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PARTIAL CLONES CONTAINING ALL BOOLEAN MONOTONE SELF-DUAL PARTIAL FUNCTIONS

The study of partial clones on 2 := {0, 1} was initiated by R. V. Freivald. In his fundamental paper published in 1966, Freivald showed, among other things, that the set of all monotone partial functions and the set of all self-dual partial functions are both maximal partial clones on 2.

Several papers dealing with intersections of maximal partial clones on 2 have appeared after Freivald work. It is known that there are infinitely many partial clones that contain the set of all monotone selfdual partial functions on 2, and the problem of describing them all was posed by some authors.

In this paper we show that the set of partial clones that contain all monotone self-dual partial functions is of continuum cardinality on 2.

Preliminaries
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For n, m ≥ 1, f ∈ Par (n) (k) and g 1 , . . . , g n ∈ Par (m) (k), the composition of f and g 1 , . . . , g n , denoted by f [g 1 , . . . , g n ] ∈ Par (m) (k), is defined by

dom (f [g 1 , . . . , g n ]) := {⃗ a ∈ k m | ⃗ a ∈ m ∩ i=1 dom (g i ) and (g 1 (⃗ a), . . . , g m (⃗ a)) ∈ dom (f )} and f [g 1 , . . . , g n ](⃗ a) := f (g 1 (⃗ a), . . . , g n (⃗ a)), for all ⃗ a ∈ dom (f [g 1 , . . . , g n ]).
For every positive integer n and each 1 ≤ i ≤ n, let e n i denote the n-ary i-th projection function defined by

e n i (a 1 , . . . , a n ) = a i for all (a 1 , . . . , a n ) ∈ k n . Furthermore, let J k := {e n i : 1 ≤ i ≤ n} be the set of all (total) projections. Definition 1. A partial clone on k is a composition closed subset of Par(k) containing J k .
Remark 1. There are two other equivalent definitions for partial clones. One definition uses Mal'tsev's formalism and the other uses the concept of one point extension. These definitions can be found in chapter 20 of [START_REF] Lau | Function Algebras on Finite Sets, a basic course on Multiple-Valued Logic and Clone Theory[END_REF].

The partial clones on k, ordered by inclusion, form a lattice L P k in which the infinimum is the set-theoretical intersection. That means that the intersection of an arbitrary family of partial clones on k is also a partial clone on k. A maximal partial clone on k is a coatom of the lattice L P k . Therefore a partial clone M is maximal if there is no partial clone C over k such that M ⊂ C ⊂ Par(k).

Example 1. The set of partial functions

Ω k := ∪ n≥1 {f ∈ Par (n) (k) | dom (f ) ̸ = ∅ =⇒ dom (f ) = k n } is a maximal partial clone on k.

Definition 2. For h ≥ 1, let ρ be an h-ary relation on k and f be an nary partial function on k. We say that f preserves ρ if for every

h × n matrix M = [M ij ] whose columns M * j ∈ ρ, (j = 1, . . . n) and whose rows M i * ∈ dom (f ) (i = 1, . . . , h), the h-tuple (f (M 1 * ), . . . , f (M h * )) ∈ ρ. Define pPol ρ := {f ∈ Par(k) | f preserves ρ}.

It is well known that pPol ρ is a partial clone called the partial clone determined by the relation ρ.

Notice that if there is no h × n matrix M = [M ij ] whose columns M * j ∈ ρ and whose rows M i * ∈ dom (f ), then f ∈ pPol ρ.

Example 2. Let 2 := {0, 1} and let {(0, 0), (0, 1), (1, 1)} be the natural order on 2. Consider the binary relation {(0, 1), (1, 0)} on 2. Then pPol {(0, 0), (0, 1), (1, 1)} is the set of all monotone partial functions and pPol {(0, 1), (1, 0)} is the set of all self-dual partial functions on 2.

For simplicity we will write pPol (≤) and pPol (̸ =) for pPol ({(0, 0), (0, 1), (1, 1)}) and pPol ({(0, 1), (1, 0)}),

respectively. It is not difficult to see that pPol (≤) := {f ∈ Par(2) | [a, b ∈ dom (f ), a ≤ b] =⇒ f (a) ≤ f (b)}, and pPol (̸ =) := {f ∈ Par(2) | [a, a + 1 ∈ dom (f )] =⇒ f (a + 1) = f (a) + 1}
where the above sums are taken mod 2.

As mentioned earlier, Freivald showed that there are exactly eight maximal partial clones on 2. The following two relations are needed to state Freivald's result. Set

R 1 := {(x, x, y, y) | x, y ∈ 2} ∪ {(x, y, y, x) | x, y ∈ 2} and R 2 := R 1 ∪ {(x, y, x, y) | x, y ∈ 2}.

Theorem 2 ([2]

). There are exactly 8 maximal partial clones on 2, namely, pPol {0}, pPol {1}, pPol {(0, 1)}), pPol (≤), pPol (̸ =), pPol (R 1 ), pPol (R 2 ), and Ω 2 .

Notice that the total functions in pPol R 2 (i.e., the functions with full domain) form the maximal clone of all (total) linear functions over 2 (see, e.g., chapter 3 of [START_REF] Lau | Function Algebras on Finite Sets, a basic course on Multiple-Valued Logic and Clone Theory[END_REF]).

An interesting and somehow difficult problem in clone theory is to study intersections of maximal partial clones. It is shown in [START_REF] Alekzeev | Some closed classes in the partial two-valued logic (Russian)[END_REF] that the set of all partial clones on 2 that contain the maximal clone consisting of all total linear functions on 2 is of continuum cardinality (for details see [START_REF] Alekzeev | Some closed classes in the partial two-valued logic (Russian)[END_REF][START_REF] Haddad | Pairwise intersections of S lupecki type maximal partial clones[END_REF] and Theorem 20.7.13 of [START_REF] Lau | Function Algebras on Finite Sets, a basic course on Multiple-Valued Logic and Clone Theory[END_REF]). A consequence of this is that the interval of partial clones

[pPol (R 2 ) ∩ Ω 2 , Par(2)] is of continuum cardinality on 2.
A similar result, (but slightly easier to prove) is established in [START_REF] Haddad | On the depth of the intersection of two maximal partial clones[END_REF] where it is shown that the interval of partial clones [pPol (R 1 ) ∩ Ω 2 , Par(2)] is also of continuum cardinality. Notice that the three maximal partial clones pPol R 1 , pPol R 2 and Ω 2 contain all unary functions (i.e., maps) on 2. Such partial clones are called S lupecki type partial clones in [START_REF] Haddad | Pairwise intersections of S lupecki type maximal partial clones[END_REF][START_REF] Romov | Maximal subalgebras of algebras of partial multivalued logic functions[END_REF]. These are the only three maximal partial clones of S lupecki type on 2.

For a complete study of the pairwise intersections of all maximal partial clones of S lupecki type on a finite non-singleton set k, see [START_REF] Haddad | Pairwise intersections of S lupecki type maximal partial clones[END_REF].

The papers [START_REF] Haddad | Interval of Boolean Partial Clones[END_REF][START_REF] Haddad | Partial clones containing all self-dual monotonic Boolean partial functions[END_REF][START_REF] Lau | A Classification of Partial Boolean Clones[END_REF][START_REF] Strauch | On partial classes containing all monotone and zero-preserving total Boolean functions[END_REF][START_REF] Strauch | The classes which contain all monotone and idempotent total Boolean functions[END_REF] focus on the case k = 2 where various interesting, and sometimes hard to obtain, results are established.

For instance, the intervals

[pPol {0} ∩ pPol {1} ∩ pPol {(0, 1)} ∩ pPol (≤), Par (2) 
] and

[pPol {0} ∩ pPol {1} ∩ pPol {(0, 1)} ∩ pPol (̸ =), Par (2) 
] are shown to be finite and are completely described in [START_REF] Haddad | Interval of Boolean Partial Clones[END_REF]. Some of the results in [START_REF] Haddad | Interval of Boolean Partial Clones[END_REF] are included in [START_REF] Strauch | On partial classes containing all monotone and zero-preserving total Boolean functions[END_REF][START_REF] Strauch | The classes which contain all monotone and idempotent total Boolean functions[END_REF] where partial clones on 2 are handled via the one point extension approach (see Section 20.2 in [START_REF] Lau | Function Algebras on Finite Sets, a basic course on Multiple-Valued Logic and Clone Theory[END_REF]).

In view of results from [START_REF] Alekzeev | Some closed classes in the partial two-valued logic (Russian)[END_REF][START_REF] Haddad | On the depth of the intersection of two maximal partial clones[END_REF][START_REF] Haddad | Interval of Boolean Partial Clones[END_REF][START_REF] Strauch | On partial classes containing all monotone and zero-preserving total Boolean functions[END_REF][START_REF] Strauch | The classes which contain all monotone and idempotent total Boolean functions[END_REF], it was thought that if 2 ≤ i ≤ 5 and M 1 , . . . , M i are non-S lupecki maximal partial clones on 2, then the interval

[M 1 ∩ • • • ∩ M i , Par(2)]
is either finite or countably infinite. Now it was shown in [START_REF] Haddad | Partial clones containing all self-dual monotonic Boolean partial functions[END_REF] that the interval of partial clones [pPol (≤) ∩ pPol (̸ =), Par(2)] is infinite. This result is mentioned in Theorem 20.8 of [START_REF] Lau | Function Algebras on Finite Sets, a basic course on Multiple-Valued Logic and Clone Theory[END_REF] (with an independent proof given in [START_REF] Lau | A Classification of Partial Boolean Clones[END_REF]) and in chapter 8 of the PhD thesis [START_REF] Schölzel | Clones of Partial Functions on Finite Sets[END_REF]. However, it remained an open problem to determine whether [pPol (≤) ∩ pPol (̸ =), Par(2)] is countably or uncountably infinite.

In this paper we settle this question by proving that the interval of partial clones [pPol (≤) ∩ pPol (̸ =), Par(2)] is of continuum cardinality on 2. where the subscripts i + j in the above definition are taken modulo n. It is not difficult to see that

The construction

σ n k := {(x 1 , . . . , x n , y 1 , . . . , y n ) ∈ 2 2n | ∀ i = 1, . . . , n, x i ̸ = y i , and ∀ i = 1, . . . , n, x i = 0 =⇒ [x i+1 = x i+2 = • • • = x i+k = 1]}.
By the Definability Lemma established by B. Romov in [START_REF] Romov | The algebras of partial functions and their invariants[END_REF] (see also Lemma 20.3.4 in [START_REF] Lau | Function Algebras on Finite Sets, a basic course on Multiple-Valued Logic and Clone Theory[END_REF] and [START_REF] Haddad | Pairwise intersections of S lupecki type maximal partial clones[END_REF][START_REF] Haddad | Interval of Boolean Partial Clones[END_REF][START_REF] Haddad | Partial clones containing all self-dual monotonic Boolean partial functions[END_REF] for details), we have that pPol (≤) ∩ pPol (̸ =) ⊆ pPol (σ n k ) for all n ≥ 5 and all k ≥ 1.

For n ≥ 5 and n > k ≥ 1, we denote by ρ n k ⊆ 2 4n the (4n)-ary relation defined by Again by the Definability Lemma, we have that pPol (σ n 1 ) ∩ pPol (σ n k ) ⊆ pPol (ρ n k ), and thus pPol (≤) ∩ pPol (̸ =) ⊆ pPol (ρ n k ) for all n ≥ 5 and all k ≥ 1. Our goal is to construct an infinite set of odd integers X and an infinite family of partial functions {g t , t ∈ X} so that for every t, t ′ ∈ X, we have 

ρ n k := {(x 1 , . . . ,
g t ∈ pPol ρ n(t ′ ) t ′ if
:= {(x 1 , . . . , x n ) ∈ 2 n | (x 1 , . . . , x n , 1 + x 1 , . . . , 1 + x n ) ∈ σ n k } and R n k := {(x 1 , . . . , x 2n ) ∈ 2 2n | (x 1 , . . . , x 2n , 1 + x 1 , . . . , 1 + x 2n ) ∈ ρ n k }
where the above sums are taken mod 2.

Note that S n

k is the n-ary relation on 2 whose members are tuples in which any two 0's are separated by at least k symbols 1 (in particular, if the first position is 0, then the last k positions must be 1). Furthermore, R n k is the cartesian product S n 1 × S n k . As mentioned earlier we will use the relations S n 1 , S n k and R n k with the understanding that we are omitting the second parts of the relations σ n 1 , σ n k and ρ n k in order to simplify the notation. Notations. In the sequel k ≥ 4 stands for an even integer. Set n(k) := k(k + 1) + 1. We will write ρ n(k) for ρ

n(k) k and R n(k) for R n(k) k . Let M k ↑ be the n(k) × n(k) matrix with columns in S n(k) 1
, the first being c 1 = [0110101 . . . 0101] T and the remaining columns are obtained by applying cyclic shifts to c 1 , i.e.,

c 2 = [10110101 • • • 010] T , c 3 = [010110101 • • • 01] T , • • • c n(k) = [110101 • • • 010] T . Remark 4. Let r i and r j be two rows of M k ↑ . If |i -j| ≥ 2(mod n(k))
, then r i and r j have a 0 in the same position.

Lemma 5. If k ′ < k, then there is no n(k ′ ) × n(k) matrix N whose columns are in S n(k ′ ) 1
and whose rows are rows of

M k ↑ . Proof. Suppose that k ′ < k and that N is an n(k ′ ) × n(k) matrix whose columns are in S n(k ′ ) 1
. Suppose, by way of contradiction, that the rows of N are rows of M k ↑ . By Remark 4, the only possible adjacent rows of a row r in N are exactly the predecessor and successor rows of r in M k ↑ . But then n(k ′ ) would be even, thus yielding the desired contradiction.

Let M k ↓ be the n(k) × n(k) matrix with columns in S n(k) k
, and such that the first is

c ′ 1 = [0 1 • • • 1 k+1 0 1 • • • 1 k • • • 0 1 • • • 1 k
] T and the remaining columns are obtained by applying cyclic shifts to c ′ 1 as before.

Remark 6. Since k ≥ 4 is even, if r i is a row of M k ↑ , and r ′ j is a row of M k
↓ , then r i and r ′ j have a 0 in the same position.

Lemma 7. If k ′ > k, then there is no n(k ′ ) × n(k) matrix N whose columns are in S n(k ′ ) k and whose rows are rows of M k ↓ . Proof. Suppose that k ′ > k and that N is an n(k ′ ) × n(k) matrix whose columns are in S n(k ′ ) k
. Assume, by way of contradiction, that the rows of N are rows of M k ↓ . Since each row of M k ↓ has exactly k 0's, we have that N has k×n(k ′ ) 0's. Hence the matrix N has a column with at least k×n(k ′ ) n(k) symbols 0. It is easy to verify that since k ′ > k ≥ 4, we have that k×n(k ′ ) n(k) > k ′ . But this yields the desired contradiction, since all columns of N are members of S n(k ′ ) k

, and each has at most k ′ 0's. Define M k as the 2n(k) × n(k) matrix given by

M k = ( M k ↑ M k ↓ ) .
Notice that each column of M k is a tuple of R n(k) .

Lemma 8.

Let N be a 2n(k ′ ) × n(k) matrix whose columns are in R n(k ′ ) and whose rows are rows of M k . Then, either all rows of N are rows of M k ↓ , or the first n(k ′ ) are rows of M k ↑ and the remaining n(k ′ ) are rows of M k ↓ .

Proof. By Remark 4 and the fact that R n(k ′ ) := S k ′ 1 × S k ′ k , there cannot be more than 2 rows of M k ↑ among the last n(k ′ ). In fact, by Remark 6 there can only be rows from M k ↓ among the last n(k ′ ) rows of N . Furthermore, from Remark 6 and the fact that

R n(k ′ ) := S k ′ 1 × S k ′ k , it
follows that either all of the first n(k ′ ) rows of N are rows of M k ↑ or all of the first n(k ′ ) rows of N are rows of M k ↓ . Let f k be the n(k)-ary partial function whose domain is the set of rows of M k , and such that f k is constant 0 on the rows of M k ↑ and constant 1 on the rows of M k ↓ .

Theorem 9. Let k, k ′ ≥ 4 be even integers. Then

f k ∈ pPol R n(k ′ ) if and only if k ̸ = k ′ . Proof. Since [0 • • • 01 • • • 1] T does not belong to R n(k) , we see that f k ̸ ∈ pPol R n(k) .
So suppose that k ̸ = k ′ . If k < k ′ , then it follows from Definition 2 and Lemmas 7 and 8 that f k ∈ pPol R n(k ′ ) .

Suppose now that k > k ′ . If N is an 2n(k ′ ) × n(k) matrix whose columns are in R n(k ′ ) and whose rows are rows of M k (otherwise we are done for the domain of f k is exactly the set of rows of M k ), then by Lemmas 5 and 8 it follows that all rows of N are rows of M k ↓ . Since f k is constant 1 on the rows of M k ↓ , and since the constant 1 2n(k ′ ) tuple belongs to R n(k ′ ) , we conclude that

f k ∈ pPol R n(k ′ ) .
Let M k be the 2n(k) × n(k) matrix obtained by replacing every row of the matrix M k by its dual tuple (obtained by interchanging 1's and 0's) and define L k as the 4n(k) × n(k) matrix given by

L k = ( M k M k ) .
Moreover, let g k be the n(k)-ary partial function whose domain is the set of rows of L k , and such that for every subset X of E ≥4 .

g k (⃗ u) = f k (⃗ u) if ⃗ u is a row of M k and g k (⃗ u) = 1 + f k (⃗ u) (mod 2) if ⃗ u is a row of M k .
So let X ⊂ E ≥4 and fix k ∈ X. Then g k ∈ pPol ρ n(t) for all t ∈ E ≥4 \ X, i.e.,

g k ∈ ∩ t∈E ≥4 \X.
On the other hand, if k ∈ E ≥4 \ X, then we have 

  (k) denote the set of all n-ary partial functions on k and let Par(k) := ∪ n≥1 Par (n) (k).

For n ≥ 5

 5 and n > k > 1 we denote by σ n k ⊆ 2 2n the (2n)-ary relation defined by σ n k := {(x 1 , . . . , x n , y 1 , . . . , y n ) ∈ 2 2n | ∀ i = 1, . . . , n, x i ̸ = y i , and ∀ i = 1, . . . , n, y i+1 ≤ x i and y i+2 ≤ x i . . . and y i+k ≤ x i },

  Then, Theorem 9 can be restated as follows:Main Theorem. Let k, k ′ ≥ 4 be even integers. Then g k ∈ pPol ρ n(k ′ ) if and only if k ̸ = k ′ .Let E ≥4 := {4, 6, 8, . . . } be the set of all even integers greater or equal to 4 and denote by P(E ≥4 ) the power set of E ≥4 . Since pPol (≤) ∩ pPol (̸ =) ⊆ pPol (ρ n k ) for every n ≥ 5 and every n > k ≥ 1, we have pPol (≤) ∩ pPol (̸ =) ⊆ ∩ t∈E ≥4 \X pPol ρ n(t) 

Corollary 10 .

 10 g k ̸ ∈ ∩ t∈E ≥4 \X pPol ρ n(t) and g k ̸ ∈ ∩ t̸ ∈X pPol ρ n(t) , since g k ̸ ∈ pPol ρ n(k) . Therefore the mapχ := P(E ≥4 ) → [pPol (≤) ∩ pPol (̸ =), Par(2)] defined by χ(X) := ∩ t∈E ≥4 \X pPol ρ n(t)is one-to-one and we have shown the following result which answers our question on cardinality of the interval [pPol (≤) ∩ pPol (̸ =), Par(2)]. The interval of partial clones [pPol (≤) ∩ pPol (̸ =), Par(2)] is of continuum cardinality on 2.

  x n , x n+1 , . . . , x 2n , y 1 , . . . , y n , y n+1 , . . . , y 2n ) ∈ 2 4n | (x 1 , . . . , x n , y 1 , . . . , y n ) ∈ σ n 1 , and (x n+1 , . . . , x 2n , y n+1 , . . . , y 2n ) ∈ σ n k }.

  and only if t ̸ = t ′ .

	Remark 3. Since every tuple in σ n k (resp. ρ n k ) is completely determined by
	its first n entries (resp. 2n entries), we will omit the second half of such
	tuples. We therefore denote by S n k and R n k the relations obtained from σ n k and ρ n k , respectively, by deleting the second half of every tuple in σ n k and ρ n k ,
	i.e.,
	S n k
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