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New predictive scheme for the control of LTI systems with input delay and unknown disturbances

Introduction

State of the art and motivation

A seminal work on the control of input delay systems is the well-known Smith predictor [START_REF] Smith | Closer control of loops with dead time[END_REF]. It is a frequency domain approach for SISO and open-loop stable systems. In the 80's, the Finite Spectrum Assignment (FSA) [START_REF] Kwon | Feedback stabilization of linear systems with delayed control[END_REF], [START_REF] Manitius | Finite spectrum assignment problem for systems with delays[END_REF] and the model reduction, also called Artstein reduction [START_REF] Artstein | Linear systems with delayed controls: A reduction[END_REF], have extended Smith's work to MIMO, openloop unstable systems. Both methods lead to the construction of a predictive feedback even though the underlying idea is different. These methods are very efficient when the delay is too large (with respect to the dynamics of the system) to be neglected and a standard (memoryless) feedback would fail. However, they suffer some drawbacks. The main problem is that an accurate model and the exact knowledge of the delay are required to have a good prediction. Consequently, these methods are not robust to model and delay uncertainties. Besides, a careless implementation of the prediction can induce the divergence of the closed loop system [START_REF] Mondie | Finite spectrum assignment of unstable time-delay systems with a safe implementation[END_REF], [START_REF] Van Assche | Some problems arising in the implementation of distributeddelay control laws[END_REF]. To avoid this difficulty, the Truncated Predictor Feedback (TPF) drops the integral part [START_REF] Yoon | Truncated predictor feedback control for exponentially unstable linear systems with time-varying input delay[END_REF]. It can be seen as an halfway solution between memoryless feedback and predictive feedback (memory feedback). A complete analysis of predictive control can be found in [START_REF] Krstic | Delay compensation for nonlinear, adaptive, and PDE systems[END_REF].

In spite of numerous works on TDS, very few articles deal with disturbance attenuation in presence of delay in the input even if there is a real interest from a practical point of view. Indeed, it is really a complex challenge even for linear systems. Some robust control methods have been extended to input delay systems. First, sliding mode control, known for its robustness in the delay-free case, has been adapted to input delay systems by using "surfaces" [START_REF] Polyakov | Minimization of disturbances effects in time delay predictor-based sliding mode control systems[END_REF], [START_REF] Roh | Sliding mode control with uncertainty adaptation for uncertain input-delay systems[END_REF] or a standard surface [START_REF] Camacho | Some long time delay sliding mode control approaches[END_REF], [START_REF] Han | Sliding mode control in the presence of input delay: A singular perturbation approach[END_REF]. The problem of sliding mode with relay systems is the unavoidable apparition of oscillations [START_REF] Fridman | Steady modes in relay systems with delay[END_REF]. H ∞ control has also been studied for input delay systems and a review is proposed in [START_REF] Mirkin | H∞ of system with i/o delay: a review of some problem oriented methods[END_REF]. A complete analysis of this topic is also provided by [START_REF] Zhong | Robust control of time-delay systems[END_REF].

To end this literature review, some references on predictive feedback (state space approach) with disturbance attenuation can be cited. Even with a known delay, it is not possible to reject perfectly a matched, time-varying perturbation because disturbances are unpredictable. As a result, one can only try to reduce their effects on the system. In [START_REF] Di Loreto | Disturbance attenuation by dynamic output feedback for input-delay systems[END_REF], a geometric approach is used to show the existence of an output predictive feedback that minimizes the effect of the disturbance on the system. Krstic proposed a filtered predictive feedback which minimizes a cost functionnal in [START_REF] Krstic | Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch[END_REF] and [START_REF] Krstic | Compensation of infinite-dimensional actuator and sensor dynamics[END_REF]. Recently, Polyakov et al. apply the attractive ellipsoid method to stabilize MIMO systems with time-varying delay in the input [START_REF] Polyakov | Robust output stabilization of time-varying input delay systems using attractive ellipsoid method[END_REF]. Pyrkin et al. [START_REF] Pyrkin | Rejection of sinusoidal disturbance of unknown frequency for linear system with input delay[END_REF] use an adaptive scheme to estimate and reject the sinusoidal disturbances on an LTI system with known delay. An adaptive control scheme allows the exact rejection of a constant disturbance in presence of constant and unknown delay in [START_REF] Bresch-Pietri | Adaptive control scheme for uncertain time-delay systems[END_REF].

Contribution

In this work, disturbance information has been indirectly introduced into the prediction even though the disturbance is unknown (see Definition 8). Then, the Artstein transform is revisited with this new prediction. Thanks to this control scheme, a perfect rejection of constant perturbations can be obtained (Proposition 11). Furthermore, it is demonstrated that the new predictive scheme allows controllers to better attenuate a wide class of time-varying disturbances (see Theorem 13). To summarize, the main contributions consist in:

• designing a new prediction by indirectly including some disturbance information despite the perturbation is unknown; • studying the modifications on the Artstein reduction method; • defining precisely the range of validity of the new predictive scheme for time-varying disturbances.

Paper's structure

The paper is organized as follows. In Section 2, the problem formulation is presented and the standard predictive approach is recalled. Subsection 3.1 describes how the new prediction is obtained. Then, the reduction method is revisited in Subsection 3.2. The scope of the new scheme for time varying perturbations is worked out in Subsection 3.3. Theoretical results are confirmed by numerous simulations in Section 4. Finally, some conclusions are drawn in Section 5.

2 Problem statement and standard predictive approach reminder

The standard prediction

The considered systems are LTI systems with a delay h acting on the control input u and an additive perturba-

tion d        ẋ(t) = Ax(t) + Bu(t -h) + d(t) u(t) = u 0 (t) for all t ∈ [-h, 0[ x(0) = x 0 (1) with x(t) ∈ R n , u(t) ∈ R m , d(t) ∈ R n , A ∈ R n×n and B ∈ R n×m .
Assumption 1 A and B are constant and known and the pair (A, B) is controllable.

Assumption 2 h > 0 is constant and known.

Let I ⊆ R be an unbounded interval and S ⊆ R m be a set. The space of locally integrable functions u(.) defined on I and taking values into S is denoted by L 1 loc (I, S).

Assumption 3 u is a locally integrable function: u ∈ L 1 loc ([-h, +∞[, R m ).
Assumption 4 d is an unknown locally integrable function :

d ∈ L 1 loc (R ≥0 , R n ).
Note that if u and d are bounded and measurable as in [START_REF] Artstein | Linear systems with delayed controls: A reduction[END_REF] then Assumptions 3 and 4 are verified.

The prediction at time t of the state of the system (1) at time t + h, denoted x p (t) reads as

x p (t) = e Ah x(t)

+ t t-h e A(t-s) Bu(s) + d(s + h) ds (2)
for all t ≥ 0. The integral term in (2) and all the integral terms mentioned in the sequel are well defined thanks to Assumptions 3 and 4.

Expression [START_REF] Bresch-Pietri | Adaptive control scheme for uncertain time-delay systems[END_REF] is the exact prediction of the system state.

In other words, one has

x p (t) = x(t + h).
In order to compute the integral part of (2), the value of the perturbation on the interval [t, t + h] is required. A first solution to circumvent this difficulty is to compute an approximated prediction x p that does not include the effect of the disturbances

x p(t) = e Ah x(t) + t t-h e A(t-s) Bu(s)ds (3) 
for all t ≥ 0. The computation is feasible but x p(t) = x(t+h). As a result, there is always an error between the exact prediction and the approximated one. This error is given by

x p (t) -x p(t) = t t-h e A(t-s) d(s + h)ds. (4) 
Remark 5 From a practical point of view, the integral term in (3) is discretized in q intervals, so a buffer has to save previous q values of the input from th to t. The number of intervals q has to be selected according to h and the integration step τ . Usually q is chosen equal to h τ . The reader can refer to [START_REF] Mondie | Finite spectrum assignment of unstable time-delay systems with a safe implementation[END_REF], [START_REF] Mounier | Flatness-based control of nonlinear delay systems: A chemical reactor example[END_REF], [START_REF] Zhong | On distributed delay in linear control lawspart I: discrete-delay implementations[END_REF] for more details on practical implementation.

In next section, the Artstein reduction method is reminded in order to draw a comparison with the new predictive scheme that is going to be introduced in Subsection 3.2.

The Artstein reduction method

The reduction method [START_REF] Artstein | Linear systems with delayed controls: A reduction[END_REF] consists in transforming the system with a delayed input into a delay-free system. The definition of the so-called Artstein transformation is

Z(t) = e -Ah x p(t).
This method has been used in the disturbance-free framework. By applying the Artstein transformation on system (1) one gets

Ż(t) = AZ(t) + e -Ah Bu(t) + d(t).
However, in the context of disturbance rejection, the alternative reduction with x p is prefered. It follows that

ẋp (t) = Ax p(t) + Bu(t) + e Ah d(t). (5) 
In the disturbance free-case,

d(t) = 0, stabilizing x p(t) is equivalent to stabilize x(t) since x p(t) = x(t + h).
However, for disturbed systems, this is not true anymore as expressed in the following proposition.

Proposition 6

The asymptotic convergence of x p to zero implies the asymptotic convergence of x to t t-h e A(t-s) d(s)ds.

PROOF. If x p tends to zero, it can be deduced from (4) evaluated in th that x p (th) = x(t) tends to

t-h t-2h
e A(t-h-s) d(s + h)ds. A substitution in the integral ends the proof. ✷

If u is designed on (5) such that x p tends to zero then x will not tend to zero even for constant perturbations. This drawback makes the approximated prediction x p not compatible with input delay systems with disturbances. That is why some improvements are necessary and a new predictive scheme is developped in the next section.

3 A new predictive scheme

Definition and computation

The objective is to improve the approximated prediction x p by using some disturbances information. However, these latters are unknown. The basic idea is to compare the "true" state of the system (1) at time t, x(t), with its approximated prediction made at time th, x p(th).

Recalling that h is known and constant, one has:

• if d(t) = 0 then x(t) -x p(t -h) = 0; • if d(t) = 0 then x(t) -x p(t -h) = 0 and depends on d(t).
In presence of perturbation, the prediction error for system (1) reads as

x(t) -x p(t -h) = t t-h e A(t-s) d(s)ds (6) 
for all t ≥ h.

Remark 7 x p(th) is not defined for t ∈ [0, h[ but setting x p(th) = x p(0) for all t ∈ [0, h[ implies that [START_REF] Khalil | Nonlinear Systems[END_REF] is well defined for all t ≥ 0 and that x p is continuous at t = 0.

The new prediction is introduced by the following definition:

Definition 8 The new prediction is defined by

X p(t) = x p(t) + x(t) -x p(t -h) (7) 
for all t ≥ h, with x p given by

x p(t) = e Ah x(t) + t t-h
e A(t-s) Bu(s)ds.

Note that the integral expression of ( 7) can be obtained combining ( 6) with [START_REF] Camacho | Some long time delay sliding mode control approaches[END_REF]. It yields to

X p(t) = e Ah x(t) + t t-h e A(t-s) Bu(s) + d(s) ds (8)
for all t ≥ h. Comparing (8) with predictions ( 2) and (3), one realizes that X p is an halfway prediction beetween the standard prediction and the exact one. Besides, it is clear from [START_REF] Krstic | Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch[END_REF] that there is no need to know the perturbation to compute the new prediction X p.

Remark 9 Given that x p(t-h) = x p(0) for all t ∈ [0, h[, the equality X p(t) = x p(t) + x(t)x p(0) holds for all t ∈ [0, h[ and guarantees that X p is well defined and continuous for all t ≥ 0.

The only difference between ( 8) and ( 2) is the term d(s) instead of d(s + h) in the integral part. It means that ( 7) is almost the exact prediction in spite of the unknown disturbance. As a comparison with (4), the error between the exact prediction x p and the new prediction X p is

x p (t) -X p(t) = t t-h e A(t-s) [d(s + h) -d(s)]ds. ( 9 
)
From errors ( 4) and ( 9), it is clear that the accurracy of the predictions depends on the magnitude of the disturbance for (4) and on the dynamics of the disturbance for [START_REF] Krstic | Compensation of infinite-dimensional actuator and sensor dynamics[END_REF].

As far as the implementation issues are concerned, there is no extra complexity. The only requirement is to store the values of x p on the interval [th, t] in addition to the values of u on the interval [th, t]. Indeed, the new prediction is computed from the standard prediction thanks to [START_REF] Krstic | Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch[END_REF]. Consequently, all the results mentioned for the computation of x p [START_REF] Mondie | Finite spectrum assignment of unstable time-delay systems with a safe implementation[END_REF], [START_REF] Zhong | On distributed delay in linear control lawspart I: discrete-delay implementations[END_REF] can be used to analyse the computation of X p. In particular, it has been shown in [START_REF] Zhong | On distributed delay in linear control lawspart I: discrete-delay implementations[END_REF] that the approximation error can be made as small as small possible for a discretization in the s-domain and if the number of approximation steps is large enough.

Remark 10 For state-space systems, full state knowledge is required to be able to compute prediction (3).

Similarly, the computation of the new prediction (7) requires full state knowledge. In case of partial state measurement, state reconstruction can be used as in [START_REF] Di Loreto | Disturbance attenuation by dynamic output feedback for input-delay systems[END_REF] and [START_REF] Mirkin | Every stabilizing deadtime controller has an observer-predictor-based structure[END_REF]. In theses works, the prediction (3) is computed from the reconstructed state. Then, the new prediction can be computed replacing x p in (7) by the "reconstructed prediction". Since this paper focuses on the comparison with the Artstein reduction (that considers full state knowledge), we will not go into details on the observer-predictor structure. Next results hold when the observation error tends to zero.

The reduction method with the new prediction

In this subsection, the objective is to study how ( 5) is modified when the transformation is the new prediction. As in Subsection 2.2, a transformation is carried out to turn the system into a delay-free one with respect to the input. The dynamics of X p is

Ẋp (t) = AX p(t) + Bu(t) + d(t) + e Ah d(t) -d(t -h) (10 
) for all t ≥ h. When d(t) = d(t + h), one has X p = x p and the last term of (10) cancels. In this case, [START_REF] Kwon | Feedback stabilization of linear systems with delayed control[END_REF] is exactly equal to (1) but without delay. An interesting property of this new prediction is stated in the next proposition.

Proposition 11 For constant disturbances, the asymptotic convergence of X p to zero implies the asymptotic convergence of x to zero.

PROOF. If X p tends to zero, it follows from (9) that

x p (t) = x(t + h) tends to t t-h e A(t-s) [d(s + h) -d(s)]ds.
For constant perturbations, d(s + h) = d(s) so x(t + h) tends to zero and x(t) as well.

✷

In this case, stabilizing X p(t) implies that x(t) is stabilized to the same value. This is a major improvement of this new predictive scheme. Table 1 gathers the three different predictive appoaches discussed in this paper.

Analysis of the new predictive scheme for timevarying disturbances

In order to make a qualitative analysis of the perturbation attenuation properties, the next assumption is required Assumption 12 d : R ≥0 → R n is an unknown locally integrable function such that for all t ≥ 0,

||d(t)|| ≤ d max < +∞ ( 11 
)
and for all t ≥ h,

||d(t) -d(t -h)|| ≤ hD max < +∞. ( 12 
)
The bounds d max and D max are supposed to be known.

Thanks to Propositions 6 and 11, the improvement of the new predictive scheme has been clearly highlighted for constant perturbations. For time varying perturbations (D max > 0), asymptotic stability cannot be achieved anymore, only stability within a ball around the origin is possible. The objective of this subsection is to study the influence of the prediction scheme on the error bound. Let f be a Lipschitz continuous function and assume the control

u(t) = f (x p(t)) ( 13 
)
is such that the origin is a globally exponentially stable equilibrium point of the nominal system (5) with d(t) = 0. The function f : R n → R m is locally Lipschitz and x p is continuous so Assumption 3 holds. Besides, Theorem 4.14 in [START_REF] Khalil | Nonlinear Systems[END_REF] guarantees the existence of a Lyapunov function V (x p) that satisfies

c 1 ||x p|| ≤ V (x p) ≤ c 2 ||x p|| V (x p) ≤ -c 3 ||x p|| dV dx p ≤ c 4 ||x p|| (14) 
with c 1 , c 2 , c 3 and c 4 positive constants. In addition, the perturbation of system ( 5) is bounded and the following maximization holds

||e Ah d(t)|| ≤ ||e Ah ||d max , ∀t ≥ 0. ( 15 
)
Therefore, the assumptions of Lemma 9.4 in [START_REF] Khalil | Nonlinear Systems[END_REF] are fulfilled (equations ( 14) and ( 15)) so one deduces that for all t ≥ 0

||x p(t)|| ≤ β||x(0)||e -αt + γ||e Ah ||d max ( 16 
)
with α, β and γ positive constants that depends on c 1 , c 2 , c 3 and c 4 .

Since ( 5) and ( 10) have the same form when d(t) = 0, the controller

u(t) = f (X p(t)) (17) 
guarantees that X p = 0 is a globally exponentially stable equilibrium point of the nominal system [START_REF] Kwon | Feedback stabilization of linear systems with delayed control[END_REF] with d(t) = 0. Similarly to u(t) = f (x p(t)), Assumption 3 is verified for u(t) = f (X p(t)). Besides, inequalities (14) still holds for X p:

c 1 ||X p|| ≤ V (X p) ≤ c 2 ||X p|| V (X p) ≤ -c 3 ||X p|| dV dX p ≤ c 4 ||X p||. (18) 
From Assumption 12, the inequality

d(t) + e Ah d(t) -d(t -h) ≤ d max + h||e Ah ||D max , (19) 
is verified for all t ≥ h. Relations ( 18) and ( 19) comply with the assumptions of Lemma 9.4 in [START_REF] Khalil | Nonlinear Systems[END_REF] so the following inequality is obtained

||X p(t)|| ≤ β||x(0)||e -αt + γ d max + h||e Ah ||D max (20) 
for all t ≥ h. The constants α, β and γ are the same as in ( 16) because they only depend on the form of the undisturbed system. As it has been mentioned before, systems [START_REF] Han | Sliding mode control in the presence of input delay: A singular perturbation approach[END_REF] and [START_REF] Kwon | Feedback stabilization of linear systems with delayed control[END_REF] have the same representation χ = Aχ + Bu(t) when there is no perturbation (Reduced system in Table 1). Then from the evaluation of ( 4) and [START_REF] Krstic | Compensation of infinite-dimensional actuator and sensor dynamics[END_REF] 

is verified. This proves the following theorem. Theorem 13 Consider system (1), predictor-controllers (3)-( 13) and ( 7)- [START_REF] Polyakov | Minimization of disturbances effects in time delay predictor-based sliding mode control systems[END_REF], resulting in error bounds respectively r 1 in ( 22) and r 2 in [START_REF] Yoon | Truncated predictor feedback control for exponentially unstable linear systems with time-varying input delay[END_REF]. If the bounds on d(t) comply with the relations

d max D max > h ||e Ah || ||e Ah || -1 , (24) 
then one gets r 2 < r 1 .

Note that the inequality ||e Ah || > 1 is always true since h > 0. Theorem 13 and equations ( 22) and [START_REF] Yoon | Truncated predictor feedback control for exponentially unstable linear systems with time-varying input delay[END_REF] show that the construction of a Lipschitz controller with the new prediction X p given by ( 17) leads to a smaller error bound than designing a controller with the standard prediction [START_REF] Mirkin | Every stabilizing deadtime controller has an observer-predictor-based structure[END_REF]. Consequently, the new predictive scheme is said to better attenuate the disturbances than the standard one.

Note that some additional assumptions on the eigenvalues of A would be necessary to determine whether or not [START_REF] Zhong | On distributed delay in linear control lawspart I: discrete-delay implementations[END_REF] is fulfilled for a given h. Besides, systems are usually such that ||e Ah || >> 1 so (24) can be approximated by

d max D max > h. (25) 
In this case, the attenuation only depends on the dynamics of the perturbation with respect to the delay size. However, the converse of Theorem 13 is not true; even if the perturbation does not comply with (24), a controller using the new prediction can better attenuate the perturbation but it is not guaranteed. Theorem 13 applies to a wide range of linear and nonlinear controllers. This gives the possibility to robustly stabilize X p at zero. However, even if X p converges to zero, there is an inevitable error, ηhD max in [START_REF] Smith | Closer control of loops with dead time[END_REF], independent from the control and that cannot be reduced for time-varying disturbances.

Simulation

Model presentation

A second order perturbed system has been chosen to illustrate the results. Its state space representation is

ẋ(t) = 0 1 -a 0 -a 1 x(t) + 0 1 u(t -h) + 0 d(t) (26) 
with a 0 = 9 and a 1 = -3. The parameters chosen for all the simulations are h = 0.5 s and x(0) = [1.5, 1] T . In the sequel, the components of a vector are denoted by the subscript "i". For instance, one has x p = [x p1 , x p2 ] T .

Comparison of the schemes for constant disturbances

In this subsection, Propositions 6 and 11 are illustrated. The objective consists in making the predictions x p and X p tend to zero and, in evaluating the behaviour of x.

For that reason, two PID controllers are chosen to robustly stabilize delay free systems ( 5) and [START_REF] Kwon | Feedback stabilization of linear systems with delayed control[END_REF]. Two simulations have been carried out with piecewise constant perturbation:

• Simulation 1. The controller

u(t) = k p x p1 (t) + k d ẋp1 (t) + k i t 0
x p1 (s)ds forces x p to tend to zero. • Simulation 2. The controller

u(t) = k p X p1 (t) + k d Ẋp1 (t) + k i t 0 X p1 (s)ds forces X p to tend to zero.
Results are displayed on Figures 1 and2. For simulation 1, the predictive state x p is indeed stabilized at zero but the real state x converges to a constant. The value of this constant is explicitely given in Proposition 6. For simulation 2, both state x and prediction X p go to zero as it was stated in Proposition 11; the perturbation is perfectly rejected. The PID coefficients are the same in both cases, k p = 45, k d = 18 and k i = 60. It is shown that synthesizing robust control on system (10) (simulation 2) is much more efficient than synthesizing on system (5) (simulation 1). As a comparison, in [START_REF] Krstic | Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch[END_REF], the controller obtained by filtering the standard predictive feedback is not able to reject perfectly a constant disturbance. It has been illustrated that asymptotic stabilization is obtained for piecewise constant disturbance. For time-varying perturbation, only practical stability can be achieved as it will be shown in the next subsection.

Comparison of the schemes for time-varying disturbances

The objective is to illustrate Theorem 13. A state feedback control has been chosen to stabilize the system: the function f defined in the proof of ( 13) is f (χ) = Kχ with K ∈ R m×n with χ being x p or X p. It is reminded that any kind of robust controllers for delay-free systems can be designed on the reduced models ( 5) and [START_REF] Kwon | Feedback stabilization of linear systems with delayed control[END_REF]. The two following controllers are going to be compared: • the standard predictive state feedback control

u(t) = -Kx p(t); (27) 
• the new predictive state feedback control u(t) = -KX p(t).

(28)

For a fair comparison, the gain matrices K are the same for both controllers, K = [45, 18]. In the delay-free case and without disturbances, the feedback u(t) = -Kx(t) drives (26) to zero in about 1.5 s. Consequently, the delay h = 0.5 s is very large with respect to the dynamics of the delay-free system. In this case, the system cannot be stabilized with a memoryless feedback control even in the disturbance-free case. Consequently, it is necessary to use a predictive feedback. The signal d is defined as d(t) = 3 sin(0.5t) so d max = 3 and D max = 1.5. For this system, ||e Ah || ≈ 7.32 so h ||e Ah || ||e Ah ||-1 ≈ 0.58 then criterion ( 24) is verified. Figure 3 confirms that (28) attenuates better the perturbation than (27) because ||x(t)|| with controller (27) is smaller than ||x(t)|| with controller (28) during the steady state.

When perturbations are very fast time-varying, a lowpass filter can be added to the standard feedback (27), as in [START_REF] Krstic | Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch[END_REF], to achieve a better attenuation of the disturbance. These simulations confirm that designing a controller thanks to the new predictive scheme, i.e, a controller using X p, leads to the perfect rejection of constant perturbations and a better attenuation of time-varying perturbations than a controller using x (provided that (24) holds). It has been shown that the perturbation effects can be indirectly included in a new prediction even though disturbances are unknown. Then, the modifications on the reduction method have been investigated. It has been proved that controllers designed using the new predictive approach perform a better disturbance attenuation for a wide class of disturbances. All the results are illustrated by simulations.
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Table 1

 1 Comparison of the predictive schemes

		STANDARD PREDICTIVE	NEW PREDICTIVE	EXACT PREDICTIVE
			SCHEME	SCHEME		SCHEME
		x p(t) = e Ah x(t)+	X p(t) = x p(t) + x(t) -x p(t -h)		xp(t) = e Ah x(t)+
	Prediction	t	e A(t-s) Bu(s)ds	see eq. (8) for the integral expression	t	e A(t-s) Bu(s)+d(s + h) ds
		t-h			t-h	
	Reduced	ẋp (t) = Ax p(t)+Bu(t)+	Ẋp (t) = AX p(t)+Bu(t)+		ẋp(t) = Axp(t)+Bu(t)+
	system		e Ah d(t)	d(t)+e Ah d(t)-d(t-h)		d(t + h)

  in th, it follows that ||x(t)|| ≤ ||x p(th)|| + ηd max holds and, if (1) is controlled by the feedback u(t) = f (X p), the inequality ||x(t)|| ≤ β||x(0)||e αh e -αt +γd max + η + γ||e Ah || hD max r2

	and		
		||x(t)|| ≤ ||X p(t -h)|| + ηhD max	(21)
	with η =	0	e As ds . As a result, if (1) is controlled by
		-h	

the feedback u(t) = f (x p), the inequality ||x(t)|| ≤ β||x(0)||e αh e -αt + η + γ||e Ah || d max r1

[START_REF] Van Assche | Some problems arising in the implementation of distributeddelay control laws[END_REF]