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The signature of a permutation σ is a word sg(σ) ⊆ {a, d} * whose ith letter is d when σ has a descent (i.e. σ(i) > σ(i + 1)) and is a when σ has an ascent (i.e. σ(i) < σ(i + 1)). Combinatorics of permutations with a prescribed signature is quite well explored. Here we introduce regular classes of permutations, the sets Λ(L) of permutations with signature in regular languages L ⊆ {a, d} * . Given a regular class of permutation we (i) count the permutations of a given length within the class; (ii) compute a closed form formula for the exponential generating function; and (iii) sample uniformly at random the permutation of a given length. We first recall how (i) is solved in the literature for the case of a single signature. We then explain how to extend these methods to regular classes of permutations using language equations from automata theory. We give two methods to solve (ii) in terms of exponential of matrices. For the third problem we provide both discrete and continuous recursive methods as well as an extension of Boltzmann sampling to uncountable union of sets parametrised by a variable ranging over an interval. Last but not least, a part of our contributions are based on a geometric interpretation of a subclass of regular timed languages (that is, recognised by timed automata specific to our problem).

Counting the permutations with a prescribed signature (described in the abstract) is a classical combinatorial topics (see [Luc14] and reference therein). A very well studied example of permutations given by their signatures are the so-called alternating (or zig-zag, or down-up) permutations (see [Sta10] for a survey). Their signatures belong to the language expressed by the regular expression (da) * (d + ε) (in other words they satisfy σ 1 > σ 2 < σ 3 > σ 4 ...).

To a language L ⊆ {a, d} * , we associate the class Λ(L) of permutations with signature in L. When the language L is regular (namely, recognised by a finite state automaton), we say that the class of permutation Λ(L) is regular. Many classes of permutations can be expressed in that way; for instance, alternating permutations or those with an even number of descents.

In this paper, we study the combinatorics of regular class of permutations. We are thus interested in the sequence (αn(L)) n∈N of cardinalities of set of permutations of length n ∈ N with signature in L. We address the problem of Problem 1: defining recursively the sequence (αn(L)) n∈N ; Problem 2: computing its exponential generating function (EGF), that is, the formal power series G L (z) def = αn(L) z n n! ; Problem 3: generating uniformly at random permutation in Λ(L) so that permutations of length n in Λ(L) have all the same probability 1/αn(L) to be returned.

We propose two main approaches to solve this problem.

The first approach is an extension of previous results on the subject designed for the particular problem of counting and generating randomly permutations with a prescribed signature. Within this approach, there are two sub-approaches: one remains in the discrete world of permutations while the other consider vectors (ν 1 , ν 2 , . . . , νn) of the hyper-cube [0, 1] n . To a permutation corresponds the order polytope of all the vectors having the same ordering of its coordinates as the permutation. Such order polytopes are also defined for signature and are particular cases of Stanley's poset polytopes [Sta86]. The main novelty of our approach is to introduce the dynamics of automata into the recursive equation defining order polytopes or defining the set of permutations. We consider families of polytopes called ordered set, that are parametrised by the state of an automaton recognising the regular language under consideration. Then, we write system of equations on these ordered sets mimicking the equation on languages of automata theory. This allows us to compute the coefficient αn(L) recursively and to characterise the generating functions in terms of fix-point of a system of integral equations.

The second approach is based on a connection of the regular class of permutations with volumetry of regular timed languages (the languages recognised by the so-called timed automata). Timed automata were introduced in [AD94] to model and verify properties of real-time systems. Volumetry of timed language is a more recent theory initiated by Asarin and Degorre. We refer the reader to1 [ABD14] and to our PhD thesis [Bas13] for an overview of results of this theory. The connection is in two steps. First, we recall the link between the order polytopes of the first approach and the chain polytopes which are a second type of Stanley's poset polytopes [Sta86]; then we interpret the chain polytopes of a signature w as the set of delays which together with w forms a timed word of a well chosen timed language.

A note on asymptotic behaviours and bit complexity. Another meaningful problem is to study the asymptotic behaviour of αn(L). A first information in the asymptotic growth rate of (αn(L)) n∈N can be obtained when knowing the radius of convergence R of the EGF:

1/R = lim sup n→+∞ αn(L) n! 1/n (1)
This results is known as the Cauchy-Hadamard Theorem. Note that as αn (L) n!

≥ 1, the quantity 1/R belongs to [0,1]. The logarithm of this quantity is often called the entropy. We interpret in the second approach sketched above, the sequence (αn(L)) n∈N , in terms of volume sequence associated to a timed language. Hence, one can use the theory of volumetry and entropy of timed language presented in [ABD14] to analyse the growth rate of (αn(L)) n∈N (without needs of generating function). More precisely the quantity 1/R is the spectral radius of a functional operator akin to the integral operators considered in the present paper. We explained the link between the operator approach and generating function for timed languages in [ABDP12].

To get finest measures, one can study more precisely the generating function around the convergence radius or alternatively study more precisely the spectral theory of the integral operator under consideration. The former option is extensively described in [FS09] while the latter has been explored in [EKP11,EJ12] for classes of permutations defined by consecutive descent pattern avoidance.

In the present paper, we establish complexity results in terms of elementary arithmetic operations. In practice, the bit complexity comes into play. Indeed the numbers handled such that αn(L) have order of magnitude n! and this latter number needs O(n log n) bits to be stored. An idea to reduce this complexity is to handle and store directly number of the form αn (L) n! . These number according to (1) still need asymptotically O(n log R) bits to be stored (providing R < +∞).

Contribution summary

-In the first approach we extend discrete and continuous recursive methods for counting permutations of a single signature to the case of regular class of signature (Corollary 1 and Proposition 6). We further characterise in Proposition 7 the generating functions in terms of system of integral equation (derived from system of language equations) and give explicit solutions in terms of (integrals of) exponential of matrices (Theorem 1). -We describe in the second approach, the link between regular class of permutation and volumetry of regular timed languages. In particular, the EGF wanted is equal to a volume generating function associated to a well chosen timed language. We characterise the generating function using a new system of integral equation (Theorem 3) and give slightly more explicit solutions than in the first approach (Theorem 4). This second approach also allows one to describe signatures of permutations directly in terms of straights (aka. double-ascents and double-descents) and turns (aka. picks and valleys).

-With Algorithm 2 we propose a recursive method to solve the problem of uniform sampling for regular classes of permutations. -We show with Theorem 6 how random generation of timed words can be used for random generation of permutation. Then we describe continuous recursive method to generate timed word and hence to give another solution to the problem Problem 3. -We extend Boltzmann sampling to our framework involving uncountable union of sets parametrised by real valued variable, giving a third solution to Problem 3. -We have implemented a part of the algorithms using the computer algebra system Sage [S + 14] and illustrate them on a running example.

The methods we give to compute the EGF of a regular class of permutations are based on exponentiation of matrices. Such kind of operations are implemented in most of computer algebra systems.

Related works

A part of the present paper is the chapter 8 of the PhD thesis [Bas13] and was presented in [Bas14]. Our work is mainly inspired by our previous work on volumetry, entropy and generating functions for timed languages [ABDP12, ABD14,Bas13]. In particular in [ABDP12] a link between enumerative combinatorics and timed languages was foreseen that we establish here. No particular knowledge of (timed) automata theory nor of combinatorics of permutations is required to read the paper.

Other class of permutation considered. The random generation of permutations with signature following a periodic pattern has been addressed very recently by Philippe Marchal [Mar14]. In this work the computation of the exponential generating function is also addressed. In another recent work [Luc14], this latter problem is also solved. This paper also establish the link between the discrete and continuous approach of previous works and study the entropy for classes of permutation following periodic pattern. Another interest of this paper is its motivation from statistic physics. Particular regular languages of signatures are considered in [EJ12] under the name of consecutive descent pattern avoidance. Numerous other works treat more general cases of (consecutive) pattern avoidance (see [EN03], [Kit11]) and are quite incomparable to our work. Indeed, certain classes of permutations avoiding a finite set of patterns cannot be described as a language of signatures while some classes of permutations involving regular languages cannot be described by finite pattern avoidance (for instance, the permutations with an even number of descents).

About the recursive method for sampling. We use the so-called recursive method introduced by [NW78] developed by [FZVC94]. This method has been improved for the particular case of generation of words in regular languages with several methods [BG12, ODG13] (see the latter reference for experimental comparison). Bit complexity issues were already discussed above. It is known that one can decrease the bit complexity of the recursive method by using floating point arithmetic, even without introducing a bias in the sampling [DZ99, BG12]. The random sampler of timed words (Algorithm 3) is an adaptation to the timed case of this method. We give related works on Boltzmann sampling in Section 6.

Paper structure

In Section 2, we give some preliminary definition and discuss how certain classes of permutations considered in the literature can be seen as regular classes of permutations. In Section 3 and 4 we describe the first and the second approaches sketched above. Section 4 is devoted to random sampling. We discuss the results and perspectives as well as further related works in Section 6.

Preliminaries

All along the paper we use two alphabets, {a, d} and {s, t}, whose elements must be respectively read as "ascent", "descent", "straight" and "turn". A signature is a word on the alphabet {a, d}. The empty word (the unique 0-length word) is denoted by ε. The concatenation of two languages A and B is denoted by AB = {uw | u ∈ A and w ∈ B} and when A contains just a one-letter word l we write lB instead of {l}B. Given a language A and a natural k, we denote by A k the set {u 1 . . . u k | u i ∈ A}, in particular A 0 = {ε}. The Kleene star closure of A is defined by A * = ∪ k∈N A k . In particular, the set of every word formed with letters of an alphabet Σ is denoted by Σ * .

Example 1 We consider as a running example the regular language

L (ex0) = ({aa, dd}) * {a, d}.
It is composed of words that are concatenation of block of consecutive ascent (or descent) of even length followed by an odd length block of ascent (or descent). For instance the three following words are in L (ex0) : aaa, aad and ddddaaddd.

Automata and regular languages A deterministic finite state automaton (thereafter simply called automaton) is a tuple T = (Σ, Q, q 0 , F, δ) where Σ is a finite alphabet; Q is a finite set of states; q 0 ∈ Q is the initial state; F ⊆ Q is the set of final states; and δ : Q × Σ → Q is a partial transition function. For a state p and a letter l ∈ Σ, we let p.l stand for δ(p, l) whenever it is defined, otherwise we set the convention that sets and real-valued functions parametrised by p.l (e.g. in (2) or ( 30)) are respectively empty and null. This notation extends inductively on words as follows p.ε = p and p.ua = (p.u).a for u ∈ Σ * and a ∈ Σ.

We denote by [Tp]n the set of words of length n ∈ N recognised by T from a state p defined recursively as follows: [Tp] 

0 = {ε} if p is final (that is p ∈ F ) and [Tp] 0 = ∅ otherwise; and for n ∈ N [Tp] n+1 = l∈Σ l[T p.l ]n (2) 
The language recognised by T from the state

p ∈ Q is [Tp] def = n∈N [Tp]n.
The language recognised by T is the language [Tq 0 ], that is, recognised from the initial state q 0 . The languages recognised by automata are called regular languages.

Alternatively one can define directly the languages ([Tp]) p∈Q as the unique fixed point of the following language equation:

[Tp] = l∈Σ l[T p.l ] (∪{ε} if p ∈ F ).
(3)

We assume without loss of generality that all the state of automata considered in this paper are reachable, that is, of the form q 0 .u for some u ∈ Σ * (non reachable states can be deleted without changing the language of the automaton).

In this paper, automata will be denoted by A when their alphabet is {a, d} and by B when their alphabet is {s, t}.

Example 2 Consider the automaton A on Figure 1. (2) and (3) gives

   [Tq 0 ] n+1 = a[Tq 1 ]n d[Tq 1 ]n; [Tq 1 ] n+1 = a[Tq 0 ]n; [Tq 2 ] n+1 = a[Tq 0 ]n. and    [Tq 0 ] = a[Tq 1 ] d[Tq 1 ]; [Tq 1 ] = a[Tq 0 ] {ε}; [Tq 2 ] = a[Tq 0 ] {ε}.
It can be seen that the language recognised by A is exactly the language L (ex0) described in Example 1.

q 0 q 2 q 1 a a d d q 0 q 2 q 1 a a d d q 0 q 3 s, t s 
Fig. 1 From left to right: automata for L (ex0) , L (ex0) ′ ∪ {ε} and sta(L (ex0) ′ ) ∪ {ε} . The final states are marked with double circle, the initial state q 0 by an incoming arrow and labelled arrows q i l -→ q j means that q i .l = q j Matrix notation for system of equation parametrised by states of an automaton. Let T = (Σ, Q, q 0 , F, δ) be an automaton. In several places in this paper, we will consider family of functions fp : x, z → fp(x, z) index by states p ∈ Q of the automaton under consideration. We denote by f (x, z), the column vector whose qth component is fq(x, z). Integration and derivation of vectors of functions are taken componentwise; for instance, 1 0 f (y, z)dy is the vector whose q-th component is 1 0 fq(y, z)dy.

We denote by F the column vector whose qth component is 1 if q ∈ F and 0 otherwise. For l ∈ Σ, the Q × Q-matrices M l for l ∈ Σ is the adjacency matrices corresponding to letter l that is for p, q ∈ Q, M l (p, q) = 1 if p.l = q and 0 otherwise.

Signature of a permutation and regular class of permutations. For n ∈ N, [n] denotes {1, . . . , n} and Sn the set of permutations of [n]. We use the one line notation; for instance, σ = 231 means that σ

(1) = 2, σ(2) = 3, σ(3) = 1.
Let n be a positive integer. The signature of a permutation

σ = σ 1 • • • σn is the word u = u 1 • • • u n-1 ∈ {a, d} n-1 denoted by sg(σ) such that for i ∈ [n], σ i < σ i+1 iff u i = a (
we speak of an "ascent") and σ i > σ i+1 iff u i = d (we speak of a "descent"), for instance sg(1342) = sg(2341) = aad. We also define signature on words of naturals, for instance if we let a equals ten, b equals thirteen, and c equals two, then sg(abc) = ad.

The notion of signature appears in the literature under several different names and forms such as descent word, descent set, ribbon diagram, etc. A regular class of permutation is a set Λ(L) def = {σ | sg(σ) ∈ L}, the class of permutations with signature in a regular language L ⊆ {a, d} * . We also define for positive naturals k ≤ n, the set Λn(L)

def = Λ(L) ∩ Sn and Λ n,k (L) def = {σ ∈ Λn(L) | σ 1 = k}.
Cardinalities and exponential generating function for regular class of permutations.

For a signature u ∈ {a, d} * , we denote by Λu the set of permutations with signature u and by αu its cardinality. Given a language L we denote by Ln the sub-language of L restricted to its n-length words. We denote by αn(L) the number of n-length permutations with signature in L, that is αn

(L) = w∈Ln-1 αw = |Λn(L)|. Simi- larly we define α n,k (L) = |Λ n,k (L)| for k ≤ n. The exponential generating function of Λ(L) is G L (z) def = σ∈Λ(L) z |σ| |σ|! = u∈L αu z |u|+1 (|u| + 1)! = n≥1 αn(L) z n n! .
Example 3 For the running example, the theory developed in the paper allows us to find the exponential generating function of Λ(L (ex0) ): For instance, there are 1632 permutation of length 8 in the regular class considered.

G L (ex0) (z) = 2 √ 2z(e √ 2z -1) 2 + √ 2z + (2 - √ 2z)e √ 2z (4) = 2f √ 2 2 z with f (X) = X tanh (X) 1 -X tanh (X) = 1 1 -X tanh (X) -1.(5)
Convergence radii of generating functions It is often useful to consider a generating function T (z) = n≥0 anz n as a function of the complex variable (see [FS09]). For a non-positive integer r, we denote by D(0, r) the following set {z ∈ C | |z| < r}. The disc of convergence of T (z) = n≥0 anz n is the greatest disc D(0, r) containing only complex number z for which n≥0 anz n converges. The convergence radius Rconv(T ) is the radius r of such a disc of convergence.

In this paper, we also consider generating functions on two variables V (x, z) = n∈N vn(x)z n where vn is a polynomial that is non-negative on the interval [0, 1]. We define the convergence radius of V as inf x∈[0,1] Rconv(z → V (x, z)).

For a vector V of generating function Vq(x, z) (indexed by states q ∈ Q of an automaton) we define Rconv(V) def = min q∈Q Rconv(Vq).

Exponential of a matrix. In several places of this article, we will use exponential of matrices. The exponential of a matrix M is the matrix defined by exp(M ) = n∈N M n n! . We often use exponential of matrices of the form exp(zM

) = n∈N M n z n n!
where z is either a formal variable or a complex number and M has real or complex entries. The matrix exp(zM ) is invertible with inverse exp(-zM ).

Particular regular languages of signatures considered in the literature

In this paper, we introduce for the first time regular languages of signature. However previous works on the subject can be encoded using our framework.

Consecutive descent pattern avoidance

Works on consecutive descent pattern avoidance (such as [EKP11, EJ12]) consider finite set of words Forb and the permutation whose signature avoid words of this set. In other words, the underlying language of signature X Forb contains exactly the words w such that for all 0 < i < j ≤ |w| it holds that w i . . . w j ∈ Forb. Such a language X Forb can be recognised by an automaton with a number of states upper bounded by w∈Forb |w| by using a prefix tree (aka. trie2 ). We depict two examples of automata in the left and middle of respectively X {dd} = {a, da} * {ε, d} and X {aaa,add,dad} . We name the state after the longest prefix of a forbidden word that is currently seen.

It is also well known that some regular languages cannot be described using sets of forbidden pattern. Consider for instance the language Leven of signatures that contain a pair number of ascent and an arbitrary number of descents, this language is regular as recognised by the automaton depicted in the right of Figure 2. Assume toward a contradiction that it is of the form X Forb for some set of words Forb. For every w ∈ Forb, either wa or waa contains an even number of a and does not avoid w, a contradiction. A similar argument holds for the regular language L (ex0) which cannot be defined with a finite set of forbidden patterns.

Periodic pattern

Some works consider class of permutation that match so-called periodic pattern [Mar14,Luc14]. They can be described as regular class of permutation using automata with only one cycle, and every state final. One can make some state nonfinal to discard some cardinalities, for instance the class of permutations of odd length whose signature match the periodic pattern aadd is depicted in the left of Figure 3.

Alternating permutations of positive length have signatures that match the periodic pattern ad. The automaton depicted in Figure 4 recognises the language of such signatures L = {ad} * {a, ε}.

The first approach

In Section 3.1, we recall known results for counting permutation with a single prescribed signature. In Section 3.2, we extend these results for counting permutation of fixed length with signature in a regular language. In Section 3.3, we characterize the generating function as the solution of a linear algebra problem involving integral of exponential of a matrix.

Number of permutation with a prescribed signature

Here we review known results needed in the rest of Section 3. Such a review with historical notes can also be found in the beginning of [Luc14]. We give a somewhat different presentation. For instance, we invoke geometry rather than probability for the continuous case and emphasize the use of Bernstein polynomials and their nice algebraic properties.

The discrete approach

The aim of this section is to describe recursive equations that given a signature u ∈ {a, d} compute αu the number of permutation having signature u.

For this we classify the permutations according to their first element σ 1 .

Proposition 1 The following equalities hold for every signature u ∈ {a, d} * (with

n = |u| + 1) αu = n k=1 α u,k ; (6) 
α ε,1 = 1; (7) α au,k = n i=k α u,i ; (8) α du,k = k-1 i=1 α u,i . (9) 
Proof (7) follows from the definition of signatures, the 0-length word ε is the signature of the unique permutation of

S 1 = {1}. Let Λ u,k = {σ ∈ Sn | sg(σ) = u and σ 1 = k} and α u,k = |Λ u,k |. (6) comes from the set equation Λu = {σ ∈ Sn | sg(σ) = u} = n k=1 Λ u,k Note that Λ au,k = {k} × {σ 2 . . . σ n+1 | k < σ 2 and sg(σ 2 . . . σ n+1 ) = u} and hence that Λ au,k = {k} × n+1 j=k+1 {σ 2 . . . σ n+1 | sg(σ 2 . . . σ n+1 ) = u and σ 2 = j}.
By substracting 1 to the values greater or equal k + 1 we establish a bijection between the set {σ 2 . . .

σ n+1 | sg(σ 2 . . . σ n+1 ) = u and σ 2 = j} and Λ u,j-1 . Thus Λ au,k is in bijection with n+1 j=k+1 Λ u,j-1 = n i=k Λ u,i .
Passing to cardinalities we obtain (8). ( 9) is obtained similarly.

⊓ ⊔

One can use instead of ( 8), (9) a system of "local" recursive equations:

α au,k = α au,k+1 + α u,k (10) 
α du,k = α du,k-1 + α u,k-1 (11)
together with border conditions

α au,n+1 = 0; α du,1 = 0 (12)
obtained by setting k = n + 1 and k = 1 in ( 8) and ( 9) respectively.

Remark 1 Equations ( 10), ( 11) and ( 12) are slightly different form that of the literature [DB70, Vie79] recalled in [Luc14]. Indeed, previous works usually consider classification of the permutations according to their last element σn and hence the action of a new ascent or descent is done at the end of the word (on the right).

Here we change the order and operate on the left to be consistent with the rest of the article that rely on language equations3 (2) and (3).

The continuous approach

We say that a collection of polytopes (S 1 , • • • , Sn) is an almost disjoint partition of a set A if it is the union of S i and they have pairwise a null volume intersection.

In this case we write

S = n i=1 S i . The set {(ν 1 , . . . , νn) ∈ [0, 1] n | 0 ≤ ν σ -1 1 ≤ . . . ≤ ν σ -1 n ≤ 1} is called the order simplex 4 of σ and denoted by O(σ). For instance ν = (0.1, 0.3, 0.4, 0.2) belongs to O(1342) since ν 1 ≤ ν 4 ≤ ν 3 ≤ ν 2 and (1342) -1 = 1432. The set O(σ) for σ ∈ Sn forms an almost disjoint partition of [0, 1] n .
By symmetry all the order simplices of permutations have the same volume which is 1/n!.

If ν is uniformly sampled in [0, 1] n then it falls in any O(σ) with probability 1/n!. To retrieve σ from ν it suffices to use a sorting algorithm. We denote by Π(ν) the permutation σ returned by the sorting algorithm on ν, that is such that 0

≤ ν σ -1 1 ≤ . . . ≤ ν σ -1 n ≤ 1.
Moreover with probability 1, ν has pairwise distinct coordinates and one can define its signature 5 sg(

ν) = u 1 . . . u n-1 by u i = a if ν i < ν i+1 and u i = d if ν i > ν i+1 . For instance sg(0.1, 0.3, 0.4, 0.2) = aad.
The order polytope O(u) [Sta86] of a signature u ∈ {a, d} n-1 is the set of vectors

ν such that for all i ≤ n -1, if u i = a then ν i ≤ ν i+1 , and ν i ≥ ν i+1 otherwise. This set is the topological closure of {ν ∈ [0, 1] n | sg(ν) = u}.
It is clear that the collection of order simplices O(σ) with all σ having the same signature u form an almost disjoint partition of the order polytope

O(u): O(u) = σ∈sg -1 (u) O(σ). For instance O(aad) = O(1243) ⊔ O(1342) ⊔ O(2341).
Passing to volume we get:

Vol(O(u)) = σ∈Λu Vol(O(σ)) = αu n! . ( 13 
)
One can classify vectors according to their first coordinate as the permutation were in Section 3.1.1. We denote by Ou(x) = {(ν 2 , . . . , νn) | (x, ν 2 , . . . , νn) ∈ O(u)} and by vou(x) its ((n -1)-dimensional) volume.

The following proposition is the continuous counterpart of Proposition 1.

Proposition 2 The following equalities hold for every signature u ∈ {a, d} * (with n = |u| + 1)

Vol(O(u)) = 1 0 vou(x)dx; (14) voε(x) = 1; (15) voau(x) = 1 x vou(y)dy; (16) vo du (x) = x 0 vou(y)dy. ( 17 
)
Proof ( 16) can be proved using the following identity on sets:

Oau(x) = {(y, ν 2 . . . , νn) | x ≤ y and (y, ν 2 , . . . , νn) ∈ O(u)} = 1 y=x {y} × Ou(y).
A similarly argument holds for descents.

The link between the two approaches

The link between coefficient α u,k and function vou is made in Proposition 3 below using Bernstein polynomials defined as follows. This proposition is essentially the equation ( 15) of [Luc14] written with different indices convention and with order reversed as explained in Remark 1. The Bernstein polynomials b k,n for integers k ≤ n are defined as follows:

b k,n (x) = n k x k (1 -x) n-k .
In particular, b 0,0 (x) = 1 and b 0,n (x) = (1x) n for n ∈ N.

Proposition 3 For every signature w of a given length n, it holds that

vow(x) = 1 n! n k=0 α w,k+1 b k,n (x) (18) 
This proposition can be proved using the following algebraic identities on integral operators 1

x dy and

x 0 dy applied to Bernstein polynomials:

1 x b i,n (y)dy = 1 n + 1 i k=0 b k,n+1 (x); (19) x 0 b i,n (y)dy = 1 n + 1 n k=i+1 b k,n+1 (x). ( 20 
)
Proof (of Proposition 3) We prove the result by induction. The base case is voε(x) = 1 = α ε,1 b 0,0 (x). For the induction step we suppose that (18) holds for some w of a given length n and proved that it holds for au (the case du is omitted for the sake of concision as the proof is similar). We start with (16),

voaw(x) = 1 x vow(y)dy = 1 x 1 n! n i=0 α u,i+1 b i,n (x)dx = 1 n! n+1 i=1 α u,i 1 x b i-1,n (x)dx.
Applying ( 19) we get:

voaw(x) = 1 (n + 1)! n+1 i=1 α u,i i-1 k=0 b k,n+1 (x) = 1 (n + 1)! n k=0   n i=k+1 α u,i   b k,n+1 (x)
Now it suffices to use (8) to conclude:

voaw(x) = 1 (n + 1)! n k=0 α au,k+1 b k,n+1 (x). ⊓ ⊔

Counting permutations in a regular class

For the rest of Section 3 we consider an arbitrary regular language L recognised by an automaton A = ({a, d}, Q, q 0 , F, δ).

The discrete approach

For an arbitrary language U we let α n,k (U ) be the number of permutations with signature in U and whose first element is k. The following proposition is obtained from Proposition 1, by using the fact that α n,k (U ) = u∈U αu.

Proposition 4 The coefficients αn([Aq]) satisfy the following recursive equations:

αn([Aq]) = n k=1 α n,k ([Aq]) (21) α 1,1 ([Aq]) = 1 q∈F (22) α n+1,k ([Aq]) = n i=k α n,i ([Aq.a]) + k-1 i=1 α n,i ([A q.d ]) (23) 
One could also use instead of (23) the following system of local equations:

α n+1,k ([Aq]) = α n+1,k (a[Aq]) + α n+1,k (d[Aq]) (24) α n+1,k (a[Aq]) = α n+1,k+1 (a[Aq]) + α n,k ([Aq]) (25) α n+1,k (d[Aq]) = α n+1,k-1 (d[Aq]) + α n,k-1 ([Aq]) (26) 
and use the border conditions:

α n+1,n+1 (a[Aq]) = 0; α n+1,1 (d[Aq]) = 0 (27)
Hence we can state a solution to Problem 1: 

The continuous approach

For n ≥ 1, the family (O(u)) u∈Ln-1 forms an almost disjoint partition of a subset of [0, 1] n called the nth order set of L and denoted by On(L):

On(L) = u∈Ln-1 O(u) = σ∈sg -1 (Ln-1) O(σ) = {ν ∈ [0, 1] n | sg(ν) ∈ L n-1 }. ( 28 
)
For instance

O 3 (L (ex0) ) = O(aaa) ⊔ O(aad) ⊔ O(dda) ⊔ O(ddd) = O(1234)⊔ O(1243) ⊔ O(1342) ⊔ O(2341)⊔ O(4312) ⊔ O(4213) ⊔ O(3214)⊔ O(4321).
Passing to volume in (28) we get:

Vol(On(L)) = u∈Ln-1 Vol(O(u)) = σ∈Λn(L) Vol(O(σ)) = αn(L) n! . ( 29 
)
The link between order sets On([Aq]) for q ∈ Q is done as in the discrete case, by parametrising these sets according to their first component. For all q ∈ Q, n ∈ N and x ∈ [0, 1] we let

Oq,n(x) def = {(ν 2 , . . . , νn) | (x, ν 2 , . . . , νn) ∈ On([Aq])} and voq,n(x) def = Vol[O q,n+1 (x)].
Proposition 5 The function voq,n for q ∈ Q and n ∈ N are polynomials of degree ≤ n, they satisfy the following recurrence vo q,0 (x) = 1 q∈F and vo q,n+1 (x) = 1 x voq.a,n(y)dy + x 0 vo q.d,n (y)dy;

(30) and these functions satisfy for n ≥ 1:

1 0 vo q,n-1 (x)dx = αn([Aq]) n! . ( 31 
)
Proof The sets Oq,n(x) can be recursively defined as follows:

O q,0 (x) = [0, 1] if q ∈ F and O q,0 (x) = ∅ otherwise; O q,n+1 (x) = 1 y=x {y} × Oq.a,n(y) ∪ x y=0 {y} × O q.d,n (y) 
Passing to volume we get (30). Remark that Oq,n(x) = u∈[Aq]n-1 Ou(x) and hence that vo q,n-1 (x) = u∈[Aq]n-1 vou(x). We can conclude using (13):

1 0 vo q,n-1 (x)dx = u∈[Aq]n-1 1 0 vou(x)dx = u∈[Aq]n-1 αu n! = αn([Aq]) n! . ⊓ ⊔
One can define and compute the voq,n in the Bernstein basis using the following proposition that link the volume function with the numbers α n,k , or directly compute these function in the standard basis 1, x, x 2 , . . .

Proposition 6

The coefficient of the polynomials voq,n in the Bernstein basis can be computed in time and space complexity O(|Q|n 2 ) using the following characterisation:

voq,n(x) = 1 n! n k=0 α n+1,k+1 ([Aq])b k,n (x) (32)
Alternatively, the polynomials voq,m for q ∈ Q and m ≤ n can be computed in the standard basis with a time and space complexity O(|Q|n 2 ) using recursive equation (30).

Remark also that the space complexity can be reduced to O(|Q|n) if one is interested only on (voq,n) q∈Q (as the computation of (voq,m) q∈Q needs only to have (vo q,m-1 ) q∈Q in memory).

Generating functions

Characterisation of the generating functions

We have seem in (31) how to relates the number of permutation with the volume functions. We now show how generating functions for these two kinds of object can be related. In the rest of this Section, we just write Gq(z) the generating function

G [Aq ] (z) = n≥1 αn([Aq]) n! z n
and we write VOq(x, z) = n≥1 vo q,n-1 (x)z n .

By taking n≥1 z n in the equations of Proposition 5 we obtain:

Proposition 7 For z < Rconv(VO), the vector of generating function VO = (VOq) q∈Q is the unique solution of the following system of integral equation:

VOq(x, z) = z 1 x VOq.a(y, z)dy + z x 0 VO q.d (y, z)dy + z1 p∈F ; ( 33 
)
and it also holds that:

Gq(z) = 1 0 VOq(x, z)dx
In matrix notation the system of equation ( 33) is written:

VO(x, z) = zMa 1 x VO(y, z)dy + zM d x 0 VO(y, z)dy + zF. (34) 
A similar equation was obtained in [EJ12], to find the growth rate of classes of permutations that avoid a set of consecutive descent patterns (as described in Section 2.1.1). Equation ( 34) is equivalent to the following differential equation ( 35) and boundary condition (36):

∂ ∂x VO(x, z) = z (Md -Ma) VO(x, z) (35) VO(0, z) = zMa 1 0 VO(y, z)dy + zF = zMaG(z) + zF (36)
The solution of these equations involve the following matrix:

I(z) def = 1 0 exp [xz (Md -Ma)] dx, (37) 
Theorem 1 There exists r ≤ Rconv(G) such that for all z within the disc D(0, r) the matrix I |Q| -zI(z)Ma is invertible and G(z) satisfies:

G(z) = I |Q| -zI(z)Ma -1 zI(z)F (38) If M d -Ma is invertible (38) is equivalent to: G(z) = (M d -exp [z(Md -Ma)] Ma) -1 exp [z(Md -Ma)] -I |Q| F ( 39 
)
Proof Solutions of ( 35) are of the form:

VO(x, z) = exp [xz (Md -Ma)] VO(0, z)
(40) Now, we integrate x over [0, 1] to make I(z) appear and use the border condition (36), we obtain:

G(z) = I(z) (zMaG(z) + zF) which yields I |Q| -zI(z)Ma G(z) = zI(z)F.
In z = 0, the continuous function z → det I |Q| -zI(z)Ma is equal to det(I |Q| ) = 1 and thus non null on a neighbourhood of 0. Thus, the matrix I |Q| -zI(z)Ma is invertible around 0 and the first result (38) follows. Now, we prove (39). Remark that z (Md -Ma) I(z) = exp [z(Md -Ma)] -I |Q| . Indeed,

z (Md -Ma) I(z) = 1 0 n≥0 [z (Md -Ma)] n+1 1 n! x n dx = n≥0 (Md -Ma) n+1 z n+1 (n + 1)! . Then (M d -Ma) I |Q| -zI(z)Ma = M d -exp [z(Md -Ma)] Ma. Hence when M d -Ma is invertible we have: G(z) = I |Q| -zI(z)Ma -1 (M d -Ma) -1 (M d -Ma)zI(z)F = (M d -exp [z(Md -Ma)] Ma) -1 exp [z(Md -Ma)] -I |Q| F. ⊓ ⊔
As a corollary of the proof of Theorem 1 one can obtain VO(x, z) by plugging (36) in (40):

Proposition 8 For every x ∈ [0, 1] it holds that Rconv(G) ≤ Rconv(z → VO(x, z));
and that for every z < Rconv(G),

VO(x, z) = z exp [xz (Md -Ma)] (MaG(z) + F) .
(41)

About generating function for periodic pattern

A worth mentioning class of examples where (39) allows one to derive explicit results are given by periodic patterns (described in Section 2.1.2). In that case it is not hard to explicit the matrix exp [z(Md -Ma)] in terms of generalised hyperbolic or generalised trigonometric function (see Appendix B of [Luc14] for definitions). So, the computation time of the generating function is essentially due to the inversion of the matrix (M d -exp [z(Md -Ma)] Ma), that can be done for instance in a cubic time using basic Gauss-Jordan elimination. We do not enter to much into details here as there is already a method provided in [Luc14] with a complexity better than ours (where the main part of the computation is to evaluate an m × m determinant where m is the minimum between the number of ascents and the number of descents in the pattern considered). Another method was also given recently [Mar14], yet less simple as based on evaluation of an nm×nm determinant (where n is the length of the pattern and m is as above).

In [Bas14], we considered as a running example the language recognised by the automaton depicted in Figure 3. However, this example does not reflect all the power of regular class of permutations as it falls in the class of periodic pattern6 .

The second approach

We describe here a second approach to study the combinatorics of permutation in a regular class. In the first approach ascents and descents plays a symmetric role. This redundancy of information is handled by Stanley's chain polytopes described in Section 4.1 below: they do not distinguish chain of ascents and chain of descents. In the same section, we show that chain polytopes turn out to be polytopes associated to timed languages hence establishing a connection between the combinatorics of permutations and the theory of timed automata. The timed automata associated to regular languages of signatures still suffer from a redundant role played by ascents and descents. In Section 4.2, this redundancy is treated by introducing an encoding of signature in terms of "straights" and "turns" and their corresponding timed semantics. This allows us to characterise generating functions of permutation in Section 4.4 after having described recursive equations on volume functions in Section 4.3.

Timed languages and chain polytopes

Chain polytopes of signatures

The chain polytope [Sta86] of a signature u is the set C(u) of vectors t ∈ [0, 1] n such that for all i < j ≤ n and l ∈ {a, d},

w i • • • w j-1 = l j-i ⇒ t i + . . . + t j ≤ 1. Example 4 A vector (t 1 , t 2 , t 3 , t 4 , t 5 ) ∈ [0, 1] 5 belongs to C(daad) iff t 1 + t 2 ≤ 1, t 2 + t 3 + t 4 ≤ 1, t 4 + t 5 ≤ 1 iff 1 -t 1 ≥ t 2 ≤ t 2 + t 3 ≤ 1 -t 4 ≥ t 5 iff (1 -t 1 , t 2 , t 2 + t 3 , 1 - t 4 , t 5 ) ∈ O(daad).
More generally, for w = ul with u ∈ {a, d} * , l ∈ {a, d} and n = |w|, there is a volume preserving transformation (t 1 , • • • , tn) → (ν 1 , • • • , νn) from the chain polytope C(u) to the order polytope O(u) defined as follows. Let j ∈ [n] and i be the index such that w i • • • w j-1 is a maximal ascending or descending block, that is, i is minimal such that w i • • • w j-1 = l j-i with l ∈ {a, d} * . If w j = d we define ν j = 1 -j k=i t k and ν j = j k=i t k otherwise.

Proposition 9 (simple case of Theorem 2.1 of [HL12]) The mapping φ ul :

(t 1 , • • • , tn) → (ν 1 , • • • , νn) is a volume preserving transformation from C(u) to O(u).
It can be computed in linear time using the recursive definition:

ν 1 = t 1 if w 1 = a ν 1 = 1 -t 1 if w 1 = d
and for i ≥ 2:

ν i = ν i-1 + t i if w i-1 w i = aa; ν i = t i if w i-1 w i = da; ν i = 1 -t i if w i-1 w i = ad; ν i = ν i-1 -t i if w i-1 w i = dd.
As a corollary of (29) and Propostion 9, Problem 2 can be reformulated in geometric terms as follows.

Corollary 2 For every L ∈ {a, d} * the following equalities hold:

G L (z) = n≥1 Vol(On(L))z n = u∈L Vol(O(u))z |u|-1 = u∈L Vol(C(u))z |u|-1 .
The three following section (Section 4.1.2, 4.1.3 and 4.1.4) are inspired by timed automata theory and designed for non experts. We adopt a non standard 7 and self-contained approach based on the notion of clock languages introduced by [BP02] and used in our previous work [ABDP12].

Timed languages, their volumes and generating functions

An alphabet of timed events is the product R + × Σ where Σ is a finite alphabet. The meaning of a timed event (t i , w i ) is that t i is the time delay before the event w i . A timed word is just a word of timed events and a timed language a set of timed words. Adopting a geometric point of view, a timed word is a vector of delays t = (t 1 , . . . , tn) ∈ R n together with a word of events w = w 1 • • • wn ∈ Σ n . That is why we sometimes write such a timed word (t, w) instead of (t 1 , w 1 ) • • • (tn, wn). With this convention, given a timed language L ′ ⊆ (R + × Σ) * , its restriction to n-length words L ′ n can be seen as a formal union of sets w∈Σ n L ′ w × {w} where

L ′ w = {t ∈ R n | (t, w) ∈ L ′ }
is the set of delay vectors that together with w form a timed word of L ′ . In the sequel we will only consider languages L ′ for which every L ′ w is volume measurable. To such L ′ n one can associate a sequence of volumes and a volume generating function as follows:

Vol(L ′ n ) = w∈Σ n Vol(L ′ w ); T L ′ (z) = w∈Σ * Vol(L ′ w )z |w| = n∈N Vol(L ′ n )z n

The clock semantics of a signature

A clock is a non-negative real variable. Here we only consider two clocks bounded by 1 and denoted by x a and x d . A clock word is a tuple whose component are a starting clock vector (x a

0 , x d 0 ) ∈ [0, 1] 2 , a timed word (t 1 , a 1 ) • • • (tn, an) ∈ ([0, 1]×{a, d}) * and an ending clock vector (x a n , x d n ) ∈ [0, 1] 2 . It is denoted by (x a 0 , x d 0 ) (t1,a1)•••(tn,an) -----------→ (x a n , x d n ). Two clock words x 0 w -→ x 1 and x 2 w ′
--→ x 3 are said to be compatible if

x 2 = x 1 , in this case their product is (x 0 w -→ x 1 ) • (x 2 w ′ --→ x 3 ) = x 0 ww ′ ---→ x 3 . A clock language is a set of clock words. The product of two clock languages L and L ′ is L • L ′ def = {c • c ′ | c ∈ L, c ′ ∈ L ′ , c and c ′ compatible}. ( 42 
)
The clock language8 L(a) (resp. L(d)) of an ascent (resp. a descent) is the set of clock words of the form (x a , x d )

(t,a) ---→ (x a +t, 0) (resp. (x a , x d ) (t,d)
---→ (0, x d +t)) and such that x a + t ∈ [0, 1] and x d + t ∈ [0, 1] (and by definition of clocks and delays x a ≥ 0, x d ≥ 0, t ≥ 0). These definitions extend inductively to all signatures:

L(u 1 • • • un) = L(u 1 ) • • • L(un) (with product (42)).
Example 5 (0, 0)

(0.7,d)(0.2,a)(0.2,a)(0.5,d) ------------------→ (0, 0.5) ∈ L(daad) since (0, 0) (0.7,d) ----→ (0, 0.7) ∈ L(d);
(0, 0.7)

(0.2,a)
----→ (0.2, 0) ∈ L(a);

(0.2, 0)

(0.2,a)
----→ (0.4, 0) ∈ L(a); (0.4, 0)

(0.5,a)
----→ (0, 0.5) ∈ L(d).

The timed semantics of a language of signatures

The timed polytope associated to a signature w ∈ {a, d} * is

Pw def = {t | [(0, 0) (t,w) ---→ y] ∈ L(w) for some y ∈ [0, 1] 2 }.
For instance (0.7, 0.2, 0.2, 0.5, 0.1) ∈ P daada . The timed semantics of a language of signatures L ′ is

L ′ = {(t, w) | t ∈ Pw and w ∈ L ′ } = ∪ w∈L ′ Pw × {w}.
This language restricted to words of length n is

L ′ n = ∪ w∈L ′ n Pw × {w}, its volume is Vol(L ′ n ) = w∈L ′ Vol(Pw).

The link with order and chain polytopes of signatures

We first state the link between timed polytopes and chain polytopes.

Proposition 10 Given a word u ∈ {a, d} * and l ∈ {a, d}, the timed polytope of ul is the chain polytope of u: P ul = C(u).

Hence, Proposition 9 links the timed polytope P ul = C(u) of a signature of length n + 1 and the order polytopes O(u) of a signature of length n. We correct the mismatch of length using prolongation of languages. A language L ′ is called a prolongation of a language L whenever the truncation of the last letter w 1 . . . wn → w 1 . . . w n-1 is a bijection between L ′ and L.

Every language L has prolongations, for instance L ′ = Ll for l ∈ {a, d}.

Example 6 A prolongation of L (ex0) is L (ex0) ′ = ({aa, dd}) * {aa, dd}. An automaton recognising L (ex0) ′ ∪ {ε} is depicted in the middle of Figure 1.

Proposition 9 can be extended to language of signatures as follows.

Corollary 3 Let L ⊆ {a, d} * and L ′ be the timed semantics of a prolongation of L then for all n ∈ N, the following function is a volume preserving transformation between L ′ n and On(L). Moreover it is computable in linear time.

φ : L ′ n → On(L) (t, w) → φw(t) (43) 
As a consequence, the Problems 2 and 3 can be solved if we know how to compute the VGF of a timed language L ′ and how to generate timed vector uniformly in L ′ n . A characterization of the VGF of a timed language as a solution of a system of differential equations is done in [ABDP12]. Nevertheless the equations of this article are quite uneasy to handle and do not give a closed form formula for the VGF. To get simpler equations than in [ABDP12] we work with a novel class of timed languages involving two kinds of transitions labelled by s and t.

4.2

The s-t (timed) language encoding. For order polytopes, chain of ascents and chain of descents give inequalities in opposite directions (ν i ≤ . . . ≤ ν j and ν i ≥ . . . ≥ ν j ). By contrast, when dealing with chain polytopes, chain of ascents and chain of descents give exactly the same inequalities (t i + . . . + t j ). To retrieve the successive letters of a signature while looking at its chain polytope, one has to know the first letter and keeps track of the successive changes of chains. In other words, a signature goes "straight" during chains of ascent and chains of descent and when a pick (ad) or a valley (da) happens the signature "turns".

This encoding in terms of straights and turns formally defined below, is also well suited to consider only one clock x instead of the two clocks x a and x d .

The s-t-encoding

The s-t-encoding of type l ∈ {a, d} of a word w ∈ {a, d} * is a word w ′ ∈ {s, t} * denoted by st l (w) and defined recursively as follows: for every i ∈ [n], w ′ i = s if w i = w i-1 and w ′ i = t otherwise, with the convention that w 0 = l. The mapping st l is invertible and can also be defined recursively. Indeed w = st -1 l (w ′ ) iff for every i ∈ [n], w i = w i-1 if w ′ i = s and w i = w i-1 otherwise, with convention that w 0 = l. Notion of s-t-encoding can be extended naturally to languages.

Example 7 Continuing the running example, (Example 1,2,6), we give a s-t-encoding of L (ex0) ′ : For the running example: st d L (ex0) ′ = ({s, t}{s}) * An automaton recognising this language is depicted in the right of Figure 1.

Timed semantics and s-t-encoding

In the following, we define clock and timed languages similarly to what we have done in Section 4.1.4 and 4.1.3. Here, we need only one clock x that remains bounded by 1. We define the clock language associated to s by L(s) = {x

(t,s) ---→ x + t | x ∈ [0, 1], t ∈ [0, 1 -x]}
and the clock language associated to t by

L(t) = {x (t,t) ---→ t | x ∈ [0, 1], t ∈ [0, 1 -x]}. Let L ′′ ⊆ {s, t} * , we denote by L ′′ (x) the timed language starting from x: L ′′ (x) = {(t, w) | ∃y ∈ [0, 1], x (t,w) ---→ y ∈ L(w), w ∈ L ′′ }.
The timed semantics of L ′′ ⊆ {s, t} * is L ′′ (0).

The s-t-encodings yields a natural volume preserving transformation between timed languages:

Proposition 11 Let L ′ ⊆ {a, d} * , l ∈ {a, d}, L ′ be the timed semantics of L ′ and L ′′ be the timed semantics of st l (L ′ ) then the function (t, w)

→ (t, st -1 l (w)) is a volume preserving transformation from L ′′ n to L ′ n .
Using notation and results of Corollary 3 and Proposition 11 we get a volume preserving transformation from L ′′ n to On(L).

Theorem 2 The function (t, w) → φ st -1 l (w) (t) is a volume preserving transformation from L ′′ n to On(L) computable in linear time. In particular

Vol(L ′′ n ) = αn(L) n! for n ≥ 1 and T L ′′ (z) = F L (z).
Thus to solve Problem 2 it suffices to characterize the VGF of a regular language L ′′ ⊆ {s, t} * .

Remark 2 Prolongation of the language and their s-t-encoding do not contain the empty word ε. By adding such a word to these language as the sole effect to add 1 to their volume generating functions. In terms of permutation this models the addition of the 0-length permutation to a regular class9 . This allows us to simplify the automata considered as those depicted in Figure 1 and 4 that are respectively involved in the running example and in the example of alternating permutation.

Recursive formulae for volume functions and cardinalities

We assume that for the rest of Section 4 an automaton B = ({s, t}, Q, q 0 , F, δ) is given and we denote by L ′′ its timed semantics. We describe recursive equations on timed languages starting from clock vectors (as defined in Section 4.2.2), that is timed languages of the form [Bq]n(x) for q ∈ Q, n ∈ N and x ∈ [0, 1].

The languages [Bq]n(x) can be recursively defined as follows:

[Bq] 0 (x) = ε if q ∈ F and [Bq] 0 = ∅ otherwise; [Bq] n+1 (x) = t≤1-x (t, s)[Bq.s]n(x + t) ∪ t≤1-x (t, t)[B q.t ]n(t). ( 44 
)
For q ∈ Q and n ≥ 0, we denote by vcq,n the function x → Vol[[Bq]n(x)] from [0, 1] to R + . Hence, each vcq,n is a polynomial of a degree less or equal to n that can be computed recursively using the recurrent formula: vc q,0 (x) = 1 q∈F and vc q,n+1 (x) = dy that still behaves well on Bernstein polynomials due to the following remarkable property b j,n (1t) = b n-j,n (t) for every j ≤ n ∈ N and t ∈ [0, 1]. More explicitly it holds that:

1-x 0 b j,n (y)dy = 1 x b j,n (1 -t)dt = 1 x b n-j,n (t)dt = 1 n + 1 n-j i=0 b i,n+1 (x) (46) Proposition 12 For every q ∈ Q, n ∈ N, it holds that vcq,n(x) = 1 n! n k=0 β n+1,k+1 ([Bq])b k,n (x) (47) 
where the coefficients β n,k ([Bq]) are defined recursively as follows: β 1,1 ([Bq]) = 1 q∈F and for n ≥ 1:

β n+1,k ([Bq]) = n i=k β n,i ([Bq.s]) + n-k-1 i=0 β n,i ([B q.t ]). ( 48 
)
Proof We prove this by induction. The base case is satisfied vc q,1 (

x) = 1 q∈F = β 1,1 ([Bq])b 1,1 (x)
To prove the induction step we use (45). The first integral yields:

1 x vcq.s,n(y)dy = 1 n! n j=0 β n+1,j+1 ([Bq.s]) 1 x b j,n (y)dy = 1 (n + 1)! n j=0 β n+1,j+1 ([Bq.s]) j k=0 b k,n+1 (x) = 1 (n + 1)! n k=0   n j=k β n,j+1 ([Bq.s])   b k,n+1 (x);
while the second integral yields:

1-x 0 vc q.t,n (y)dy = 1 n! n j=0 β n+1,j+1 ([B q.t ]) 1-x 0 b j,n (y)dy = 1 (n + 1)! n j=0 β n+1,j+1 ([B q.t ]) n-j k=0 b k,n+1 (x) = 1 (n + 1)! n k=0   n-k j=0 β n,j+1 ([B q.t ])   b k,n+1 (x).
Then if we write vc q,n+1 (x) in the basis of Bernstein polynomials, the coefficient associated to b k,n+1 (x) is as expected:

n j=k β n,j+1 ([Bq.s]) + n-k j=0 β n,j+1 ([B q.t ]). ⊓ ⊔
In Section 3.2.1, the coefficient α n,k were directly defined as cardinalities of sets of permutations that are the discrete version of order polytopes. We think that a discrete version of the chain polytopes can be defined as well to give a direct interpretation of the coefficient β n,k in terms of cardinality of sets of permutations.

In any case, these coefficients can be computed using local recursive rules as follows.

Proposition 13 One can use the following recursion scheme to compute the β n,k ([Bq]) and hence the volume functions vcq,n in the Bernstein basis in time and space complexity O(|Q|n 2 ).

β n,k ([Bq]) = β n,k (s[Bq.s]) + β n-k,k (t[B q.t ]) (49) 
β n+1,k (s[Bq]) = β n+1,k+1 (s[Bq]) + β n,k ([Bq]) (50) 
β n+1,n-k (t[Bq]) = β n+1,n-k-1 (t[Bq]) + β n,n-k-1 ([Bq]) (51)
βn,n(s[Bq]) = 0; βn,n(t[Bq]) = 0 (52)

β 1,1 ([Bq]) = 1 q∈F ( 53 
)
Proposition 14 The coefficients of the volume function vcq,n can be computed in the standard basis in time and space complexity O(|Q|n 2 ), using the following system of recursive equations on vcq,n(x) and ṽcq,n(x)

def = vcq,n(1 -x):
vc q,0 (x) = ṽc q,0 (x) = 1 q∈F vc q,n+1 (x) = 1 x vcq.s,n(y)dy + 1 x ṽc q.t,n (y)dy ṽc q,n+1 (x) =

x 0 ṽcq.s,n(y)dy +

x 0 vc q.t,n (y)dy

These equations are obtained from (45). We introduced the functions ṽcq,n because developing the expression

1-x 0 vc q.t,n (y)dy = n k=0 1 k + 1 a k (1 -x) k+1
knowing only vc q.t,n (y) = n k=0 a k y k needs O(n 2 ) operations. By contrast, when ṽc q.t,n (y) = n k=0 b k y k is given, the expression

1-x 0 vc q.t,n (y)dy = 1 x ṽc q.t,n (y)dy = n k=0 1 k + 1 b k - n k=0 1 k + 1 b k y k+1
is computed in linear time.

The following proposition states remarkable properties on the shape of the volume functions that will be extended to generating functions in Section 4.4.

Proposition 15 For every p ∈ Q, n ≥ 0, the function vcp,n is non-increasing on [0, 1], and satisfies for every x ∈ [0, 1]:

(1 -x) n vcp,n(0) ≤ vcp,n(x) ≤ vcp,n(0) = β n+1,n+1 ([Bq])
Proof The fact that the function is non-increasing is straightforward using ( 45) and the positivity of the volume function on [0, 1].

For the first inequality we use the decomposition of vcp,n as a sum of Bernstein polynomial (47):

vcp,n(x) = 1 n! n k=0 β n+1,k+1 ([Bq])b k,n (x)
All the terms of this this sum are non-negative for x ∈ [0, 1] and for x = 0, b k,n (0) is not null only for k = n (and in that case equal to 1). Hence vcp,n(0

) = β n+1,n+1 ([Bq]) and vcp,n(0)(1 -x) n = β n+1,n+1 ([Bq])bn,n(x) ≤ vcp,n(x). ⊓ ⊔

Generating functions

Characterisation of the generating functions

The timed language [Bq](x) starting from states q ∈ Q and clock x ∈ [0, 1] satisfy the following system of language equation:

[Bq](x) = t≤1-x (t, s)[Bq.s](x + t) ∪ t≤1-x (t, t)[B q.t ](t) ∪ (ε if q ∈ F ). ( 54 
)
We denote by VCp(x, z) and Tp(z) the volume generating function of [Bq](x) and [Bq] respectively. We are interested in T L ′′ (z) = Tq 0 (z) = VCq 0 (0, z).

We recall that Rconv(VCq) = inf x∈[0,1] Rconv(z → VCq(x, z)) and Rconv(VC) = min q∈Q Rconv(VCq). The link between the different convergence radii is done in Corollary 5 below.

As in [ABDP12], we pass from system of equations on timed languages (54) to system of equations on generating functions:

Theorem 3 For z < Rconv(VC), x → VC(x, z) = (VCq(x, z)) q∈Q is the unique solution of the following system of integral equation:

VCq(x, z) = z 1 x VCq.s(y, z)dy + z 1-x 0 VC q.t (y, z)dy + 1 p∈F . ( 55 
)
One can equivalently state this theorem in terms of system of differential equation as follows.

Corollary 4 For z < Rconv(VC), x → VC(x, z) = (VCq(x, z)) q∈Q is the unique solution of the following system of differential equations

∂ ∂x VCq(x, z) = -zVCq.s(x, z) -zVC q.t (1 -x, z); ( 56 
)
with boundary conditions

VCq(1, z) = 1 q∈F . ( 57 
)
In matrix notation ( 55), ( 56) and ( 57) give:

VC(x, z) = zMs 1 x VC(y, z)dy + zM t 1-x 0 VC(y, z)dy + F; ( 58 
) ∂ ∂x VC(x, z) = -zMsVC(x, z) -zM t VC(1 -x, z); ( 59 
) VC(1, z) = F. ( 60 
)
The following theorem gives the form of the solution in terms of the exponential E(z) of a matrix M defined as follows:

M def = -Ms -M t M t Ms and E(z) def = E 1 (z) E 2 (z) E 3 (z) E 4 (z) def = exp(zM ).
Theorem 4 In a neighbourhood of 0, the matrix E 1 (z) and I |Q| -E 3 (z) are invertible and the following two characterizations of T(z) hold:

T(z) = [E 1 (z)] -1 [I -E 2 (z)]F; (61) 
T(z) = [I -E 3 (z)] -1 E 4 (z)F ( 62 
)
Proof The equation ( 59) is equivalent to the following linear homogeneous system of ordinary differential equations with constant coefficients:

∂ ∂x VC(x, z) VC(1 -x, z) = zM VC(x, z) VC(1 -x, z) (63)
whose solution is of the form

VC(x, z) VC(1 -x, z) = E(xz) VC(0, z) VC(1, z) . ( 64 
)
Taking x = 1 in (64) and using the boundary condition ( 60) we obtain:

F T(z) = E(z) T(z) F (65) Hence, F = E 1 (z)VC(z) + E 2 (z)F; VC(z) = E 3 (z)VC(z) + E 4 (z)F (66)
In particular when z = 0, E 1 (0) = I -E 3 (0) = I and thus the two continuous functions z → det E 1 (z) and z → det(I -E 3 (z)) are positive in a neighbourhood of 0. We deduce that the inverses of the matrices E 1 (z) and I -E 3 (z) are well defined in a neighbourhood of 0 and thus both equations of (66) permit to express T(z) with respect to F to get respectively ( 61) and ( 62).

⊓ ⊔

To sum up, we give a solution of Problem 2 with Algorithm 1.

Algorithm 1 Computation of a closed form formula for the EGF G L (z) 1: Compute an automaton B that recognises an s-t-encoding of an extension of L and compute its adjacency matrices Ms and Mt;

2: Compute E 1 (z) E 2 (z) E 3 (z) E 4 (z) = def exp z -Ms -Mt Mt Ms ; 3: Compute T(z) = [E 1 (z)] -1 [I -E 2 (z)]F (or T(z) = [I -E 3 (z)] -1 E 4 (z)F); 4: return G L (z) = Tq 0 (z) the component of T(z) corresponding to the initial state of A.
Some comments about Algorithm 1. In line 1, several choices are left to the user: the prolongation L ′ of the language L, the type of the s-t-encoding and the automaton that realizes the s-t-encoding. These choices should be made such that the output automaton has a minimal number of states or more generally such that the matrices Ms and M t are the simplest possible. Several hints to compute E(z) are given in Section 4.4.3. As a corollary of the proof of Theorem 4 one can obtain the vector of generating function

VC(x, z) VC(1 -x, z) as follows VC(x, z) VC(1 -x, z) = E(xz) T(z) F .
(67)

Properties of the generating functions and convergence radii

The following proposition gives some properties on the shape of the generating functions:

Proposition 16 For every z < Rconv(VCq), the function x → VCq(x, z) is nonincreasing in [0, 1] and decreasing in (0, 1) if non constant and satisfy for every x ∈ [0, 1]:

VCq(0, (1 -x)z) ≤ VCq(x, z) ≤ VCq(0, z); (68) 
moreover for every l ∈ {s, t} it also holds that VCq(0, z) ≥ zVC q.l (0, z)

Proof The fact that the function x → VCq(x, z) is non-increasing comes from Proposition 15. The sequence of inequalities ( 68) is obtained by taking .z n in the inequalities of Proposition 15. The last inequality (69) relies on the fixed point equation ( 58) and non-negativity of the generating functions:

VCq(0, z) ≥ z 1 0 VC q.l (y, z)dy ≥ zVC q.l (0, z) ⊓ ⊔
As a corollary we can compare convergence radii as follows:

Corollary 5 For every q ∈ Q, l ∈ Σ it holds that Rconv(VCq) = Rconv(z → VCq(0, z)) and Rconv(VCq) ≤ Rconv(VC q.l ). In particular, as the automaton is accessible it also holds that:

Rconv(T) = Rconv(z → VCq 0 (0, z)) = Rconv(T L ′′ )

Properties of the matrix exponentiation

To evaluate the generating function in a given point (x, z) ∈ [0, 1] × [0, Rconv(T)). One can compute numerically E(z) = exp(zM ) and E(xz) = exp(xzM ), and solves systems ( 65) and ( 67). There are numerous ways of computing the exponentiation of a matrix (see [MVL03] for nineteen of them). To choose the right algorithm one has to take into account properties of M such as its sparsity. Each row of the matrix M has at most two non-null entries that are either 1 or -1.

The purpose of this section is to highlight some remarkable property of M that could be helpful for its exponentiation (either numerical or symbolical). In particular we give property on the spectrum of M (the set of eigenvalues of M ) denoted by Sp(M ).

We define the matrix S = 0

I |Q| I |Q| 0
. This matrix permutes the |Q| first lines with the |Q| last lines of any matrix it multiplies from the left, and permutes the |Q| first columns with the |Q| last columns of any matrix it multiplies from the right. The matrix S is an involutory matrix (that is, equal to its own inverse).

Note that M enjoy a central antisymmetry in the following sense: SM S = -M .

The following results holds for every matrix M such that SM S = -M , that is,

of the form M = -A -B B A
for some matrix A and B.

One can first remark that M admits the following block anti-diagonalisation: We denote

P -A -B B A P ⊤ = 0 A -B A + B 0 (70) 
F 1 (z) = +∞ n=0 (CD) n z 2n 2n! ; F 2 (z) = +∞ n=0 (DC) n z 2n 2n! ; F 3 (z) = +∞ n=0 (CD) n z 2n+1 (2n + 1)! ,
and then it holds that:

E(z) = P ⊤ F 1 (z) F 3 (z)C DF 3 (z) F 2 (z) P (71) 
In the next proposition, for a complex number λ, we denote by

E λ (M ) the vector space {v ∈ C 2|Q| | M v = λv}. If E λ (M ) = {0},
this set is known as the eigenspace of M for the eigenvalue λ.

Proposition 17 For every non-null complex number µ, and for the two λ ∈ C such that λ 2 = µ the following holds:

µ ∈ Sp [(A -B)(A + B)] iff λ ∈ Sp(M ). More pre- cisely, if µ = 0 and λ is such that λ 2 = µ then v → λI |Q| -A -B λI |Q| + A + B v is an isomorphism between Eµ((A -B)(A + B)) and E λ (M ). Proof Note that λI |Q| -A -B λI |Q| + A + B v = λ √ 2P T v 1 λ Dv
and hence, it suffices to

show that v → v 1 λ Dv is an isomorphism between E λ 2 (CD) and E λ (P M P ⊤ ) = E λ 0 C D 0 . This function is clearly linear. Take v ∈ E λ 2 (CD), then 0 C D 0 v 1 λ Dv = C 1 λ Dv Dv = λ v 1 λ Dv .
Take any

v y ∈ E λ 0 C D 0
. It exactly means that Cv = λv and Dv = λy. Thus

v y = λ v 1 λ Dv
is of the required form and CDv = λCy = λ 2 v.

⊓ ⊔

The proposition above implies that if λ is an eigenvalue of M , then so is -λ. We have not yet compared the multiplicity of such mutually opposite eigenvalues. The multiplicity are the same as a corollary of the following remarkable identity.

Proposition 18 The following identity holds E(-z) = SE(z)S.

Proof Indeed E(-z) = exp(-zM ) = exp(zSM S) = S exp(zM )S = SE(z)S.

⊓ ⊔

We can deduce from this proposition that SE(z) and E(z)S are involutory matrices (SE(z)) 2 = (E(z)S) 2 = I 2|Q| . We have also that E(z) is of the following form:

E(z) = E 1 (z) E 2 (z) E 2 (-z) E 1 (-z) . The identity E(z)E(-z) = I 2|Q| yields E 1 (z)E 2 (-z) = I |Q| -E 2 (z) 2 ; E 1 (z)E 1 (-z) = -E 2 (z)E 1 (z) E 1 (-z)E 2 (-z) = -E 2 (-z)E 2 (z) ; E 2 (-z)E 1 (z) = I |Q| -E 1 (-z) 2
that can be used for instance to show that equations ( 61) and (62) are equivalent.

Corollary 6 The spectrum of M is symmetric with respect to the origin, that is, if λ is an eigenvalue of M with a multiplicity m λ then so is -λ.

Proof The characteristic polynomial of M is χ M (X) = λ∈Sp(M ) (λ -X) m λ , that of E(z) = exp(zM ) is χ E(z) (X) = λ∈Sp(M ) (e zλ -X) m λ and that of E(-z) = exp(zM ) is χ E(-z) (X) = λ∈Sp(M ) (e -zλ -X) m λ
. By virtue of Proposition 18, E(-z) and E(z) are conjugated and hence have the same characteristic polynomial. Necessarily for every λ ∈ Sp(M ), it holds that -λ ∈ Sp(M ) and m λ = m -λ . Several different proofs of this results can be found in [Sta10]. Here we give a novel proof illustrating our method.

A prolongation of {da} * {ε, d} is {da} * {d, da}. We add ε to the language to add 1 to its VGF that count the 0-length permutation as described in remark 2, we obtain {da} * {ε, d}.

The s-t encoding of type a of {da} * {ε, d} is just {t} * which is recognized by the one loop automaton depicted in the right of Figure 4. Thus Ms = (0), M t = (1) and we must compute exp(zM ) = n∈N z n M n /n! with M = 0 -1 1 0

. This is an easy particular case of exponentiation done in Section 4.4.3 with C = (-1) and D = (1). It gives exp(zM ) = cos(z) -sin(z) sin(z) cos(z)

.

By definition E 1 (z) = cos(z), E 2 (z) = -sin(z). We can conclude that the desired generating function is:

E 1 (z) -1 (1 -E 2 (z)) = 1 cos(z)
+ tan(z).

One could alternatively use (62) to get the same result:

[I |Q| -E 3 (z)] -1 E 4 (z) = cos(z) 1 -sin(z) = cos(z) [1 + sin(z)] 1 -sin 2 (z) = 1 + sin(z) cos(z) . (72) 
Moreover the generating function VC(x, z) can be obtained using (67): 

VC(x, z) VC(1 -x, z) = cos ( 
Running example. Now we apply our method to the running example L (ex0) = ({aa, dd}) * {a, d}. We have already described one of its prolongation and an s-tencoding of this prolongation. Automata for these languages with the empty word added are depicted in Figure 1. The matrix Ms, M t and M are

Ms = 0 1 1 0 ; M t = 0 1 0 0 and M =     0 -1 0 -1 -1 0 0 0 0 1 0 1 0 0 1 0    
We use the method describe in Section 4.4.3, and define matrices

C = Ms -M t = 0 0 1 0 and D = Ms + M t = 0 2 1 0 .
We compute CD = 0 0 0 2 and DC = 2 0 0 0 .

There are now two options: either, we reduce the matrix M into a triangular or diagonal form using Proposition 17; either we compute the exponential of the matrix by using (71). We choose the second option and compute

F 1 (z) = 1 0 0 cosh( √ 2z) ; F 2 (z) = cosh( √ 2z) 0 0 1 ; F 3 (z)C = 0 0 √ 2 2 sinh( √ 2z) 0 and DF 4 (z) = 0 sinh( √ 2z) 1 0
.

We deduce that,

E(z) = P ⊤     1 0 0 0 0 cosh( √ 2z) √ 2 2 sinh( √ 2z) 0 0 sinh( √ 2z) cosh( √ 2z) 0 1 0 0 1     P
which yield after straightforward computation:

E(z) = E 1 (z) E 2 (z) E 2 (-z) E 1 (-z) with E 1 (z) = 1 2 cosh √ 2z + 1 2 -1 2 sinh √ 2z -1 4 √ 2 sinh √ 2z -1 2 1 2 cosh √ 2z + 1 2 ;
and

E 2 (z) = -1 2 cosh √ 2z + 1 2 -1 2 sinh √ 2z 1 4 √ 2 sinh √ 2z -1 2 1 2 cosh √ 2z -1 2 .
The vector of VGF is given by T(z) = [E 1 (z)] -1 [I -E 2 (z)]F. After some elementary computation10 , we obtain:

T(z) =    2- √ 2z+(2+ √ 2z)e √ 2z 2+ √ 2z-(2- √ 2z)e √ 2z 2 z e √ 2z +1 2+ √ 2z-(2- √ 2z)e √ 2z   
To get T L (ex0) , we subtract 1 to the first coordinate of T(z) and get the answer announced in (4):

T L (ex0) = 2 √ 2z(e √ 2z -1) 2 + √ 2z + (2 - √ 2z)e √ 2z
.

By factorising the numerator and denominator by 4e we get the other result announced in (5):

T L (ex0) (z) = √ 2z sinh( √ 2 2 z) cosh( √ 2 2 z) - √ 2 2 z sinh( √ 2 2 z) = 2 √ 2 2 z tanh( √ 2 2 z) 1 - √ 2 2 z tanh( √ 2 2 z) = 2f √ 2 2 z with f (X) = 1 
1-X tanh(X) -1. We can find numerically the convergence radius of f . We pose X = z/ √ 2, find the smallest root of 1 -X tanh (X) and multiply it by √ 2. We obtain that Rconv(T L (ex0) ) ≈ 1.6966.

Uniform random sampling

In this Section we propose three methods for the problem of random sampling of permutations in a regular class. The first Algorithm is based on a discrete recursive method for sampling (Section 5.1). We state in Theorem 6, that sampling permutation reduces to sampling timed words for the corresponding language of signature. We then present two methods for generating timed word uniformly at random: a continuous recursive method in Section 5.2, and an extension of the Boltzmann sampling method to timed languages in Section 5.3.

A discrete recursive method

In this section as in Section 3.2 and 3.3 we consider an arbitrary regular language L recognised by an automaton A = ({a, d}, Q, q 0 , F, δ).

Building a sampling algorithm based on the recursive method is done in three main steps: (i) find a recursive characterisation of the class of object to sample; (ii) write corresponding recursive equations on cardinalities; and (iii) turn them into discrete probability distribution. For instance, the set equation Hence the initial distribution for choosing the first element k of a random permutation of Λn([Aq]) is given by:

[weight-init] k = α n,k ([Aq 0 ])/αn([Aq 0 ])
The other distribution needed in the algorithm are:

[weight q,m,k ] i = α m,i ([Aq.a])/α m+1,k ([Aq]) if k ≤ i ≤ m α m,i ([A q.d ])/α m+1,k ([Aq]) if 1 ≤ i ≤ k -1
In the following algorithm, the function Pop(E, k) returns the kth element of the set E with side effect of removing it from E. Using folk data structure (like a self balancing binary search tree 11 ) this operation can be done in time O(log n) with a creation of the structure in time O(n) where n is the initial number of elements in E.

Algorithm 2 A discrete recursive method for uniform random generation of permutation of fixed length n within a regular class of permutation Λ(L).

Require: The weight vectors weight q,m.k for q ∈ Q and k ≤ m ≤ n are precomputed.

1: q ← q 0 ; E ← [n]; 2: Pick randomly k according to weight vector weight-initial 3: σ(1) ← Pop(E, k) 4: for j from 2 to n do 5: Pick randomly i according to weight vector weight q,n+1-j,k 6: σ(j) ← Pop(E, i) 7:

if i ≥ k then 8:

q ← q.a 9: else 10:

q ← q.d 11:

end if 12:

k ← i 13: end for Theorem 5 Permutations generated by Algorithm 2 are uniformly distributed among the permutation of size n with a signature in L. Timed and space complexity are discussed below.

There can be a trade-off between the complexity of the algorithm and that of its pre-computation.

-Computing and storing in a table all the [weight q,m,k ] i have a complexity O(n 3 |Q|). After that pre-computation, each generation is in time O(n log n). -Alternatively one can compute and store only the coefficient α m,k ([Aq]) with a complexity O(n 2 |Q|). Then during the generation there are n distribution weight q,m,k to compute each one at a cost of O(m) operation; the complexity of generating a permutation becomes O(n 2 ). -A third option is to change the sampling algorithm to mimic the locality of ( 24), ( 25), ( 26). Now the generation is made with a lot of small steps whose number varies randomly. For instance the sequence of choice

α 5,4 ([Aq]) → α 5,4 (d[Aq]) → α 5,3 (d[Aq]) → α 5,2 (d[Aq]) → α 4,1 ([Aq])
11 In fact, simple binary search tree suffices starting with a tree of height O(log n). Indeed deletion can be achieved at a cost of the height of the tree and without increasing it so that it remains bounded by O(log n).

done with probability

α 5,4 (d[Aq]) α 5,4 ([Aq]) α 5,3 (d[Aq]) α 5,4 (d[Aq]) α 5,2 (d[Aq]) α 5,3 (d[Aq]) α 5,1 ([Aq]) α 5,2 (d[Aq]) = α 4,1 ([Aq]) α 5,4 ([Aq])
would correspond to only one descent from 4 to 1. The complexity of the generation of a permutation can still be upper-bounded in the worst case by O(n 2 ). -If we want to save memory, we can compute the coefficient needed when required during the generation. The overall space complexity is O(n|Q|) and the time complexity of each generation becomes O(n 3 |Q|).

A continuous recursive method

In the previous section we have seen how to turn recursive equations on discrete sets of permutation and their corresponding equations on cardinalities into a random sampler.

One can alternatively turn a system of equations on timed language and its corresponding system of equations on volume functions into a random sampler of timed words (Algorithm 3). Then using the volume preserving transformation of Theorem 2 and a sorting algorithm one can generate permutation as wanted.

Theorem 6 Let L ⊆ {a, d} * and L ′′ be the timed semantics of a s-t-encoding of type l (for some l ∈ {a, d}) of a prolongation of L. The following algorithm permits to achieve a uniform sampling of permutation in Λn(L).

1. Choose uniformly an n-length timed word (t, w) ∈ L ′′ n using Algorithm 3; 2. Return Π(φ st -1 l (w) (t)).

Theorem 7 Algorithm 3 is a uniform sampler of timed words of L ′′ n , that is for every volume measurable subset A ⊆ L ′′ n , the probability that the returned timed word belongs to A is Vol(A)/Vol(L ′′ n ). Some comments about Algorithm 3. Picking a random real number according to a probability density function (PDF) p can be done using the so-called inverse transform sampling. To sample a random variable according to a PDF p : [0, 1] → R + it suffices to uniformly sample a random number in [0, 1] and define t such that t 0 p(y)dy = r. This equation can be solved numerically and efficiently with a controlled error using a numerical scheme such as the Newton's method. The latter integral is known as the cumulative density function (CDF) associated to p. The CDF used in this algorithm are polynomials that can be pre-computed in the same time as the volume functions.

An implementation of Algorithm 3 as well as that described in Theorem 6 is available on-line http://www.liafa.univ-paris-diderot.fr/ ~nbasset/sage/sage. htm.

Proof (of Theorem 7) One can first check that for all

k ∈ [n], [(q k-1 , x k-1 ) (t k ,w k ) -----→ (q k , x k )] ∈ L(w k ) and hence that w 1 • • • wn ∈ L ′′ .
Algorithm 3 Recursive uniform sampler of timed words Require: The volume functions vcq,m for q ∈ Q and m ≤ n are precomputed.

1: x 0 ← 0; q 0 ← initial state; 2: for k = 1 to n do 3: Define ps = 1

x k-1 vc q k-1 .s,n-k (y)dy/vc q k-1 ,n-(k-1) (x k-1 ); 4: Pick randomly between s and t with probability ps, 1 -ps; 5:

if s has been chosen then 6: w k ← s; q k ← q k-1 .s; 7:

x k ← a random number in [x k-1 , 1] picked according to the probability density function

vc q k ,n-k (y)/ 1 x k-1 vc q k ,n-k (y)dy; 8: t k ← x k -x k-1 9: else 10: w k ← t; q k ← q k-1 .t; 11:
x k ← a random number in [0, 1 -x k-1 ] picked according to the probability density function We now show that during the kth loop (t k , w k ) is chosen with density of probability

vc q k ,n-k (y)/ 1-x k-1 0 vc q k ,n-k ( 
v q k ,n-k (x k ) v q k-1 ,n-(k-1) (x k-1
) . Indeed, this implies that the density of probability to chose

(t 1 , w 1 ) • • • (tn, wn) ∈ L ′′ is n k=1 vc q k ,n-k (x k ) vc q k-1 ,n-(k-1) (x k-1 ) = vcq n ,0 (xn) vcq 0 ,n (0) = 1 Vol(L ′′ n )
which means that the sampling is uniform.

During the kth loop w k is set to s with probability ps =

1 x k-1 vc q k-1 .s,n-k (y)dy vc q k-1 ,n-(k-1) (x k-1 ) , after that t k is fixed when x k = x k-1 + t k is chosen with density of probabil- ity vc q k ,n-k (x k )/ 1 x k-1 vc q k ,n-k (x k )dy. Hence (t k , w k ) is chosen with the expected density of probability 1 x k-1 vc q k-1 .s,n-k (y)dy vc q k-1 ,n-(k-1) (x k-1 ) vc q k ,n-k (x k ) 1 x k-1 vc q k ,n-k (y)dy = vc q k ,n-k (x k ) vc q k-1 ,n-(k-1) (x k-1 )
.

The case where w k = t can be proved in a similar manner using the fact that the probability that w k is a turn is 1

-ps = 1-x k-1 0 vc q k-1 .t,n-k (y)dy vc q k-1 ,n-(k-1) (x k-1 ) . ⊓ ⊔

Boltzmann sampling

A drawback of the recursive method for sampling described in the two previous sections is the pre-computation that take at least a quadratic time. When we only require approximate size of the objects to sample and when the generating function is available we can use the Boltzmann sampling method [DFLS04]. This latter method usually generates objects at a far bigger scale than the recursive method.

The Boltzmann sampling method has been created to generate discrete objects in combinatorial classes, like trees or words. Here, we extend this method to timed languages, the generated object being timed words. Hence, we consider probability density function rather than discrete probability distribution.

We call probability density function (PDF) on a timed language L, every nonnegative function p : L → R such that w∈Σ * t∈Lw p(t, w) = 1, and such that for every w, the function t → p(t, w) is Lebesgue measurable.

The Boltzmann model of parameter z for L is a PDF on L denoted by p L,z and defined by p L,z (t, w) = z |w| TL(z) for all (t, w) ∈ L. We denote by P L,z the corresponding probability measure.

The length of random elements distributed according to the Boltzmann model is a random variable that we denote by N (as in [DFLS04]). It is distributed as follows: ∂z . We call Boltzmann sampler for a timed language L, an algorithm that generates timed words according to the corresponding Boltzmann model p L,z .

P L,z (N = n) = w∈Ln t∈Lw p L,z (t, w) = Vol(Ln) z n T L (z) = αn(L) n! z n T L (z) (74) 
The next theorem and Algorithm 5.3 deal with Boltzmann samplers for the timed semantics of automata B = ({s, t}, Q, q 0 , F, δ) that recognise languages of words of {s, t} * as described at the end of Section 3. In particular, we keep the same notations, for instance denoting by [Bq](x) the timed language starting from a state q and a clock x. The Boltzmann sampler described above can be adapted to fit order set considered in the first approach (Section 3).

Theorem 8 Algorithm 5.3 describes Boltzz(q, x), a Boltzmann sampler for [Bq](x). In particular, Boltzz(q 0 , 0) is a Boltzmann sampler for L ′′ = [Bq 0 ](x). It uses a linear number (in the size of the output word) of random pick according to one dimensional probability density function.

Proof It is easy to see that the timed word returned are in the required language. To complete the proof, it suffices to show the following statement by induction on naturals n: If a timed word of length n is returned then it has a density of probability z n /VCq(x, z) to be returned. The base case is satisfied as ε is returned with probability 1/VCq(x, z) iff ε ∈ [Bq](x).

We assume the property is true for a length n ∈ N. We consider a timed word of length n+1 returned by Boltzz(q, x). Then it is either returned in Line 7 or Line 10. We consider only the former case, as the other case is treated in a similar way. The returned timed word is of the form (yx, s)ω, with ω a timed word returned by Boltzz(q.s, y). By induction hypothesis ω was chosen with density of probability

z n
VCq.s(y,z) . Moreover the letter s was chosen with probability z 1 x VCq.s(y,z)dy VCq (x,z) in Line 1 and then y was chosen with probability

VCq.s(y,z)dy 1 x VCq.s(y,z)dy in Line 6. The density of probability to choose (yx, s)ω is hence as expected: VCq(x, z)

.

Algorithm 4 The Boltzmann sampler Boltzz(q, x) return (y, t)Boltzz(q.t, 11: end if Some comments about Algorithm 5.3. The reciprocal function of a CDF is known as a quantile function. This is the function evaluated during the inverse sampling method mentioned in the paragraph that comments Algorithm 3. When the parameter z is fixed, there are only O(|Q|) such functions to evaluate. Hence it could be worth pre-computing numerically and tabulating the quantile functions to speed up the running time of the Boltzmann sampler.

Experiments

We have implemented the Algorithm 5.3 with Sage. The code as well as experiments are available on-line: http://www.liafa.univ-paris-diderot.fr/ ~nbasset/ sage/sage.htm.

The generating functions Vq(x, z) and Vq(z) are encoded as symbolic expression in variables z and x. We use the inverse sampling method as described above after having precomputed the CDF, and we use the function findroot of Sage to find the root X of equation of the form ≈ 2819. We have run the Boltzmann sampler 71 times for each of the parameter above. The running time and distribution of lengths are shown in Figure 5. Each point is of the form (n, t) with n the length of the permutation generated, and t the time that took the generation of the timed word as well as the computation of the corresponding permutation (described in Theorem 6).

6 Discussion, perspectives and further related works

We have stated and solved the problems of counting and uniform sampling of permutations with signature in a given regular language of signatures. The timed semantics of such a language is a particular case of regular timed languages (i.e. recognized by timed automata [AD94]). However, with the approach used, timed languages can be defined from any kind of languages of signatures. A challenging task for us is to treat the case of context free languages. For this we should use as in [ABDP12] volume of languages parametrized both by starting and ending states.

Our work can also benefit timed automata research. Indeed, we have proposed uniform samplers for a particular class of timed languages. An ongoing work is to adapt this algorithm to all deterministic timed automata with bounded clocks using recursive equations of [ABD14].

A well known fact is that among all the signature u of a given length n the one that maximises αu (the number of permutation with signature u) are the alternating permutation ada... and dad.... This corresponds to the words t n (and st n-1 depending on the type of the s-t-encoding). Similar questions can be asked for regular class of permutation. For instance, we could study the expected number of turn in signatures of permutations generated at random in a given regular class. We think that we could answer such kind of questions by distinguishing between zs and z t in Equation ( 58). The new equation would be VC(x, zs, z t ) = zsMs With such kind of equations we could adapt the Boltzmann sampling framework for multi-dimensional generating function, proposed in [BP + 10]. In contrast to ours, this work does not consider uncountable union parametrised by an auxiliary variable (called x here).

In another work on Boltzmann sampling [BRS12], there is no such kind of auxiliary variable too but the variable of the generating function (called z here) are, during some steps of the generation, sampled according to probability density functions. By contrast, the parameter z is fixed in our Boltzmann sampling algorithm (like in the classical framework of Boltzmann sampling [DFLS04]).

We used Boltzmann sampling on examples for which we have computed a closed form formula for the vector of generating functions. We want to study the problem of evaluating numerically the generating functions (and the quantile functions). For this we would like to adapt methods of [PSS12].
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 23 Fig.2From left to right automata for X {dd} , X {aaa,add,dad} and Leven.

  ,n(1) = 0 and vcq 0 ,n(0) = Vol(L ′′ n ) is the nth coefficient of the VGF T L ′′ we want to evaluate. Now we have a new integral operator 1-x 0

  with P the orthonormal matrix defined by block as follows P = 1 C = A -B and D = A + B and remark

  The class of alternating permutation isAlt = S 0 ∪ Λ[(da) * (ε + d)].It is well known since the 19th century and the work of Désiré André that the exponential generating function of this class of permutation is tan(z) + sec(z) (where sec(z) = 1/ cos(z)).

Fig. 4

 4 Fig.4An automaton for (da) * (ε + d) and its s-t encoding of type a

  xz) -sin(xz) sin(xz) cos(xz) 1 cos(z) + tan(z) 1 Hence VC(x, z) = [cos(xz) + sin(z) cos(xz) -sin(xz) cos(z)] / cos(z) which after simplification gives: VC(x, z) = cos(xz) + sin((1x)z) cos(z)

  k ([Aq]) Dividing both sides by αn([Aq]) gives the equation of a discrete probability distri-

TLFig. 5

 5 Fig. 5 Running time and distribution of lengths, for generating permutations in the regular class Λ [({aa, dd}) * {a, d}] using Boltzmann sampling of timed words with parameter z 1 = 1.69 (Left) and z 2 = 1.696 (Right).

  zs, z t )dy + z t M t 1-x 0 VC(y, zs, z t )dy + F. (75)

  Corollary 1 One can compute αn(L) in time complexity O(|Q|n 2 ) and space complexity O(|Q|n) (and O(|Q|n 2 ) if all the numbers needed for the computation are kept in memory.).

  return (t 1 , w 1 )(t 2 , w 2 ) . . .(tn, wn) 

		y)dy;
	12:	t k ← x k
	13:	end if
	14: end for
	15:	

  This is Equation (2.3) of [DFLS04] where we replace cardinality coefficient Cn by volume coefficient Vol(Ln). This allows us to use results from classical Boltzmann sampling. In particular, the expected length of a timed word distributed according to p L,z is z

	∂TL(z)
	TL(z)

  [x, 1] with density of probability y → VCq.s(y, z)dy/ 1 x VCq.s(y, z)dy; 7:return (y -x, s)Boltzz(q.s, y) 8: else 9:pick y ∈ [0, 1 -x] with density of probability y → VCq.t(y, z)dy/ 1-x

		1 q∈F VCq (x,z) ,	z 1 x VCq.s(y,z)dy VCq (x,z)	and	z 1-x 0 VCq (x,z) VC q.t (s,z)dt	;
	2: if ε has been chosen then			
	3:	return ε			
	4: end if			
	5: if s has been chosen then			
	6:	pick y ∈			

1: Pick randomly ε, s or t with weights 0 VCq.t(y, z)dy; 10:

This paper [ABD14] yet unpublished, is based on previous conference articles [AD09a, AD09b, BA11, ABD13].

We refer the reader to [Lot05] for definition of such data structure.

In fact, one could also write language equations with letter added on the right; but, this would introduce inconsistency with timed language and volume equations of our previous work [ABD14, ABDP12] (used in Section

4) that can only be written with operations on the left.4 Order simplices, order and chain polytopes of signatures defined here are particular cases of Stanley's order and chain polytopes of posets [Sta86].5 Alternatively sg(ν) = def sg(Π(ν)) (defined also when some coordinates are equal).

Indeed, this example can be obtained from an example of[Luc14] by taking only the even-length permutations. We discovered this by looking at the OEIS sequence A005981.

A reader acquainted with timed automata would have noticed that the clock language L(a) (resp. L(d)) corresponds to a transition of a timed automaton where the guards x a ≤ 1 and x d ≤ 1 are satisfied and where x d (resp. x a ) is reset.

The unique permutation on the empty set has no signature and thus S 0 ⊆ Λ(L) for any language L of signature.

We used the computer algebra Sage [S + 14] and the simplification method of Sympy [Sym14].
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