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SIGN CHANGES IN SHORT INTERVALS OF COEFFICIENTS OF SPINOR ZETA FUNCTION OF A SIEGEL CUSP FORM OF GENUS 2
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In this paper, we establish a Voronoi formula for the spinor zeta function of a Siegel cusp form of genus 2. We deduce from this formula quantitative results on the number of its positive (resp. negative) coefficients in some short intervals.

Introduction

Let S k be the space of Siegel cusp forms of integral weight k on the group Sp 4 ( ) ⊂ GL 4 ( ) and let F ∈ S k be an eigenfunction of all the Hecke operators. Let Z F (s) := p∈P Z F,p (p -s ) (Res > 1) be the spinor zeta function of F. Here P is the set of prime numbers and if α 0,p , α 1,p , α 2,p are the Satake p-parameters attached to F then Z F,p (t) -1 := (1α 0,p t)(1α 0,p α 1,p t)(1α 0,p α 2,p t)(1α 0,p α 1,p α 2,p t).

They satisfy α 2 0,p α 1,p α 2,p = 1 for all p. A Siegel form is in the Maass subspace S M k of S k if it is a linear combination of Siegel forms F that are eigenvectors of all the Hecke operators and for which there exists a primitive modular form, f , of weight 2k -2 such that

Z F (s) = ζ s - 1 2 ζ s + 1 2 L(f , s).
Here L(f , s) is the L-function of f . This happens only if k is even. The bijective linear application between S M k and the space of modular forms of weight 2k -2 is called the Saito-Kurokawa lifting [START_REF] Zagier | Sur la conjecture de Saito-Kurokawa[END_REF]. The Ramanujan-Petersson conjecture says that [START_REF] Andrianov | Euler products that correspond to Siegel's modular forms of genus 2, Uspehi Mat[END_REF] |α j ,p | = 1 for j = 0, 1, 2 and all primes p.

It is not true for Siegel Hecke-eigenforms in S M k . But, if k is odd or, if k is even and in the orthogonal complement of S M k , then it has been established by Weissauer [START_REF] Weissauer | Endoscopy for GSp(4) and the cohomology of Siegel modular threefolds[END_REF]. We denote by H * k the set of Siegel cuspidal Hecke-eigenforms of weight k and genus 2 that, if k is even, are in the orthogonal complement of S M k . The forms we consider in this paper all belong to H * k . According to Breulmann [START_REF] Breulmann | On Hecke eigenforms in the Maaß space[END_REF], a Siegel Hecke-eigenform is in S M k if and only if all its Hecke eigenvalues are positive.

According to [START_REF] Andrianov | Euler products that correspond to Siegel's modular forms of genus 2, Uspehi Mat[END_REF][START_REF] Evdokimov | Characterization of the Maass space of Siegel modular cusp forms of genus 2[END_REF], the function

Λ F (s) := (2π) -s Γ s + k -3 2 Γ s + 1 2 Z F (s) has an entire continuation to Á since F ∈ H * k . Further it satisfies the functional equation (2) Λ F (s) = (-1) k Λ F (1 -s)
on Á . The spinor zeta function of F has the Dirichlet expansion:

Z F (s) = n 1 a F (n)n -s
for Res > 1. By using [START_REF] Andrianov | Euler products that correspond to Siegel's modular forms of genus 2, Uspehi Mat[END_REF], one sees that

(3) |a F (n)| d 4 (n)
for all n 1, where d 4 (n) is the number of solutions in positive integers a, b, c, d of n = abcd.

In this paper, we investigate the problem of sign changes for the sequence (a F (n)) n 1 in short intervals. Define

N ± F (x) := n x a F (n)≷ 0 1.
We apply a method due to Lau & Tsang [START_REF] Lau | Large values of error terms of a class of arithmetical functions[END_REF] to establish the following Theorem. Convergence issues however appear and we have to deal with them.

Theorem-Let F be in H * k and ε > 0. There are constants c > 0 absolute and x 0 (F) depending only on F such that for all x x 0 (F), we have

N ± F (x + cx 3/4 ) -N ± F (x) ≫ x 3/8-ε
, where the implied constant in ≫ depends only on ε.

Remark-An ingredient of our proof is the inequality (4)

n x a F (n) ≪ F,ε x 3/5+ε (x 2).
(see Lemma 1). We also prove, and use an Omega-result: Lemma 2).

n x a F (n) = Ω ± (x 3/8 ) (see
Two related problems have already been studied. Denote by λ F (n) the n-th normalised Hecke eigenvalue of F. Then we have (5)

∞ n=1 λ F (n) n s = Z F (s) ζ(2s + 1) (Res > 1)
.

In [START_REF] Kohnen | Sign changes of Hecke eigenvalues of Siegel cusp forms of genus two[END_REF], Kohnen proved that

#{n x : λ F (n) ≷ 0} → ∞ (x → ∞).
Then, Das [START_REF] Das | On the natural densities of eigenvalues of a siegel cusp form of degree 2[END_REF] proved that, as x tends to +∞, the quantities

1 #{p ∈ P : p x} #{p ∈ P ∩ [1, x] : λ F (p) ≷ 0}
are bounded from below (and naturally also bounded from above). In [START_REF] Kohnen | The first negative Hecke eigenvalue of a Siegel cusp form of genus two[END_REF], Kohnen & Sengupta proved that under the same assumption there is an integer n ≪ k 2 (logk) 20 such that λ F (n) < 0. Their result has been generalised to higher levels by Brown [START_REF] Brown | The first negative Hecke eigenvalue of genus 2 Siegel cuspforms with level N ≥ 1[END_REF].

Remark-Das's result is on the counting function of the Hecke eigenvalues. It implies however the result on the coefficients of the spinor zeta function since [START_REF] Das | On the natural densities of eigenvalues of a siegel cusp form of degree 2[END_REF] implies

a F (n) = (d,m)∈ 2 d 2 m=n λ F (m) d .
Moreover, the proof of Kohnen & Sengupta can be adapted to prove that there is an integer n ≪ k 2 (log k) 20 such that a F (n) < 0.

Truncated Voronoi formula

The aim of this section is to establish the following truncated Voronoi formula, which will be needed in the proof of the Theorem.

Lemma 1-Let F be in H * k .
Then for any A > 0 and ε > 0, we have

(6) n x a F (n) = x 3/8 (2π) 3/4 n M a F (n) n 5/8 cos 4 √ 2π(nx) 1/4 + π 4 + O A,F,ε (x 3 M -1 ) 1/4+ε + (xM) 1/4+ε
uniformly for x 2 and 1 M x A , where the implied constant depends on A, F and ε only.

In particular

(7) n x a F (n) ≪ F,ε x 3/5+ε (x 2).
Proof. Without loss of generality, we assume that M ∈ . Let κ := 1 + ε and ( 8)

T 4 = 4π 2 (M + 1 2 )
x. By the Perron formula (see [14, Corollary II.2.4]) we have ( 9)

n x a F (n) = 1 2πi κ+iT κ-iT Z F (s) x s s ds + O F,ε x 3/4+ε M -1/4 + x ε .
We shift the line of integration horizontally to Res = -ε, the main term gives

1 2πi κ+iT κ-iT Z F (s) x s s ds = Z F (0) + 1 2πi L Z F (s) x s s ds,
where L is the contour joining the points κ ± iT and -ε ± iT. Using the convexity bound [12, §1.3]

Z F (σ + it) ≪ F,ε (|t| + 1) max{2(1-σ), 0}+ε (-ε σ κ),
the integrals over the horizontal segments and the term Z F (0) can be absorbed in

O F,ε (Tx) ε (T + T -1 x) = O F,ε x 1/4+ε M 1/4 + x 3/4+ε M -1/4 .
To handle the integral over the vertical segment L v := [-ε -iT, -ε +iT], we invoke the functional equation [START_REF] Breulmann | On Hecke eigenforms in the Maaß space[END_REF]. We deduce that (10)

1 2πi L v Z F (s) x s s ds = (-1) k n 1 a F (n) n I L v (nx),
where

I L v (y) := 1 2πi L v (2π) 2s-1 Γ(k -1 2 -s)Γ( 3 2 -s) Γ(s + k -3 2 )Γ(s + 1 2 )
y s s ds.

By using the Stirling formula

Γ(σ + it) = √ 2π|t| σ-1/2 e -π|t|/2+i(t log|t|-t)+i sgn(t)(π/2)(σ-1/2) 1 + O t -1
uniformly for σ 1 σ σ 2 and |t| 1, the quotient of the four gamma factors is

(11) |t| 2-4σ e -4i(t log|t|-t)+i sgn(t)π(1-k) 1 + O t -1
for bounded σ and any |t| 1, where the implied constant depends on σ and k. Together with the second mean value theorem for integrals [14, Theorem I.0.3], we obtain

(12) I L v (nx) ≪ (nx) -ε T 1 t 1+4ε e -ig(t) dt + T 1+4ε ≪ T T 4 nx ε T a e -ig(t) dt + 1
for some 1 a T, where g(t) := t log t 4 /(4π 2 nx) -4t. In view of (8), we have 

g ′ (t) = -log(4π
n>M a F (n) n I L v (nx) ≪ T T 4 x ε n>M d 4 (n) n 1+ε       log n M + 1 2 -1 + 1        ≪ T T 4 x ε        M<n 2M d 4 (n)(M + 1 2 ) n 1+ε |n -M -1 2 | + 1 M ε/2        ≪ T T 4 √ Mx ε ≪ Tx ε .
For n M, we extend the segment of integration L v to an infinite line L * v in order to apply Lemma 1 in [START_REF] Chandrasekharan | The approximate functional equation for a class of zeta-functions[END_REF]. Write

L ± v := [ 1 2 + ε ± iT, 1 2 + ε ± i∞), L ± h := [-ε ± iT, 1 2 + ε ± iT] and define L *
v to be the positively oriented contour consisting of L v , L ± v and L ± h . In view of [START_REF] Lau | Large values of error terms of a class of arithmetical functions[END_REF], the contribution over the horizontal segments L ± h is

I L ± h (nx) ≪ 1/2-ε -ε (2π) 2σ-1 T 2-4σ (nx) σ T dσ ≪ T 1/2-ε -ε nx T 4 σ dσ ≪ Tx ε .
As in [START_REF] Michel | Analytic number theory and families of automorphic L-functions, Automorphic forms and applications[END_REF], for n M we get that

I L ± v (nx) ≪ (nx) 1/2+ε ∞ T t -1-4ε e -ig(t) dt + 1 T 1+4ε ≪ T nx T 4 1/2+ε        log M + 1 2 n -1 + 1        ≪ T        log M + 1 2 n -1 + 1        . So (14) n M a F (n) n I L ± v (nx) + I L ± h (nx) ≪ Tx ε/2 n M d 4 (n) n       |log M + 1 2 n | -1 + 1       ≪ Tx ε/2 n M d 4 (n)(M + 1 2 ) n|n -M -1 2 | + Tx ε ≪ Tx ε . Define I L * v (y) = 1 4π 2 i L * v Γ(k -1 2 -s)Γ( 3 2 -s)Γ(s) Γ(s + k -3 2 )Γ(s + 1 2 )Γ(1 + s) (4π 2 y) s ds.
After a change of variable s into 1s, we see that

I L * v (y) = I 0 (4π 2 y) 2π , with I 0 (t) := 1 2πi L ε Γ(s + k -3 2 )Γ(s + 1 2 )Γ(1 -s) Γ(k -1 2 -s)Γ( 3 2 -s)Γ(2 -s) t 1-s ds.
Here L ε consists of the line s = 1 2ε + iτ with |τ| T, together with three sides of the rectangle whose vertices are 1 2ε -iT, 1 + ε -iT, 1 + ε + iT and 

I L * v (nx) = (-1) k (nx) 3/8 (2i) 3/4 cos 4 √ 2π(nx) 1/4 + π 4 + O (nx) 1/8 .
We conclude ( 16)

n M a F (n) n I L v (nx) = (-1) k (2π) 3/4 x 3/8 n M a F (n) n 5/8 cos 4 √ 2π(nx) 1/4 + π 4 + O x 1/4+ε M 1/4
from ( 14) and [START_REF] Weissauer | Endoscopy for GSp(4) and the cohomology of Siegel modular threefolds[END_REF]. Finally the asymptotic formula ( 6) by ( 9)-( 10), ( 13) and [START_REF] Zagier | Sur la conjecture de Saito-Kurokawa[END_REF]. Since

x 3/8 n M a F (n) n 5/8 cos 4 √ 2π(nx) 1/4 + π 4 ≪ (xM) 3/8+ε ,
the choice of M = x 3/5 in ( 6) gives [START_REF] Lee | On the representation of the summatory functions of a class of arithmetical functions[END_REF].

Proof of the Theorem

We establish a lemma that has a similar statement as a one due to Lau & Wu [10, Lemma 3.2]. However, due to convergence issue, the proof is more delicate.

Lemma 2-Let F be in H * k . Define S F (x) := n x a F (n).
There exist positive absolute constants C, c 1 , c 2 and X 0 (F) depending only on F such that for all X X 0 (F), we can find x 1 , x 2 ∈ [X, X + CX 3/4 ] for which

S F (x 1 ) > c 1 X 3/8 and S F (x 2 ) < -c 2 X 3/8 .
Proof. We begin the proof with Theorem C of Hafner [START_REF] Lee | On the representation of the summatory functions of a class of arithmetical functions[END_REF]. In order to use this result, it is more convenient to introduce the notion of (C, ℓ)-summability and to present related simple facts (see [START_REF] Moore | Summable series and convergence factors[END_REF] for more details). Let {g n (t)} n 0 be a sequence of functions. We write

s(g; n) := 0 ν n g ν (t), σ(g; n) := 1 C (ℓ+1) n n ν=0 C (ℓ) n-ν s(g; ν),
where C

(ℓ)

n := ℓ+n-1 n
. We say that the series of general term g n (t) is uniformly (C, ℓ)summable to the sum G(t) if σ(g; n) converges uniformly to G(t) as n → ∞. We have C

(ℓ) 0 + • • • + C (ℓ) n = C (ℓ+1) n
and if the series n g n (t) dt converges then the series of general term g n (t) dt is also (C, ℓ)-summable and their limits are the same.

As in [7, page 151], for ρ > -1 and x 2π , define

A ρ (x) := 1 Γ(ρ + 1) 2πn x a F (n)(x -2πn) ρ .
Now let C be the rectangle with vertices c ± iR and 1b ± iR (taken in the counterclockwise direction), where b > c > max 1, |k -

3 2 | and R > k -3 2 are real numbers. Let Q ρ (x) := 1 2πi C Γ(s)(2π) -s Z F (s) Γ(s + ρ + 1)
x ρ+s ds.

Denote by C 0,b the oriented polygonal path with vertices -i∞, -iR, b -iR, b + iR, iR and +i∞. Let

f ρ (x) := 1 2πi C 0,b Γ(1 -s)∆(s) Γ(2 + ρ -s)∆(1 -s)
x 1+ρ-s ds where

∆(s) = Γ(s + k -3 2 )Γ(s + 1 2 )
. By [7, Theorem C], the series of general term (-1) k (2πn) -1-ρ a F (n)f ρ (2πnx) is uniformly (C, ℓ)-summable for ℓ > max{ 1 2ρ, 0} on any finite closed interval in (0, ∞) only under the condition ρ > -1 and the sum is A ρ (x) -Q ρ (x). In particular, we can fix ℓ = 1 and ρ = 0. We shall say C-summable for (C, 1)-summable.

The only pole of the integrand of Q 0 (x) is 0, it is encircled by C hence Q 0 (x) ≪ F 1 (x 1). Then the series of general term g n (v)g * n (v) is uniformly C-summable on any finite closed interval in (0, ∞) and the sum is Φ(v) + O(v -3/2 ) (here the term O(v -3/2 ) comes from Q 0 (2πv 4 ) and the O-term of ( 17)). In view of (4), a simple partial integration shows that the series of general term g * n (v) converges to the sum n g * n (v) uniformly on any finite closed interval in (0, ∞). Thus the series of general term g n (v) is uniformly Csummable on any finite closed interval in (0, ∞) and the sum is

Φ(v)+ n g * n (v)+O(v -3/2
). Let t be any large natural number, κ > 1 a large parameter that will be fixed later. Write

K τ (u) = (1 -|u|)(1 + τ cos(4 √ 2πκu))
with τ = ±1. We consider the integral

J τ = 1 -1 Φ(t + κu)K τ (u) du.
We have

1 -1 g n (t + κu)K τ (u) du = r β a F (n) n 5/8 , 1 -1 g * n (t + κu)K τ (u) du = s β e 1 a F (n) n 7/8 ,
where

r β := 1 -1 K τ (u) cos 4 √ 2πβ(t + κu) + π 4 du, s β := 1 -1 K τ (u) t + κu sin 4 √ 2πβ(t + κu) + π 4 du.
As in [10, (3.13)], we have

r β = δ β=1 τ 2 + O 1 κ 2 β 2 + δ β 1 1 κ 2 (β -1) 2 and s β ≪ (tβκ) -1 . It follows that 1 -1 g 1 (t + κu)K τ (u) du = τ 2 + O 1 κ 2 , 1 -1 g n (t + κu)K τ (u) du ≪ d 4 (n) κ 2 n 9/8 (n 2), 1 -1 g * n (t + κu)K τ (u) du ≪ d 4 (n) κtn 9/8 ,
where all the implied constants are absolute. These estimates show that

n 1 1 -1 g n (t + κu)K τ (u) du = τ 2 + O 1 κ 2 , n 1 1 -1 g * n (t + κu)K τ (u) du ≪ 1 κt .
In view of the remark about C-summability, we obtain

J τ = τ 2 + O 1 κt + 1 t 3/2 .
We fix κ large enough. When X κ 4 , we take t = X 1/4 . So t > 2κ and the O-term in J τ is ≪ κ -2 , so the main term dominates if κ has been chosen sufficiently large. Therefore J -1 < -1 4 and J 1 > 1 4 .

Since S F (x) = A 0 (2πx), we rewrite this as 1 -1

S F (t + κu) (t + κu) 3/2 K -1 (u) du < - As a consequence, we have S F ((t + κη + ) 4 ) (t + κη + ) 3/2 1 2(2π) 3/4 and S F ((t + κη -) 4 ) (t + κη -) 3/2 -1 4 (1 -(3πκ) -2 ) (2π) 3/4 for some η ± ∈ [-1, 1]. These two points deviate from X by a distance ≪ X 3/4 , since the difference between (t ± κ) 4 is ≪ κt 3 ≍ X 3/4 . This implies the result of Lemma 2. Now we are ready to prove the Theorem. By Lemma 2, for any x X 0 (F) we can pick three points x < x 1 < x 2 < x 3 < x + 3Cx 3/4 such that S F (x i ) < -cx 3/8 (i = 1, 3) and S F (x 2 ) > cx 3/8 for some absolute constant c > 0. (Note that y + Cy 3/4 x + 3Cx 3/4 for y = x + Cx 3/4 .) Hence we deduce that

x 1 <n<x 2 a F (n)>0
a F (n) S F (x 2 ) -S F (x 1 ) > 2cx 3/8 and x 2 <n<x 3 a F (n)<0 (-a F (n)) -(S F (x 3 ) -S F (x 2 )) > 2cx 3/8 . Thus, the Theorem follows as each term in the two sums are positive and ≪ ε n ε .

1 - 1 K

 11 t + κu) (t + κu) 3/2 K 1 (u) du > 1 4(2π) 3/4 .The kernel function K τ (u) is nonnegative and satisfies 1 -(3πκ) -2 τ (u) du 2 (τ = ±1).

  1 2ε + iT. Note that all the poles of the integrand in I 0 (t) lie on the left of the line L ε .

	Using a result due to Chandrasekharan and Narasimhan [4, Lemma 1] generalised by Lau & Tsang [11, Lemma 2.2] we obtain (note that a factor √ 2 is missing for the
	definition of e 0 in both references)			
	I 0 (t) =	(-1) k √ 2π	t 3/8 cos 4t 1/4 +	π 4	+ O t 1/8 .
	It hence follows that				
	(15)				
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