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The Li-Yau inequality and applications under a
curvature-dimension condition

Dominique Bakry∗, François Bolley†and Ivan Gentil‡

December 12, 2014

Abstract

We prove a global Li-Yau inequality for a general Markov semigroup under a curvature-
dimension condition. This inequality implies all classical Li-Yau type inequalities known to us.
Moreover, on a Riemannian manifold, it proves to be equivalent to a new parabolic Harnack
inequality, both in negative and positive curvature, and giving new subsequents bounds on the
heat kernel of the semigroup.

Key words: Li-Yau inequality, Harnack inequality, heat kernel bounds, curvature-dimension
condition, logarithmic Sobolev inequality.

1 Introduction

In their seminal paper [LY86], P. Li and S.-T. Yau proved that on a Riemannian manifold M
with dimension n and non-negative Ricci curvature, for any positive function f and any t > 0,

−∆(logPtf) ≤ n

2t
, (1)

where ∆ is the Laplace-Beltrami operator on M and (t, x) 7→ Ptf(x) is the solution to the heat
equation ∂tu = ∆u with initial condition f . Equivalently, the Li-Yau inequality can be written :

|∇Ptf |2

(Ptf)2
≤ ∆Ptf

Ptf
+
n

2t
,

where |∇Ptf | stands for the length of ∇Ptf . This gradient estimate is a crucial step towards
parabolic Harnack inequalities and various subsequent on and off-diagonal bounds on heat ker-
nels. It is optimal since the equality is achieved for the heat kernel on the Euclidean space, that
is, when f converges to a Dirac mass.
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This inequality has been generalised to Riemannian manifolds with a Ricci curvature bounded
from below by a real constant ρ. Still in [LY86], P. Li and S.-T. Yau proved that if the Ricci
curvature is bounded from below by ρ = −K < 0 then for any α > 1

|∇Ptf |2

(Ptf)2
≤ α∆Ptf

Ptf
+

nα2K

2(α− 1)
+
nα2

2t
.

Improving this inequality into a form which would be optimal for small, large as well as inter-
mediate times has been the purpose of many subsequent works. In this direction and still in the
negative curvature case, let us mention the diverse bounds

|∇Ptf |2

(Ptf)2
≤ α∆Ptf

Ptf
+

nα2K

4(α− 1)
+
nα2

2t
(2)

for any α > 1, derived by B. Davies in [Dav89, Chapter 5.3], and

|∇Ptf |2

(Ptf)2
− ∆Ptf

Pt
≤
√

2nK

√
|∇Ptf |2
Ptf

+
n

2t
+ 2nK +

n

2t

derived by S.-T. Yau [Yau95], itself improved by the first author and Z. Qian [BQ99], as

|∇Ptf |2

(Ptf)2
− ∆Ptf

Pt
≤
√
nK

√
|∇Ptf |2
Ptf

+
n

2t
+
nK

4
+
n

2t
. (3)

In the meanwhile, R. Hamilton [Ham93] had proved the inequality

|∇Ptf |2

(Ptf)2
≤ e2Kt∆Ptf

Pt
+
n

2t
e4Kt (4)

and, most recently, J. Li and X. Xu [LX11] have obtained the bound

|∇Ptf |2

(Ptf)2
≤
(

1 +
sinh(2Kt)− 2Kt

2 sinh2(Kt)

)
∆Ptf

Ptf
+
nK

2

(
1 + coth(Kt)

)
. (5)

All these inequalities are based on the maximum principle and are not comparable to each other.

There is a huge literature on extensions of the Li-Yau inequality (1), actually almost 400
citations on MathSciNet or Zentralblatt. Let us mention in particular the most recent [SZ06,
Wan10, BG11, Qia12, Lee13, QZZ13, GM14, Qia14].

In this article we shall prove the following general Li-Yau inequality, in negative and positive
curvature, which improves all bounds known to us (see Corollary 2.4). Assume that the Ricci
curvature of the n-dimensional Riemannian manifold is (uniformly) bounded from below by
ρ ∈ R∗. Then

4

nρ

∆Ptf

Ptf
< 1 +

π2

ρ2t2

and
|∇Ptf |2

(Ptf)2
<
n

2
Φt

(
4

nρ

∆Ptf

Ptf

)
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for any positive function f and t > 0, where

Φt(x) =


ρ

2

(
x− 2 + 2

√
1− x coth(ρt

√
1− x)

)
, x ≤ 1

ρ

2

(
x− 2 + 2

√
x− 1 cot(ρt

√
x− 1)

)
, 1 ≤ x < 1 +

π2

ρ2t2
.

This result will be obtained as an extension to any curvature lower bound of the equivalence
between the following properties, which is due to [BL06] :

i. The Ricci curvature of M is non-negative.

ii. For any smooth positive function f and t > 0,

exp

(
− 2

nPtf
(EntPt(f) + t∆Ptf

)
≤ 1 +

2t

nPtf

(
∆Ptf −

|∇Ptf |2

Ptf

)
(6)

where EntPt(f) = Pt(f log f)− Ptf logPtf .

iii. For any smooth positive function f and t > 0,

exp

(
2

nPtf
(EntPt(f)− t∆Ptf

)
≤ 1 +

2t

nPtf

(
Pt

(
|∇f |2

f

)
−∆Ptf

)
.

iv. For any smooth positive function f and t > 0,

Ptf ∆(logPtf) > Pt(f∆ log f)

(
1 +

2t

n
∆(logPtf)

)
. (7)

If we replace the left-hand side of (6) by 0, using the fact that an exponential is always
positive, inequality (6) implies the Li-Yau inequality (1). Inequality (7) can be reformulated as
a bound on the gradient of the heat kernel (commutation inequality), taking the dimension into
account.

The present paper gives a generalisation of this equivalence with any lower bound of the
Ricci curvature, positive or negative, instead of a non-negative Ricci curvature. As in [BL06],
the result will be stated for general Markov semigroups, including diffusion semigroups on
weighted Riemannian manifolds.

The paper is organised as follows. In the next section we state this generalisation, for a
Markov diffusion semigroup under a CD(ρ, n) curvature-dimension condition. We also derive
first consequences, including our main result : a new Li-Yau inequality under this curvature-
condition. The proof, which is very short and simple, is given in Section 3. Section 4 is devoted
to applications : ultracontractive bounds in the positive curvature case, and new Harnack
inequalities in the positive and negative cases, which are equivalent to our Li-Yau equality.
Finally, in Section 5 we prove that our inequality implies all classical Li-Yau inequalities known
to us, stressing in particular on the bounds (2) to (5).

2 Main result

2.1 Markov triple and curvature-dimension condition

A Markov diffusion triple (E,µ,Γ), as defined in [BGL14, Chapter 3] consists in a nice state
space E equipped with a Markov diffusion semigroup (Pt)t>0 with infinitesimal generator L,
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carré du champ Γ and invariant and reversible σ-finite measure µ. The carré du champ and Γ2

operators are pointwise defined from the generator L by

Γ(f, g) =
1

2
(L(fg)− fLg − gLf) and Γ2(f) =

1

2
(LΓ(f, f)− 2Γ(f, Lf))

for functions f and g in a suitable algebra A of functions from E to R. We let Γ(f) = Γ(f, f).
The generator L is assumed to satisfy the diffusion property, that is, for any smooth function ϕ
and f ∈ A,

Lϕ(f) = ϕ′(f)Lf + ϕ′′(f)Γ(f).

In the Markov triple setting, the abstract curvature-dimension condition CD(ρ, n), for ρ ∈ R
and n > 1, is satisfied when

Γ2(f) > ρΓ(f) +
1

n
(Lf)2

for any f ∈ A.
Let us recall that under a CD(ρ, n) condition with ρ > 0, then the semigroup is ergodic,

that is, Ptf →
∫
fdµ in L2(µ).

The main example of a Markov diffusion triple is a smooth, connected and complete weighted
Riemannian manifold (M, g) equipped with the generator L = ∆ + ∇V · ∇, where ∆ is the
Laplace-Beltrami operator and V a smooth function on M , and the measure dµ = eV dx where
dx is the Riemannian measure. In this case, the carré du champ operator is Γ(f) = |∇f |2 where
|∇f | is the length of the vector ∇f , and the algebra of functions A consists in smooth and
bounded functions on M .

For instance, when V = 0, the Bochner-Lichnerowicz inequality implies that the condition
CD(ρ, n) is satisfied when M is a n-dimensional Riemannian manifold with a Ricci curvature
Ric (uniformly) bounded from below by ρ. For a general V , the condition holds on the m-
dimensional manifold M as soon as m < n and

Ric−∇2V > ρ+
∇V ⊗∇V
n−m

·

For a positive function f on E we let EntPt(f) = Pt(f log f) − Ptf logPtf and Entµ(f) =∫
f log f dµ−

∫
fdµ log

∫
fdµ.

Remark 2.1 In this work we shall deal with a symmetric Markov semigroup for convenience,
but all the results proved here can be stated in a non-symmetric case.

2.2 Li-Yau inequality under the CD(ρ, n) condition

Theorem 2.2 (Local logarithmic Sobolev inequalities) Let (E,µ,Γ) be a Markov diffu-
sion triple, ρ ∈ R∗ and n > 1. Given a positive function f on E and t > 0, we let

X =
4

nρ

LPtf

Ptf

and given t > 0 we define the functions Φt and Φ̃t by

Φt(x) =


ρ

2

(
x− 2 + 2

√
1− x coth(ρt

√
1− x)

)
, x ≤ 1

ρ

2

(
x− 2 + 2

√
x− 1 cot(ρt

√
x− 1)

)
, 1 ≤ x < 1 +

π2

ρ2t2

(8)
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and Φ̃t(x) = Φt(x)− ρx+ 2ρ. Then the following properties are equivalent :

i. The Markov triple satisfies the CD(ρ, n) condition.

ii. For any positive function f ∈ A and t > 0, then X < 1 +
π2

ρ2t2
and

exp

(
− 2

n

EntPt(f)

Ptf
+
tρ

2
X − ρt

)
≤

sinh(ρt
√

1−X)

ρ
√

1−X

(
Φt(X)− 2

n

Γ(Ptf)

(Ptf)2

)
if X ≤ 1

sin(ρt
√
X − 1)

ρ
√
X − 1

(
Φt(X)− 2

n

Γ(Ptf)

(Ptf)2

)
if 1 ≤ X < 1 +

π2

ρ2t2
.

(9)

iii. For any positive function f ∈ A and t > 0, then X < 1 +
π2

ρ2t2
and

exp

(
2

n

EntPt(f)

Ptf
− tρ

2
X + ρt

)
≤

sinh(ρt
√

1−X)

ρ
√

1−X

(
Φ̃t(X) +

2

n

Pt(Γ(f)/f)

Ptf

)
if X ≤ 1

sin(ρt
√
X − 1)

ρ
√
X − 1

(
Φ̃t(X) +

2

n

Pt(Γ(f)/f)

Ptf

)
if 1 ≤ X < 1 +

π2

ρ2t2
.

(10)

As is [BGL14], inequality (10) may be called a local logarithmic Sobolev inequality and (9)
a local reverse logarithmic Sobolev inequality. We observe that the right-hand sides of (8), (9)
and (10) are continuous in X = 1, justifying the way of writing.

Corollary 2.3 Under the CD(ρ, n) condition, for any positive function f ∈ A and t > 0

4

nρ

LPtf

Ptf
< 1 +

π2

ρ2t2
. (11)

The term in the right-hand side of (9) has to be positive, giving a general Li-Yau inequality:

Corollary 2.4 (General Li-Yau inequality) For any Markov diffusion triple satisfying a
CD(ρ, n) condition with ρ ∈ R∗ and n > 1, then

Γ(Ptf)

(Ptf)2
<
n

2
Φt

(
4

nρ

LPtf

Ptf

)
(12)

for any positive function f ∈ A and t > 0, where the function Φt is defined in (8).

Remark 2.5 i. When ρ tends to 0 in Theorem 2.2, we exactly recover the estimates ii.
and iii. given in the introduction in the case ρ = 0. In particular the general Li-Yau
inequality (12) converges to the classical Li-Yau inequality (1).

ii. Combining the two inequalities (9) and (10) leads to a commutation type inequality similar
to (7), and which converges to (7) when ρ tends to 0. The inequality obtained in this general
case where ρ 6= 0 is still equivalent to the CD(ρ, n) condition, but less appealing than (7),
which is why we omit it.
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Remark 2.6 We shall see in Section 5 that for any t the bound (12) improves upon all classical
bounds recalled in the introduction.

Remark 2.7 Our Li-Yau inequality (12) also improves on the following results obtained in
[BQ99, Thms. 1 and 2] :

• Assume that ρ > 0. Then (12) holds for X ≤ X0 := 1 + π2/64, where as above X =
4LPtf/(nρPtf); if X > X0, then the bound holds with Φt(X) replaced by the tangent Φt(X0) +
Φ′t(X0)(X −X0).

• Assume that ρ < 0. Then (12) holds for X ≤ 1; moreover, for any X, then the bound
holds with Φt(X) replaced by the tangent Φt(X1) + Φ′t(X1)(X −X1) for any X1 ≤ 1.

But, by Lemma 2.8 below and for any given t > 0, the function Φt is a C∞ and strictly
concave function on the whole interval (−∞, 1 + π2

ρ2t2
); hence its graph is below its tangents, and

(12) improves upon these bounds in [BQ99].

Lemma 2.8 (Properties of Φt) For any t > 0 and ρ ∈ R∗, the function Φt is C∞ and strictly

concave on the interval (−∞, 1 + π2

ρ2t2
).

Proof
C We have already observed that Φt is continuous in X = 1. Moreover Φt is C∞ since in X = 1,
the Taylor expansions (of any orders) are the same for X = 1− or X = 1+.

Let us now prove that Φt is strictly concave, for instance in the case ρ > 0, the case ρ < 0
being similar. For fixed u ∈ (0, 1), by direct computation, the map y 7→ sin(yu)

sin(y) is increasing and

positive on (0, π). This implies that the map

I : y 7→
∫ 1

0

(
sin(yu)

sin(y)

)2

du =
2y − sin(2y)

4y sin2(y)

is increasing on (0, π). Hence the function Φt has a decreasing derivative

Φ′t(x) = ρ/2− ρ2t I(ρt
√
x− 1)

on (1, 1 + π2

ρ2t2
), so is strictly concave on this interval. The same argument can be performed

on X < 1, starting from the function y 7→ sinh(yu)
sinh(y) . This concludes the proof by differentiability

of Φt in X = 1. B

On the figure 1 (resp. on the figure 2), we give the graphs of Φt, for ρ = 1 (resp. ρ = −1)
and t = 3/2, 2 and 5/2 (resp. t = 1/4, 1/2 and 1) from top to bottom. In both figures, the
dashed lines correspond to the sine function, relevant for X > 1. Moreover, in the negative
curvature case, the dotted (lowest) line corresponds to the limit case, obtained when t goes to
infinity (with ρ fixed).

3 Proof of Theorem 2.2

We first assume that the Markov diffusion triple satisfies a CD(ρ, n) condition and prove prop-
erties i and ii.

Let then f ∈ A be a fixed positive function, which we assume to be larger than an ε > 0,
without loss of generality. Let also t > 0 be fixed, and define Λ(s) = Ps(Pt−sf logPt−sf) for

6
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Figure 1: Graphs of Φt for positive curvatures
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Figure 2: Graphs of Φt for negative curvatures

s ∈ [0, t], so that EntPt(f) = Λ(t) − Λ(0). Classical properties of the derivative of Λ, see for
instance [BGL14, Section 6.7.2], ensure that

Λ′(s) = Ps

(
Γ(g)

g

)
= Ps

(
g Γ(log g)

)
and Λ′′(s) = 2Ps(g Γ2(log g))

for all s ∈ [0, t], where g = Pt−sf . Applying the CD(ρ, n) condition, we obtain

Λ′′(s) > 2ρΛ′(s) +
2

n
Ps(gL(log g)).

Since L(log g) =
Lg

g
− Γ(g)

g2
by diffusion property, the Cauchy-Schwarz inequality further gives

Λ′′(s) > 2ρΛ′(s) +
2

nPtf

(
LPtf − Λ′(s)

)2
.

This computation has been performed for example in [BL06] and [BGL14, Section 6.7.2].

Let now a =
2

nPtf
,X =

4

nρ

LPtf

Ptf
,B =

(nρ
2
Ptf
)2

(X − 1) and C = LPtf −
nρ

2
Ptf . The

above inequality can be written as

Λ′′(s) > a
((

Λ′(s)− C
)2

+B
)
,

7



or equivalently

H ′′(s) ≤ −a2BH(s)

for all s ∈ [0, t], where H(s) = exp (−a(Λ(s)− Cs)).
Then Lemma 3.1 below has several consequences. First of all, since H is a positive function,

then both cases i and ii in the lemma are impossible. This means that necessarily a2B < π2

t2
,

or in other words that for any t > 0

X < 1 +
π2

ρ2t2
,

or equivalently :

∀t > 0,
1

4nρ

LPtf

Ptf
< 1 +

π2

ρ2t2
.

Since we now know that a2B < π2

t2
, Lemma 3.1 again ensures that for all s ∈ [0, t]

H(s) > τa2B(t− s)H(0) + τa2B(s)H(t). (13)

The reverse local logarithmic Sobolev inequality (9) is now obtained by taking the derivative
in (13) at s = 0, in the form

H ′(0) > −τ ′a2B(t)H(0) + τ ′a2B(0)H(t).

In the first case where a2B ∈ (0, π
2

t2
), or equivalently X ∈ (1, 1 + π2

t2ρ2
), then this inequality is

exactly (9) with the sine function when written in terms of Λ, and then of Ptf . In the other
case where a2B < 0, that is X < 1, then we obtain (9) with the hyperbolic sine function. The
limit case a2B = 0, or equivalently X = 0, is the limit of any of the first two cases. Together,
the obtained estimates are exactly inequality (9).

The local logarithmic Sobolev inequality (10) is obtained in the same way, by taking the
derivative of (13) at s = t.

We now prove the converse implication, namely that ii implies i, the case iii being handled
by the same method. Observing that inequality (9) is an equality when f = 1, the idea is
to let f = 1 + εh with h ∈ A and to perform a second order Taylor expansion of (9) in the
parameter ε tending to 0. The zeroth and first order terms in ε vanish, and recalling that

EntPt(f) = ε2

2

[
Pt(h

2)− (Pth)2
]

+ o(ε2), we obtain

Pt(h
2)− (Pth)2 >

e2ρt − 1

ρ
Γ(Pth) +

e2ρt − 1− 2ρt

ρ2
(LPth)2

n

for all t > 0. Now, as in [BL06] for instance, a second order Taylor expansion in t tending to 0,
with the zero and first order terms vanishing, gives the CD(ρ, n) condition back.

In this proof we have used the following elementary but useful lemma, which is proved
in [Vil09, Thm 14.28] for instance.

Lemma 3.1 Let t > 0, λ ∈ R and h a C2 non-negative function on [0, t] such that h′′ ≤ −λh
on [0, t]. Then :

i. If λ > π2

t2
then for all s ∈ [0, t], h(s) = 0.

8



ii. If λ = π2

t2
then for all s ∈ [0, t], h(s) = c sin

(
s
t

)
, for some c > 0.

iii. If λ < π2

t2
then for all s ∈ [0, t], h(s) > τλ(t− s)h(0) + τλ(s)h(t), where

τλ(s) =



sin(
√
λs)

sin(
√
λt)

if λ > 0

s/t if λ = 0

sinh(
√
−λs)

sin(
√
−λt)

if λ < 0

4 Applications to ultracontractive estimates and Har-

nack inequalities

4.1 Ultracontractive estimates in positive curvature

In this section we assume that ρ > 0. We will use the new Li-Yau inequality (12) in force to
obtain uniform bounds on L logPtf , for positive f , and then ultracontractive estimate on the
semigroup.

Under a curvature-dimension condition CD(ρ, n) with ρ > 0 and n > 1, it is classical that
a reversible Markov semigroup (Pt)t>0 is ultracontractive, that is, Ptf is bounded for all t > 0
and integrable f .

A way of proving an ultracontractive bound is indeed the following: First, a CD(ρ, n)
condition with ρ > 0 implies a (Nash-type) logarithmic entropy-energy inequality :

Entµ
(
f2
)
≤ n

2
log

(
1 +

4

ρn

∫
Γ(f)dµ

)
(14)

for any f ∈ A such that
∫
f2dµ = 1. Let us observe that, in this ergodic case where Ptf converges

to
∫
f dµ for large time, then (14) can be recovered by letting t go to infinity in our local

inequality (10) (written for f2 instead of f). Then (14) implies the following ultracontractive
estimate: there exists a constant C such that

||Ptf ||∞ ≤
C

tn/2

∫
|f |dµ, t ∈ (0, 1] (15)

for any f ∈ A. These results can be found for instance in [BGL14, Chapter 6].

This bound is in fact included in the Li-Yau inequality (12) which also gives a quantitative
estimate for large time. Observe indeed that Γ(Ptf)/(Ptf)2 > 0 for any positive f and t, so (12)
gives

Φt

(
4

nρ

LPtf

Ptf

)
> 0.

Let now ρ, t > 0 be fixed. By definition (8), it holds Φt(0) > 0,

lim
x→−∞

Φt(x) = −∞ and lim
x→1+ π2

ρ2t2

Φt(x) = −∞.

9



Hence the continuous and strictly concave function Φt admits exactly two roots ξt1 < 0 < ξt2,
and is positive in-between and negative outside its roots. Of course ξt1 and ξt2 depend on t and
ρ but not on the dimension n. In particular

ξt1 <
4

nρ

LPtf

Ptf
< ξt2 (16)

for all positive f and t.
A first simple consequence is the following : if t > 2/ρ, then Φt(1) = 1/t−ρ/2 is non-positive,

so necessarily ξt2 ≤ 1 (see also the graph of the second function in Figure 1). In other words :

Corollary 4.1 ([BQ99]) Assume a CD(ρ, n) condition with ρ > 0. Then for all positive
function f in A

4

nρ

LPtf

Ptf
< 1, t >

2

ρ
· (17)

Let us remark that (17) provides additional information to the bound (11) in Corollary 2.3.
Moreover, inequalities (11) and (17) and are of course not optimal for large t since LPtf converges
to 0 when t goes to +∞. Next proposition gives an answer to this issue : it makes quantitative
the fact that ξt1, ξ

t
2 → 0 when t goes to +∞ (and ξt1 → −∞, ξt2 → +∞ when t goes to 0), giving

by (16) corresponding explicit upper and lower bounds for LPtf/Ptf .

Lemma 4.2 Assume that ρ > 0. Then the roots ξt1 and ξt2 of Φt are such that

−4e−ρt − 4e−2ρt ≤ ξt1 ≤ −4e−ρt + 8ρte−2ρt, t >
1

2ρ

4e−ρt − 4e−2ρt ≤ ξt2 ≤ 4e−ρt + 8ρte−2ρt, t >
6

ρ

ξt1 = − 2

ρt
+O(1) and ξt2 =

π2

ρ2t2
− 4

ρt
+O(1) , t→ 0.

Observe the compatibility of this last bound with Corollary 11.

Proof
C We first consider the large time bounds on the negative root ξt1. For x < 0, we observe that
ξt1 > x if and only if Φt(x) ≤ 0, or if and only if u =

√
1− x, which then is larger than 1, satisfies

(u− 1)eρtu > u+ 1.

For u = 1 + 2e−ρt, and by the elementary inequality ev > 1 + v, this property holds as soon
as t > 1/(2ρ). Therefore ξt1 > 1 − u2 for these t. For u = 1 + 2e−ρt − 4ρte−2ρt, the reverse
inequality holds also as soon as t > 1/(2ρ). Therefore ξt1 ≤ 1 − u2 for these t. Together, this
gives the large time lower and upper bounds on ξt1.

Then we recall that the positive root ξt2 belongs to (0, 1] as soon as t > 2/ρ, which we
assume. Then, now, ξt2 ≤ x if and only if Φt(x) ≤ 0, or if and only if (1 − u)eρtu > 1 + u. For
u = 1 − 2e−ρt the reverse inequality holds as soon as t > 2/ρ, so that ξ2t > 1 − u2 for these t.
For u = 1 − 2e−ρt − 4ρte−2ρt the inequality holds as soon as t > 6/ρ, so that ξ2t ≤ 1 − u2 for
these t. This gives the large time lower and upper bounds on ξt2.

We proceed in the same manner to get the short time estimates. B
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Let us now see how to turn these estimates on ξt1, ξ
t
2 into ultracontractivity estimates on the

semigroup. Given 0 < t < s, integrating the pointwise bound (16) over the interval [t, s] gives

exp

(
−nρ

4

∫ s

t
ξu2du

)
≤ Ptf

Psf
≤ exp

(
−nρ

4

∫ s

t
ξu1du

)
.

By ergodicity, letting s go to infinity implies :

exp

(
−nρ

4

∫ ∞
t

ξu2du

)
≤ Ptf∫

fdµ
≤ exp

(
−nρ

4

∫ ∞
t

ξu1du

)
, t > 0.

By Proposition 4.2, it follows that

Ptf∫
f dµ

≤ exp
[
n
(
e−ρt +

e−2ρt

2

)]
, t >

1

2ρ

and
Ptf∫
f dµ

> exp
[
− n

(
e−ρt +

1 + 2ρt

2
e−2ρt

)]
, t >

6

ρ
·

Proceeding likewise for the short time estimates finally gives :

Corollary 4.3 Assume a CD(ρ, n) condition with ρ > 0 with n > 1. Then there exist constants
C and D, depending on ρ and n, such that for any positive f∣∣∣Ptf − ∫ fdµ

∣∣∣ ≤ Ce−ρt ∫ fdµ, t > 1, (18)

and
1

Dtn
exp

(
−nπ

2

ρt

)
≤ Ptf∫

fdµ
≤ D

tn/2
, t ∈ (0, 1]. (19)

By Proposition 4.2, the constant C in (18) can be made explicit in n and ρ. Inequality (18)
does not give the asymptotic behavior of Ptf in a satisfactory way. Indeed it is classical that
the CD(ρ, n) condition on a symmetric Markov semigroup with ρ > 0 and n > 1 implies a
(Poincaré) spectral gap inequality with constant (n− 1)/(ρn); it follows that Ptf converges to
its mean with an exponential speed with rate 2ρn

n−1 :∫ (
Ptf −

∫
fdµ

)2

dµ ≤ e−
2ρn
n−1

t
∫ (

f −
∫
fdµ

)2

dµ.

The right rate of convergence has been lost in (18). Let us in fact observe that the rate ρ in (18)
cannot be improved into ρn/(n− 1) by our method since neither ξt1 nor ξt2 depend on n.

On the other hand, since |Ptf | ≤ Pt|f |, the upper bound in (19) can be extended to any f ,
recovering the classical ultracontractivity property (15), together with an explicit lower bound
on Ptf which is not included in (15). Moreover the method here is elementary and can also be
written in the non-symmetric case.

One can also derive similar bounds on the gradients. For instance :

Corollary 4.4 Assume a CD(ρ, n) condition with ρ > 0 with n > 1. Then there exists a
constant C, independent of ρ and n, such that for any positive f

Γ(logPtf) =
Γ(Ptf)

(Ptf)2
≤ Cnρ e−2ρt, t >

6

ρ
·

11



Proof
C We use the above notation, together with s = ρt, and assume that s > 6. Then, by
Lemma 4.2, |X| ≤ 6e−2s ≤ 1, so that in particular

√
1−X > 1 − 6e−2s. Therefore, by this

bound and the elementary es > s3/6,

e−2s
√
1−X ≤ e12se−s−2s ≤ e2−2s.

In particular it is smaller than 1/3, so

coth(s
√

1−X) =
1 + e−2s

√
1−X

1− e−2s
√
1−X

≤ 1 + 3e−2s
√
1−X .

It follows that

2

ρ
Φt(X) ≤ X − 2 + 2

√
1−X(1 + 3e−2s

√
1−X) ≤ X − 2 + 2

(
1− X

2

)
(1 + 3e2−2s) ≤ Ce−2s.

This concludes the argument by Corollary 2.3. B

4.2 Estimates in non-positive curvature

Let ρ < 0 be fixed. For any t > 0, by definition (8), it holds Φt(1) = 1/t− ρ/2 > 0,

lim
x→−∞

Φt(x) = +∞ and lim
x→1+ π2

ρ2t2

Φt(x) = −∞.

Hence the continuous and strictly concave function Φt admits exactly one root 1 < ξt < 1 + π2

ρ2t2

(see for instance Figure 2). It is positive on (−∞, ξt) and in particular

4

nρ

LPtf

Ptf
≤ ξt

for all positive f and t, by the Li-Yau inequality (12). This recovers the bound (11). In

fact (11) can not be improved by our method since ξt ∼ 1 + π2

ρ2t2
for large time. Indeed, by

direct computation as in the previous section,

1 +
π2

ρ2t2

(
1− 2

ρt

)
≤ ξt ≤ 1 +

π2

ρ2t2
, t >

2

|ρ|
·

4.3 Harnack inequalities

In this section we assume that the space E is a complete, connected and smooth Riemannian
manifold (M, g). This example has been described in Section 2.1. We shall let d denote the
Riemannian distance on M .

The Li-Yau inequality (12) for ρ 6= 0 can be written as

−|∇Ptf |
Ptf

> −

√
n

2
Φt

(
4

nρ

LPtf

Ptf

)

12



where Φt is defined in (8), or equivalently,

−|∇Ptf |
Ptf

> Ψt,ρ

(
LPtf

Ptf

)
where

Ψt,ρ(x) = −

√
n

2
Φt

(
4

nρ
x

)
. (20)

This extends to ρ = 0 by letting Ψt,0(x) = −
√
n/(2t) + x.

Basic properties of the function Ψt,ρ are listed in the following remark. Their proofs are not
complicated, and therefore are omitted.

Remark 4.5 Let t > 0 be fixed.

• Let ρ > 0. The function Ψt,ρ is defined on the interval It,ρ = [nρξt1/4, nρξ
t
2/4], where the

roots ξt1 < 0 < ξt2 of Φt have been defined in Section 4.1 and depend only on ρ and t. Its
derivative Ψ′t,ρ is an increasing one-to-one function from (nρξt1/4, nρξ

t
2/4) onto R. The

Legendre-Fenchel transform of Ψt,ρ : Ψ∗t,ρ(x) = supy∈It,ρ{xy−Ψt,ρ(y)} is defined and finite
for every x ∈ R.

• Let ρ < 0. The function Φt admits only one root ξt > 0 (see Section 4.2) and then Ψt,ρ is
defined on the interval It,ρ = [nρξt/4,+∞). Its derivative Ψ′t,ρ is an increasing one-to-one
function from (nρξt/4,∞) onto (−∞, 0). The Legendre transform of Ψt,ρ is defined and
finite on (−∞, 0).

• When ρ = 0, the function Ψt,0(x) = −
√
n/(2t) + x is defined on It,0 = [−n/(2t),+∞).

Its Legendre transform is also defined on (−∞, 0). The case ρ = 0 appears as limit case
of the case ρ < 0, but not of the case ρ > 0.

• For any ρ ∈ R and t > 0, Ψt,ρ is strictly convex on its interval of definition.

• For any ρ ∈ R and t > 0, Ψ∗t,ρ is non-negative.

In the figure 3 (resp. figure 4) we have drawn the graph of x 7→ Ψt,ρ(x) with ρ = 1 (resp.
ρ = −1), t = 1 and n = 2. The dashed line in the figure 4 corresponds to the graph of Ψt,0,
again with t = 1 and n = 2.

-0.5 0 0.5 1 1.5 2 2.5 3

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

Figure 3: Graph of Ψt,ρ with a positive curvature
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-4

-3
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Figure 4: Graph of Ψt,ρ with a negative curvature

It is standard since [LY86] that a Li-Yau inequality implies a parabolic Harnack inequality
in the semigroup. Here we give the equivalence between these two types of bounds in our
framework.

Theorem 4.6 (Harnack inequality) Assume that L satisfies a CD(ρ, n) condition on the
manifold M , with ρ ∈ R and n > 1.

i. Let us assume that ρ > 0.

For any s, t > 0, x, y ∈M and any positive function f in A, we have

Psf(x) ≤ Ptf(y) exp

(
d(x, y)

t− s

∫ t

s
Ψ∗u,ρ

(
− t− s
d(x, y)

)
du

)
. (21)

Conversely, if (21) is satisfied for any positive function f in A, x, y ∈M and s, t > 0 then
the Li-Yau inequality (12) holds.

ii. Let us assume that ρ ≤ 0.

For any 0 < s < t, x, y ∈ M and any positive function f in A, then the inequality (21)
holds.

Conversely, if (21) is satisfied for any positive function f in A, x, y ∈ M and 0 < s < t,
then the Li-Yau inequality (12) holds.

In both cases (21) also holds for any positive function f , in L1(µ) for instance.

Proof
C Let us prove the first part of the theorem, when ρ > 0. Let s, t > 0, x, y ∈M and f positive.
Let for u ∈ [0, 1],

Λ(u) = logPb(u)f(xu),

where b(u) = (1 − u)s + ut (b is not necessarily increasing) and (xu)u∈[0,1] is a constant speed
geodesic between x and y. Then we get

Λ′(u) = (t− s)
LPb(u)f (xu)

Pb(u)f(xu)
+
∇Pb(u)f(xu)

Pb(u)f(xu)
· ẋu > (t− s)

LPb(u)f (xu)

Pb(u)f(xu)
− d
|∇Pb(u)f(xu)|
Pb(u)f(xu)

where d = d(x, y). The Li-Yau inequality (12) ensures that

−
|∇Pb(u)f |
Pb(u)f

> Ψb(u),ρ

(
LPb(u)f

Pb(u)f

)

14



at the point xu, where as in (20) Ψb(u),ρ(x) = −
√

n
2Φb(u)(

4x
nρ). But now Ψb(u),ρ is convex on

Ib(u),ρ, so for any α ∈ Ib(u),ρ

Λ′(u) > (t− s)
LPb(u)f

Pb(u)
+ dΨ′b(u),ρ(α)

(
LPb(u)f

Pb(u)f
− α

)
+ dΨb(u),ρ(α).

By Remark 4.5, for ρ > 0 there exists α ∈ Ib(u),ρ such that dΨ′b(u),ρ(α) = −(t − s). Hence, for
this α,

Λ′(u) > (t− s)α+ dΨb(u),ρ(α).

It gives after integration over u ∈ [0, 1],

Psf(x) ≤ Ptf(y) exp

(
d

∫ 1

0

(
− t− s

d
α−Ψb(u),ρ(α)

)
du

)
.

Now, by definition of the Legendre-Fenchel transform and of b(u),

d

∫ 1

0

(
− t− s

d
α−Ψb(u),ρ(α)

)
ds ≤ d

∫ 1

0
Ψ∗b(u),ρ

(
− t− s

d

)
du =

d

t− s

∫ t

s
Ψ∗u,ρ

(
− t− s

d

)
du.

This concludes the argument.

Let us now prove the converse part. Let s > 0 and y ∈ M be fixed. Let also xε (for ε > 0)
be the exponential map starting from y and with initial tangent vector w. We apply (21) with
x = xε and t = s+ εa, a ∈ {−1,+1}. For f positive in A, inequality (21) becomes

Psf(xε) ≤ Ps+εaf(y) exp

(
ε|w|+ o(ε)

εa

∫ s+εa

s
Ψ∗u

(
− εa

ε|w|+ o(ε)

)
du

)
. (22)

A first-order Taylor expansion of (22) in ε > 0 tending to 0 gives

∇Psf
Psf

· w
|w|
≤ a

|w|
LPsf

Psf
+ Ψ∗s,ρ

(
− a

|w|

)
at the point y. For w = r ∇Psf|∇Psf | with r > 0, this can be written as

|∇Psf |
Psf

≤ a

r

LPsf

Psf
+ Ψ∗s,ρ

(
−a
r

)
.

Hence
|∇Psf |
Psf

≤ −
{
LPsf

Psf
z −Ψ∗t,ρ(z)

}
for any z ∈ R, since r > 0 and a ∈ {−1,+1} are arbitrary. Since Ψ∗s,ρ is a convex function on
R, taking the infimum over z finally gives

|∇Psf |
Psf

≤ −Ψs,ρ

(
LPsf

Psf

)
at the point y. This is the Li-Yau inequality (12) at the arbitrary time s > 0 and point y ∈M .

When ρ ≤ 0, as explained in Remark 4.5, Ψ′t,ρ is a one-to-one function from (nρξt/4,∞)
onto (−∞, 0). We can use the same method as in the above case ρ > 0 but one can find
such an α only if 0 < s < t. In other words the argument works only for increasing functions b.
The proof of the converse part is also the same in this case by considering only the 0 < s < t. B
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Remark 4.7 Theorem 4.6 could be formally stated in the following general form : given a
family Ψt of convex functions, an inequality of the form

−|∇Ptf |
Ptf

> Ψt

(
LPtf

Ptf

)
,

for any function f > 0 on M and t > 0 is equivalent to a Harnack inequality

Psf(x) ≤ Ptf(y) exp

(
d(x, y)

t− s

∫ t

s
Ψ∗u

(
− t− s
d(x, y)

)
du

)
for any s, t > 0 and x, y ∈ M such that −(t − s)/d(x, y) is in the domain of the Legendre
transforms Ψ∗u.

Remark 4.8 In the limit case ρ = 0, we have Ψt,0(x) = −
√

n
2t + x for x > − n

2t . Then, Ψ∗t,0 is

only defined on (−∞, 0), with Ψ∗t,0(y) = −ny
2t −

1
4y for y < 0. Therefore

d

t− s

∫ t

s
Ψ∗u,0

(
− t− s

d

)
du =

d

t− s

∫ t

s

(
n(t− s)

2ud
+

1

4(t− s)

)
du =

n

2
log

(
t

s

)
+

d2

4(t− s)

for 0 < s < t. Hence, under the CD(0, n) condition, we recover the classical Harnack inequality

Psf(x) ≤ Ptf(y)

(
t

s

)n/2
exp

(
d(x, y)2

4(t− s)

)
, 0 < s < t, x, y ∈M.

This Harnack inequality is equivalent to the classical Li-Yau inequality (1).

Let us now assume that the Markov semigroup admits a density kernel, that is, a function
pt(x, y) such that for any function f , Ptf(x) =

∫
f(y) pt(x, y)dy where dy is the Riemannian

measure. This is for instance the case if the semigroup is ultracontractive, so in particular if
ρ > 0. Then a Harnack inequality classically implies a bound on the kernel. Here we obtain :

Corollary 4.9 (Heat kernel bound) Under the CD(ρ, n) condition, for any x, y, z ∈ M it
holds

ps(z, x) ≤ pt(z, y) exp

(
d(x, y)

t− s

∫ t

s
Ψ∗u,ρ

(
− t− s
d(x, y)

)
du

)
(23)

for all s, t > 0 if ρ > 0, and all 0 < s < t if ρ ≤ 0.

5 Comparison with earlier bounds

5.1 Linearisation of the Li-Yau inequality

For all given t > 0 and ρ 6= 0, the function Φt is concave (see Section 2). Hence the new Li-Yau
inequality (12) admits a linearisation:

Proposition 5.1 (Linearisation of the Li-Yau inequality) Under the CD(ρ, n) condition
with ρ ∈ R∗ and n > 1
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i. for any α > 0,
Γ(Ptf)

(Ptf)2
≤ A1(α)

LPtf

Ptf
+
n

2
B1(α),

with 
A1(α) = 1− ρ

2α sinh2(αt)
(sinh(2αt)− 2αt)

B1(α) =
α

4 sinh2(αt)
(sinh(2αt) + 2αt)− ρ+

ρ2

4α sinh2(αt)
(sinh(2αt)− 2αt);

ii. for any β ∈ (0, π/t),
Γ(Ptf)

(Ptf)2
≤ A2(β)

LPtf

Ptf
+
n

2
B2(β),

with 
A2(β) = 1− ρ

2β sin2(βt)
(2βt− sin(2βt))

B2(β) =
β

4 sin2(βt)
(sin(2βt) + 2βt)− ρ+

ρ2

4β sin2(βt)
(2βt− sin(2βt)).

Proof
C By Corollary 2.3 and concavity of the function Φt on (−∞, 1 + π2

ρ2t2

)
,

Γ(Ptf)

(Ptf)2
<
n

2
Φt

( 4

nρ

LPtf

Ptf

)
≤ 2

ρ
Φ′t(x0)

LPtf

Ptf
+
n

2

(
Φt(x0)− x0 Φ′t(x0)

)
for any x0 < 1 + π2/(ρ2t2). By definition (8) of Φt, choosing x0 ≤ 1 gives case i with
α = ρ

√
1− x0; observe then that the bound in i is the same for α and −α. Choosing

1 < x0 < 1 + π2/(ρ2t2) likewise gives case ii with β = ρ
√
x− 1. B

Let us observe that the bounds in Proposition 5.1 can also be recovered by extending the
method proposed in [BG11] (see also [Qia14]). In their Proposition 2.4, F. Baudoin and N. Garo-
falo use a close semigroup argument to prove that

Γ(Ptf)

(Ptf)2
≤
(

1− 2ρ

∫ t

0
V 2(s)ds

)
LPtf

Ptf
+
n

2

(∫ t

0
V ′(s)ds+ ρ2

∫ t

0
V 2(s)ds− ρ

)
for any positive function V on [0, t] such that V (0) = 1 and V (t) = 0. They deduce diverse
bounds for certain choices of V , which turn out to be suboptimal : in fact, it is a direct but long
computation to see that optimising this inequality with respect to V , with

∫ t
0 V

2(s)ds fixed,
gives Proposition 5.1.

If we choose α = |ρ| in i. above we obtain the bound (5) :

Corollary 5.2 ([LX11]) Under the CD(−K,n) condition, then

Γ(Ptf)

(Ptf)2
≤
(

1 +
sinh(2Kt)− 2Kt

2 sinh2(Kt)

)
LPtf

Ptf
+
n

2
K(1 + coth(Kt)) (24)

for all positive t and f in A.
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By the same method as here, the authors in [LX11, Thm 1.3] deduced from (24) the following
Harnack inequality : for every 0 < s < t and f > 0,

Psf(x) ≤ Ptf(y)

(
e2Kt − 1− 2Kt

e2Ks − 1− 2Ks

)n/4
exp

(
d(x, y)2

4(t− s)

(
1 +

t coth(Kt)− s coth(Ks)

t− s

))
. (25)

Since our Harnack inequality (21) is equivalent to our Li-Yau inequality (12), which is stronger
than (24), it follows that (21) is also stronger than (25).

5.2 Comparison with Davies’ estimate (2) in negative curvature

Let us prove that the Li-Yau type inequality (12) given by Corollary 2.4 improves upon the
bound (2) established for ρ < 0, in the notation K = −ρ > 0.

In our notation Φt and X = 4LPtf/(nρPtf) we have to prove that

Φt(X) ≤ −αK
2

X +
α2

t
+

Kα2

2(α− 1)

for all α > 1, t > 0 and X.
For X < 1, this can be written as

2 r y coth y ≤ 1

α− 1
+ 2 r α2 + (α− 1)r2 y2

for all positive r = (Kt)−1 and y = Kt
√

1−X. But y coth y ≤
√

1 + y2 as can be seen by
taking squares and using y ≤ sinh(y) for y > 0. Hence

2 r y coth y ≤ 2 r
√

1 + y2 ≤ 2 r + 2 r y ≤ 2 r +
1

α− 1
+ (α− 1) (ry)2

by the Young inequality. This proves the claim for X < 1.

As regards the case where X > 1, we first recall the elementary bound : y cot y < 1− y2/4
for all y in (0, π). Letting indeed u = y/2 ∈ (0, π/2), this is due to

y cot y = u
1− tan2 u

tanu
< u

1− u2

u
= 1− y2

4
;

here we use that tanu > u with x 7→ 1−x2
x = 1

x − x decreasing.
As a consequence, in the notation r = (Kt)−1 > 0 and y = Kt

√
X − 1 ∈ (0, π),

Φt(X) = K − K

2
X +K r y cot y ≤ K

2

[
1 + 2 r − r2 y2 − r y2/2

]
, (26)

so arranging terms it is enough to prove that the second order polynomial

1

α− 1
+ 2 r(α2 − 1) + y2(r2(1− α) + r/2)

in y is non-negative.
We now observe that the left-hand side of (12) is non-negative, hence so is Φt(X), and finally

the right-hand side of (26). In other words necessarily y2 ≤ 2/r (that is, X ≤ 1 + 2/(Kt) for
any t > 0). Now the above second order polynomial in y (with zero first order coefficient) is
non-negative on the interval [0,

√
2/r] if and only if it is so at 0 and

√
2/r, which is the case

for any α > 1 by direct computation. This proves the claim for X > 1.

The case X = 1 is covered as a limit case of any of these two cases, or can be directly
considered. This concludes the argument, all cases being covered.
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5.3 Comparison with estimate (3) in negative curvature

Let us now prove that the Li-Yau type inequality (12) also improves upon the bound (3) estab-
lished for ρ < 0, in the notation K = −ρ > 0.

We first observe that, in the notation r = (Kt)−1, X = 4LPtf/(nρ) and G = 4 Γ(Ptf)/(nK),
estimate (3) can be equivalently formulated as

X ≤ −G+ 2 r + 2
√
G+ 1 + 2r (27)

In the case where X < 1, then estimate (12) can be written as

G ≤ 2−X + 2
√

1−X coth(r−1
√

1−X).

By the elementary inequality y coth y ≤
√

1 + y2 ≤ 1+y, and the Young inequality, this implies

G ≤ 2−X + 2 r +
1

ε
+ ε(1−X) (28)

for all ε > 0, and then

X ≤ −G+ 2 r + δ G+
1

δ

for all δ = ε/(1 +ε) ∈ (0, 1). If G > 1 then we take δ = 1/
√
G < 1, giving X ≤ −G+ 2 r+ 2

√
G;

if G ≤ 1 then we let δ tend to 1, giving X ≤ −G+ 2r +G+ 1 ≤ −G+ 2r + 2
√
G+ 1. In both

cases this improves (27).

In the case where X > 1, then in the same notation the estimate (12) can be written as

G ≤ 2−X + 2
√
X − 1 cot(r−1

√
X − 1).

Since moreover y cot y ≤ 1 for all y ∈ (0, π), this implies the bound

X ≤ −G+ 2 r + 2, (29)

which in turn improves (27).

Since again the case X = 1 is a limit case or can be treated directly, all cases are covered.

5.4 Comparison with Hamilton’s estimate (4) in negative cur-
vature

Let us finally prove that (12) improves upon the bound (4) established for ρ < 0, in the notation
K = −ρ > 0. Letting s = Kt,X = 4LPtf/(nρ) and G = 4 Γ(Ptf)/(nK), estimate (4) can be
written as

X ≤ − e−2sG+
2

s
e2s. (30)

In the case where X < 1, then choosing ε = 2s in (28) ensures that (12) implies the bound

X ≤ − 1

1 + 2s
G+

5 + 4s+ 4s2

2s(1 + 2s)
·

This in turn implies (30) by direct comparison of both coefficients on the right-hand sides. In
the case where X > 1, then the bound (29), where r = 1/s, likewise implies (30). As above this
concludes the argument.
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