The terms of indices less than −l and

greater than n+ l−1 are not taken into account as by definition of l they cannot
be greater than ε. Therefore dn+2l(x[−l..l+n−1], y[−l..l+n−1]) ≥ dn(x, y) > ε and
S′ is ε-separated.

Before proving Proposition 1 we characterise morphisms fromX to C′Z where
X and C′ are defined as in Section 3.3.

We denote by F(X, C′) the function from X to C′ and by SC(X, C′Z) the

function from X to C′Z that commutes with the shift.

Lemma 7. The mapping ψ 7→ ψ∞ is a bijection from F(X, C′) to SC(X, C′Z)
whose inverse is φ 7→ (x 7→ φ(x)0). Moreover ψ is continuous iff so is ψ∞.

Proof. By definition of ψ∞ it holds that ψ∞(x)0 = ψ(x) and thus the two
mappings defined above are mutually inverse. If ψ is continuous then for every
sequence (xn)n∈N of elements of X, the convergence xn 7→n→+∞ x ∈ X implies
that for every i ∈ N, ψ∞(xn)i = ψ∞(σi(xn)) 7→n→+∞ ψ∞(σi(x)) = ψ∞(x)i.
This means that ψ∞ is continuous when so is ψ. The converse is straightforward.

Corollary 3. Every morphism from X to C′Z is of the form ψ∞ with ψ a
continuous function from X to C′.
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A.3 Proof of Proposition 1

We show that ψ maps converging sequences to converging sequences and is thus
continuous. Let (xk)k∈N be a sequence of bi-infinite words of [0, 1]Z that con-

verges toward a bi-infinite word x ∈ [0, 1]Z, that is
∑

i∈Z

xk

i

2|i|
→k→+∞

∑

i∈Z

xi

2|i|
.

To this purpose we apply the dominate convergence theorem since
xk

i

2|i|
≤ 1

2|i|

for every i ∈ N, k ∈ N. Thus ψ is continuous and by virtue of Corollary 3 ψ∞

is an endomorphism of [0, 1]Z.

A.4 proof of Theorem 3

We first state a similar result for functions from CZ to C′.

Lemma 8. Every continuous function from X to C′ is a uniform limit of con-
tinuous block functions from X to C′.

Proof. Let ψ ∈ F(X, C′) be a continuous function. The mth truncation fm :
x 7→ x[−m..m] is a continuous function from X to C2m+1. For m ∈ N, let
gm : X2m+1 → X be a function such that for each w, gm(w) is an element of
X with central factor w i.e. gm(w)[−m..m] = w. The function ψm is a (2m+ 1)-
block continuous function. It remains to prove that (ψm)m∈N converges toward
ψ. As ψ is continuous between two compacts, it is also uniformly continuous,
that is, for every arbitrary ε, there exists δ such that d(x, x′) ≤ δ implies
d′(ψ(x), ψ(x′)) ≤ ε where d and d′ denote the metric on C and C′ respectively.
We take m ≥ log2(diam(C)/δ)− 1 so that for every x ∈ CZ, d(gm ◦ fm(x), x) ≤
diam(C)2−(m+1) ≤ δ and thus dC′(ψm(x), ψ(x)) ≤ ε. We are done the sequence
(ψm)m∈N of continuous block functions uniformly converges toward ψ.

Now we can prove Theorem 3.

Proof. By Corollary 3, every morphism is of the form ψ∞ with ψ a continuous
function from X to C′. By Lemma 8 just above there exists a sequence (ψm)m∈N

of continuous block functions that uniformly converges toward ψ. For every x
and i, the ith coordinates of ψ∞(x) and ψ∞

n (x) are ψ(σi(x)) and ψn(σ
i(x))

respectively. Thus, for every x:

sup
x∈CZ

d′ (ψ∞(x), ψ∞
m (x)) = sup

x∈CZ

sup
i∈Z

1

2|i|
d′
(

ψ(σi(x)), ψn(σ
i(x))

)

≤ sup
y∈CZ

d′ (ψ(y), ψm(y)) .

We can conclude: the sequence of continuous sliding block codes (ψ∞
m )m∈N

converges toward the morphism ψ∞.

A.5 Proof of Proposition 2

We denote by RunG the set of bi-infinite runs of G: RunG
def
= {(si, αi)i∈Z | si+1 =

si⊲αi}. This set is shift invariant. We show that it is closed. The set {(s, α, s′) |
s′ = s ⊲ α} is a closed subset of S×A× S. Indeed, it suffices to remark that for
every transition δ the set of tuples (~x, t, ~x′) such that (δ−, ~x) ⊲ (t, δ) = (δ+, ~x′)
is a polytope defined by constraints involving equality and non-strict inequality
only (they have the following form x′ = x + t, x′ = 0, A ≤ x + t ≤ B). For a
fixed j ∈ Z the projection (si, αi)i∈Z 7→ (sj , αj , sj+1) is continuous and hence
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the set of runs (si, αi)i∈Z such that sj+1 = sj ⊲ αj is closed. The set RunG

is the intersection for j ∈ Z of the closed sets described just above, it is thus
closed.

A.6 Proof of Proposition-definition 1

This set is obtained by projecting the set of bi-infinite runs RunG on the timed
transition components. It is clearly shift-invariant as RunG . By continuity of
the projection, the projected set is compact.

A.7 Proof of Proposition 4

This proof relies on characterisation of entropies using factors stated in Propo-
sition 6 given in Appendix A.2 above.

The points of Xε′,n are 2ε-separated which proves the first inequality. The
second inequality is a straightforward corollary of Lemma 1. To prove the third
inequality it suffices to prove that for all n ∈ N, Xε,n is an ε-net of Xn. We will
adapt a method used in a paper of Henzinger, Manna and Pnueli3.

The setting of this latter paper considers increasing sequences of dates when
events occur instead of delays between events. There is a one-to-one cor-
respondence φ between n-uplets of delays and n-uplets of dates defined by
φ(t1, ..., tn) = (t1, t1+t2, ..., t1+t2+...+tn) and with φ−1 defined by φ−1(T1, ..., Tn) =
(T1, T2 − T1, ..., Tn − Tn−1). One can remark that ε-discrete points are also in
one to one correspondence by φ. The guards along a path give the following in-
equations on dates Tk −Tj ∈ [A,B] (this corresponds to a constraint x ∈ [A,B]
checked at the kth transition and with the last reset of x done in the jth tran-
sition).

For all real T we denote by [T ] the closest multiple of ε to T (|[T ]−T | ≤ ε
2 ):

[T ] =

{

ε⌊T/ε⌋ if T ≤ ε⌊T/ε⌋+ ε
2

ε(⌊T/ε⌋+ 1) otherwise

One can remark that Tk − Tj ∈ [A,B] implies [Tk]− [Tj ] ∈ [A,B].
Let (t1, δ1), ..., (tn, δn) ∈ Xn. We denote by (T1, ..., Tn) = φ(t1, ..., tn) and

thus ([T1], ..., [Tn]) satisfy the constraints [Tk] − [Tj ] ∈ [A,B]. We denote by
(u1, ..., un) = φ−1([T1], ..., [Tn]) then (u1, δ1), ..., (un, δn) ∈ Xε,n. Since |u1 −
t1| = |[T1]−T1| ≤

ε
2 then for all i ∈ {2, .., n} we have |ui− ti| = |([Ti+1]− [Ti])−

(Ti+1 − Ti)| ≤ |[Ti+1]− Ti+1|+ |[Ti]− Ti| ≤ ε. Finally every timed word of Xn

is at most ε far apart from a timed word of Xε,n. Xε,n is thus an ε net for Xn

which concludes the proof.

pq r
a, x ∈ [0, 1] a, x ∈ [2, 3]

Figure 3: A right resolving LTG to illustrate the proof of Theorem 4

3 Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich, W.
(ed.) ICALP. Lecture Notes in Computer Science, vol. 623, pp. 545–558. Springer (1992)
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A.8 Proof of Proposition 5

It is straightforward that [Aε] ⊆ [A]ε. To prove the converse inclusion we take
(Lab(αi))i∈Z ∈ [A]ε and show that (Lab(αi))i∈Z ∈ [Aε]. By definition of [A]ε,
each αi is ε-discrete i.e. of the form αi = (kiε, δi) with ki ∈ {0, . . . ,M/ε} and
(αi)i∈Z is obtained by projecting states of an infinite run of A, say (si, αi)i∈Z.
We denote by xi the value of the clock x at the index i of this run. Our objective
is to transform the value of xi for all clocks x and indexes i in such a way that
the new values are multiple of ε and the guards are still satisfied. For every
clock x, we denote by fr(x) the index of first reset of x (possibly equal to −∞
if the clock is reset infinitely often in the past or +∞ if the clock is never reset).

Since all the delays are multiple of ε then so is xi for i ≥ fr(x). Remark
that for all i < fr(x) we have xi = xfr(x) −

∑

i≤l<fr(x) klε. As all xj ∈ εN for

j ∈ Z, it holds that kl = 0 for every l lower than a position fp(x) where it is
positive for the first time (here also fp(x) can take values −∞, +∞). We have
thus the three possible cases for xi:

• xi = xfp(x) if i ≤ fp(x);

• xi = xfp(x) +
∑i−1

l=fp(x) klε if fp(x) < i ≤ fr(x);

• xi is multiple of ε if i > fr(x).

It remains to choose a new value for xfp(x) that is multiple of ε. The guards on
the path (δi)i∈Z give inequalities of the form Ai ≤ xi ≤ Bi. The lower bound
for ε−1xfp(x) is

sup( sup
i≤fp(x)

ε−1Ai, sup
fp(x)<i≤fr(x)

ε−1Ai −
i−1
∑

l=fp(x)

ki).

This lower bound is an integer since it is a supremum over a set of integers.
A symmetric reasoning can be used for the upper bound. An arbitrary choice
between the lower and upper bounds gives a new value for ε−1xfp(x) which is
an integer. This choice does not affect the delays nor the values of the other
clocks, it permits to have a new run satisfying the same constraints. One can
repeat this operation until all the clocks are ε-discrete in all positions and then
we are done.

A.9 Proof of Theorem 4

We begin by proving the equality of ε-entropies. Remark that G can be seen as
a right-resolving LTG with the labelling function being the identity on ∆. Thus
[Gε] and [Aε] are two right-resolving LTG with the same underlying graph. A
classical result on symbolics dynamics states that the entropy of a sofic shift
of a right-resolving labelled graph is the same as the entropy of the edge shift
of the underlying (unlabelled) graph (see [15]). Thus h(XGε

) = h(XAε
). We

conclude using Corollary 1: hε([A]) = h([Aε]) = h([Gε]) = hε([G]).
Now we prove the equality H([A]) = H([G]). For each w of length n we have

[A]|wn = ∪π∈Lab−1(w)[G]
|π
n (5)
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where we recall that [G]
|π
n

def
= {(t1, . . . , tn) | (t1, π1) . . . (tn, πn) ∈ [G]n} and

[A]
|w
n

def
= {(t1, . . . , tn) | (t1, w1) . . . (tn, wn) ∈ [A]n}. Then for every n ∈ N:

Vol([A]n) =
∑

w∈Σn

Vol([A]|wn ) ≤
∑

w∈Σn

∑

π∈Lab−1|w

Vol([G]|πn ) = Vol([G]n).

This implies H([A]) ≤ H([G]).
For the converse inequality, everything would be very simple if the union in

(5) were disjoint. This is not the case due to freedom on the initial state. Indeed,
let us consider for instance the right resolving LTG depicted in Figure 3. The
timed transition (0.5, a) taken from (p, 0.2) leads to (q, 0.7) while taken from
(p, 1.8) leads to (r, 2.3). However the polytopes Pπ(2)

(s), Pπ′
(2)
(s) of delays that

can be read along two distinct paths π(2) 6= π′
(2) starting from a state s are

disjoint due to right-resolvness. Then, if all clocks are reset during a path π(1)
of length l (for l > 0), for every two distinct paths π(2), π

′
(2) of length n− l (for

n > l) we have [G]
|π(1)π(2)
n ∩ [G]

|π(1)π
′
(2)

n = ∅. We divide into two groups the set
of paths of a given length l (l is a parameter that we will tune later):

• the set R(l) of paths which reset all its clocks;

• the set of other paths. For paths in this latter set, it holds that Vol([G]
|π
n ) ≤

Mn

l! .

It holds that

Vol([G]n) =
∑

π∈∆n

Vol([G]|πn ) =
∑

π(1)∈R(l)

∑

π(2)∈∆n−l

Vol([G]
|π(1)π(2)
n )+

∑

π(1) 6∈R(l)

∑

π(2)∈∆n−l

Vol([G]
|π(1)π(2)
n ).

We will denote by S1 and S2 the two sums above. S2 is upper bounded by
(|∆|M)n

l! . For each w ∈ Σn we have

[A]|wn =
⋃

π(1)∈R(l)

⊎

π(2)∈∆n−l

π(1)π(2)∈Lab
−1(w)

[G]
|π(1)π(2)
n

and then

Vol([A]|wn ) ≥ max
π(1)∈R(l)

∑

π(2)∈∆n−l

π(1)π(2)∈Lab
−1(w)

Vol([G]
|π(1)π(2)
n ) ≥

1

|∆|l

∑

π(1)∈R(l)

∑

π(2)∈∆n−l

π(1)π(2)∈Lab
−1(w)

Vol([G]
|π(1)π(2)
n ).

We sum over all w and deduce that Vol([A]n) ≥ S1/|∆|l. Remark thatH([A]) ≥
H([G])− log2(|∆|) since

Vol([A]n) =
∑

w∈Σn

Vol([A]|wn ) ≥ max
π∈∆∗

Vol([G]|πn ) ≥
Vol([G]n)

|∆|n
.

Hence H([A]) = −∞ iff H([G]) = −∞. We suppose now that H([A]) > −∞. In
particular Vol([A]n) behaves like an exponent in the following sense: for every
a < 2H([A]) < b it holds that bn >> Vol([A]n) >> an.
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Recap that Vol([G]n) = S1 + S2, S2 ≤ |∆|n

l! and S1 ≤ Vol([A]n)|∆|l, hence

Vol([G]n) ≤ Vol([A]n)

(

|∆|l +
|∆|n

Vol([A]n)l!

)

. (6)

We choose l such that l << n << log2(l!), for instance l such that n =

⌊l log2(log2(l))⌋. With such an l the quantity 1
n log2

(

|∆|l + (|∆|M)n

Vol([A]n)l!

)

tends

to 0 and then taking limn→∞
1
n log2(.) in (6) yields the expected inequality:

H([G]) ≤ H([A]).

A.10 Proof of Lemma 2

There is
(

n+M/ε
n

)

possibilities to choose n indices i1 < . . . < in among {1, . . . , n+
M/ε}. For j = 1..n define uj = (ij − j)ε and get 0 ≤ u1 ≤ · · · ≤ un ≤ M .
It remains to remark that the mapping (i1, . . . , in) 7→ (t1, . . . , tn) is a bijection
(one can check that the following function is an inverse for it: uj 7→ uj/ε + j
for j = 1..n).

A.11 Proof of Theorem 5

Examples with metric mean dimension 0 or 1 have already been treated (XI and
XII). For every k, l ∈ N such that 0 < k < l, we describe a cyclic fleshy LTG
with 2l transitions and metric mean dimension k/l ∈ Q∩ (0, 1). The transitions

are qi
a,x∈[i,i+1]
−−−−−−−→ qi+1 for i = 0..2k − 1; qi

b,y≥2k+1,x∈[2k,2k+1]
−−−−−−−−−−−−−−→ qi+1 for i =

2k..2l− 3 (there is no transition labelled by b if 2l− 3 < 2k that is if and only if

l = k + 1); q2l−2
c,y≥2k+1,x∈[2k,2k+1],y:=0
−−−−−−−−−−−−−−−−−−→ q2l−1 and q2l−1

d,x∈[2k,2k+1],x:=0
−−−−−−−−−−−−→ q0

(remark that 2l − 2 ≥ 2k so that the index are well defined).
We consider wlog. only runs such that the location in index 0 is q0 (in-

deed shifting runs does not change mean properties such as the metric mean
dimension). Let (sn, αn)n∈Z be such a run with the following notation sn =
(qn, (xn, yn)) and αn = (tn, δn).

Both clocks are not reset between locations q0 and q2k+1 then y2k+1 − y0 =
x2k+1 − x0 = x2k+1 and thus y0 = y2k+1 − x2k+1 ≥ 2k + 1 − x2k+1 using the
guard on the transition from q2k to q2k+1 labelled by b.

Since x is not reset between indices 2k+ 1 and 2l− 1 it holds that 2k+ 1−
x2l−1 ≤ 2k + 1− x2l−2 ≤ . . . ≤ 2k + 1− x2k+1.

Remark that y2l = t2l−1 (the clock y is null in q2l−1) and x2l−1+t2l−1 ≤ 2k+1
(by the guard of transition labelled by d), hence y2l ≤ 2k + 1− x2l−1.

As the timed graph is cyclic the discussion above holds as well when the
indices are shifted by a multiple of its length 2l.

We denote by z2lm
def
= y2lm = t2lm−1 and by z2lm+i

def
= 2k+1− x2lm+i for all

m ∈ N and i = 2k+1..2l− 1. Remark that x2lm+i =
∑2lm+i−1

i=2lm ti since the last
reset of x before 2lm+ i is just before entering q2lm. Remark that the change of
coordinate from tj to zj+1 for j 6= 0..2k−1 (mod 2l) and that leave the other
tj unchanged is bijective between ε-discrete points. The coordinates zj lie in
the following bi-infinite simplex: 0 ≤ . . . z2lm ≤ z2lm+2k+1 ≤ . . . ≤ z2l(m+1) ≤
. . . ≤ 1: the tj for j = 0..2k − 1 (mod 2l) can be chosen independently
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and hence there is 1/ε choices per such delays. Using Lemma 2 we have that
the number of point in the polytope corresponding to m cycles starting from
q0 is

(

2lm+1/ε
2lm

)

(1/ε)2km. Then we compute (1/2lm) log2[
(

nm+1/ε
nm

)

(1/ε)km] =

(1/2lm) log2[
(

2lm+1/ε
2lm

)

] + (2k/2l) log2(1/ε). Now we let m → +∞ and the first
vanishes. Dividing the remaining term by log2(1/ε) (and letting ε → 0) yields
the expected metric mean dimension k/l.
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