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THE LI-YAU INEQUALITY AND APPLICATIONS
UNDER A CURVATURE-DIMENSION CONDITION

by Dominique BAKRY,

François BOLLEY and Ivan GENTIL (*)

Abstract. We prove a global Li-Yau inequality for a general Markov
semigroup under a curvature-dimension condition. This inequality is
stronger than all classical Li-Yau type inequalities known to us. On
a Riemannian manifold, it is equivalent to a new parabolic Harnack
inequality, both in negative and positive curvature, giving new sub-
sequent bounds on the heat kernel of the semigroup. Under positive
curvature we moreover reach ultracontractive bounds by a direct and
robust method.

Inégalité de Li-Yau et applications sous une condition de
courbure-dimension

Résumé. Nous obtenons une inégalité de type Li-Yau pour un semi-
groupe de Markov général, sous une condition de courbure-dimension.
A notre connaissance, cette nouvelle inégalité renforce toutes les
inégalités de ce type. Sur une variété riemannienne, elle est équivalente
à une nouvelle inégalité de Harnack parabolique, en courbure pos-
itive ou négative, et induit des bornes pertinentes sur le noyau de
la chaleur associé. En courbure positive, elle permet d’atteindre des
bornes ultracontractives par une méthode directe et robuste.

1. Introduction

In their seminal paper [11], P. Li and S.-T. Yau proved that on a Rie-

mannian manifold M with dimension n and non-negative Ricci curvature,

for any positive function f and any t > 0,

(1.1) −∆(logPtf) 6
n

2t
,

Keywords: Li-Yau inequality, Harnack inequality, heat kernel bounds, Ricci curvature.
Math. classification: 58J35,46-XX, 60H15.
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where ∆ is the Laplace-Beltrami operator on M and (t, x) 7→ Ptf(x) is the

solution to the heat equation ∂tu = ∆u with initial condition f . Equiva-

lently, the Li-Yau inequality can be written :

|∇Ptf |2

(Ptf)2
6

∆Ptf

Ptf
+
n

2t
,

where |∇Ptf | stands for the length of ∇Ptf . This gradient estimate is a

crucial step towards parabolic Harnack inequalities and various subsequent

on and off-diagonal bounds on heat kernels. It is optimal since the equality

is achieved for the heat kernel on the Euclidean space, that is, when f

converges to a Dirac mass.

This inequality has been generalised to Riemannian manifolds with a

Ricci curvature bounded from below by a real constant ρ. Still in [11], P. Li

and S.-T. Yau proved that if the Ricci curvature is bounded from below by

ρ = −K < 0 then for any α > 1

|∇Ptf |2

(Ptf)2
6 α

∆Ptf

Ptf
+

nα2K

2(α− 1)
+
nα2

2t
.

Improving this inequality towards a form which would be optimal for small,

large as well as intermediate times has been the goal of many subsequent

works. In this direction and still in the negative curvature case, let us

mention the various bounds

(1.2)
|∇Ptf |2

(Ptf)2
6 α

∆Ptf

Ptf
+

nα2K

4(α− 1)
+
nα2

2t

for any α > 1, derived by B. Davies in [5, Chapter 5.3], and

|∇Ptf |2

(Ptf)2
− ∆Ptf

Ptf
6
√

2nK

√
|∇Ptf |2
Ptf

+
n

2t
+ 2nK +

n

2t

derived by S.-T. Yau [22], itself improved by the first author and Z. Qian [3],

as

(1.3)
|∇Ptf |2

(Ptf)2
− ∆Ptf

Ptf
6
√
nK

√
|∇Ptf |2
Ptf

+
n

2t
+
nK

4
+
n

2t
.

Meanwhile, R. Hamilton [8] had proved the inequality

(1.4)
|∇Ptf |2

(Ptf)2
6 e2Kt∆Ptf

Pt
+
n

2t
e4Kt

and, most recently, J. Li and X. Xu [10] have obtained the bound

(1.5)
|∇Ptf |2

(Ptf)2
6

(
1 +

sinh(2Kt)− 2Kt

2 sinh2(Kt)

)
∆Ptf

Ptf
+
nK

2

(
1 + coth(Kt)

)
.

ANNALES DE L’INSTITUT FOURIER



THE LI-YAU INEQUALITY AND APPLICATIONS 3

All these inequalities are based on the maximum principle and inequalities

(1.2) to (1.5) are not comparable to each other and none of them reaches

an optimal form.

There is a rich literature on extensions of the Li-Yau inequality (1.1)

to diverse settings and evolution equations, currently almost 400 citations

on MathSciNet or Zentralblatt. Let us mention in particular the most re-

cent [15, 19, 4, 12, 9, 14, 7, 13].

In this article we shall prove the following general Li-Yau inequality, in

negative and positive curvature. To our knowledge it improves all Li-Yau

inequalities obtained so far. Assume that the Ricci curvature of the n-

dimensional Riemannian manifold is (uniformly) bounded from below by

ρ ∈ R∗. Then, see Corollary 2.4,

4

nρ

∆Ptf

Ptf
< 1 +

π2

ρ2t2

and
|∇Ptf |2

(Ptf)2
<
n

2
Φt

(
4

nρ

∆Ptf

Ptf

)
for any positive function f and t > 0, where

Φt(x) =


ρ

2

(
x− 2 + 2

√
1− x coth(ρt

√
1− x)

)
, x 6 1

ρ

2

(
x− 2 + 2

√
x− 1 cot(ρt

√
x− 1)

)
, 1 6 x < 1 +

π2

ρ2t2
.

This result will be obtained as an extension to any curvature lower bound

of the equivalence between the following properties, which is due to [2]:

(i) The Ricci curvature of M is non-negative.

(ii) For any smooth positive function f and t > 0,

(1.6) exp

(
− 2

nPtf
(EntPt(f) + t∆Ptf

)
6 1 +

2t

nPtf

(
∆Ptf −

|∇Ptf |2

Ptf

)
where EntPt(f) = Pt(f log f)− Ptf logPtf .

(iii) For any smooth positive function f and t > 0,

exp

(
2

nPtf
(EntPt(f)− t∆Ptf

)
6 1 +

2t

nPtf

(
Pt

(
|∇f |2

f

)
−∆Ptf

)
.

(iv) For any smooth positive function f and t > 0,

(1.7) Ptf ∆(logPtf) > Pt(f∆ log f)

(
1 +

2t

n
∆(logPtf)

)
.
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4 DOMINIQUE BAKRY, FRANÇOIS BOLLEY, AND IVAN GENTIL

Inequality (1.6) clearly implies the Li-Yau inequality (1.1). Inequality (1.7)

can be reformulated as a bound on the gradient of the heat kernel (com-

mutation inequality), taking the dimension into account.

The present paper gives a generalisation of this equivalence with any

lower bound on the Ricci curvature, positive or negative, instead only of

a non-negative one. As in [2], the result will be stated for general Markov

semigroups, including diffusion semigroups on weighted Riemannian man-

ifolds.

This work is organised as follows. In the next section we state this gen-

eralisation, for a Markov diffusion semigroup under a CD(ρ, n) curvature-

dimension condition. We also derive first consequences, including our main

result: a new Li-Yau inequality under this curvature-dimension condition.

The proof, which is very short and simple, is given in Section 3. Section 4

is devoted to applications: ultracontractive bounds in the positive curva-

ture case, and new Harnack inequalities in the positive and negative cases,

which are equivalent to our Li-Yau equality. Finally, in Section 5 we prove

that our inequality implies all classical Li-Yau inequalities known to us.

2. Main result

2.1. Markov triple and curvature-dimension condition

A Markov diffusion triple (E,µ,Γ), as defined in [1, Chapter 3], con-

sists in a nice state space E equipped with a Markov diffusion semigroup

(Pt)t>0 with infinitesimal generator L, carré du champ Γ and invariant

and reversible σ-finite measure µ. The carré du champ and Γ2 operators

are pointwise defined from the generator L by

Γ(f, g) =
1

2
(L(fg)−fLg−gLf) and Γ2(f) =

1

2
(LΓ(f, f)−2Γ(f, Lf))

for functions f and g in a suitable algebra A of functions from E to R.

We let Γ(f) = Γ(f, f). The generator L is assumed to satisfy the diffusion

property, that is, for any smooth function φ and f ∈ A,

Lφ(f) = φ′(f)Lf + φ′′(f)Γ(f).

In the Markov triple setting, the abstract curvature-dimension condition

CD(ρ, n), for ρ ∈ R and n > 1, is satisfied when

Γ2(f) > ρΓ(f) +
1

n
(Lf)2

ANNALES DE L’INSTITUT FOURIER



THE LI-YAU INEQUALITY AND APPLICATIONS 5

for any f ∈ A.

Let us recall that under a CD(ρ, n) condition with ρ > 0, then the

semigroup is ergodic, that is, Ptf →
∫
fdµ in L2(µ).

The main example of a Markov diffusion triple is a smooth, connected

and complete weighted Riemannian manifold (M, g) equipped with the

generator L = ∆ +∇V · ∇, where ∆ is the Laplace-Beltrami operator and

V a smooth function on M , and with the measure dµ = eV dx where dx

is the Riemannian measure. In this case, the carré du champ operator is

Γ(f) = |∇f |2 where |∇f | is the length of the vector ∇f , and the algebra

of functions A consists in smooth and bounded functions on M .

For instance, when V = 0, the Bochner-Lichnerowicz inequality implies

that the condition CD(ρ, n) is satisfied when M is a n-dimensional Rie-

mannian manifold with a Ricci curvature Ric (uniformly) bounded from

below by ρ. For a general V , the condition holds on the m-dimensional

manifold M as soon as m < n and

Ric−∇2V > ρ+
∇V ⊗∇V
n−m

·

For a positive function f on E we let EntPt(f) = Pt(f log f)−Ptf logPtf

and Entµ(f) =
∫
f log f dµ−

∫
fdµ log

∫
fdµ.

Remark 2.1. — In this work we shall deal with a symmetric Markov

semigroup for convenience, but all the results proved here can be stated in

a non-symmetric case.

2.2. Li-Yau inequality under the CD(ρ, n) condition

Theorem 2.2 (Local logarithmic Sobolev inequalities). — Let (E,µ,Γ)

be a Markov diffusion triple, ρ ∈ R∗ and n > 1. Given a positive function

f on E and t > 0, we set

X =
4

nρ

LPtf

Ptf

and given t > 0 we define the functions Φt and Φ̃t by

(2.1)

Φt(x) =


ρ

2

(
x− 2 + 2

√
1− x coth(ρt

√
1− x)

)
, x 6 1

ρ

2

(
x− 2 + 2

√
x− 1 cot(ρt

√
x− 1)

)
, 1 6 x < 1 +

π2

ρ2t2

and Φ̃t(x) = Φt(x)−ρx+ 2ρ. Then the following properties are equivalent:

SUBMITTED ARTICLE : BAKRY-BOLLEY-GENTIL-2016025.TEX



6 DOMINIQUE BAKRY, FRANÇOIS BOLLEY, AND IVAN GENTIL

(i) The Markov triple satisfies the CD(ρ, n) condition.

(ii) For any positive function f ∈ A and t > 0, then X < 1 +
π2

ρ2t2
and

(2.2) exp

(
− 2

n

EntPt(f)

Ptf
+
tρ

2
X − ρt

)
6

sinh(ρt
√

1−X)

ρ
√

1−X

(
Φt(X)− 2

n

Γ(Ptf)

(Ptf)2

)
if X 6 1

sin(ρt
√
X − 1)

ρ
√
X − 1

(
Φt(X)− 2

n

Γ(Ptf)

(Ptf)2

)
if 1 6 X < 1 +

π2

ρ2t2
.

(iii) For any positive function f ∈ A and t > 0, then X < 1 +
π2

ρ2t2
and

(2.3) exp

(
2

n

EntPt(f)

Ptf
− tρ

2
X + ρt

)
6

sinh(ρt
√

1−X)

ρ
√

1−X

(
Φ̃t(X) +

2

n

Pt(Γ(f)/f)

Ptf

)
if X 6 1

sin(ρt
√
X − 1)

ρ
√
X − 1

(
Φ̃t(X) +

2

n

Pt(Γ(f)/f)

Ptf

)
if 1 6 X < 1 +

π2

ρ2t2
.

As is [1], inequality (2.3) may be called a local logarithmic Sobolev in-

equality and (2.2) a local reverse logarithmic Sobolev inequality. We observe

that the right-hand sides of (2.1), (2.2) and (2.3) are continuous in X = 1,

justifying the above formulations.

Corollary 2.3. — Under the CD(ρ, n) condition, for any positive

function f ∈ A and t > 0

(2.4)
4

nρ

LPtf

Ptf
< 1 +

π2

ρ2t2
.

The term in the right-hand side of (2.2) has to be positive, giving the

following improved Li-Yau inequality:

Corollary 2.4 (Improved Li-Yau inequality). — For any Markov dif-

fusion triple satisfying a CD(ρ, n) condition with ρ ∈ R∗ and n > 1, then

(2.5)
Γ(Ptf)

(Ptf)2
<
n

2
Φt

(
4

nρ

LPtf

Ptf

)
for any positive function f ∈ A and t > 0, where the function Φt is defined

in (2.1).

Remark 2.5. — (i) When ρ tends to 0 in Theorem 2.2, we exactly

recover the estimates ii. and iii. given in the introduction in the case

ANNALES DE L’INSTITUT FOURIER



THE LI-YAU INEQUALITY AND APPLICATIONS 7

ρ = 0. In particular the general Li-Yau inequality (2.5) converges

to the classical Li-Yau inequality (1.1).

(ii) Combining the two inequalities (2.2) and (2.3) leads to a commuta-

tion type inequality similar to (1.7), and which converges to (1.7)

when ρ tends to 0. The inequality obtained in this general case

where ρ 6= 0 is still equivalent to the CD(ρ, n) condition, but is

less appealing than (1.7), which is why we omit it.

Remark 2.6. — We shall see in Section 5 that for any t the bound (2.5)

improves upon all classical bounds recalled in the introduction.

Remark 2.7. — Our Li-Yau inequality (2.5) also improves on the fol-

lowing results obtained in [3, Thms. 1 and 2]:

• Assume that ρ > 0. Then (2.5) holds for X 6 X0 := 1 + π2/64, where

as above X = 4LPtf/(nρPtf); if X > X0, then the bound holds with

Φt(X) replaced by the tangent Φt(X0) + Φ′t(X0)(X −X0).

• Assume that ρ < 0. Then (2.5) holds for X 6 1; moreover, for any

X, then the bound holds with Φt(X) replaced by the tangent Φt(X1) +

Φ′t(X1)(X −X1) for any X1 6 1.

But, by Lemma 2.8 below and for any given t > 0, the function Φt is

a C∞ and strictly concave function on the whole interval (−∞, 1 + π2

ρ2t2 );

hence its graph is below its tangents, and (2.5) improves upon these bounds

in [3].

Lemma 2.8 (Properties of Φt). — For any t > 0 and ρ ∈ R∗, the func-

tion Φt is C∞ and strictly concave on the interval (−∞, 1 + π2

ρ2t2 ).

Proof

C We have already observed that Φt is continuous in X = 1. Moreover Φt
is C∞ since in X = 1, the Taylor expansions (of any orders) are the same

for X = 1− or X = 1+.

Let us now prove that Φt is strictly concave, for instance in the case ρ > 0,

the case ρ < 0 being similar. For fixed u ∈ (0, 1), by direct computation,

the map y 7→ sin(yu)
sin(y) is increasing and positive on (0, π). This implies that

the map

I : y 7→
∫ 1

0

(
sin(yu)

sin(y)

)2

du =
2y − sin(2y)

4y sin2(y)

is increasing on (0, π). Hence the function Φt has a decreasing derivative

Φ′t(x) = ρ/2− ρ2t I(ρt
√
x− 1)

on (1, 1 + π2

ρ2t2 ), so is strictly concave on this interval. The same argument

can be performed on X < 1, starting from the function y 7→ sinh(yu)
sinh(y) . This

SUBMITTED ARTICLE : BAKRY-BOLLEY-GENTIL-2016025.TEX



8 DOMINIQUE BAKRY, FRANÇOIS BOLLEY, AND IVAN GENTIL

concludes the proof by differentiability of Φt in X = 1. B

On the figure 2.1 (resp. on the figure 2.2), we give the graphs of Φt, for

ρ = 1 (resp. ρ = −1) and t = 3/2, 2 and 5/2 (resp. t = 1/4, 1/2 and 1)

from top to bottom. In both figures, the dashed lines correspond to the sine

function, relevant for X > 1. Moreover, in the negative curvature case, the

dotted (lowest) line corresponds to the limit case, obtained when t goes to

infinity (with ρ fixed).

-1 -0.5 0.5 1 1.5 2 2.5

-0.1

-0.05

0.05

0.1

0.15

x Φt(x)

Figure 2.1. Graphs of Φt for positive curvatures

-10 -5 5

2

4

6

8

10

x Φt(x)

Figure 2.2. Graphs of Φt for negative curvatures

3. Proof of Theorem 2.2

We first assume that the Markov diffusion triple satisfies a CD(ρ, n)

condition and prove properties i and ii.

ANNALES DE L’INSTITUT FOURIER



THE LI-YAU INEQUALITY AND APPLICATIONS 9

Let then f ∈ A be a fixed positive function, which we assume to be larger

than an ε > 0, without loss of generality. Let also t > 0 be fixed, and define

Λ(s) = Ps(Pt−sf logPt−sf) for s ∈ [0, t], so that EntPt(f) = Λ(t) − Λ(0).

Classical properties of the derivative of Λ, see for instance [1, Section 6.7.2],

ensure that

Λ′(s) = Ps

(
Γ(g)

g

)
= Ps

(
g Γ(log g)

)
and Λ′′(s) = 2Ps(g Γ2(log g))

for all s ∈ [0, t], where g = Pt−sf . Applying the CD(ρ, n) condition, we

obtain

Λ′′(s) > 2ρΛ′(s) +
2

n
Ps
(
g[L(log g)]2

)
.

Since L(log g) =
Lg

g
− Γ(g)

g2
by diffusion property, the Cauchy-Schwarz

inequality further gives

Λ′′(s) > 2ρΛ′(s) +
2

nPtf
(LPtf − Λ′(s))

2
.

This computation has been performed for example in [2] and [1, Section

6.7.2].

Let now a =
2

nPtf
,X =

4

nρ

LPtf

Ptf
,B =

(nρ
2
Ptf

)2

(X − 1) and C =

LPtf −
nρ

2
Ptf . The above inequality can be written as

Λ′′(s) > a
(

(Λ′(s)− C)
2

+B
)
,

or equivalently

H ′′(s) 6 −a2BH(s)

for all s ∈ [0, t], where H(s) = exp (−a(Λ(s)− Cs)).
Then Lemma 3.1 below has several consequences. First of all, since H is

a positive function, then both cases i and ii in the lemma are impossible.

This means that necessarily a2B < π2

t2 , or in other words that for any t > 0

X < 1 +
π2

ρ2t2
,

or equivalently:

∀t > 0,
1

4nρ

LPtf

Ptf
< 1 +

π2

ρ2t2
.

Since we now know that a2B < π2

t2 , Lemma 3.1 again ensures that for all

s ∈ [0, t]

(3.1) H(s) > τa2B(t− s)H(0) + τa2B(s)H(t).

SUBMITTED ARTICLE : BAKRY-BOLLEY-GENTIL-2016025.TEX
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The reverse local logarithmic Sobolev inequality (2.2) is now obtained

by taking the derivative in (3.1) at s = 0, in the form

H ′(0) > −τ ′a2B(t)H(0) + τ ′a2B(0)H(t).

In the first case where a2B ∈ (0, π
2

t2 ), or equivalently X ∈ (1, 1 + π2

t2ρ2 ),

then this inequality is exactly (2.2) with the sine function when written

in terms of Λ, and then of Ptf . In the other case where a2B < 0, that is

X < 1, then we obtain (2.2) with the hyperbolic sine function. The limit

case a2B = 0, or equivalently X = 0, is the limit of any of the first two

cases. Together, the obtained estimates are exactly inequality (2.2).

The local logarithmic Sobolev inequality (2.3) is obtained in the same

way, by taking the derivative of (3.1) at s = t.

We now prove the converse implication, namely that ii implies i, the case

iii being handled by the same method. Observing that inequality (2.2) is

an equality when f = 1, the idea is to let f = 1 + εh with h ∈ A and

to perform a second order Taylor expansion of (2.2) in the parameter ε

tending to 0. The zeroth and first order terms in ε vanish, and recalling

that EntPt(f) = ε2

2

[
Pt(h

2)− (Pth)2
]

+ o(ε2), we obtain

Pt(h
2)− (Pth)2 >

e2ρt − 1

ρ
Γ(Pth) +

e2ρt − 1− 2ρt

ρ2

(LPth)2

n

for all t > 0. Now, as in [2] for instance, a second order Taylor expansion

in t tending to 0, with the zero and first order terms vanishing, gives the

CD(ρ, n) condition back.

In this proof we have used the following elementary but useful lemma,

which is proved in [18, Thm 14.28] for instance.

Lemma 3.1. — Let t > 0, λ ∈ R and h a C2 non-negative function on

[0, t] such that h′′ 6 −λh on [0, t]. Then:

(i) If λ > π2

t2 then for all s ∈ [0, t], h(s) = 0.

(ii) If λ = π2

t2 then for all s ∈ [0, t], h(s) = c sin
(
s
t

)
, for some c > 0.

(iii) If λ < π2

t2 then for all s ∈ [0, t], h(s) > τλ(t− s)h(0) + τλ(s)h(t),

where

τλ(s) =



sin(
√
λs)

sin(
√
λt)

if λ > 0

s/t if λ = 0

sinh(
√
−λs)

sin(
√
−λt)

if λ < 0

ANNALES DE L’INSTITUT FOURIER



THE LI-YAU INEQUALITY AND APPLICATIONS 11

4. Applications to ultracontractive estimates and Harnack
inequalities

4.1. Ultracontractive estimates in positive curvature

In this section we assume that ρ > 0. We will use the new Li-Yau in-

equality (2.5) in force to obtain uniform bounds on L logPtf , for positive

f , and then ultracontractive estimates on the semigroup.

Under a curvature-dimension condition CD(ρ, n) with ρ > 0 and n > 1,

it is classical that a reversible Markov semigroup (Pt)t>0 is ultracontractive,

that is, Ptf is bounded for all t > 0 and integrable f .

A way of proving an ultracontractive bound is indeed the following: First,

a CD(ρ, n) condition with ρ > 0 implies a (Nash-type) logarithmic entropy-

energy inequality:

(4.1) Entµ
(
f2
)
6
n

2
log

(
1 +

4

ρn

∫
Γ(f)dµ

)
for any f ∈ A such that

∫
f2dµ = 1. Let us observe that, in this ergodic

case where Ptf converges to
∫
f dµ for large time, then (4.1) can be recov-

ered by letting t go to infinity in our local inequality (2.3) (written for f2

instead of f). Then (4.1) implies the following ultracontractive estimate:

there exists a constant C such that

(4.2) ||Ptf ||∞ 6
C

tn/2

∫
|f |dµ, t ∈ (0, 1]

for any f ∈ A. These results can be found for instance in [1, Chapter 6].

This bound is in fact included in the Li-Yau inequality (2.5) which also

gives a quantitative estimate for large time. Observe indeed that

Γ(Ptf)/(Ptf)2 > 0

for any positive f and t, so (2.5) gives

Φt

(
4

nρ

LPtf

Ptf

)
> 0.

Let now ρ, t > 0 be fixed. By definition (2.1), it holds Φt(0) > 0,

lim
x→−∞

Φt(x) = −∞ and lim
x→1+ π2

ρ2t2

Φt(x) = −∞.

Hence the continuous and strictly concave function Φt admits exactly two

roots ξt1 < 0 < ξt2, and is positive in-between and negative outside its
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12 DOMINIQUE BAKRY, FRANÇOIS BOLLEY, AND IVAN GENTIL

roots. Of course ξt1 and ξt2 depend on t and ρ but not on the dimension n.

In particular

(4.3) ξt1 <
4

nρ

LPtf

Ptf
< ξt2

for all positive f and t.

A first simple consequence is the following: if t > 2/ρ, then Φt(1) =

1/t − ρ/2 is non-positive, so necessarily ξt2 6 1 (see also the graph of the

second function in Figure 2.1). In other words:

Corollary 4.1 ([3]). — Assume a CD(ρ, n) condition with ρ > 0.

Then for all positive function f in A

(4.4)
4

nρ

LPtf

Ptf
< 1, t >

2

ρ
·

Let us remark that (4.4) provides additional information to the bound (2.4)

in Corollary 2.3. Moreover, inequalities (2.4) and (4.4) and are of course

not optimal for large t since LPtf converges to 0 when t goes to +∞. Next

proposition gives an answer to this issue: it makes quantitative the fact

that ξt1, ξ
t
2 → 0 when t goes to +∞ (and ξt1 → −∞, ξt2 → +∞ when t goes

to 0), giving by (4.3) corresponding explicit upper and lower bounds for

LPtf/Ptf .

Lemma 4.2. — Assume that ρ > 0. Then the roots ξt1 and ξt2 of Φt are

such that

−4e−ρt − 4e−2ρt 6 ξt1 6 −4e−ρt + 8ρte−2ρt, t >
1

2ρ

4e−ρt − 4e−2ρt 6 ξt2 6 4e−ρt + 8ρte−2ρt, t >
6

ρ

ξt1 = − 2

ρt
+O(1) and ξt2 =

π2

ρ2t2
− 4

ρt
+O(1) , t→ 0.

Observe the compatibility of this last bound with Corollary 2.4.

Proof

C We first consider the large time bounds on the negative root ξt1. For

x < 0, we observe that ξt1 > x if and only if Φt(x) 6 0, or if and only if

u =
√

1− x, which then is larger than 1, satisfies

(u− 1)eρtu > u+ 1.

For u = 1 + 2e−ρt, and by the elementary inequality ev > 1 + v, this

property holds as soon as t > 1/(2ρ). Therefore ξt1 > 1 − u2 for these t.

For u = 1 + 2e−ρt − 4ρte−2ρt, the reverse inequality holds also as soon as
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t > 1/(2ρ). Therefore ξt1 6 1− u2 for these t. Together, this gives the large

time lower and upper bounds on ξt1.

Then we recall that the positive root ξt2 belongs to (0, 1] as soon as t >
2/ρ, which we assume. Then, now, ξt2 6 x if and only if Φt(x) 6 0, or if and

only if (1−u)eρtu > 1+u. For u = 1−2e−ρt the reverse inequality holds as

soon as t > 2/ρ, so that ξ2
t > 1−u2 for these t. For u = 1−2e−ρt−4ρte−2ρt

the inequality holds as soon as t > 6/ρ, so that ξ2
t 6 1 − u2 for these t.

This gives the large time lower and upper bounds on ξt2.

We proceed in the same manner to get the short time estimates. B

Let us now see how to turn these estimates on ξt1, ξt2 into ultracontractiv-

ity estimates on the semigroup. Given 0 < t < s, integrating the pointwise

bound (4.3) over the interval [t, s] gives

exp

(
−nρ

4

∫ s

t

ξu2 du

)
6
Ptf

Psf
6 exp

(
−nρ

4

∫ s

t

ξu1 du

)
.

By ergodicity, letting s go to infinity implies :

exp

(
−nρ

4

∫ ∞
t

ξu2 du

)
6

Ptf∫
fdµ

6 exp

(
−nρ

4

∫ ∞
t

ξu1 du

)
, t > 0.

By Proposition 4.2, it follows that

Ptf∫
f dµ

6 exp
[
n
(
e−ρt +

e−2ρt

2

)]
, t >

1

2ρ

and
Ptf∫
f dµ

> exp
[
− n

(
e−ρt +

1 + 2ρt

2
e−2ρt

)]
, t >

6

ρ
·

Proceeding likewise for the short time estimates finally gives :

Corollary 4.3. — Assume a CD(ρ, n) condition with ρ > 0 with n >
1. Then there exist constants C and D, depending on ρ and n, such that

for any positive f

(4.5)
∣∣∣Ptf − ∫ fdµ

∣∣∣ 6 Ce−ρt
∫
fdµ, t > 1,

and

(4.6)
1

Dtn
exp

(
−nπ

2

ρt

)
6

Ptf∫
fdµ

6
D

tn/2
, t ∈ (0, 1].

By Proposition 4.2, the constant C in (4.5) can be made explicit in n

and ρ. Inequality (4.5) does not give the asymptotic behavior of Ptf in

a satisfactory way. Indeed it is classical that the CD(ρ, n) condition on a

SUBMITTED ARTICLE : BAKRY-BOLLEY-GENTIL-2016025.TEX



14 DOMINIQUE BAKRY, FRANÇOIS BOLLEY, AND IVAN GENTIL

symmetric Markov semigroup with ρ > 0 and n > 1 implies a (Poincaré)

spectral gap inequality with constant (n − 1)/(ρn); it follows that Ptf

converges to its mean with an exponential speed with rate 2ρn
n−1 :∫ (

Ptf −
∫
fdµ

)2

dµ 6 e−
2ρn
n−1 t

∫ (
f −

∫
fdµ

)2

dµ.

The right rate of convergence has been lost in (4.5). Let us in fact observe

that the rate ρ in (4.5) cannot be improved into ρn/(n− 1) by our method

since neither ξt1 nor ξt2 depend on n.

On the other hand, since |Ptf | 6 Pt|f |, the upper bound in (4.6) can be

extended to any f , recovering the classical ultracontractivity property (4.2),

together with an explicit lower bound on Ptf which is not included in (4.2).

Moreover the method is powerful since we have not used the symmetric

(self-adjoint) property of the equation. The strategy can also be applied

in the non-symmetric case to derive new ultracontractive bounds for more

general models.

One can also derive similar bounds on the gradients. For instance:

Corollary 4.4. — Assume a CD(ρ, n) condition with ρ > 0 with n >
1. Then there exists an explicit constant C, independent of ρ and n, such

that for any positive f

Γ(logPtf) =
Γ(Ptf)

(Ptf)2
6 Cnρ e−2ρt, t >

6

ρ
·

Proof

C We use the above notation, together with s = ρt, and assume that s > 6.

Then, by Lemma 4.2, |X| 6 6e−s 6 1, so that in particular
√

1−X >
1− 6e−s. Therefore, by this bound and the elementary es > s3/6,

e−2s
√

1−X 6 e12se−s−2s 6 e2−2s.

In particular it is smaller than 1/3, so

coth(s
√

1−X) =
1 + e−2s

√
1−X

1− e−2s
√

1−X
6 1 + 3e−2s

√
1−X .

It follows that

2

ρ
Φt(X) 6 X − 2 + 2

√
1−X(1 + 3e−2s

√
1−X)

6 X − 2 + 2
(
1− X

2

)
(1 + 3e2−2s) 6 6e2−2s.

ANNALES DE L’INSTITUT FOURIER



THE LI-YAU INEQUALITY AND APPLICATIONS 15

This concludes the argument by Corollary 2.4. B

4.2. Estimates in non-positive curvature

Let ρ < 0 be fixed. For any t > 0, by definition (2.1), it holds Φt(1) =

1/t− ρ/2 > 0,

lim
x→−∞

Φt(x) = +∞ and lim
x→1+ π2

ρ2t2

Φt(x) = −∞.

Hence the continuous and strictly concave function Φt admits exactly one

root 1 < ξt < 1+ π2

ρ2t2 (see for instance Figure 2.2). It is positive on (−∞, ξt)
and in particular

4

nρ

LPtf

Ptf
6 ξt

for all positive f and t, by the Li-Yau inequality (2.5). This recovers the

bound (2.4). In fact (2.4) can not be improved by our method since ξt ∼
1 + π2

ρ2t2 for large time. Indeed, by direct computation as in the previous

section,

1 +
π2

ρ2t2

(
1− 2

ρt

)
6 ξt 6 1 +

π2

ρ2t2
, t >

2

|ρ|
·

4.3. Harnack inequalities

In this section we assume that the space E is a complete, connected and

smooth Riemannian manifold (M, g). This example has been described in

Section 2.1. We shall let d denote the Riemannian distance on M .

The Li-Yau inequality (2.5) for ρ 6= 0 can be written as

−|∇Ptf |
Ptf

> −

√
n

2
Φt

(
4

nρ

LPtf

Ptf

)
where Φt is defined in (2.1), or equivalently,

−|∇Ptf |
Ptf

> Ψt,ρ

(
LPtf

Ptf

)
where

(4.7) Ψt,ρ(x) = −

√
n

2
Φt

(
4

nρ
x

)
.
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16 DOMINIQUE BAKRY, FRANÇOIS BOLLEY, AND IVAN GENTIL

This extends to ρ = 0 by letting Ψt,0(x) = −
√
n/(2t) + x.

Basic properties of the function Ψt,ρ are listed in the following remark.

Their proofs are not complicated, and therefore are omitted.

Remark 4.5. — Let t > 0 be fixed.

• Let ρ > 0. The function Ψt,ρ is defined on the interval

It,ρ = [nρξt1/4, nρξ
t
2/4],

where the roots ξt1 < 0 < ξt2 of Φt have been defined in Section 4.1

and depend only on ρ and t. Its derivative Ψ′t,ρ is an increasing

one-to-one function from (nρξt1/4, nρξ
t
2/4) onto R. The Legendre-

Fenchel transform of Ψt,ρ :

Ψ∗t,ρ(x) = sup
y∈It,ρ

{xy −Ψt,ρ(y)}

is defined and finite for every x ∈ R.

• Let ρ < 0. The function Φt admits only one root ξt > 0 (see

Section 4.2) and then Ψt,ρ is defined on the interval

It,ρ = [nρξt/4,+∞).

Its derivative Ψ′t,ρ is an increasing one-to-one function from the

interval (nρξt/4,∞) onto (−∞, 0). The Legendre transform of Ψt,ρ

is defined and finite on (−∞, 0).

• When ρ = 0, the function Ψt,0(x) = −
√
n/(2t) + x is defined on

It,0 = [−n/(2t),+∞). Its Legendre transform is also defined on

(−∞, 0). The case ρ = 0 appears as limit case of the case ρ < 0,

but not of the case ρ > 0.

• For any ρ ∈ R and t > 0, Ψt,ρ is strictly convex on its interval of

definition.

• For any ρ ∈ R and t > 0, Ψ∗t,ρ is non-negative.

In the figure 4.1 (resp. figure 4.2) we have drawn the graph of x 7→ Ψt,ρ(x)

with ρ = 1 (resp. ρ = −1), t = 1 and n = 2. The dashed line in the figure 4.2

corresponds to the graph of Ψt,0, again with t = 1 and n = 2.

It is standard since [11] that a Li-Yau inequality implies a parabolic

Harnack inequality in the semigroup. Here we give the equivalence between

these two types of bounds in our framework.

Theorem 4.6 (Harnack inequality). — Assume that L satisfies a CD(ρ, n)

condition on the manifold M , with ρ ∈ R and n > 1.
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Figure 4.1. Graph of Ψt,ρ with a positive curvature
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Figure 4.2. Graph of Ψt,ρ with a negative curvature

(i) Let us assume that ρ > 0.

For any s, t > 0, x, y ∈M and any positive function f in A, we

have

(4.8) Psf(x) 6 Ptf(y) exp

(
d(x, y)

t− s

∫ t

s

Ψ∗u,ρ

(
− t− s
d(x, y)

)
du

)
.

Conversely, if (4.8) is satisfied for any positive function f in A,

x, y ∈M and s, t > 0 then the Li-Yau inequality (2.5) holds.

(ii) Let us assume that ρ 6 0.

For any 0 < s < t, x, y ∈ M and any positive function f in A,

then the inequality (4.8) holds.

Conversely, if (4.8) is satisfied for any positive function f in A,

x, y ∈M and 0 < s < t, then the Li-Yau inequality (2.5) holds.
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18 DOMINIQUE BAKRY, FRANÇOIS BOLLEY, AND IVAN GENTIL

In both cases (4.8) also holds for any positive function f , in L1(µ) for

instance.

Proof

C Let us prove the first part of the theorem, when ρ > 0. Let s, t > 0,

x, y ∈M and f positive. Let for u ∈ [0, 1],

Λ(u) = logPb(u)f(xu),

where b(u) = (1− u)s+ ut (b is not necessarily increasing) and (xu)u∈[0,1]

is a constant speed geodesic between x and y. Then we get

Λ′(u) = (t− s)
LPb(u)f (xu)

Pb(u)f(xu)
+
∇Pb(u)f(xu)

Pb(u)f(xu)
· ẋu >

(t− s)
LPb(u)f (xu)

Pb(u)f(xu)
− d
|∇Pb(u)f(xu)|
Pb(u)f(xu)

where d = d(x, y). The Li-Yau inequality (2.5) ensures that

−
|∇Pb(u)f |
Pb(u)f

> Ψb(u),ρ

(
LPb(u)f

Pb(u)f

)
at the point xu, where as in (4.7) Ψb(u),ρ(x) = −

√
n
2 Φb(u)(

4x
nρ ). But now

Ψb(u),ρ is convex on Ib(u),ρ, so for any α ∈ Ib(u),ρ

Λ′(u) > (t− s)
LPb(u)f

Pb(u)
+ dΨ′b(u),ρ(α)

(
LPb(u)f

Pb(u)f
− α

)
+ dΨb(u),ρ(α).

By Remark 4.5, for ρ > 0 there exists α ∈ Ib(u),ρ such that

dΨ′b(u),ρ(α) = −(t− s).

Hence, for this α,

Λ′(u) > (t− s)α+ dΨb(u),ρ(α).

It gives after integration over u ∈ [0, 1],

Psf(x) 6 Ptf(y) exp

(
d

∫ 1

0

(
− t− s

d
α−Ψb(u),ρ(α)

)
du

)
.

Now, by definition of the Legendre-Fenchel transform and of b(u),

d

∫ 1

0

(
− t− s

d
α−Ψb(u),ρ(α)

)
ds 6 d

∫ 1

0

Ψ∗b(u),ρ

(
− t− s

d

)
du =

d

t− s

∫ t

s

Ψ∗u,ρ

(
− t− s

d

)
du.

This concludes the argument.
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Let us now prove the converse part. Let s > 0 and y ∈ M be fixed. Let

also xε (for ε > 0) be the exponential map starting from y and with initial

tangent vector w. We apply (4.8) with x = xε and t = s+εa, a ∈ {−1,+1}.
For f positive in A, inequality (4.8) becomes

(4.9)

Psf(xε) 6 Ps+εaf(y) exp

(
ε|w|+ o(ε)

εa

∫ s+εa

s

Ψ∗u

(
− εa

ε|w|+ o(ε)

)
du

)
.

A first-order Taylor expansion of (4.9) in ε > 0 tending to 0 gives

∇Psf
Psf

· w
|w|

6
a

|w|
LPsf

Psf
+ Ψ∗s,ρ

(
− a

|w|

)
at the point y. For w = r ∇Psf|∇Psf | with r > 0, this can be written as

|∇Psf |
Psf

6
a

r

LPsf

Psf
+ Ψ∗s,ρ

(
−a
r

)
.

Hence
|∇Psf |
Psf

6 −
{
LPsf

Psf
z −Ψ∗t,ρ(z)

}
for any z ∈ R, since r > 0 and a ∈ {−1,+1} are arbitrary. Since Ψ∗s,ρ is a

convex function on R, taking the infimum over z finally gives

|∇Psf |
Psf

6 −Ψs,ρ

(
LPsf

Psf

)
at the point y. This is the Li-Yau inequality (2.5) at the arbitrary time

s > 0 and point y ∈M .

When ρ 6 0, as explained in Remark 4.5, Ψ′t,ρ is a one-to-one func-

tion from (nρξt/4,∞) onto (−∞, 0). We can use the same method as in

the above case ρ > 0 but one can find such an α only if 0 < s < t. In

other words the argument works only for increasing functions b. The proof

of the converse part is also the same in this case by considering only the

0 < s < t. B

Remark 4.7. — Theorem 4.6 could be formally stated in the following

general form : given a family Ψt of convex functions, an inequality of the

form

−|∇Ptf |
Ptf

> Ψt

(
LPtf

Ptf

)
,

for any function f > 0 on M and t > 0 is equivalent to a Harnack inequality

Psf(x) 6 Ptf(y) exp

(
d(x, y)

t− s

∫ t

s

Ψ∗u

(
− t− s
d(x, y)

)
du

)
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for any s, t > 0 and x, y ∈ M such that −(t − s)/d(x, y) is in the domain

of the Legendre transforms Ψ∗u.

Remark 4.8. — In the limit case ρ = 0, we have Ψt,0(x) = −
√

n
2t + x

for x > − n
2t . Then, Ψ∗t,0 is only defined on (−∞, 0), with Ψ∗t,0(y) = −ny2t −

1
4y

for y < 0. Therefore

d

t− s

∫ t

s

Ψ∗u,0

(
− t− s

d

)
du =

d

t− s

∫ t

s

(
n(t− s)

2ud
+

1

4(t− s)

)
du =

n

2
log

(
t

s

)
+

d2

4(t− s)
for 0 < s < t. Hence, under the CD(0, n) condition, we recover the classical

Harnack inequality

Psf(x) 6 Ptf(y)

(
t

s

)n/2
exp

(
d(x, y)2

4(t− s)

)
, 0 < s < t, x, y ∈M.

This Harnack inequality is equivalent to the classical Li-Yau inequality (1.1).

Let us now assume that the Markov semigroup admits a density ker-

nel, that is, a function pt(x, y) such that for any function f , Ptf(x) =∫
f(y) pt(x, y)dy where dy is the Riemannian measure. This is for instance

the case if the semigroup is ultracontractive, so in particular if ρ > 0. Then

a Harnack inequality classically implies a bound on the kernel. Here we

obtain :

Corollary 4.9 (Heat kernel bound). — Under the CD(ρ, n) condition,

for any x, y, z ∈M it holds

(4.10) ps(z, x) 6 pt(z, y) exp

(
d(x, y)

t− s

∫ t

s

Ψ∗u,ρ

(
− t− s
d(x, y)

)
du

)
for all s, t > 0 if ρ > 0, and all 0 < s < t if ρ 6 0.

5. Comparison with earlier bounds

5.1. Linearisation of the Li-Yau inequality

For all given t > 0 and ρ 6= 0, the function Φt is concave (see Section 2).

Hence the new Li-Yau inequality (2.5) admits a family of linearisations,

which is equivalent to it:

Proposition 5.1 (Linearisation of the Li-Yau inequality). — Under the

CD(ρ, n) condition with ρ ∈ R∗ and n > 1

ANNALES DE L’INSTITUT FOURIER



THE LI-YAU INEQUALITY AND APPLICATIONS 21

(i) for any α > 0,

Γ(Ptf)

(Ptf)2
6 A1(α)

LPtf

Ptf
+
n

2
B1(α),

with

A1(α) = 1− ρ

2α sinh2(αt)
(sinh(2αt)− 2αt)

and

B1(α) =
α

4 sinh2(αt)
(sinh(2αt) + 2αt)− ρ+

ρ2

4α sinh2(αt)
(sinh(2αt)− 2αt).

(ii) for any β ∈ (0, π/t),

Γ(Ptf)

(Ptf)2
6 A2(β)

LPtf

Ptf
+
n

2
B2(β),

with

A2(β) = 1− ρ

2β sin2(βt)
(2βt− sin(2βt))

and

B2(β) =
β

4 sin2(βt)
(sin(2βt) + 2βt)− ρ+

ρ2

4β sin2(βt)
(2βt− sin(2βt)).

Proof

C By Corollary 2.3 and concavity of the function Φt on (−∞, 1 + π2

ρ2t2

)
,

Γ(Ptf)

(Ptf)2
<
n

2
Φt

( 4

nρ

LPtf

Ptf

)
6

2

ρ
Φ′t(x0)

LPtf

Ptf
+
n

2

(
Φt(x0)− x0 Φ′t(x0)

)
for any x0 < 1 +π2/(ρ2t2). By definition (2.1) of Φt, choosing x0 6 1 gives

case i with α = ρ
√

1− x0; observe then that the bound in i is the same

for α and −α. Choosing 1 < x0 < 1 + π2/(ρ2t2) likewise gives case ii with

β = ρ
√
x− 1. B

Let us observe that the bounds in Proposition 5.1 can also be recovered

by extending the method proposed in [4] (see also [13]). In their Proposition

2.4, F. Baudoin and N. Garofalo use a close semigroup argument to prove
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that

Γ(Ptf)

(Ptf)2
6

(
1− 2ρ

∫ t

0

V 2(s)ds

)
LPtf

Ptf
+

n

2

(∫ t

0

V ′(s)2ds+ ρ2

∫ t

0

V 2(s)ds− ρ
)

for any positive function V on [0, t] such that V (0) = 1 and V (t) = 0.

They deduce diverse bounds for certain choices of V , which turn out to be

suboptimal: in fact, it is a direct but rather long computation to see that

optimising this inequality with respect to V , with
∫ t

0
V 2(s)ds fixed, gives

Proposition 5.1.

If we choose α = |ρ| in i. of Proposition 5.1 we obtain the bound (1.5)

derived by J. Li and X. Xu:

Corollary 5.2 ([10]). — Under the CD(−K,n) condition, then

(5.1)
Γ(Ptf)

(Ptf)2
6

(
1 +

sinh(2Kt)− 2Kt

2 sinh2(Kt)

)
LPtf

Ptf
+
n

2
K(1 + coth(Kt))

for all positive t and f in A.

By the same method as here, the authors in [10, Thm 1.3] deduced

from (5.1) the following Harnack inequality : for every 0 < s < t and

f > 0,

(5.2) Psf(x) 6 Ptf(y)

(
e2Kt − 1− 2Kt

e2Ks − 1− 2Ks

)n/4
exp

(
d(x, y)2

4(t− s)

(
1 +

t coth(Kt)− s coth(Ks)

t− s

))
.

Since our Harnack inequality (4.8) is equivalent to our Li-Yau inequal-

ity (2.5), which is stronger than (5.1), it follows that (4.8) is also stronger

than (5.2).

5.2. Comparison with Davies’ estimate (1.2) in negative

curvature

Let us prove that the Li-Yau type inequality (2.5) given by Corollary

2.4 improves upon the bound (1.2) established for ρ < 0, in the notation

K = −ρ > 0.
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In our notation Φt and X = 4LPtf/(nρPtf) we have to prove that

Φt(X) 6 −αK
2

X +
α2

t
+

Kα2

2(α− 1)

for all α > 1, t > 0 and X.

For X < 1, this can be written as

2 r y coth y 6
1

α− 1
+ 2 r α2 + (α− 1)r2 y2

for all positive r = (Kt)−1 and y = Kt
√

1−X. But y coth y 6
√

1 + y2

as can be seen by taking squares and using y 6 sinh(y) for y > 0. Hence

2 r y coth y 6 2 r
√

1 + y2 6 2 r + 2 r y 6 2 r +
1

α− 1
+ (α− 1) (ry)2

by the Young inequality. This proves the claim for X < 1.

As regards the case where X > 1, we first recall the elementary bound :

y cot y < 1 − y2/4 for all y in (0, π). Letting indeed u = y/2 ∈ (0, π/2),

this is due to

y cot y = u
1− tan2 u

tanu
< u

1− u2

u
= 1− y2

4
;

here we use that tanu > u with x 7→ 1−x2

x = 1
x − x decreasing.

As a consequence, in the notation r = (Kt)−1 > 0 and

y = Kt
√
X − 1 ∈ (0, π),

(5.3) Φt(X) = K − K

2
X +K r y cot y 6

K

2

[
1 + 2 r − r2 y2 − r y2/2

]
,

so arranging terms it is enough to prove that the second order polynomial

1

α− 1
+ 2 r(α2 − 1) + y2(r2(1− α) + r/2)

in y is non-negative.

We now observe that the left-hand side of (2.5) is non-negative, hence so

is Φt(X), and finally the right-hand side of (5.3). In other words necessarily

y2 6 2/r (that is, X 6 1 + 2/(Kt) for any t > 0). Now the above second

order polynomial in y (with zero first order coefficient) is non-negative on

the interval [0,
√

2/r] if and only if it is so at 0 and
√

2/r, which is the case

for any α > 1 by direct computation. This proves the claim for X > 1.

The case X = 1 is covered as a limit case of any of these two cases, or

can be directly considered. This concludes the argument, all cases being

covered.
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5.3. Comparison with estimate (1.3) in negative curvature

Let us now prove that the Li-Yau type inequality (2.5) also improves

upon the bound (1.3) established for ρ < 0, in the notation K = −ρ > 0.

We first observe that, in the notation r = (Kt)−1, X = 4LPtf/(nρ) and

G = 4 Γ(Ptf)/(nK), estimate (1.3) can be equivalently formulated as

(5.4) X 6 −G+ 2 r + 2
√
G+ 1 + 2r

In the case where X < 1, then estimate (2.5) can be written as

G 6 2−X + 2
√

1−X coth(r−1
√

1−X).

By the elementary inequality y coth y 6
√

1 + y2 6 1 + y, and the Young

inequality, this implies

(5.5) G 6 2−X + 2 r +
1

ε
+ ε(1−X)

for all ε > 0, and then

X 6 −G+ 2 r + δ G+
1

δ

for all δ = ε/(1 + ε) ∈ (0, 1). If G > 1 then we take δ = 1/
√
G < 1,

giving X 6 −G + 2 r + 2
√
G; if G 6 1 then we let δ tend to 1, giving

X 6 −G+ 2r +G+ 1 6 −G+ 2r + 2
√
G+ 1. In both cases this improves

(5.4).

In the case where X > 1, then in the same notation the estimate (2.5)

can be written as

G 6 2−X + 2
√
X − 1 cot(r−1

√
X − 1).

Since moreover y cot y 6 1 for all y ∈ (0, π), this implies the bound

(5.6) X 6 −G+ 2 r + 2,

which in turn improves (5.4).

Since again the case X = 1 is a limit case or can be treated directly, all

cases are covered.
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5.4. Comparison with Hamilton’s estimate (1.4) in negative

curvature

Let us finally prove that (2.5) improves upon the bound (1.4) established

for ρ < 0, in the notation K = −ρ > 0. Letting s = Kt,X = 4LPtf/(nρ)

and G = 4 Γ(Ptf)/(nK), estimate (1.4) can be written as

(5.7) X 6 − e−2sG+
2

s
e2s.

In the case where X < 1, then choosing ε = 2s in (5.5) ensures that (2.5)

implies the bound

X 6 − 1

1 + 2s
G+

5 + 4s+ 4s2

2s(1 + 2s)
·

This in turn implies (5.7) by direct comparison of both coefficients on the

right-hand sides. In the case where X > 1, then the bound (5.6), where

r = 1/s, likewise implies (5.7). As above this concludes the argument.
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Université Claude Bernard Lyon 1

gentil@math.univ-lyon1.fr

ANNALES DE L’INSTITUT FOURIER


