Quadruplet-Wise Image Similarity Learning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Quadruplet-Wise Image Similarity Learning

Résumé

This paper introduces a novel similarity learning frame-work. Working with inequality constraints involving quadruplets of images, our approach aims at efficiently modeling similarity from rich or complex semantic label relationships. From these quadruplet-wise constraints, we propose a similarity learning framework relying on a con-vex optimization scheme. We then study how our metric learning scheme can exploit specific class relationships, such as class ranking (relative attributes), and class tax-onomy. We show that classification using the learned met-rics gets improved performance over state-of-the-art meth-ods on several datasets. We also evaluate our approach in a new application to learn similarities between webpage screenshots in a fully unsupervised way.
Fichier principal
Vignette du fichier
law_iccv_2013.pdf (390.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01094069 , version 1 (11-12-2014)

Identifiants

Citer

Marc T Law, Nicolas Thome, Matthieu Cord. Quadruplet-Wise Image Similarity Learning. IEEE International Conference on Computer Vision (ICCV), Dec 2013, Sydney, Australia. pp.249 - 256, ⟨10.1109/ICCV.2013.38⟩. ⟨hal-01094069⟩
288 Consultations
245 Téléchargements

Altmetric

Partager

More