
HAL Id: hal-01093994
https://hal.science/hal-01093994

Preprint submitted on 11 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Counting and generating permutations in regular classes
of permutations

Nicolas Basset

To cite this version:
Nicolas Basset. Counting and generating permutations in regular classes of permutations. 2014.
�hal-01093994�

https://hal.science/hal-01093994
https://hal.archives-ouvertes.fr

Algorithmica manuscript No.
(will be inserted by the editor)

Counting and generating permutations in regular classes

of permutations.

Nicolas Basset

Received: date / Accepted: date

Abstract The signature of a permutation σ is a word sg(σ) ⊆ {a, d}∗ whose ith
letter is d when σ has a descent (i.e. σ(i) > σ(i + 1)) and is a when σ has an
ascent (i.e. σ(i) < σ(i + 1)). Combinatorics of permutations with a prescribed
signature is quite well explored. Here we introduce regular classes of permutations,
the sets Λ(L) of permutations with signature in regular languages L ⊆ {a, d}∗.
Given a regular class of permutation we (i) count the permutations of a given
length within the class; (ii) compute a closed form formula for the exponential
generating function; and (iii) sample uniformly at random the permutation of a
given length. We first recall how (i) is solved in the literature for the case of a
single signature. We then explain how to extend these methods to regular classes
of permutations using language equations from automata theory. We give two
methods to solve (ii) in terms of exponential of matrices. For the third problem
we provide both discrete and continuous recursive methods as well as an extension
of Boltzmann sampling to uncountable union of sets parametrised by a variable
ranging over an interval. Last but not least, a part of our contributions are based
on a geometric interpretation of a subclass of regular timed languages (that is,
recognised by timed automata specific to our problem).

Keywords Regular class of permutations · Signature of a permutation · Uniform
random sampling · Exponential generating function · Timed automata · Boltzmann
sampling

Contents

1 Introduction . 2
1.1 Related works . 5
1.2 Paper structure . 5

This research is supported in part by ERC Advanced Grant VERIWARE and was also sup-
ported by the ANR project EQINOCS (ANR-11-BS02-004).

N. Basset
University of Oxford, Department of Computer Science.
E-mail: basset@cs.ox.ac.uk

2 Nicolas Basset

2 Preliminaries . 5
2.1 Particular regular languages of signatures considered in the literature 8

2.1.1 Consecutive descent pattern avoidance 8
2.1.2 Periodic pattern . 9

3 The first approach . 10
3.1 Number of permutation with a prescribed signature 10

3.1.1 The discrete approach . 10
3.1.2 The continuous approach . 11
3.1.3 The link between the two approaches . 12

3.2 Counting permutations in a regular class . 13
3.2.1 The discrete approach . 13
3.2.2 The continuous approach . 14

3.3 Generating functions . 15
3.3.1 Characterisation of the generating functions 15
3.3.2 About generating function for periodic pattern 17

4 The second approach . 17
4.1 Timed languages and chain polytopes . 17

4.1.1 Chain polytopes of signatures . 17
4.1.2 Timed languages, their volumes and generating functions 18
4.1.3 The clock semantics of a signature . 19
4.1.4 The timed semantics of a language of signatures 19
4.1.5 The link with order and chain polytopes of signatures 19

4.2 The s-t (timed) language encoding. 20
4.2.1 The s-t-encoding . 20
4.2.2 Timed semantics and s-t-encoding . 21

4.3 Recursive formulae for volume functions and cardinalities 21
4.4 Generating functions . 24

4.4.1 Characterisation of the generating functions 24
4.4.2 Properties of the generating functions and convergence radii 26
4.4.3 Properties of the matrix exponentiation 27
4.4.4 Examples . 28

5 Uniform random sampling . 31
5.1 A discrete recursive method . 31
5.2 A continuous recursive method . 33
5.3 Boltzmann sampling . 34

5.3.1 Experiments . 36
6 Discussion, perspectives and further related works 37

1 Introduction

Counting the permutations with a prescribed signature (described in the abstract)
is a classical combinatorial topics (see [Luc14] and reference therein).

A very well studied example of permutations given by their signatures are the
so-called alternating (or zig-zag, or down-up) permutations (see [Sta10] for a sur-
vey). Their signatures belong to the language expressed by the regular expression
(da)∗(d+ ε) (in other words they satisfy σ1 > σ2 < σ3 > σ4...).

To a language L ⊆ {a, d}∗, we associate the class Λ(L) of permutations with
signature in L. When the language L is regular (namely, recognised by a finite state
automaton), we say that the class of permutation Λ(L) is regular. Many classes of
permutations can be expressed in that way; for instance, alternating permutations
or those with an even number of descents.

In this paper, we study the combinatorics of regular class of permutations. We
are thus interested in the sequence (αn(L))n∈N of cardinalities of set of permuta-
tions of length n ∈ N with signature in L. We address the problem of

Counting and generating permutations in regular classes of permutations. 3

Problem 1: defining recursively the sequence (αn(L))n∈N;
Problem 2: computing its exponential generating function (EGF), that is, the for-

mal power series GL(z)
def
=
∑

αn(L) z
n

n! ;
Problem 3: generating uniformly at random permutation in Λ(L) so that permu-

tations of length n in Λ(L) have all the same probability 1/αn(L) to
be returned.

We propose two main approaches to solve this problem.
The first approach is an extension of previous results on the subject designed

for the particular problem of counting and generating randomly permutations with
a prescribed signature. Within this approach, there are two sub-approaches: one
remains in the discrete world of permutations while the other consider vectors
(ν1, ν2, . . . , νn) of the hyper-cube [0, 1]n. To a permutation corresponds the order

polytope of all the vectors having the same ordering of its coordinates as the per-
mutation. Such order polytopes are also defined for signature and are particular
cases of Stanley’s poset polytopes [Sta86]. The main novelty of our approach is
to introduce the dynamics of automata into the recursive equation defining order
polytopes or defining the set of permutations. We consider families of polytopes
called ordered set, that are parametrised by the state of an automaton recognis-
ing the regular language under consideration. Then, we write system of equations
on these ordered sets mimicking the equation on languages of automata theory.
This allows us to compute the coefficient αn(L) recursively and to characterise the
generating functions in terms of fix-point of a system of integral equations.

The second approach is based on a connection of the regular class of permuta-
tions with volumetry of regular timed languages (the languages recognised by the
so-called timed automata). Timed automata were introduced in [AD94] to model
and verify properties of real-time systems. Volumetry of timed language is a more
recent theory initiated by Asarin and Degorre. We refer the reader to1 [ABD14]
and to our PhD thesis [Bas13] for an overview of results of this theory. The con-
nection is in two steps. First, we recall the link between the order polytopes of the
first approach and the chain polytopes which are a second type of Stanley’s poset
polytopes [Sta86]; then we interpret the chain polytopes of a signature w as the
set of delays which together with w forms a timed word of a well chosen timed
language.

A note on asymptotic behaviours and bit complexity. Another meaningful problem is
to study the asymptotic behaviour of αn(L). A first information in the asymptotic
growth rate of (αn(L))n∈N can be obtained when knowing the radius of convergence
R of the EGF:

1/R = lim sup
n→+∞

(

αn(L)

n!

)1/n

(1)

This results is known as the Cauchy-Hadamard Theorem. Note that as αn(L)
n! ≥ 1,

the quantity 1/R belongs to [0, 1]. The logarithm of this quantity is often called
the entropy. We interpret in the second approach sketched above, the sequence
(αn(L))n∈N, in terms of volume sequence associated to a timed language. Hence,
one can use the theory of volumetry and entropy of timed language presented in

1 This paper [ABD14] yet unpublished, is based on previous conference articles [AD09a,
AD09b,BA11,ABD13].

4 Nicolas Basset

[ABD14] to analyse the growth rate of (αn(L))n∈N (without needs of generating
function). More precisely the quantity 1/R is the spectral radius of a functional
operator akin to the integral operators considered in the present paper. We ex-
plained the link between the operator approach and generating function for timed
languages in [ABDP12].

To get finest measures, one can study more precisely the generating function
around the convergence radius or alternatively study more precisely the spectral
theory of the integral operator under consideration. The former option is exten-
sively described in [FS09] while the latter has been explored in [EKP11,EJ12] for
classes of permutations defined by consecutive descent pattern avoidance.

In the present paper, we establish complexity results in terms of elementary
arithmetic operations. In practice, the bit complexity comes into play. Indeed the
numbers handled such that αn(L) have order of magnitude n! and this latter
number needs O(n log n) bits to be stored. An idea to reduce this complexity is to

handle and store directly number of the form αn(L)
n! . These number according to

(1) still need asymptotically O(n logR) bits to be stored (providing R < +∞).

Contribution summary

– In the first approach we extend discrete and continuous recursive methods for
counting permutations of a single signature to the case of regular class of signa-
ture (Corollary 1 and Proposition 6). We further characterise in Proposition 7
the generating functions in terms of system of integral equation (derived from
system of language equations) and give explicit solutions in terms of (integrals
of) exponential of matrices (Theorem 1).

– We describe in the second approach, the link between regular class of permuta-
tion and volumetry of regular timed languages. In particular, the EGF wanted
is equal to a volume generating function associated to a well chosen timed
language. We characterise the generating function using a new system of inte-
gral equation (Theorem 3) and give slightly more explicit solutions than in the
first approach (Theorem 4). This second approach also allows one to describe
signatures of permutations directly in terms of straights (aka. double-ascents
and double-descents) and turns (aka. picks and valleys).

– With Algorithm 2 we propose a recursive method to solve the problem of
uniform sampling for regular classes of permutations.

– We show with Theorem 6 how random generation of timed words can be used
for random generation of permutation. Then we describe continuous recursive
method to generate timed word and hence to give another solution to the
problem Problem 3.

– We extend Boltzmann sampling to our framework involving uncountable union
of sets parametrised by real valued variable, giving a third solution to Problem
3.

– We have implemented a part of the algorithms using the computer algebra
system Sage [S+14] and illustrate them on a running example.

The methods we give to compute the EGF of a regular class of permutations are
based on exponentiation of matrices. Such kind of operations are implemented in
most of computer algebra systems.

Counting and generating permutations in regular classes of permutations. 5

1.1 Related works

A part of the present paper is the chapter 8 of the PhD thesis [Bas13] and was
presented in [Bas14]. Our work is mainly inspired by our previous work on vol-
umetry, entropy and generating functions for timed languages [ABDP12,ABD14,
Bas13]. In particular in [ABDP12] a link between enumerative combinatorics and
timed languages was foreseen that we establish here. No particular knowledge of
(timed) automata theory nor of combinatorics of permutations is required to read
the paper.

Other class of permutation considered. The random generation of permutations with
signature following a periodic pattern has been addressed very recently by Philippe
Marchal [Mar14]. In this work the computation of the exponential generating func-
tion is also addressed. In another recent work [Luc14], this latter problem is also
solved. This paper also establish the link between the discrete and continuous ap-
proach of previous works and study the entropy for classes of permutation follow-
ing periodic pattern. Another interest of this paper is its motivation from statistic
physics.

Particular regular languages of signatures are considered in [EJ12] under the
name of consecutive descent pattern avoidance. Numerous other works treat more
general cases of (consecutive) pattern avoidance (see [EN03], [Kit11]) and are quite
incomparable to our work. Indeed, certain classes of permutations avoiding a finite
set of patterns cannot be described as a language of signatures while some classes
of permutations involving regular languages cannot be described by finite pattern
avoidance (for instance, the permutations with an even number of descents).

About the recursive method for sampling. We use the so-called recursive method in-
troduced by [NW78] developed by [FZVC94]. This method has been improved for
the particular case of generation of words in regular languages with several meth-
ods [BG12,ODG13] (see the latter reference for experimental comparison). Bit
complexity issues were already discussed above. It is known that one can decrease
the bit complexity of the recursive method by using floating point arithmetic, even
without introducing a bias in the sampling [DZ99,BG12]. The random sampler of
timed words (Algorithm 3) is an adaptation to the timed case of this method. We
give related works on Boltzmann sampling in Section 6.

1.2 Paper structure

In Section 2, we give some preliminary definition and discuss how certain classes
of permutations considered in the literature can be seen as regular classes of per-
mutations. In Section 3 and 4 we describe the first and the second approaches
sketched above. Section 4 is devoted to random sampling. We discuss the results
and perspectives as well as further related works in Section 6.

2 Preliminaries

All along the paper we use two alphabets, {a, d} and {s, t}, whose elements must
be respectively read as “ascent”, “descent”, “straight” and “turn”. A signature

6 Nicolas Basset

is a word on the alphabet {a, d}. The empty word (the unique 0-length word) is
denoted by ε. The concatenation of two languages A and B is denoted by AB =
{uw | u ∈ A and w ∈ B} and when A contains just a one-letter word l we write
lB instead of {l}B. Given a language A and a natural k, we denote by Ak the set
{u1 . . . uk | ui ∈ A}, in particular A0 = {ε}. The Kleene star closure of A is defined
by A∗ = ∪k∈NA

k. In particular, the set of every word formed with letters of an
alphabet Σ is denoted by Σ∗.

Example 1 We consider as a running example the regular language

L(ex0) = ({aa, dd})∗{a, d}.
It is composed of words that are concatenation of block of consecutive ascent (or
descent) of even length followed by an odd length block of ascent (or descent). For
instance the three following words are in L(ex0): aaa, aad and ddddaaddd.

Automata and regular languages A deterministic finite state automaton (thereafter
simply called automaton) is a tuple T = (Σ,Q, q0, F, δ) where Σ is a finite alphabet;
Q is a finite set of states; q0 ∈ Q is the initial state; F ⊆ Q is the set of final states;
and δ : Q × Σ → Q is a partial transition function. For a state p and a letter
l ∈ Σ, we let p.l stand for δ(p, l) whenever it is defined, otherwise we set the
convention that sets and real-valued functions parametrised by p.l (e.g. in (2) or
(30)) are respectively empty and null. This notation extends inductively on words
as follows p.ε = p and p.ua = (p.u).a for u ∈ Σ∗ and a ∈ Σ.

We denote by [Tp]n the set of words of length n ∈ N recognised by T from a
state p defined recursively as follows: [Tp]0 = {ε} if p is final (that is p ∈ F) and
[Tp]0 = ∅ otherwise; and for n ∈ N

[Tp]n+1 =
⋃

l∈Σ

l[Tp.l]n (2)

The language recognised by T from the state p ∈ Q is [Tp] def
=
⋃

n∈N
[Tp]n. The

language recognised by T is the language [Tq0], that is, recognised from the initial
state q0. The languages recognised by automata are called regular languages.

Alternatively one can define directly the languages ([Tp])p∈Q as the unique
fixed point of the following language equation:

[Tp] =
⋃

l∈Σ

l[Tp.l] (∪{ε} if p ∈ F). (3)

We assume without loss of generality that all the state of automata considered
in this paper are reachable, that is, of the form q0.u for some u ∈ Σ∗ (non reachable
states can be deleted without changing the language of the automaton).

In this paper, automata will be denoted by A when their alphabet is {a, d} and
by B when their alphabet is {s, t}.
Example 2 Consider the automaton A on Figure 1. (2) and (3) gives







[Tq0]n+1 = a[Tq1]n
⋃

d[Tq1]n;
[Tq1]n+1 = a[Tq0]n;
[Tq2]n+1 = a[Tq0]n.

and







[Tq0] = a[Tq1]
⋃

d[Tq1];
[Tq1] = a[Tq0]

⋃

{ε};
[Tq2] = a[Tq0]

⋃

{ε}.

It can be seen that the language recognised by A is exactly the language L(ex0)

described in Example 1.

Counting and generating permutations in regular classes of permutations. 7

q0

q2

q1

a a

dd

q0

q2

q1

a a

dd

q0 q3

s, t

s

Fig. 1 From left to right: automata for L(ex0), L(ex0)′ ∪{ε} and sta(L(ex0)′)∪{ε} . The final
states are marked with double circle, the initial state q0 by an incoming arrow and labelled

arrows qi
l
−→ qj means that qi.l = qj

Matrix notation for system of equation parametrised by states of an automaton. Let
T = (Σ,Q, q0, F, δ) be an automaton. In several places in this paper, we will con-
sider family of functions fp : x, z 7→ fp(x, z) index by states p ∈ Q of the automaton
under consideration. We denote by f(x, z), the column vector whose qth component
is fq(x, z). Integration and derivation of vectors of functions are taken component-

wise; for instance,
∫ 1

0
f(y, z)dy is the vector whose q-th component is

∫ 1

0
fq(y, z)dy.

We denote by F the column vector whose qth component is 1 if q ∈ F and 0
otherwise. For l ∈ Σ, the Q × Q-matrices Ml for l ∈ Σ is the adjacency matrices
corresponding to letter l that is for p, q ∈ Q, Ml(p, q) = 1 if p.l = q and 0 otherwise.

Signature of a permutation and regular class of permutations. For n ∈ N, [n] denotes
{1, . . . , n} and Sn the set of permutations of [n]. We use the one line notation; for
instance, σ = 231 means that σ(1) = 2, σ(2) = 3, σ(3) = 1.

Let n be a positive integer. The signature of a permutation σ = σ1 · · ·σn is the
word u = u1 · · ·un−1 ∈ {a, d}n−1 denoted by sg(σ) such that for i ∈ [n], σi < σi+1

iff ui = a (we speak of an “ascent”) and σi > σi+1 iff ui = d (we speak of a
“descent”), for instance sg(1342) = sg(2341) = aad. We also define signature on
words of naturals, for instance if we let a equals ten, b equals thirteen, and c equals
two, then sg(abc) = ad.

The notion of signature appears in the literature under several different names
and forms such as descent word, descent set, ribbon diagram, etc. A regular class

of permutation is a set Λ(L)
def
= {σ | sg(σ) ∈ L}, the class of permutations with

signature in a regular language L ⊆ {a, d}∗. We also define for positive naturals

k ≤ n, the set Λn(L)
def
= Λ(L) ∩Sn and Λn,k(L)

def
= {σ ∈ Λn(L) | σ1 = k}.

Cardinalities and exponential generating function for regular class of permutations.

For a signature u ∈ {a, d}∗, we denote by Λu the set of permutations with signature
u and by αu its cardinality. Given a language L we denote by Ln the sub-language
of L restricted to its n-length words. We denote by αn(L) the number of n-length
permutations with signature in L, that is αn(L) =

∑

w∈Ln−1
αw = |Λn(L)|. Simi-

larly we define αn,k(L) = |Λn,k(L)| for k ≤ n. The exponential generating function
of Λ(L) is

GL(z)
def
=

∑

σ∈Λ(L)

z|σ|

|σ|! =
∑

u∈L

αu
z|u|+1

(|u|+ 1)!
=
∑

n≥1

αn(L)
zn

n!
.

8 Nicolas Basset

Example 3 For the running example, the theory developed in the paper allows us
to find the exponential generating function of Λ(L(ex0)):

GL(ex0)(z) =
2
√
2z(e

√
2z − 1)

2 +
√
2z + (2−

√
2z)e

√
2z

(4)

= 2f

(√
2

2
z

)

with f(X) =
X tanh (X)

1−X tanh (X)
=

1

1−X tanh (X)
− 1.(5)

Its Taylor expansion is

2
z2

2!
+ 8

z4

4!
+ 84

z6

6!
+ 1632

z8

8!
+ 51040

z10

10!
+ 2340480

z12

12!
+ · · ·

For instance, there are 1632 permutation of length 8 in the regular class considered.

Convergence radii of generating functions It is often useful to consider a generating
function T (z) =

∑

n≥0 anz
n as a function of the complex variable (see [FS09]). For

a non-positive integer r, we denote byD(0, r) the following set {z ∈ C | |z| < r}. The
disc of convergence of T (z) =

∑

n≥0 anz
n is the greatest disc D(0, r) containing

only complex number z for which
∑

n≥0 anz
n converges. The convergence radius

Rconv(T) is the radius r of such a disc of convergence.
In this paper, we also consider generating functions on two variables V (x, z) =

∑

n∈N
vn(x)z

n where vn is a polynomial that is non-negative on the interval [0, 1].
We define the convergence radius of V as infx∈[0,1] Rconv(z 7→ V (x, z)).

For a vector V of generating function Vq(x, z) (indexed by states q ∈ Q of an

automaton) we define Rconv(V)
def
= minq∈Q Rconv(Vq).

Exponential of a matrix. In several places of this article, we will use exponential
of matrices. The exponential of a matrix M is the matrix defined by exp(M) =
∑

n∈N

Mn

n! . We often use exponential of matrices of the form exp(zM) =
∑

n∈N
Mn zn

n!
where z is either a formal variable or a complex number and M has real or complex
entries. The matrix exp(zM) is invertible with inverse exp(−zM).

2.1 Particular regular languages of signatures considered in the literature

In this paper, we introduce for the first time regular languages of signature. How-
ever previous works on the subject can be encoded using our framework.

2.1.1 Consecutive descent pattern avoidance

Works on consecutive descent pattern avoidance (such as [EKP11,EJ12]) consider
finite set of words Forb and the permutation whose signature avoid words of this
set. In other words, the underlying language of signature XForb contains exactly
the words w such that for all 0 < i < j ≤ |w| it holds that wi . . . wj 6∈ Forb.
Such a language XForb can be recognised by an automaton with a number of
states upper bounded by

∑

w∈Forb |w| by using a prefix tree (aka. trie2). We depict
two examples of automata in the left and middle of Figure 2. They recognise

2 We refer the reader to [Lot05] for definition of such data structure.

Counting and generating permutations in regular classes of permutations. 9

ε d

d

a

a

ε

a

aa

ad

d

da

a

a

a

d

d

d
a

d

a

a

q0 q1

a

d d

a

Fig. 2 From left to right automata for X{dd}, X{aaa,add,dad} and Leven.

1 2

4 3

a

a

d

d

1 2

4 3

a

a

d

d

1, 3 2, 4

t

s

Fig. 3 From left to right: automata for Lex, Lex′
and std(Lex′

).

respectively X{dd} = {a, da}∗{ε, d} and X{aaa,add,dad}. We name the state after the
longest prefix of a forbidden word that is currently seen.

It is also well known that some regular languages cannot be described using
sets of forbidden pattern. Consider for instance the language Leven of signatures
that contain a pair number of ascent and an arbitrary number of descents, this
language is regular as recognised by the automaton depicted in the right of Figure
2. Assume toward a contradiction that it is of the form XForb for some set of words
Forb. For every w ∈ Forb, either wa or waa contains an even number of a and does
not avoid w, a contradiction. A similar argument holds for the regular language
L(ex0) which cannot be defined with a finite set of forbidden patterns.

2.1.2 Periodic pattern

Some works consider class of permutation that match so-called periodic pattern
[Mar14,Luc14]. They can be described as regular class of permutation using au-
tomata with only one cycle, and every state final. One can make some state non-
final to discard some cardinalities, for instance the class of permutations of odd
length whose signature match the periodic pattern aadd is depicted in the left of
Figure 3.

Alternating permutations of positive length have signatures that match the
periodic pattern ad. The automaton depicted in Figure 4 recognises the language
of such signatures L = {ad}∗{a, ε}.

10 Nicolas Basset

3 The first approach

In Section 3.1, we recall known results for counting permutation with a single pre-
scribed signature. In Section 3.2, we extend these results for counting permutation
of fixed length with signature in a regular language. In Section 3.3, we character-
ize the generating function as the solution of a linear algebra problem involving
integral of exponential of a matrix.

3.1 Number of permutation with a prescribed signature

Here we review known results needed in the rest of Section 3. Such a review with
historical notes can also be found in the beginning of [Luc14]. We give a somewhat
different presentation. For instance, we invoke geometry rather than probability
for the continuous case and emphasize the use of Bernstein polynomials and their
nice algebraic properties.

3.1.1 The discrete approach

The aim of this section is to describe recursive equations that given a signature
u ∈ {a, d} compute αu the number of permutation having signature u.

For this we classify the permutations according to their first element σ1.

Proposition 1 The following equalities hold for every signature u ∈ {a, d}∗ (with

n = |u|+ 1)

αu =
n
∑

k=1

αu,k; (6)

αε,1 = 1; (7)

αau,k =
n
∑

i=k

αu,i; (8)

αdu,k =
k−1
∑

i=1

αu,i. (9)

Proof (7) follows from the definition of signatures, the 0-length word ε is the
signature of the unique permutation of S1 = {1}. Let Λu,k = {σ ∈ Sn | sg(σ) =
u and σ1 = k} and αu,k = |Λu,k|. (6) comes from the set equation

Λu = {σ ∈ Sn | sg(σ) = u} =
n
⋃

k=1

Λu,k

Note that Λau,k = {k} × {σ2 . . . σn+1 | k < σ2 and sg(σ2 . . . σn+1) = u} and

hence that Λau,k = {k} ×
⋃n+1

j=k+1{σ2 . . . σn+1 | sg(σ2 . . . σn+1) = u and σ2 = j}.
By substracting 1 to the values greater or equal k + 1 we establish a bijection

between the set {σ2 . . . σn+1 | sg(σ2 . . . σn+1) = u and σ2 = j} and Λu,j−1.

Thus Λau,k is in bijection with
⋃n+1

j=k+1 Λu,j−1 =
⋃n

i=k Λu,i. Passing to cardi-
nalities we obtain (8). (9) is obtained similarly. ⊓⊔

Counting and generating permutations in regular classes of permutations. 11

One can use instead of (8), (9) a system of “local“ recursive equations:

αau,k = αau,k+1 + αu,k (10)

αdu,k = αdu,k−1 + αu,k−1 (11)

together with border conditions

αau,n+1 = 0; αdu,1 = 0 (12)

obtained by setting k = n+ 1 and k = 1 in (8) and (9) respectively.

Remark 1 Equations (10), (11) and (12) are slightly different form that of the lit-
erature [DB70,Vie79] recalled in [Luc14]. Indeed, previous works usually consider
classification of the permutations according to their last element σn and hence the
action of a new ascent or descent is done at the end of the word (on the right).
Here we change the order and operate on the left to be consistent with the rest of
the article that rely on language equations3 (2) and (3).

3.1.2 The continuous approach

We say that a collection of polytopes (S1, · · · , Sn) is an almost disjoint partition of
a set A if it is the union of Si and they have pairwise a null volume intersection.
In this case we write S =

⊔n
i=1 Si.

The set {(ν1, . . . , νn) ∈ [0, 1]n | 0 ≤ νσ−1
1

≤ . . . ≤ νσ−1
n

≤ 1} is called the order

simplex4 of σ and denoted by O(σ). For instance ν = (0.1, 0.3, 0.4, 0.2) belongs to
O(1342) since ν1 ≤ ν4 ≤ ν3 ≤ ν2 and (1342)−1 = 1432. The set O(σ) for σ ∈ Sn

forms an almost disjoint partition of [0, 1]n. By symmetry all the order simplices
of permutations have the same volume which is 1/n!.

If ν is uniformly sampled in [0, 1]n then it falls in any O(σ) with probability
1/n!. To retrieve σ from ν it suffices to use a sorting algorithm. We denote by
Π(ν) the permutation σ returned by the sorting algorithm on ν, that is such that
0 ≤ νσ−1

1
≤ . . . ≤ νσ−1

n
≤ 1. Moreover with probability 1, ν has pairwise distinct

coordinates and one can define its signature5 sg(ν) = u1 . . . un−1 by ui = a if
νi < νi+1 and ui = d if νi > νi+1. For instance sg(0.1, 0.3, 0.4, 0.2) = aad.

The order polytope O(u) [Sta86] of a signature u ∈ {a, d}n−1 is the set of vectors
ν such that for all i ≤ n − 1, if ui = a then νi ≤ νi+1, and νi ≥ νi+1 otherwise.
This set is the topological closure of {ν ∈ [0, 1]n | sg(ν) = u}. It is clear that the
collection of order simplices O(σ) with all σ having the same signature u form an
almost disjoint partition of the order polytope O(u): O(u) =

⊔

σ∈sg−1(u) O(σ). For

instance O(aad) = O(1243) ⊔ O(1342) ⊔ O(2341). Passing to volume we get:

Vol(O(u)) =
∑

σ∈Λu

Vol(O(σ)) =
αu

n!
. (13)

3 In fact, one could also write language equations with letter added on the right; but, this
would introduce inconsistency with timed language and volume equations of our previous work
[ABD14,ABDP12] (used in Section 4) that can only be written with operations on the left.

4 Order simplices, order and chain polytopes of signatures defined here are particular cases
of Stanley’s order and chain polytopes of posets [Sta86].

5 Alternatively sg(ν) =def sg(Π(ν)) (defined also when some coordinates are equal).

12 Nicolas Basset

One can classify vectors according to their first coordinate as the permutation
were in Section 3.1.1. We denote by Ou(x) = {(ν2, . . . , νn) | (x, ν2, . . . , νn) ∈ O(u)}
and by vou(x) its ((n− 1)-dimensional) volume.

The following proposition is the continuous counterpart of Proposition 1.

Proposition 2 The following equalities hold for every signature u ∈ {a, d}∗ (with

n = |u|+ 1)

Vol(O(u)) =

∫ 1

0

vou(x)dx; (14)

voε(x) = 1; (15)

voau(x) =

∫ 1

x

vou(y)dy; (16)

vodu(x) =

∫ x

0

vou(y)dy. (17)

Proof (16) can be proved using the following identity on sets:

Oau(x) = {(y, ν2 . . . , νn) | x ≤ y and (y, ν2, . . . , νn) ∈ O(u)} =
1
⋃

y=x

{y} × Ou(y).

A similarly argument holds for descents.

3.1.3 The link between the two approaches

The link between coefficient αu,k and function vou is made in Proposition 3 below
using Bernstein polynomials defined as follows. This proposition is essentially the
equation (15) of [Luc14] written with different indices convention and with order
reversed as explained in Remark 1. The Bernstein polynomials bk,n for integers
k ≤ n are defined as follows:

bk,n(x) =

(

n

k

)

xk(1− x)n−k.

In particular, b0,0(x) = 1 and b0,n(x) = (1− x)n for n ∈ N.

Proposition 3 For every signature w of a given length n, it holds that

vow(x) =
1

n!

n
∑

k=0

αw,k+1bk,n(x) (18)

This proposition can be proved using the following algebraic identities on integral
operators

∫ 1

x
dy and

∫ x
0
dy applied to Bernstein polynomials:

∫ 1

x

bi,n(y)dy =
1

n+ 1

i
∑

k=0

bk,n+1(x); (19)

∫ x

0

bi,n(y)dy =
1

n+ 1

n
∑

k=i+1

bk,n+1(x). (20)

Counting and generating permutations in regular classes of permutations. 13

Proof (of Proposition 3) We prove the result by induction. The base case is voε(x) =
1 = αε,1b0,0(x). For the induction step we suppose that (18) holds for some w of a
given length n and proved that it holds for au (the case du is omitted for the sake
of concision as the proof is similar). We start with (16),

voaw(x) =

∫ 1

x

vow(y)dy =

∫ 1

x

1

n!

n
∑

i=0

αu,i+1bi,n(x)dx =
1

n!

n+1
∑

i=1

αu,i

∫ 1

x

bi−1,n(x)dx.

Applying (19) we get:

voaw(x) =
1

(n+ 1)!

n+1
∑

i=1

αu,i

i−1
∑

k=0

bk,n+1(x) =
1

(n+ 1)!

n
∑

k=0





n
∑

i=k+1

αu,i



 bk,n+1(x)

Now it suffices to use (8) to conclude:

voaw(x) =
1

(n+ 1)!

n
∑

k=0

αau,k+1bk,n+1(x).

⊓⊔

3.2 Counting permutations in a regular class

For the rest of Section 3 we consider an arbitrary regular language L recognised
by an automaton A = ({a, d}, Q, q0, F, δ).

3.2.1 The discrete approach

For an arbitrary language U we let αn,k(U) be the number of permutations with
signature in U and whose first element is k. The following proposition is obtained
from Proposition 1, by using the fact that αn,k(U) =

∑

u∈U αu.

Proposition 4 The coefficients αn([Aq]) satisfy the following recursive equations:

αn([Aq]) =
n
∑

k=1

αn,k([Aq]) (21)

α1,1([Aq]) = 1q∈F (22)

αn+1,k([Aq]) =
n
∑

i=k

αn,i([Aq.a]) +
k−1
∑

i=1

αn,i([Aq.d]) (23)

One could also use instead of (23) the following system of local equations:

αn+1,k([Aq]) = αn+1,k(a[Aq]) + αn+1,k(d[Aq]) (24)

αn+1,k(a[Aq]) = αn+1,k+1(a[Aq]) + αn,k([Aq]) (25)

αn+1,k(d[Aq]) = αn+1,k−1(d[Aq]) + αn,k−1([Aq]) (26)

and use the border conditions:

αn+1,n+1(a[Aq]) = 0; αn+1,1(d[Aq]) = 0 (27)

Hence we can state a solution to Problem 1:

14 Nicolas Basset

Corollary 1 One can compute αn(L) in time complexity O(|Q|n2) and space com-

plexity O(|Q|n) (and O(|Q|n2) if all the numbers needed for the computation are kept

in memory.).

3.2.2 The continuous approach

For n ≥ 1, the family (O(u))u∈Ln−1
forms an almost disjoint partition of a subset

of [0, 1]n called the nth order set of L and denoted by On(L):

On(L) =
⊔

u∈Ln−1

O(u) =
⊔

σ∈sg−1(Ln−1)

O(σ) = {ν ∈ [0, 1]n | sg(ν) ∈ Ln−1}. (28)

For instance

O3(L
(ex0)) = O(aaa) ⊔ O(aad) ⊔ O(dda) ⊔ O(ddd)

= O(1234)⊔
O(1243) ⊔ O(1342) ⊔ O(2341)⊔
O(4312) ⊔ O(4213) ⊔ O(3214)⊔
O(4321).

Passing to volume in (28) we get:

Vol(On(L)) =
∑

u∈Ln−1

Vol(O(u)) =
∑

σ∈Λn(L)

Vol(O(σ)) =
αn(L)

n!
. (29)

The link between order sets On([Aq]) for q ∈ Q is done as in the discrete case,
by parametrising these sets according to their first component. For all q ∈ Q, n ∈ N

and x ∈ [0, 1] we let

Oq,n(x)
def
= {(ν2, . . . , νn) | (x, ν2, . . . , νn) ∈ On([Aq])} and voq,n(x)

def
= Vol[Oq,n+1(x)].

Proposition 5 The function voq,n for q ∈ Q and n ∈ N are polynomials of degree

≤ n, they satisfy the following recurrence voq,0(x) = 1q∈F and

voq,n+1(x) =

∫ 1

x

voq.a,n(y)dy +

∫ x

0

voq.d,n(y)dy; (30)

and these functions satisfy for n ≥ 1:
∫ 1

0

voq,n−1(x)dx =
αn([Aq])

n!
. (31)

Proof The sets Oq,n(x) can be recursively defined as follows: Oq,0(x) = [0, 1] if
q ∈ F and Oq,0(x) = ∅ otherwise;

Oq,n+1(x) =
1
⋃

y=x

{y} × Oq.a,n(y) ∪
x
⋃

y=0

{y} × Oq.d,n(y)

Passing to volume we get (30). Remark that Oq,n(x) =
⋃

u∈[Aq]n−1
Ou(x) and

hence that voq,n−1(x) =
∑

u∈[Aq]n−1
vou(x). We can conclude using (13):

∫ 1

0

voq,n−1(x)dx =
∑

u∈[Aq]n−1

∫ 1

0

vou(x)dx =
∑

u∈[Aq]n−1

αu

n!
=

αn([Aq])

n!
.

⊓⊔

Counting and generating permutations in regular classes of permutations. 15

One can define and compute the voq,n in the Bernstein basis using the follow-
ing proposition that link the volume function with the numbers αn,k, or directly
compute these function in the standard basis 1, x, x2, . . .

Proposition 6 The coefficient of the polynomials voq,n in the Bernstein basis can be

computed in time and space complexity O(|Q|n2) using the following characterisation:

voq,n(x) =
1

n!

n
∑

k=0

αn+1,k+1([Aq])bk,n(x) (32)

Alternatively, the polynomials voq,m for q ∈ Q and m ≤ n can be computed in the

standard basis with a time and space complexity O(|Q|n2) using recursive equation

(30).

Remark also that the space complexity can be reduced to O(|Q|n) if one is inter-
ested only on (voq,n)q∈Q (as the computation of (voq,m)q∈Q needs only to have
(voq,m−1)q∈Q in memory).

3.3 Generating functions

3.3.1 Characterisation of the generating functions

We have seem in (31) how to relates the number of permutation with the volume
functions. We now show how generating functions for these two kinds of object can
be related. In the rest of this Section, we just write Gq(z) the generating function

G[Aq](z) =
∑

n≥1

αn([Aq])

n!
zn

and we write
VOq(x, z) =

∑

n≥1

voq,n−1(x)z
n.

By taking
∑

n≥1 z
n in the equations of Proposition 5 we obtain:

Proposition 7 For z < Rconv(VO), the vector of generating function VO = (VOq)q∈Q

is the unique solution of the following system of integral equation:

VOq(x, z) = z

∫ 1

x

VOq.a(y, z)dy + z

∫ x

0

VOq.d(y, z)dy + z1p∈F ; (33)

and it also holds that:

Gq(z) =

∫ 1

0

VOq(x, z)dx

In matrix notation the system of equation (33) is written:

VO(x, z) = zMa

∫ 1

x

VO(y, z)dy + zMd

∫ x

0

VO(y, z)dy + zF. (34)

A similar equation was obtained in [EJ12], to find the growth rate of classes
of permutations that avoid a set of consecutive descent patterns (as described in
Section 2.1.1).

16 Nicolas Basset

Equation (34) is equivalent to the following differential equation (35) and
boundary condition (36):

∂

∂x
VO(x, z) = z (Md −Ma)VO(x, z) (35)

VO(0, z) = zMa

∫ 1

0

VO(y, z)dy + zF = zMaG(z) + zF (36)

The solution of these equations involve the following matrix:

I(z)
def
=

∫ 1

0

exp [xz (Md −Ma)] dx, (37)

Theorem 1 There exists r ≤ Rconv(G) such that for all z within the disc D(0, r) the

matrix I|Q| − zI(z)Ma is invertible and G(z) satisfies:

G(z) =
(

I|Q| − zI(z)Ma

)−1
zI(z)F (38)

If Md −Ma is invertible (38) is equivalent to:

G(z) = (Md − exp [z(Md −Ma)]Ma)
−1 (exp [z(Md −Ma)]− I|Q|

)

F (39)

Proof Solutions of (35) are of the form:

VO(x, z) = exp [xz (Md −Ma)]VO(0, z) (40)

Now, we integrate x over [0, 1] to make I(z) appear and use the border condition
(36), we obtain:

G(z) = I(z) (zMaG(z) + zF)

which yields
(

I|Q| − zI(z)Ma

)

G(z) = zI(z)F.

In z = 0, the continuous function z 7→ det
(

I|Q| − zI(z)Ma

)

is equal to det(I|Q|) =
1 and thus non null on a neighbourhood of 0. Thus, the matrix

(

I|Q| − zI(z)Ma

)

is invertible around 0 and the first result (38) follows.
Now, we prove (39). Remark that z (Md −Ma) I(z) = exp [z(Md −Ma)]− I|Q|.

Indeed,

z (Md −Ma) I(z) =

∫ 1

0

∑

n≥0

[z (Md −Ma)]
n+1 1

n!
xndx =

∑

n≥0

(Md −Ma)
n+1 zn+1

(n+ 1)!
.

Then
(Md −Ma)

(

I|Q| − zI(z)Ma

)

= Md − exp [z(Md −Ma)]Ma.

Hence when Md −Ma is invertible we have:

G(z) =
(

I|Q| − zI(z)Ma

)−1
(Md −Ma)

−1(Md −Ma)zI(z)F

= (Md − exp [z(Md −Ma)]Ma)
−1 (exp [z(Md −Ma)]− I|Q|

)

F.

⊓⊔
As a corollary of the proof of Theorem 1 one can obtain VO(x, z) by plugging

(36) in (40):

Proposition 8 For every x ∈ [0, 1] it holds that Rconv(G) ≤ Rconv(z 7→ VO(x, z));
and that for every z < Rconv(G),

VO(x, z) = z exp [xz (Md −Ma)] (MaG(z) + F) . (41)

Counting and generating permutations in regular classes of permutations. 17

3.3.2 About generating function for periodic pattern

A worth mentioning class of examples where (39) allows one to derive explicit re-
sults are given by periodic patterns (described in Section 2.1.2). In that case it is
not hard to explicit the matrix exp [z(Md −Ma)] in terms of generalised hyperbolic
or generalised trigonometric function (see Appendix B of [Luc14] for definitions).
So, the computation time of the generating function is essentially due to the in-
version of the matrix (Md − exp [z(Md −Ma)]Ma), that can be done for instance
in a cubic time using basic Gauss–Jordan elimination. We do not enter to much
into details here as there is already a method provided in [Luc14] with a complex-
ity better than ours (where the main part of the computation is to evaluate an
m×m determinant where m is the minimum between the number of ascents and
the number of descents in the pattern considered). Another method was also given
recently [Mar14], yet less simple as based on evaluation of an nm×nm determinant
(where n is the length of the pattern and m is as above).

In [Bas14], we considered as a running example the language recognised by the
automaton depicted in Figure 3. However, this example does not reflect all the
power of regular class of permutations as it falls in the class of periodic pattern6.

4 The second approach

We describe here a second approach to study the combinatorics of permutation
in a regular class. In the first approach ascents and descents plays a symmetric
role. This redundancy of information is handled by Stanley’s chain polytopes de-
scribed in Section 4.1 below: they do not distinguish chain of ascents and chain of
descents. In the same section, we show that chain polytopes turn out to be poly-
topes associated to timed languages hence establishing a connection between the
combinatorics of permutations and the theory of timed automata. The timed au-
tomata associated to regular languages of signatures still suffer from a redundant
role played by ascents and descents. In Section 4.2, this redundancy is treated by
introducing an encoding of signature in terms of “straights” and “turns” and their
corresponding timed semantics. This allows us to characterise generating functions
of permutation in Section 4.4 after having described recursive equations on volume
functions in Section 4.3.

4.1 Timed languages and chain polytopes

4.1.1 Chain polytopes of signatures

The chain polytope [Sta86] of a signature u is the set C(u) of vectors t ∈ [0, 1]n such
that for all i < j ≤ n and l ∈ {a, d}, wi · · ·wj−1 = lj−i ⇒ ti + . . .+ tj ≤ 1.

Example 4 A vector (t1, t2, t3, t4, t5) ∈ [0, 1]5 belongs to C(daad) iff t1 + t2 ≤ 1, t2 +
t3 + t4 ≤ 1, t4 + t5 ≤ 1 iff 1− t1 ≥ t2 ≤ t2 + t3 ≤ 1− t4 ≥ t5 iff (1− t1, t2, t2 + t3, 1−
t4, t5) ∈ O(daad).

6 Indeed, this example can be obtained from an example of [Luc14] by taking only the
even-length permutations. We discovered this by looking at the OEIS sequence A005981.

http://oeis.org/A005981

18 Nicolas Basset

More generally, for w = ul with u ∈ {a, d}∗, l ∈ {a, d} and n = |w|, there is a volume
preserving transformation (t1, · · · , tn) 7→ (ν1, · · · , νn) from the chain polytope C(u)
to the order polytope O(u) defined as follows. Let j ∈ [n] and i be the index such
that wi · · ·wj−1 is a maximal ascending or descending block, that is, i is minimal

such that wi · · ·wj−1 = lj−i with l ∈ {a, d}∗. If wj = d we define νj = 1−
∑j

k=i tk

and νj =
∑j

k=i tk otherwise.

Proposition 9 (simple case of Theorem 2.1 of [HL12]) The mapping φul :
(t1, · · · , tn) 7→ (ν1, · · · , νn) is a volume preserving transformation from C(u) to O(u).

It can be computed in linear time using the recursive definition:

∣

∣

∣

∣

ν1 = t1 if w1 = a

ν1 = 1− t1 if w1 = d

and for i ≥ 2:

∣

∣

∣

∣

∣

∣

∣

∣

νi = νi−1 + ti if wi−1wi = aa;
νi = ti if wi−1wi = da;
νi = 1− ti if wi−1wi = ad;
νi = νi−1 − ti if wi−1wi = dd.

As a corollary of (29) and Propostion 9, Problem 2 can be reformulated in
geometric terms as follows.

Corollary 2 For every L ∈ {a, d}∗ the following equalities hold:

GL(z) =
∑

n≥1

Vol(On(L))z
n =

∑

u∈L

Vol(O(u))z|u|−1 =
∑

u∈L

Vol(C(u))z|u|−1.

The three following section (Section 4.1.2, 4.1.3 and 4.1.4) are inspired by
timed automata theory and designed for non experts. We adopt a non standard7

and self-contained approach based on the notion of clock languages introduced by
[BP02] and used in our previous work [ABDP12].

4.1.2 Timed languages, their volumes and generating functions

An alphabet of timed events is the product R
+ × Σ where Σ is a finite alphabet.

The meaning of a timed event (ti, wi) is that ti is the time delay before the event

wi. A timed word is just a word of timed events and a timed language a set of timed
words. Adopting a geometric point of view, a timed word is a vector of delays
t = (t1, . . . , tn) ∈ R

n together with a word of events w = w1 · · ·wn ∈ Σn. That is
why we sometimes write such a timed word (t, w) instead of (t1, w1) · · · (tn, wn).
With this convention, given a timed language L

′ ⊆ (R+ × Σ)∗, its restriction to
n-length words L

′
n can be seen as a formal union of sets

⊎

w∈Σn L
′
w × {w} where

L
′
w = {t ∈ R

n | (t, w) ∈ L
′} is the set of delay vectors that together with w form a

timed word of L′. In the sequel we will only consider languages L′ for which every
L
′
w is volume measurable. To such L

′
n one can associate a sequence of volumes and

a volume generating function as follows:

Vol(L′
n) =

∑

w∈Σn

Vol(L′
w); TL′(z) =

∑

w∈Σ∗

Vol(L′
w)z

|w| =
∑

n∈N

Vol(L′
n)z

n

7 We refer the reader to [AD94] for a standard approach of timed automata theory.

Counting and generating permutations in regular classes of permutations. 19

4.1.3 The clock semantics of a signature

A clock is a non-negative real variable. Here we only consider two clocks bounded by
1 and denoted by xa and xd. A clock word is a tuple whose component are a starting
clock vector (xa0, x

d

0) ∈ [0, 1]2, a timed word (t1, a1) · · · (tn, an) ∈ ([0, 1]×{a, d})∗ and

an ending clock vector (xan, x
d
n) ∈ [0, 1]2. It is denoted by (xa0, x

d

0)
(t1,a1)···(tn,an)−−−−−−−−−−−→

(xan, x
d
n). Two clock words x0

w−→ x1 and x2
w

′
−−→ x3 are said to be compatible if

x2 = x1, in this case their product is (x0
w−→ x1) · (x2

w
′

−−→ x3) = x0
ww

′
−−−→ x3. A

clock language is a set of clock words. The product of two clock languages L and
L′ is

L · L′ def
= {c · c′ | c ∈ L, c′ ∈ L′, c and c′ compatible}. (42)

The clock language8 L(a) (resp. L(d)) of an ascent (resp. a descent) is the set of

clock words of the form (xa, xd)
(t,a)−−−→ (xa+t, 0) (resp. (xa, xd)

(t,d)−−−→ (0, xd+t)) and
such that xa + t ∈ [0, 1] and xd + t ∈ [0, 1] (and by definition of clocks and delays
xa ≥ 0, xd ≥ 0, t ≥ 0). These definitions extend inductively to all signatures:
L(u1 · · ·un) = L(u1) · · · L(un) (with product (42)).

Example 5 (0, 0)
(0.7,d)(0.2,a)(0.2,a)(0.5,d)−−−−−−−−−−−−−−−−−−→ (0, 0.5) ∈ L(daad) since

(0, 0)
(0.7,d)−−−−→ (0, 0.7) ∈ L(d); (0, 0.7)

(0.2,a)−−−−→ (0.2, 0) ∈ L(a);
(0.2, 0)

(0.2,a)−−−−→ (0.4, 0) ∈ L(a); (0.4, 0)
(0.5,a)−−−−→ (0, 0.5) ∈ L(d).

4.1.4 The timed semantics of a language of signatures

The timed polytope associated to a signature w ∈ {a, d}∗ is

Pw
def
= {t | [(0, 0) (t,w)−−−→ y] ∈ L(w) for some y ∈ [0, 1]2}.

For instance (0.7, 0.2, 0.2, 0.5, 0.1) ∈ Pdaada. The timed semantics of a language of
signatures L′ is

L
′ = {(t, w) | t ∈ Pw and w ∈ L′} = ∪w∈L′Pw × {w}.

This language restricted to words of length n is L′
n = ∪w∈L′

n
Pw × {w}, its volume

is Vol(L′
n) =

∑

w∈L′ Vol(Pw).

4.1.5 The link with order and chain polytopes of signatures

We first state the link between timed polytopes and chain polytopes.

Proposition 10 Given a word u ∈ {a, d}∗ and l ∈ {a, d}, the timed polytope of ul is

the chain polytope of u: Pul = C(u).

8 A reader acquainted with timed automata would have noticed that the clock language
L(a) (resp. L(d)) corresponds to a transition of a timed automaton where the guards xa ≤ 1
and xd ≤ 1 are satisfied and where xd (resp. xa) is reset.

20 Nicolas Basset

Hence, Proposition 9 links the timed polytope Pul = C(u) of a signature of length
n + 1 and the order polytopes O(u) of a signature of length n. We correct the
mismatch of length using prolongation of languages. A language L′ is called a
prolongation of a language L whenever the truncation of the last letter w1 . . . wn 7→
w1 . . . wn−1 is a bijection between L′ and L.

Every language L has prolongations, for instance L′ = Ll for l ∈ {a, d}.

Example 6 A prolongation of L(ex0) is L(ex0)′ = ({aa, dd})∗{aa, dd}. An automaton

recognising L(ex0)′ ∪ {ε} is depicted in the middle of Figure 1.

Proposition 9 can be extended to language of signatures as follows.

Corollary 3 Let L ⊆ {a, d}∗ and L
′ be the timed semantics of a prolongation of L

then for all n ∈ N, the following function is a volume preserving transformation between

L
′
n and On(L). Moreover it is computable in linear time.

φ : L
′
n → On(L)

(t, w) 7→ φw(t)
(43)

As a consequence, the Problems 2 and 3 can be solved if we know how to compute
the VGF of a timed language L

′ and how to generate timed vector uniformly in
L
′
n. A characterization of the VGF of a timed language as a solution of a system

of differential equations is done in [ABDP12]. Nevertheless the equations of this
article are quite uneasy to handle and do not give a closed form formula for the
VGF. To get simpler equations than in [ABDP12] we work with a novel class of
timed languages involving two kinds of transitions labelled by s and t.

4.2 The s-t (timed) language encoding.

For order polytopes, chain of ascents and chain of descents give inequalities in
opposite directions (νi ≤ . . . ≤ νj and νi ≥ . . . ≥ νj). By contrast, when dealing
with chain polytopes, chain of ascents and chain of descents give exactly the same
inequalities (ti + . . . + tj). To retrieve the successive letters of a signature while
looking at its chain polytope, one has to know the first letter and keeps track
of the successive changes of chains. In other words, a signature goes “straight”
during chains of ascent and chains of descent and when a pick (ad) or a valley (da)
happens the signature “turns”.

This encoding in terms of straights and turns formally defined below, is also
well suited to consider only one clock x instead of the two clocks xa and xd.

4.2.1 The s-t-encoding

The s-t-encoding of type l ∈ {a, d} of a word w ∈ {a, d}∗ is a word w′ ∈ {s, t}∗
denoted by stl(w) and defined recursively as follows: for every i ∈ [n], w′

i = s if
wi = wi−1 and w′

i = t otherwise, with the convention that w0 = l. The mapping
stl is invertible and can also be defined recursively. Indeed w = st−1

l (w′) iff for
every i ∈ [n], wi = wi−1 if w′

i = s and wi 6= wi−1 otherwise, with convention that
w0 = l. Notion of s-t-encoding can be extended naturally to languages.

Counting and generating permutations in regular classes of permutations. 21

Example 7 Continuing the running example, (Example 1,2,6), we give a s-t-encoding

of L(ex0)′ : For the running example: std
(

L(ex0)′
)

= ({s, t}{s})∗ An automaton

recognising this language is depicted in the right of Figure 1.

4.2.2 Timed semantics and s-t-encoding

In the following, we define clock and timed languages similarly to what we have
done in Section 4.1.4 and 4.1.3. Here, we need only one clock x that remains

bounded by 1. We define the clock language associated to s by L(s) = {x (t,s)−−−→
x + t | x ∈ [0, 1], t ∈ [0, 1 − x]} and the clock language associated to t by L(t) =

{x (t,t)−−−→ t | x ∈ [0, 1], t ∈ [0, 1− x]}. Let L′′ ⊆ {s, t}∗, we denote by L′′(x) the timed

language starting from x: L′′(x) = {(t, w) | ∃y ∈ [0, 1], x
(t,w)−−−→ y ∈ L(w), w ∈ L′′}.

The timed semantics of L′′ ⊆ {s, t}∗ is L′′(0).
The s-t-encodings yields a natural volume preserving transformation between

timed languages:

Proposition 11 Let L′ ⊆ {a, d}∗, l ∈ {a, d}, L′ be the timed semantics of L′ and L
′′

be the timed semantics of stl(L
′) then the function (t, w) 7→ (t, st−1

l (w)) is a volume

preserving transformation from L
′′
n to L

′
n.

Using notation and results of Corollary 3 and Proposition 11 we get a volume
preserving transformation from L

′′
n to On(L).

Theorem 2 The function (t, w) 7→ φ
st

−1
l

(w)
(t) is a volume preserving transformation

from L
′′
n to On(L) computable in linear time. In particular

Vol(L′′
n) =

αn(L)

n!
for n ≥ 1 and TL′′(z) = FL(z).

Thus to solve Problem 2 it suffices to characterize the VGF of a regular language
L′′ ⊆ {s, t}∗.

Remark 2 Prolongation of the language and their s-t-encoding do not contain the
empty word ε. By adding such a word to these language as the sole effect to add
1 to their volume generating functions. In terms of permutation this models the
addition of the 0-length permutation to a regular class9. This allows us to simplify
the automata considered as those depicted in Figure 1 and 4 that are respectively
involved in the running example and in the example of alternating permutation.

4.3 Recursive formulae for volume functions and cardinalities

We assume that for the rest of Section 4 an automaton B = ({s, t}, Q, q0, F, δ) is
given and we denote by L

′′ its timed semantics. We describe recursive equations
on timed languages starting from clock vectors (as defined in Section 4.2.2), that
is timed languages of the form [Bq]n(x) for q ∈ Q, n ∈ N and x ∈ [0, 1].

9 The unique permutation on the empty set has no signature and thus S0 6⊆ Λ(L) for any
language L of signature.

22 Nicolas Basset

The languages [Bq]n(x) can be recursively defined as follows: [Bq]0(x) = ε if
q ∈ F and [Bq]0 = ∅ otherwise;

[Bq]n+1(x) =
⋃

t≤1−x

(t, s)[Bq.s]n(x+ t) ∪
⋃

t≤1−x

(t, t)[Bq.t]n(t). (44)

For q ∈ Q and n ≥ 0, we denote by vcq,n the function x 7→ Vol[[Bq]n(x)] from [0, 1]
to R

+. Hence, each vcq,n is a polynomial of a degree less or equal to n that can
be computed recursively using the recurrent formula: vcq,0(x) = 1q∈F and

vcq,n+1(x) =

∫ 1

x

vcq.s,n(y)dy +

∫ 1−x

0

vcq.t,n(y)dy. (45)

Remark that vcq,n(1) = 0 and vcq0,n(0) = Vol(L′′
n) is the nth coefficient of the

VGF TL′′ we want to evaluate.

Now we have a new integral operator
∫ 1−x
0

dy that still behaves well on Bern-
stein polynomials due to the following remarkable property bj,n(1− t) = bn−j,n(t)
for every j ≤ n ∈ N and t ∈ [0, 1]. More explicitly it holds that:

∫ 1−x

0

bj,n(y)dy =

∫ 1

x

bj,n(1− t)dt =

∫ 1

x

bn−j,n(t)dt =
1

n+ 1

n−j
∑

i=0

bi,n+1(x) (46)

Proposition 12 For every q ∈ Q, n ∈ N, it holds that

vcq,n(x) =
1

n!

n
∑

k=0

βn+1,k+1([Bq])bk,n(x) (47)

where the coefficients βn,k([Bq]) are defined recursively as follows: β1,1([Bq]) = 1q∈F

and for n ≥ 1:

βn+1,k([Bq]) =
n
∑

i=k

βn,i([Bq.s]) +
n−k−1
∑

i=0

βn,i([Bq.t]). (48)

Proof We prove this by induction. The base case is satisfied vcq,1(x) = 1q∈F =
β1,1([Bq])b1,1(x) To prove the induction step we use (45). The first integral yields:

∫ 1

x

vcq.s,n(y)dy =
1

n!

n
∑

j=0

βn+1,j+1([Bq.s])

∫ 1

x

bj,n(y)dy

=
1

(n+ 1)!

n
∑

j=0

βn+1,j+1([Bq.s])

j
∑

k=0

bk,n+1(x)

=
1

(n+ 1)!

n
∑

k=0





n
∑

j=k

βn,j+1([Bq.s])



 bk,n+1(x);

Counting and generating permutations in regular classes of permutations. 23

while the second integral yields:

∫ 1−x

0

vcq.t,n(y)dy =
1

n!

n
∑

j=0

βn+1,j+1([Bq.t])

∫ 1−x

0

bj,n(y)dy

=
1

(n+ 1)!

n
∑

j=0

βn+1,j+1([Bq.t])

n−j
∑

k=0

bk,n+1(x)

=
1

(n+ 1)!

n
∑

k=0





n−k
∑

j=0

βn,j+1([Bq.t])



 bk,n+1(x).

Then if we write vcq,n+1(x) in the basis of Bernstein polynomials, the coefficient

associated to bk,n+1(x) is as expected:
∑n

j=k βn,j+1([Bq.s]) +
∑n−k

j=0 βn,j+1([Bq.t]).
⊓⊔

In Section 3.2.1, the coefficient αn,k were directly defined as cardinalities of sets
of permutations that are the discrete version of order polytopes. We think that
a discrete version of the chain polytopes can be defined as well to give a direct
interpretation of the coefficient βn,k in terms of cardinality of sets of permutations.
In any case, these coefficients can be computed using local recursive rules as follows.

Proposition 13 One can use the following recursion scheme to compute the βn,k([Bq])
and hence the volume functions vcq,n in the Bernstein basis in time and space com-

plexity O(|Q|n2).

βn,k([Bq]) = βn,k(s[Bq.s]) + βn−k,k(t[Bq.t]) (49)

βn+1,k(s[Bq]) = βn+1,k+1(s[Bq]) + βn,k([Bq]) (50)

βn+1,n−k(t[Bq]) = βn+1,n−k−1(t[Bq]) + βn,n−k−1([Bq]) (51)

βn,n(s[Bq]) = 0; βn,n(t[Bq]) = 0 (52)

β1,1([Bq]) = 1q∈F (53)

Proposition 14 The coefficients of the volume function vcq,n can be computed in the

standard basis in time and space complexity O(|Q|n2), using the following system of

recursive equations on vcq,n(x) and ṽcq,n(x)
def
= vcq,n(1− x):

vcq,0(x) = ṽcq,0(x) = 1q∈F

vcq,n+1(x) =

∫ 1

x

vcq.s,n(y)dy +

∫ 1

x

ṽcq.t,n(y)dy

ṽcq,n+1(x) =

∫ x

0

ṽcq.s,n(y)dy +

∫ x

0

vcq.t,n(y)dy

These equations are obtained from (45). We introduced the functions ṽcq,n because
developing the expression

∫ 1−x

0

vcq.t,n(y)dy =
n
∑

k=0

1

k + 1
ak(1− x)k+1

24 Nicolas Basset

knowing only vcq.t,n(y) =
∑n

k=0 aky
k needs O(n2) operations. By contrast, when

ṽcq.t,n(y) =
∑n

k=0 bky
k is given, the expression

∫ 1−x

0

vcq.t,n(y)dy =

∫ 1

x

ṽcq.t,n(y)dy =
n
∑

k=0

1

k + 1
bk −

n
∑

k=0

1

k + 1
bky

k+1

is computed in linear time.
The following proposition states remarkable properties on the shape of the

volume functions that will be extended to generating functions in Section 4.4.

Proposition 15 For every p ∈ Q, n ≥ 0, the function vcp,n is non-increasing on

[0, 1], and satisfies for every x ∈ [0, 1]:

(1− x)nvcp,n(0) ≤ vcp,n(x) ≤ vcp,n(0) = βn+1,n+1([Bq])

Proof The fact that the function is non-increasing is straightforward using (45)
and the positivity of the volume function on [0, 1].

For the first inequality we use the decomposition of vcp,n as a sum of Bernstein
polynomial (47):

vcp,n(x) =
1

n!

n
∑

k=0

βn+1,k+1([Bq])bk,n(x)

All the terms of this this sum are non-negative for x ∈ [0, 1] and for x = 0,
bk,n(0) is not null only for k = n (and in that case equal to 1). Hence vcp,n(0) =
βn+1,n+1([Bq]) and vcp,n(0)(1− x)n = βn+1,n+1([Bq])bn,n(x) ≤ vcp,n(x). ⊓⊔

4.4 Generating functions

4.4.1 Characterisation of the generating functions

The timed language [Bq](x) starting from states q ∈ Q and clock x ∈ [0, 1] satisfy
the following system of language equation:

[Bq](x) =
⋃

t≤1−x

(t, s)[Bq.s](x+ t) ∪
⋃

t≤1−x

(t, t)[Bq.t](t) ∪ (ε if q ∈ F). (54)

We denote by VCp(x, z) and Tp(z) the volume generating function of [Bq](x) and
[Bq] respectively. We are interested in TL′′(z) = Tq0(z) = VCq0(0, z).

We recall that Rconv(VCq) = infx∈[0,1] Rconv(z 7→ VCq(x, z)) and Rconv(VC) =
minq∈Q Rconv(VCq). The link between the different convergence radii is done in
Corollary 5 below.

As in [ABDP12], we pass from system of equations on timed languages (54) to
system of equations on generating functions:

Theorem 3 For z < Rconv(VC), x 7→ VC(x, z) = (VCq(x, z))q∈Q is the unique

solution of the following system of integral equation:

VCq(x, z) = z

∫ 1

x

VCq.s(y, z)dy + z

∫ 1−x

0

VCq.t(y, z)dy + 1p∈F . (55)

Counting and generating permutations in regular classes of permutations. 25

One can equivalently state this theorem in terms of system of differential equa-
tion as follows.

Corollary 4 For z < Rconv(VC), x 7→ VC(x, z) = (VCq(x, z))q∈Q is the unique

solution of the following system of differential equations

∂

∂x
VCq(x, z) = −zVCq.s(x, z)− zVCq.t(1− x, z); (56)

with boundary conditions

VCq(1, z) = 1q∈F . (57)

In matrix notation (55), (56) and (57) give:

VC(x, z) = zMs

∫ 1

x

VC(y, z)dy + zMt

∫ 1−x

0

VC(y, z)dy + F; (58)

∂

∂x
VC(x, z) = −zMsVC(x, z)− zMtVC(1− x, z); (59)

VC(1, z) = F. (60)

The following theorem gives the form of the solution in terms of the exponential
E(z) of a matrix M defined as follows:

M
def
=

(

−Ms −Mt

Mt Ms

)

and E(z)
def
=

(

E1(z) E2(z)
E3(z) E4(z)

)

def
= exp(zM).

Theorem 4 In a neighbourhood of 0, the matrix E1(z) and I|Q|−E3(z) are invertible

and the following two characterizations of T(z) hold:

T(z) = [E1(z)]
−1[I − E2(z)]F; (61)

T(z) = [I − E3(z)]
−1E4(z)F (62)

Proof The equation (59) is equivalent to the following linear homogeneous system
of ordinary differential equations with constant coefficients:

∂

∂x

(

VC(x, z)
VC(1− x, z)

)

= zM

(

VC(x, z)
VC(1− x, z)

)

(63)

whose solution is of the form
(

VC(x, z)
VC(1− x, z)

)

= E(xz)

(

VC(0, z)
VC(1, z)

)

. (64)

Taking x = 1 in (64) and using the boundary condition (60) we obtain:
(

F

T(z)

)

= E(z)

(

T(z)
F

)

(65)

Hence,

F = E1(z)VC(z) + E2(z)F; VC(z) = E3(z)VC(z) + E4(z)F (66)

In particular when z = 0, E1(0) = I − E3(0) = I and thus the two continuous
functions z 7→ detE1(z) and z 7→ det(I−E3(z)) are positive in a neighbourhood of
0. We deduce that the inverses of the matrices E1(z) and I−E3(z) are well defined
in a neighbourhood of 0 and thus both equations of (66) permit to express T(z)
with respect to F to get respectively (61) and (62). ⊓⊔
To sum up, we give a solution of Problem 2 with Algorithm 1.

26 Nicolas Basset

Algorithm 1 Computation of a closed form formula for the EGF GL(z)

1: Compute an automaton B that recognises an s-t-encoding of an extension of L and compute
its adjacency matrices Ms and Mt;

2: Compute

(

E1(z) E2(z)
E3(z) E4(z)

)

=def exp

[

z

(

−Ms −Mt

Mt Ms

)]

;

3: Compute T(z) = [E1(z)]−1[I − E2(z)]F (or T(z) = [I − E3(z)]−1E4(z)F);
4: return GL(z) = Tq0 (z) the component of T(z) corresponding to the initial state of A.

Some comments about Algorithm 1. In line 1, several choices are left to the user: the
prolongation L′ of the language L, the type of the s-t-encoding and the automaton
that realizes the s-t-encoding. These choices should be made such that the output
automaton has a minimal number of states or more generally such that the matri-
ces Ms and Mt are the simplest possible. Several hints to compute E(z) are given
in Section 4.4.3.

As a corollary of the proof of Theorem 4 one can obtain the vector of generating

function

(

VC(x, z)
VC(1− x, z)

)

as follows

(

VC(x, z)
VC(1− x, z)

)

= E(xz)

(

T(z)
F

)

. (67)

4.4.2 Properties of the generating functions and convergence radii

The following proposition gives some properties on the shape of the generating
functions:

Proposition 16 For every z < Rconv(VCq), the function x 7→ VCq(x, z) is non-

increasing in [0, 1] and decreasing in (0, 1) if non constant and satisfy for every x ∈
[0, 1]:

VCq(0, (1− x)z) ≤ VCq(x, z) ≤ VCq(0, z); (68)

moreover for every l ∈ {s, t} it also holds that

VCq(0, z) ≥ zVCq.l(0, z) (69)

Proof The fact that the function x 7→ VCq(x, z) is non-increasing comes from
Proposition 15. The sequence of inequalities (68) is obtained by taking

∑

.zn in
the inequalities of Proposition 15. The last inequality (69) relies on the fixed point
equation (58) and non-negativity of the generating functions:

VCq(0, z) ≥ z

∫ 1

0

VCq.l(y, z)dy ≥ zVCq.l(0, z)

⊓⊔

As a corollary we can compare convergence radii as follows:

Corollary 5 For every q ∈ Q, l ∈ Σ it holds that Rconv(VCq) = Rconv(z 7→
VCq(0, z)) and Rconv(VCq) ≤ Rconv(VCq.l). In particular, as the automaton is ac-

cessible it also holds that:

Rconv(T) = Rconv(z 7→ VCq0(0, z)) = Rconv(TL′′)

Counting and generating permutations in regular classes of permutations. 27

4.4.3 Properties of the matrix exponentiation

To evaluate the generating function in a given point (x, z) ∈ [0, 1]× [0, Rconv(T)).
One can compute numerically E(z) = exp(zM) and E(xz) = exp(xzM), and solves
systems (65) and (67). There are numerous ways of computing the exponentiation
of a matrix (see [MVL03] for nineteen of them). To choose the right algorithm
one has to take into account properties of M such as its sparsity. Each row of the
matrix M has at most two non-null entries that are either 1 or −1.

The purpose of this section is to highlight some remarkable property of M

that could be helpful for its exponentiation (either numerical or symbolical). In
particular we give property on the spectrum of M (the set of eigenvalues of M)
denoted by Sp(M).

We define the matrix S =

(

0 I|Q|
I|Q| 0

)

. This matrix permutes the |Q| first lines

with the |Q| last lines of any matrix it multiplies from the left, and permutes the
|Q| first columns with the |Q| last columns of any matrix it multiplies from the
right. The matrix S is an involutory matrix (that is, equal to its own inverse).
Note that M enjoy a central antisymmetry in the following sense: SMS = −M .

The following results holds for every matrix M such that SMS = −M , that is,

of the form M =

(

−A −B

B A

)

for some matrix A and B.

One can first remark that M admits the following block anti-diagonalisation:

P

(

−A −B

B A

)

P⊤ =

(

0 A−B

A+B 0

)

(70)

with P the orthonormal matrix defined by block as follows P = 1√
2

(

I I

−I I

)

.

We let C = A−B and D = A+B and remark that
(

0 C

D 0

)2n

=

(

(CD)n

0 (DC)n

)

and

(

0 C

D 0

)2n+1

=

(

0 (CD)nC
D(CD)n 0

)

.

We denote

F1(z) =
+∞
∑

n=0

(CD)n
z2n

2n!
; F2(z) =

+∞
∑

n=0

(DC)n
z2n

2n!
; F3(z) =

+∞
∑

n=0

(CD)n
z2n+1

(2n+ 1)!
,

and then it holds that:

E(z) = P⊤
(

F1(z) F3(z)C
DF3(z) F2(z)

)

P (71)

In the next proposition, for a complex number λ, we denote by Eλ(M) the
vector space {v ∈ C

2|Q| | Mv = λv}. If Eλ(M) 6= {0}, this set is known as the
eigenspace of M for the eigenvalue λ.

Proposition 17 For every non-null complex number µ, and for the two λ ∈ C such

that λ2 = µ the following holds: µ ∈ Sp [(A−B)(A+B)] iff λ ∈ Sp(M). More pre-

cisely, if µ 6= 0 and λ is such that λ2 = µ then v 7→
(

λI|Q| −A−B

λI|Q| +A+B

)

v is an

isomorphism between Eµ((A−B)(A+B)) and Eλ(M).

28 Nicolas Basset

Proof Note that

(

λI|Q| −A−B

λI|Q| +A+B

)

v = λ
√
2PT

(

v
1
λDv

)

and hence, it suffices to

show that v 7→
(

v
1
λDv

)

is an isomorphism between Eλ2(CD) and Eλ(PMP⊤) =

Eλ

(

0 C

D 0

)

. This function is clearly linear. Take v ∈ Eλ2(CD), then

(

0 C

D 0

)(

v
1
λDv

)

=

(

C 1
λDv

Dv

)

= λ

(

v
1
λDv

)

.

Take any

(

v

y

)

∈ Eλ

(

0 C

D 0

)

. It exactly means that Cv = λv and Dv = λy. Thus
(

v

y

)

= λ

(

v
1
λDv

)

is of the required form and CDv = λCy = λ2v. ⊓⊔

The proposition above implies that if λ is an eigenvalue of M , then so is −λ.
We have not yet compared the multiplicity of such mutually opposite eigenvalues.
The multiplicity are the same as a corollary of the following remarkable identity.

Proposition 18 The following identity holds E(−z) = SE(z)S.

Proof Indeed E(−z) = exp(−zM) = exp(zSMS) = S exp(zM)S = SE(z)S. ⊓⊔

We can deduce from this proposition that SE(z) and E(z)S are involutory matrices
(SE(z))2 = (E(z)S)2 = I2|Q|. We have also that E(z) is of the following form:

E(z) =

(

E1(z) E2(z)
E2(−z) E1(−z)

)

. The identity E(z)E(−z) = I2|Q| yields

E1(z)E2(−z) = I|Q| − E2(z)
2 ; E1(z)E1(−z) = −E2(z)E1(z)

E1(−z)E2(−z) = −E2(−z)E2(z) ; E2(−z)E1(z) = I|Q| − E1(−z)2

that can be used for instance to show that equations (61) and (62) are equivalent.

Corollary 6 The spectrum of M is symmetric with respect to the origin, that is, if λ

is an eigenvalue of M with a multiplicity mλ then so is −λ.

Proof The characteristic polynomial of M is χM (X) =
∏

λ∈Sp(M)(λ−X)mλ , that

of E(z) = exp(zM) is χE(z)(X) =
∏

λ∈Sp(M)(e
zλ − X)mλ and that of E(−z) =

exp(zM) is χE(−z)(X) =
∏

λ∈Sp(M)(e
−zλ − X)mλ . By virtue of Proposition 18,

E(−z) and E(z) are conjugated and hence have the same characteristic polynomial.
Necessarily for every λ ∈ Sp(M), it holds that −λ ∈ Sp(M) and mλ = m−λ.

4.4.4 Examples

Alternating permutations. The class of alternating permutation is Alt = S0 ∪
Λ[(da)∗(ε + d)]. It is well known since the 19th century and the work of Désiré
André that the exponential generating function of this class of permutation is

tan(z) + sec(z) (where sec(z) = 1/ cos(z)).

Counting and generating permutations in regular classes of permutations. 29

p q

d

a

t

Fig. 4 An automaton for (da)∗(ε+ d) and its s-t encoding of type a

Several different proofs of this results can be found in [Sta10]. Here we give a novel
proof illustrating our method.

A prolongation of {da}∗{ε, d} is {da}∗{d, da}. We add ε to the language to add
1 to its VGF that count the 0-length permutation as described in remark 2, we
obtain {da}∗{ε, d}.

The s-t encoding of type a of {da}∗{ε, d} is just {t}∗ which is recognized by the
one loop automaton depicted in the right of Figure 4. Thus Ms = (0), Mt = (1)

and we must compute exp(zM) =
∑

n∈N
znMn/n! with M =

(

0 −1
1 0

)

.

This is an easy particular case of exponentiation done in Section 4.4.3 with

C = (−1) and D = (1). It gives exp(zM) =

(

cos(z) − sin(z)
sin(z) cos(z)

)

.

By definition E1(z) = cos(z), E2(z) = − sin(z). We can conclude that the
desired generating function is:

E1(z)
−1(1− E2(z)) =

1

cos(z)
+ tan(z).

One could alternatively use (62) to get the same result:

[I|Q| − E3(z)]
−1E4(z) =

cos(z)

1− sin(z)
=

cos(z) [1 + sin(z)]

1− sin2(z)
=

1 + sin(z)

cos(z)
. (72)

Moreover the generating function VC(x, z) can be obtained using (67):

(

VC(x, z)
VC(1− x, z)

)

=

(

cos(xz) − sin(xz)
sin(xz) cos(xz)

)(1
cos(z) + tan(z)

1

)

Hence VC(x, z) = [cos(xz) + sin(z) cos(xz)− sin(xz) cos(z)] / cos(z) which after sim-
plification gives:

VC(x, z) =
cos(xz) + sin((1− x)z)

cos(z)
(73)

Running example. Now we apply our method to the running example L(ex0) =
({aa, dd})∗{a, d}. We have already described one of its prolongation and an s-t-
encoding of this prolongation. Automata for these languages with the empty word
added are depicted in Figure 1.

The matrix Ms, Mt and M are

Ms =

(

0 1
1 0

)

;Mt =

(

0 1
0 0

)

and M =









0 −1 0 −1
−1 0 0 0
0 1 0 1
0 0 1 0









30 Nicolas Basset

We use the method describe in Section 4.4.3, and define matrices

C = Ms −Mt =

(

0 0
1 0

)

and D = Ms +Mt =

(

0 2
1 0

)

.

We compute

CD =

(

0 0
0 2

)

and DC =

(

2 0
0 0

)

.

There are now two options: either, we reduce the matrix M into a triangular or
diagonal form using Proposition 17; either we compute the exponential of the
matrix by using (71). We choose the second option and compute

F1(z) =

(

1 0
0 cosh(

√
2z)

)

; F2(z) =

(

cosh(
√
2z) 0

0 1

)

;

F3(z)C =

(

0 0√
2
2 sinh(

√
2z) 0

)

and DF4(z) =

(

0 sinh(
√
2z)

1 0

)

.

We deduce that,

E(z) = P⊤









1 0 0 0

0 cosh(
√
2z)

√
2
2 sinh(

√
2z) 0

0 sinh(
√
2z) cosh(

√
2z) 0

1 0 0 1









P

which yield after straightforward computation: E(z) =

(

E1(z) E2(z)
E2(−z) E1(−z)

)

with

E1(z) =

(

1
2 cosh

(√
2z
)

+ 1
2 −1

2 sinh
(√

2z
)

−1
4

√
2 sinh

(√
2z
)

− 1
2

1
2 cosh

(√
2z
)

+ 1
2

)

;

and

E2(z) =

(

−1
2 cosh

(√
2z
)

+ 1
2 −1

2 sinh
(√

2z
)

1
4

√
2 sinh

(√
2z
)

− 1
2

1
2 cosh

(√
2z
)

− 1
2

)

.

The vector of VGF is given by T(z) = [E1(z)]
−1[I − E2(z)]F. After some

elementary computation10, we obtain:

T(z) =







2−
√
2z+(2+

√
2z)e

√
2z

2+
√
2z−(2−

√
2z)e

√
2z

2 z
(

e
√

2z+1
)

2+
√
2z−(2−

√
2z)e

√
2z







To get TL(ex0) , we subtract 1 to the first coordinate of T(z) and get the answer
announced in (4):

TL(ex0) =
2
√
2z(e

√
2z − 1)

2 +
√
2z + (2−

√
2z)e

√
2z

.

10 We used the computer algebra Sage [S+14] and the simplification method of Sympy
[Sym14].

Counting and generating permutations in regular classes of permutations. 31

By factorising the numerator and denominator by 4e
√

2
2

z first and then by 2 cosh
(√

2
2 z
)

we get the other result announced in (5):

TL(ex0)(z) =

√
2z sinh(

√
2
2 z)

cosh(
√
2
2 z)−

√
2
2 z sinh(

√
2
2 z)

= 2

√
2
2 z tanh(

√
2
2 z)

1−
√
2
2 z tanh(

√
2
2 z)

= 2f

(√
2

2
z

)

with f(X) = 1
1−X tanh(X) − 1.

We can find numerically the convergence radius of f . We pose X = z/
√
2,

find the smallest root of 1 − X tanh (X) and multiply it by
√
2. We obtain that

Rconv(TL(ex0)) ≈ 1.6966.

5 Uniform random sampling

In this Section we propose three methods for the problem of random sampling
of permutations in a regular class. The first Algorithm is based on a discrete
recursive method for sampling (Section 5.1). We state in Theorem 6, that sampling
permutation reduces to sampling timed words for the corresponding language of
signature. We then present two methods for generating timed word uniformly at
random: a continuous recursive method in Section 5.2, and an extension of the
Boltzmann sampling method to timed languages in Section 5.3.

5.1 A discrete recursive method

In this section as in Section 3.2 and 3.3 we consider an arbitrary regular language
L recognised by an automaton A = ({a, d}, Q, q0, F, δ).

Building a sampling algorithm based on the recursive method is done in three
main steps: (i) find a recursive characterisation of the class of object to sample;
(ii) write corresponding recursive equations on cardinalities; and (iii) turn them
into discrete probability distribution. For instance, the set equation

Λn([Aq]) =
n
⋃

k=1

Λn,k([Aq])

gives cardinality equation (21) recalled here:

αn([Aq]) =
n
∑

k=1

αn,k([Aq])

Dividing both sides by αn([Aq]) gives the equation of a discrete probability distri-
bution:

1 =
n
∑

k=1

αn,k([Aq])

αn([Aq])

Hence the initial distribution for choosing the first element k of a random permu-
tation of Λn([Aq]) is given by:

[weight-init]k = αn,k([Aq0])/αn([Aq0])

32 Nicolas Basset

The other distribution needed in the algorithm are:

[weightq,m,k]i =

{

αm,i([Aq.a])/αm+1,k([Aq]) if k ≤ i ≤ m

αm,i([Aq.d])/αm+1,k([Aq]) if 1 ≤ i ≤ k − 1

In the following algorithm, the function Pop(E, k) returns the kth element of
the set E with side effect of removing it from E. Using folk data structure (like
a self balancing binary search tree11) this operation can be done in time O(log n)
with a creation of the structure in time O(n) where n is the initial number of
elements in E.

Algorithm 2 A discrete recursive method for uniform random generation of per-
mutation of fixed length n within a regular class of permutation Λ(L).

Require: The weight vectors weightq,m.k for q ∈ Q and k ≤ m ≤ n are precomputed.

1: q ← q0; E ← [n];
2: Pick randomly k according to weight vector weight-initial
3: σ(1)← Pop(E, k)
4: for j from 2 to n do

5: Pick randomly i according to weight vector weightq,n+1−j,k

6: σ(j)← Pop(E, i)
7: if i ≥ k then

8: q ← q.a
9: else

10: q ← q.d
11: end if

12: k ← i
13: end for

Theorem 5 Permutations generated by Algorithm 2 are uniformly distributed among

the permutation of size n with a signature in L. Timed and space complexity are dis-

cussed below.

There can be a trade-off between the complexity of the algorithm and that of its
pre-computation.

– Computing and storing in a table all the [weightq,m,k]i have a complexity

O(n3|Q|). After that pre-computation, each generation is in time O(n log n).
– Alternatively one can compute and store only the coefficient αm,k([Aq]) with

a complexity O(n2|Q|). Then during the generation there are n distribution
weightq,m,k to compute each one at a cost of O(m) operation; the complexity

of generating a permutation becomes O(n2).
– A third option is to change the sampling algorithm to mimic the locality of

(24), (25), (26). Now the generation is made with a lot of small steps whose
number varies randomly. For instance the sequence of choice

α5,4([Aq]) → α5,4(d[Aq]) → α5,3(d[Aq]) → α5,2(d[Aq]) → α4,1([Aq])

11 In fact, simple binary search tree suffices starting with a tree of height O(logn). Indeed
deletion can be achieved at a cost of the height of the tree and without increasing it so that it
remains bounded by O(logn).

Counting and generating permutations in regular classes of permutations. 33

done with probability

α5,4(d[Aq])

α5,4([Aq])

α5,3(d[Aq])

α5,4(d[Aq])

α5,2(d[Aq])

α5,3(d[Aq])

α5,1([Aq])

α5,2(d[Aq])
=

α4,1([Aq])

α5,4([Aq])

would correspond to only one descent from 4 to 1. The complexity of the
generation of a permutation can still be upper-bounded in the worst case by
O(n2).

– If we want to save memory, we can compute the coefficient needed when re-
quired during the generation. The overall space complexity is O(n|Q|) and the
time complexity of each generation becomes O(n3|Q|).

5.2 A continuous recursive method

In the previous section we have seen how to turn recursive equations on discrete
sets of permutation and their corresponding equations on cardinalities into a ran-
dom sampler.

One can alternatively turn a system of equations on timed language and its
corresponding system of equations on volume functions into a random sampler of
timed words (Algorithm 3). Then using the volume preserving transformation of
Theorem 2 and a sorting algorithm one can generate permutation as wanted.

Theorem 6 Let L ⊆ {a, d}∗ and L
′′ be the timed semantics of a s-t-encoding of type l

(for some l ∈ {a, d}) of a prolongation of L. The following algorithm permits to achieve

a uniform sampling of permutation in Λn(L).

1. Choose uniformly an n-length timed word (t, w) ∈ L
′′
n using Algorithm 3;

2. Return Π(φ
st

−1
l

(w)
(t)).

Theorem 7 Algorithm 3 is a uniform sampler of timed words of L′′
n, that is for every

volume measurable subset A ⊆ L
′′
n, the probability that the returned timed word belongs

to A is Vol(A)/Vol(L′′
n).

Some comments about Algorithm 3. Picking a random real number according to
a probability density function (PDF) p can be done using the so-called inverse
transform sampling. To sample a random variable according to a PDF p : [0, 1] →
R

+ it suffices to uniformly sample a random number in [0, 1] and define t such

that
∫ t
0
p(y)dy = r. This equation can be solved numerically and efficiently with

a controlled error using a numerical scheme such as the Newton’s method. The
latter integral is known as the cumulative density function (CDF) associated to p.
The CDF used in this algorithm are polynomials that can be pre-computed in the
same time as the volume functions.

An implementation of Algorithm 3 as well as that described in Theorem 6 is
available on-line http://www.liafa.univ-paris-diderot.fr/~nbasset/sage/sage.

htm.

Proof (of Theorem 7) One can first check that for all k ∈ [n], [(qk−1, xk−1)
(tk,wk)−−−−−→

(qk, xk)] ∈ L(wk) and hence that w1 · · ·wn ∈ L′′.

http://www.liafa.univ-paris-diderot.fr/~nbasset/sage/sage.htm
http://www.liafa.univ-paris-diderot.fr/~nbasset/sage/sage.htm

34 Nicolas Basset

Algorithm 3 Recursive uniform sampler of timed words
Require: The volume functions vcq,m for q ∈ Q and m ≤ n are precomputed.
1: x0 ← 0; q0 ← initial state;
2: for k = 1 to n do

3: Define ps =
∫ 1
xk−1

vcqk−1.s,n−k(y)dy/vcqk−1,n−(k−1)(xk−1);

4: Pick randomly between s and t with probability ps, 1− ps;
5: if s has been chosen then

6: wk ← s; qk ← qk−1.s;
7: xk ← a random number in [xk−1, 1] picked according to the probability density

function

vcqk,n−k(y)/

∫ 1

xk−1

vcqk,n−k(y)dy;

8: tk ← xk − xk−1

9: else

10: wk ← t; qk ← qk−1.t;
11: xk ← a random number in [0, 1− xk−1] picked according to the probability density

function

vcqk,n−k(y)/

∫ 1−xk−1

0
vcqk,n−k(y)dy;

12: tk ← xk

13: end if

14: end for

15: return (t1, w1)(t2, w2) . . . (tn, wn)

We now show that during the kth loop (tk, wk) is chosen with density of prob-

ability
vqk,n−k(xk)

vqk−1,n−(k−1)(xk−1)
. Indeed, this implies that the density of probability to

chose (t1, w1) · · · (tn, wn) ∈ L
′′ is

∏n
k=1

vcqk,n−k(xk)

vcqk−1,n−(k−1)(xk−1)
=

vcqn,0(xn)
vcq0,n(0) = 1

Vol(L′′
n)

which means that the sampling is uniform.

During the kth loop wk is set to s with probability ps =

∫

1
xk−1

vcqk−1.s,n−k(y)dy

vcqk−1,n−(k−1)(xk−1)
,

after that tk is fixed when xk = xk−1 + tk is chosen with density of probabil-

ity vcqk,n−k(xk)/
∫ 1

xk−1
vcqk,n−k(xk)dy. Hence (tk, wk) is chosen with the expected

density of probability
∫ 1

xk−1
vcqk−1.s,n−k(y)dy

vcqk−1,n−(k−1)(xk−1)

vcqk,n−k(xk)
∫ 1

xk−1
vcqk,n−k(y)dy

=
vcqk,n−k(xk)

vcqk−1,n−(k−1)(xk−1)
.

The case where wk = t can be proved in a similar manner using the fact that

the probability that wk is a turn is 1− ps =

∫ 1−xk−1
0 vcqk−1.t,n−k(y)dy

vcqk−1,n−(k−1)(xk−1)
. ⊓⊔

5.3 Boltzmann sampling

A drawback of the recursive method for sampling described in the two previous
sections is the pre-computation that take at least a quadratic time. When we
only require approximate size of the objects to sample and when the generating
function is available we can use the Boltzmann sampling method [DFLS04]. This
latter method usually generates objects at a far bigger scale than the recursive
method.

Counting and generating permutations in regular classes of permutations. 35

The Boltzmann sampling method has been created to generate discrete objects
in combinatorial classes, like trees or words. Here, we extend this method to timed
languages, the generated object being timed words. Hence, we consider probability
density function rather than discrete probability distribution.

We call probability density function (PDF) on a timed language L, every non-
negative function p : L → R such that

∑

w∈Σ∗

∫

t∈Lw

p(t, w) = 1,

and such that for every w, the function t 7→ p(t, w) is Lebesgue measurable.
The Boltzmann model of parameter z for L is a PDF on L denoted by pL,z and

defined by pL,z(t, w) =
z|w|

TL(z)
for all (t, w) ∈ L. We denote by PL,z the corresponding

probability measure.
The length of random elements distributed according to the Boltzmann model

is a random variable that we denote by N (as in [DFLS04]). It is distributed as
follows:

PL,z(N = n) =
∑

w∈Ln

∫

t∈Lw

pL,z(t, w) = Vol(Ln)
zn

TL(z)
=

αn(L)

n!

zn

TL(z)
(74)

This is Equation (2.3) of [DFLS04] where we replace cardinality coefficient Cn by
volume coefficient Vol(Ln). This allows us to use results from classical Boltzmann
sampling. In particular, the expected length of a timed word distributed according
to pL,z is z

TL(z)
∂TL(z)

∂z .

We call Boltzmann sampler for a timed language L, an algorithm that generates
timed words according to the corresponding Boltzmann model pL,z.

The next theorem and Algorithm 5.3 deal with Boltzmann samplers for the
timed semantics of automata B = ({s, t}, Q, q0, F, δ) that recognise languages of
words of {s, t}∗ as described at the end of Section 3. In particular, we keep the
same notations, for instance denoting by [Bq](x) the timed language starting from
a state q and a clock x. The Boltzmann sampler described above can be adapted
to fit order set considered in the first approach (Section 3).

Theorem 8 Algorithm 5.3 describes Boltzz(q, x), a Boltzmann sampler for [Bq](x).
In particular, Boltzz(q0, 0) is a Boltzmann sampler for L′′ = [Bq0](x). It uses a linear

number (in the size of the output word) of random pick according to one dimensional

probability density function.

Proof It is easy to see that the timed word returned are in the required language.
To complete the proof, it suffices to show the following statement by induction
on naturals n: If a timed word of length n is returned then it has a density of
probability zn/VCq(x, z) to be returned. The base case is satisfied as ε is returned
with probability 1/VCq(x, z) iff ε ∈ [Bq](x).

We assume the property is true for a length n ∈ N. We consider a timed word of
length n+1 returned by Boltzz(q, x). Then it is either returned in Line 7 or Line 10.
We consider only the former case, as the other case is treated in a similar way. The
returned timed word is of the form (y − x, s)ω, with ω a timed word returned by
Boltzz(q.s, y). By induction hypothesis ω was chosen with density of probability

zn

VCq.s(y,z)
. Moreover the letter s was chosen with probability

z
∫

1
x
VCq.s(y,z)dy
VCq(x,z)

in

36 Nicolas Basset

Line 1 and then y was chosen with probability
VCq.s(y,z)dy

∫

1
x
VCq.s(y,z)dy

in Line 6. The density

of probability to choose (y − x, s)ω is hence as expected:

zn

VCq.s(y, z)

VCq.s(y, z)
∫ 1

x
VCq.s(y, z)dy

z
∫ 1

x
VCq.s(y, z)dy

VCq(x, z)
=

zn+1

VCq(x, z)
.

Algorithm 4 The Boltzmann sampler Boltzz(q, x)

1: Pick randomly ε, s or t with weights
1q∈F

VCq(x,z)
,

z
∫ 1
x

VCq.s(y,z)dy

VCq(x,z)
and

z
∫ 1−x
0 VCq.t(s,z)dt

VCq(x,z)
;

2: if ε has been chosen then

3: return ε
4: end if

5: if s has been chosen then

6: pick y ∈ [x, 1] with density of probability y 7→ VCq.s(y, z)dy/
∫ 1
x
VCq.s(y, z)dy;

7: return (y − x, s)Boltzz(q.s, y)
8: else

9: pick y ∈ [0, 1− x] with density of probability y 7→ VCq.t(y, z)dy/
∫ 1−x

0 VCq.t(y, z)dy;
10: return (y, t)Boltzz(q.t, y)
11: end if

Some comments about Algorithm 5.3. The reciprocal function of a CDF is known
as a quantile function. This is the function evaluated during the inverse sam-
pling method mentioned in the paragraph that comments Algorithm 3. When the
parameter z is fixed, there are only O(|Q|) such functions to evaluate. Hence it
could be worth pre-computing numerically and tabulating the quantile functions
to speed up the running time of the Boltzmann sampler.

5.3.1 Experiments

We have implemented the Algorithm 5.3 with Sage. The code as well as experi-
ments are available on-line: http://www.liafa.univ-paris-diderot.fr/~nbasset/
sage/sage.htm.

The generating functions Vq(x, z) and Vq(z) are encoded as symbolic expression
in variables z and x. We use the inverse sampling method as described above after
having precomputed the CDF, and we use the function findroot of Sage to find
the root X of equation of the form

∫ X

x

VCq.s(y, z)dy/

∫ 1

x

VCq.s(y, z)dy − r = 0

and
∫ X

0

VCq.t(y, z)dy/

∫ 1−x

0

VCq.t(y, z)dy − r = 0

where r is a number uniformly drawn at random in [0, 1].
We illustrate our implementation on the running example. As stated at the end

of Section 4.4.4, the convergence radius of T(z) is approximately 1.6966. Fixing

the parameter z1
def
= 1.69, gives an expected length of timed word z1

TL(z1)
∂TL(z1)

∂z1
≈

http://www.liafa.univ-paris-diderot.fr/~nbasset/sage/sage.htm
http://www.liafa.univ-paris-diderot.fr/~nbasset/sage/sage.htm

Counting and generating permutations in regular classes of permutations. 37

Fig. 5 Running time and distribution of lengths, for generating permutations in the regular
class Λ [({aa, dd})∗{a, d}] using Boltzmann sampling of timed words with parameter z1 = 1.69
(Left) and z2 = 1.696 (Right).

257. Fixing the parameter z2
def
= 1.696, gives an expected length of timed word

z2
TL(z2)

∂TL(z2)
∂z2

≈ 2819. We have run the Boltzmann sampler 71 times for each of

the parameter above. The running time and distribution of lengths are shown in
Figure 5. Each point is of the form (n, t) with n the length of the permutation
generated, and t the time that took the generation of the timed word as well as
the computation of the corresponding permutation (described in Theorem 6).

6 Discussion, perspectives and further related works

We have stated and solved the problems of counting and uniform sampling of
permutations with signature in a given regular language of signatures. The timed
semantics of such a language is a particular case of regular timed languages (i.e. rec-
ognized by timed automata [AD94]). However, with the approach used, timed lan-
guages can be defined from any kind of languages of signatures. A challenging task
for us is to treat the case of context free languages. For this we should use as in
[ABDP12] volume of languages parametrized both by starting and ending states.

Our work can also benefit timed automata research. Indeed, we have proposed
uniform samplers for a particular class of timed languages. An ongoing work is
to adapt this algorithm to all deterministic timed automata with bounded clocks
using recursive equations of [ABD14].

A well known fact is that among all the signature u of a given length n the
one that maximises αu (the number of permutation with signature u) are the
alternating permutation ada... and dad.... This corresponds to the words t

n (and
st

n−1 depending on the type of the s-t-encoding). Similar questions can be asked
for regular class of permutation. For instance, we could study the expected number
of turn in signatures of permutations generated at random in a given regular class.
We think that we could answer such kind of questions by distinguishing between
zs and zt in Equation (58). The new equation would be

VC(x, zs, zt) = zsMs

∫ 1

x

VC(y, zs, zt)dy + ztMt

∫ 1−x

0

VC(y, zs, zt)dy + F. (75)

With such kind of equations we could adapt the Boltzmann sampling framework
for multi-dimensional generating function, proposed in [BP+10]. In contrast to

38 Nicolas Basset

ours, this work does not consider uncountable union parametrised by an auxiliary
variable (called x here).

In another work on Boltzmann sampling [BRS12], there is no such kind of
auxiliary variable too but the variable of the generating function (called z here)
are, during some steps of the generation, sampled according to probability den-
sity functions. By contrast, the parameter z is fixed in our Boltzmann sampling
algorithm (like in the classical framework of Boltzmann sampling [DFLS04]).

We used Boltzmann sampling on examples for which we have computed a closed
form formula for the vector of generating functions. We want to study the problem
of evaluating numerically the generating functions (and the quantile functions).
For this we would like to adapt methods of [PSS12].

Acknowledgment

We thank Jean-Marc Luck and Philippe Marchal for fruitful discussions during the
event ALEA 2014. In particular, we acknowledge Philippe Marchal for sharing the
remark that, for the classical case of single signature, discrete recursive methods
for sampling can be derived from discrete recursive equations on cardinalities.

References

ABD13. Eugene Asarin, Nicolas Basset, and Aldric Degorre. Spectral gap in timed automata.
In Vı́ctor A. Braberman and Laurent Fribourg, editors, FORMATS, volume 8053 of
Lecture Notes in Computer Science, pages 16–30. Springer, 2013.

ABD14. Eugene Asarin, Nicolas Basset, and Aldric Degorre. Entropy of regular timed lan-
guages. 2014.

ABDP12. Eugene Asarin, Nicolas Basset, Aldric Degorre, and Dominique Perrin. Generating
functions of timed languages. In Branislav Rovan, Vladimiro Sassone, and Peter
Widmayer, editors, MFCS, volume 7464 of Lecture Notes in Computer Science, pages
124–135. Springer, 2012.

AD94. Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

AD09a. Eugene Asarin and Aldric Degorre. Volume and entropy of regular timed languages:
Analytic approach. In Joël Ouaknine and Frits W. Vaandrager, editors, FORMATS,
volume 5813 of Lecture Notes in Computer Science, pages 13–27. Springer, 2009.

AD09b. Eugene Asarin and Aldric Degorre. Volume and entropy of regular timed languages:
Discretization approach. In Mario Bravetti and Gianluigi Zavattaro, editors, CON-
CUR, volume 5710 of Lecture Notes in Computer Science, pages 69–83. Springer,
2009.

BA11. Nicolas Basset and Eugene Asarin. Thin and thick timed regular languages. In Uli
Fahrenberg and Stavros Tripakis, editors, FORMATS, volume 6919 of Lecture Notes
in Computer Science, pages 113–128. Springer, 2011.

Bas13. Nicolas Basset. Volumetry of timed languages and applications. PhD thesis, Université
Paris-Est, 2013.

Bas14. Nicolas Basset. Counting and generating permutations using timed languages. In Al-
berto Pardo and Alfredo Viola, editors, LATIN 2014: Theoretical Informatics - 11th
Latin American Symposium, Montevideo, Uruguay, March 31 - April 4, 2014. Pro-
ceedings, volume 8392 of Lecture Notes in Computer Science, pages 502–513. Springer,
2014.

BG12. Olivier Bernardi and Omer Giménez. A linear algorithm for the random sampling
from regular languages. Algorithmica, 62(1-2):130–145, 2012.

BP02. Patricia Bouyer and Antoine Petit. A Kleene/Büchi-like theorem for clock languages.
Journal of Automata, Languages and Combinatorics, 7(2):167–186, 2002.

Counting and generating permutations in regular classes of permutations. 39

BP+10. Olivier Bodini, Yann Ponty, et al. Multi-dimensional boltzmann sampling of lan-
guages. DMTCS Proceedings, (01):49–64, 2010.

BRS12. Olivier Bodini, Olivier Roussel, and Michele Soria. Boltzmann samplers for first-order
differential specifications. Discrete Applied Mathematics, 160(18):2563–2572, 2012.

DB70. NG De Bruijn. Permutations with given ups and downs. Nieuw Arch. Wisk, 18(3):61–
65, 1970.

DFLS04. Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltzmann
samplers for the random generation of combinatorial structures. Combinatorics, Prob-
ability and Computing, 13(4-5):577–625, 2004.

DZ99. Alain Denise and Paul Zimmermann. Uniform random generation of decomposable
structures using floating-point arithmetic. Theoretical Computer Science, 218(2):233–
248, 1999.

EJ12. Richard Ehrenborg and JiYoon Jung. Descent pattern avoidance. Advances in Applied
Mathematics, 2012.

EKP11. Richard Ehrenborg, Sergey Kitaev, and Peter Perry. A spectral approach to consec-
utive pattern-avoiding permutations. Journal of Combinatorics, 2(3), 2011.

EN03. Sergi Elizalde and Marc Noy. Consecutive patterns in permutations. Advances in
Applied Mathematics, 30(1):110–125, 2003.

FS09. Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Camb. Univ. press,
2009.

FZVC94. Philippe Flajolet, Paul Zimmerman, and Bernard Van Cutsem. A calculus for the
random generation of labelled combinatorial structures. Theoretical Computer Sci-
ence, 132(1):1–35, 1994.

HL12. T. Hibi and N. Li. Unimodular equivalence of order and chain polytopes. arXiv
preprint arXiv:1208.4029, 2012.

Kit11. Sergey Kitaev. Patterns in permutations and words. Springer, 2011.
Lot05. M. Lothaire. Applied Combinatorics on Words (Encyclopedia of Mathematics and its

Applications). Cambridge University Press, New York, NY, USA, 2005.
Luc14. Jean-Marc Luck. On the frequencies of patterns of rises and falls. Physica A: Statistical

Mechanics and its Applications, 407:252–275, 2014.
Mar14. Philippe Marchal. Permutations with a prescribed descent set. February 2014.
MVL03. Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute the expo-

nential of a matrix, twenty-five years later. SIAM review, 45(1):3–49, 2003.
NW78. Albert Nijenhuis and Herbert S Wilf. Combinatorial algorithms for computers and

calculators. Computer Science and Applied Mathematics, New York: Academic Press,
1978, 2nd ed., 1, 1978.

ODG13. Johan Oudinet, Alain Denise, and Marie-Claude Gaudel. A new dichotomic algorithm
for the uniform random generation of words in regular languages. Theor. Comput.
Sci., 502:165–176, 2013.

PSS12. Carine Pivoteau, Bruno Salvy, and Michele Soria. Algorithms for combinatorial struc-
tures: Well-founded systems and newton iterations. Journal of Combinatorial Theory,
Series A, 119(8):1711–1773, 2012.

S+14. W.A. Stein et al. Sage Mathematics Software. The Sage Development Team, 2014.
http://www.sagemath.org.

Sta86. Richard P. Stanley. Two poset polytopes. Discrete & Computational Geometry,
1(1):9–23, 1986.

Sta10. Richard P. Stanley. A survey of alternating permutations. In Combinatorics and
graphs, volume 531 of Contemp. Math., pages 165–196. Amer. Math. Soc., Providence,
RI, 2010.

Sym14. SymPy Development Team. SymPy: Python library for symbolic mathematics, 2014.
Vie79. G Viennot. Permutations ayant une forme donnée. Discrete Mathematics, 26(3):279–

284, 1979.

	Introduction
	Related works
	Paper structure

	Preliminaries
	Particular regular languages of signatures considered in the literature
	Consecutive descent pattern avoidance
	Periodic pattern

	The first approach
	Number of permutation with a prescribed signature
	The discrete approach
	The continuous approach
	The link between the two approaches

	Counting permutations in a regular class
	The discrete approach
	The continuous approach

	Generating functions
	Characterisation of the generating functions
	About generating function for periodic pattern

	The second approach
	Timed languages and chain polytopes
	Chain polytopes of signatures
	Timed languages, their volumes and generating functions
	The clock semantics of a signature
	The timed semantics of a language of signatures
	The link with order and chain polytopes of signatures

	The s-t (timed) language encoding.
	The s-t-encoding
	Timed semantics and s-t-encoding

	Recursive formulae for volume functions and cardinalities
	Generating functions
	Characterisation of the generating functions
	Properties of the generating functions and convergence radii
	Properties of the matrix exponentiation
	Examples

	Uniform random sampling
	A discrete recursive method
	A continuous recursive method
	Boltzmann sampling
	Experiments

	Discussion, perspectives and further related works

