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Abstract

A new predictive scheme is proposed for the control of Linear Time Invariant (LTI) systems with a constant and known delay
in the input and unknown disturbances. It has been achieved to include disturbances effect in the prediction even though
there are completely unknown. The Artstein reduction is then revisited thanks to the computation of this new prediction. An
extensive comparison with the standard scheme is presented throughout the article. It is proved that the new scheme leads
to feedback controllers that are able to reject perfectly constant disturbances. For time-varying ones, a better attenuation is
achieved for a wide range of perturbations and for both linear and nonlinear controllers. A criterion is given to characterize
this class of perturbations. Finally, some simulations illustrate the results.
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1 Introduction

1.1 State of the art and motivation

A seminal work on the control of input delay systems is
the well-known Smith predictor [21]. It is a frequency do-
main approach for SISO and open-loop stable systems.
In the 80’s, the Finite Spectrum Assignment (FSA) [10],
[12] and the model reduction, also called Artstein reduc-
tion [1], have extended Smith’s work to MIMO, open-
loop unstable systems. Both methods lead to the con-
struction of a predictive feedback even though the un-
derlying idea is different. These methods are very effi-
cient when the delay is too large (with respect to the
dynamics of the system) to be neglected and a standard
(memoryless) feedback would fail. However, they suffer
some drawbacks. The main problem is that an accurate
model and the exact knowledge of the delay are required
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to have a good prediction. Consequently, these methods
are not robust to model and delay uncertainties. Besides,
a careless implementation of the prediction can induce
the divergence of the closed loop system [15], [22]. To
avoid this difficulty, the Truncated Predictor Feedback
(TPF) drops the integral part [23]. It can be seen as an
halfway solution between memoryless feedback and pre-
dictive feedback (memory feedback). A complete analy-
sis of predictive control can be found in [8].

In spite of numerous works on TDS, very few articles
deal with disturbance attenuation in presence of delay
in the input even if there is a real interest from a practi-
cal point of view. Indeed, it is really a complex challenge
even for linear systems. Some robust control methods
have been extended to input delay systems. First, sliding
mode control, known for its robustness in the delay-free
case, has been adapted to input delay systems by using
“surfaces” [17], [20] or a standard surface [3], [5]. The
problem of sliding mode with relay systems is the un-
avoidable apparition of oscillations [4]. H∞ control has
also been studied for input delay systems and a review
is proposed in [14]. A complete analysis of this topic is
also provided by [25].

To end this literature review, some references on predic-
tive feedback (state space approach) with disturbance
attenuation can be cited. Even with a known delay, it is

Preprint submitted to Automatica 24 October 2014



not possible to reject perfectly a matched, time-varying
perturbation because disturbances are unpredictable. As
a result, one can only try to reduce their effects on the
system. In [11], a geometric approach is used to show
the existence of an output predictive feedback that min-
imizes the effect of the disturbance on the system. Krstic
proposed a filtered predictive feedback which minimizes
a cost functionnal in [7] and [9]. Recently, Polyakov et al.
apply the attractive ellipsoid method to stabilize MIMO
systemswith time-varying delay in the input [18]. Pyrkin
et al. [19] use an adaptive scheme to estimate and re-
ject the sinusoidal disturbances on an LTI system with
known delay. An adaptive control scheme allows the ex-
act rejection of a constant disturbance in presence of
constant and unknown delay in [2].

1.2 Contribution

In this work, disturbance information has been indi-
rectly introduced into the prediction even though the
disturbance is unknown (see Definition 8). Then, the
Artstein transform is revisited with this new prediction.
Thanks to this control scheme, a perfect rejection of con-
stant perturbations can be obtained (Proposition 11).
Furthermore, it is demonstrated that the new predic-
tive scheme allows controllers to better attenuate a wide
class of time-varying disturbances (see Theorem 13). To
summarize, the main contributions consist in:

• designing a new prediction by indirectly including
some disturbance information despite the perturba-
tion is unknown;

• studying the modifications on the Artstein reduction
method;

• defining precisely the range of validity of the new pre-
dictive scheme for time-varying disturbances.

1.3 Paper’s structure

The paper is organized as follows. In Section 2, the prob-
lem formulation is presented and the standard predictive
approach is recalled. Subsection 3.1 describes how the
new prediction is obtained. Then, the reduction method
is revisited in Subsection 3.2. The scope of the new
scheme for time varying perturbations is worked out in
Subsection 3.3. Theoretical results are confirmed by nu-
merous simulations in Section 4. Finally, some conclu-
sions are drawn in Section 5.

2 Problem statement and standard predictive
approach reminder

2.1 The standard prediction

The considered systems are LTI systems with a delay h
acting on the control input u and an additive perturba-

tion d







ẋ(t) = Ax(t) +Bu(t− h) + d(t)

u(t) = u0(t) for all t ∈ [−h, 0[

x(0) = x0

(1)

with x(t) ∈ R
n, u(t) ∈ R

m, d(t) ∈ R
n, A ∈ R

n×n and
B ∈ R

n×m.

Assumption 1 A and B are constant and known and
the pair (A,B) is controllable.

Assumption 2 h > 0 is constant and known.

Let I ⊆ R be an unbounded interval and S ⊆ R
m be a

set. The space of locally integrable functions u(.) defined
on I and taking values into S is denoted by L1

loc(I, S).

Assumption 3 u is a locally integrable function: u ∈
L1
loc([−h,+∞[,Rm).

Assumption 4 d is an unknown locally integrable
function : d ∈ L1

loc(R≥0,R
n).

Note that if u and d are bounded and measurable as in
[1] then Assumptions 3 and 4 are verified.

The prediction at time t of the state of the system (1)
at time t+ h, denoted xp(t) reads as

xp(t) = eAhx(t) +

t∫

t−h

eA(t−s)
[

Bu(s)+ d(s+ h)
]

ds (2)

for all t ≥ 0. The integral term in (2) and all the integral
terms mentioned in the sequel are well defined thanks to
Assumptions 3 and 4.

Expression (2) is the exact prediction of the system state.
In other words, one has

xp(t) = x(t+ h).

In order to compute the integral part of (2), the value of
the perturbation on the interval [t, t + h] is required. A
first solution to circumvent this difficulty is to compute
an approximated prediction xp̂ that does not include the
effect of the disturbances

xp̂(t) = eAhx(t) +

t∫

t−h

eA(t−s)Bu(s)ds (3)

for all t ≥ 0. The computation is feasible but xp̂(t) 6=
x(t+h). As a result, there is always an error between the
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exact prediction and the approximated one. This error
is given by

xp(t)− xp̂(t) =

t∫

t−h

eA(t−s)d(s+ h)ds. (4)

Remark 5 From a practical point of view, the integral
term in (3) is discretized in q intervals, so a buffer has
to save previous q values of the input from t−h to t. The
number of intervals q has to be selected according to h
and the integration step τ . Usually q is chosen equal to
h
τ
. The reader can refer to [15], [16], [24] for more details

on practical implementation.

In next section, the Artstein reduction method is re-
minded in order to draw a comparison with the new pre-
dictive scheme that is going to be introduced in Subsec-
tion 3.2.

2.2 The Artstein reduction method

The reduction method [1] consists in transforming the
system with a delayed input into a delay-free system.
The definition of the so-called Artstein transformation is

Z(t) = e−Ahxp̂(t).

This method has been used in the disturbance-free
framework. By applying the Artstein transformation on
system (1) one gets

Ż(t) = AZ(t) + e−AhBu(t) + d(t).

However, in the context of disturbance rejection, the
alternative reduction with xp̂ is prefered. It follows that

ẋp̂(t) = Axp̂(t) +Bu(t) + eAhd(t). (5)

In the disturbance free-case, d(t) = 0, stabilizing xp̂(t)
is equivalent to stabilize x(t) since xp̂(t) = x(t + h).
However, for disturbed systems, this is not true anymore
as expressed in the following proposition.

Proposition 6 The asymptotic convergence of xp̂

to zero implies the asymptotic convergence of x to
∫ t

t−h
eA(t−s)d(s)ds.

PROOF. If xp̂ tends to zero, it can be deduced from
(4) evaluated in t − h that xp(t − h) = x(t) tends to
t−h∫

t−2h

eA(t−h−s)d(s+ h)ds. A substitution in the integral

ends the proof. ✷

If u is designed on (5) such that xp̂ tends to zero then
x will not tend to zero even for constant perturbations.
This drawback makes the approximated prediction xp̂

not compatible with input delay systems with distur-
bances. That is why some improvements are necessary
and a new predictive scheme is developped in the next
section.

3 A new predictive scheme

3.1 Definition and computation

The objective is to improve the approximated prediction
xp̂ by using some disturbances information. However,
these latters are unknown. The basic idea is to compare
the “true” state of the system (1) at time t, x(t), with its
approximated prediction made at time t− h, xp̂(t− h).
Recalling that h is known and constant, one has:

• if d(t) = 0 then x(t) − xp̂(t− h) = 0;
• if d(t) 6= 0 then x(t) − xp̂(t− h) 6= 0 and depends on
d(t).

In presence of perturbation, the prediction error for sys-
tem (1) reads as

x(t)− xp̂(t− h) =

t∫

t−h

eA(t−s)d(s)ds (6)

for all t ≥ h.

Remark 7 xp̂(t − h) is not defined for t ∈ [0, h[ but
setting xp̂(t − h) = xp̂(0) for all t ∈ [0, h[ implies that
(6) is well defined for all t ≥ 0 and that xp̂ is continuous
at t = 0.

The new prediction is introduced by the following defi-
nition:

Definition 8 The new prediction is defined by

Xp̂(t) = xp̂(t) + x(t) − xp̂(t− h) (7)

for all t ≥ h, with xp̂ given by

xp̂(t) = eAhx(t) +

t∫

t−h

eA(t−s)Bu(s)ds.

Note that the integral expression of (7) can be obtained
combining (6) with (3). It yields to

Xp̂(t) = eAhx(t) +

t∫

t−h

eA(t−s)
[

Bu(s) + d(s)
]

ds (8)
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for all t ≥ h. Comparing (8) with predictions (2) and (3),
one realizes that Xp̂ is an halfway prediction beetween
the standard prediction and the exact one. Besides, it is
clear from (7) that there is no need to know the pertur-
bation to compute the new prediction Xp̂.

Remark 9 Given that xp̂(t−h) = xp̂(0) for all t ∈ [0, h[,
the equality Xp̂(t) = xp̂(t) + x(t) − xp̂(0) holds for all
t ∈ [0, h[ and guarantees that Xp̂ is well defined and
continuous for all t ≥ 0.

The only difference between (8) and (2) is the term d(s)
instead of d(s+h) in the integral part. It means that (7)
is almost the exact prediction in spite of the unknown
disturbance. As a comparisonwith (4), the error between
the exact prediction xp and the new prediction Xp̂ is

xp(t)−Xp̂(t) =

t∫

t−h

eA(t−s)[d(s+ h)− d(s)]ds. (9)

From errors (4) and (9), it is clear that the accurracy of
the predictions depends on the magnitude of the distur-
bance for (4) and on the dynamics of the disturbance for
(9).

As far as the implementation issues are concerned, there
is no extra complexity. The only requirement is to store
the values of xp̂ on the interval [t − h, t] in addition
to the values of u on the interval [t − h, t]. Indeed, the
new prediction is computed from the standard prediction
thanks to (7). Consequently, all the results mentioned for
the computation of xp̂ [15], [24] can be used to analyse
the computation of Xp̂. In particular, it has been shown
in [24] that the approximation error can bemade as small
as small possible for a discretization in the s-domain and
if the number of approximation steps is large enough.

Remark 10 For state-space systems, full state knowl-
edge is required to be able to compute prediction (3).
Similarly, the computation of the new prediction (7) re-
quires full state knowledge. In case of partial state mea-
surement, state reconstruction can be used as in [11] and
[13]. In theses works, the prediction (3) is computed from
the reconstructed state. Then, the new prediction can be
computed replacing xp̂ in (7) by the “reconstructed pre-
diction”. Since this paper focuses on the comparison with
the Artstein reduction (that considers full state knowl-
edge), we will not go into details on the observer-predictor
structure. Next results hold when the observation error
tends to zero.

3.2 The reduction method with the new prediction

In this subsection, the objective is to study how (5) is
modified when the transformation is the new prediction.
As in Subsection 2.2, a transformation is carried out to

turn the system into a delay-free one with respect to the
input. The dynamics of Xp̂ is

Ẋp̂(t) = AXp̂(t) +Bu(t) + d(t) + eAh
[

d(t) − d(t− h)
]

(10)
for all t ≥ h. When d(t) = d(t+h), one hasXp̂ = xp and
the last term of (10) cancels. In this case, (10) is exactly
equal to (1) but without delay. An interesting property
of this new prediction is stated in the next proposition.

Proposition 11 For constant disturbances, the asymp-
totic convergence of Xp̂ to zero implies the asymptotic
convergence of x to zero.

PROOF. If Xp̂ tends to zero, it follows from (9) that

xp(t) = x(t+ h) tends to
t∫

t−h

eA(t−s)[d(s+ h)− d(s)]ds.

For constant perturbations, d(s + h) = d(s) so x(t + h)
tends to zero and x(t) as well.

✷

In this case, stabilizing Xp̂(t) implies that x(t) is sta-
bilized to the same value. This is a major improvement
of this new predictive scheme. Table 1 gathers the three
different predictive appoaches discussed in this paper.

3.3 Analysis of the new predictive scheme for time-
varying disturbances

In order to make a qualitative analysis of the perturba-
tion attenuation properties, the next assumption is re-
quired

Assumption 12 d : R≥0 7→ R
n is an unknown locally

integrable function such that for all t ≥ 0,

||d(t)|| ≤ dmax < +∞ (11)

and for all t ≥ h,

||d(t)− d(t− h)|| ≤ hDmax < +∞. (12)

The bounds dmax and Dmax are supposed to be known.

Thanks to Propositions 6 and 11, the improvement of the
new predictive scheme has been clearly highlighted for
constant perturbations. For time varying perturbations
(Dmax > 0), asymptotic stability cannot be achieved
anymore, only stability within a ball around the origin is
possible. The objective of this subsection is to study the
influence of the prediction scheme on the error bound.
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Table 1
Comparison of the predictive schemes

STANDARD PREDICTIVE NEW PREDICTIVE EXACT PREDICTIVE

SCHEME SCHEME SCHEME

Prediction

xp̂(t)=e
Ah

x(t)+ Xp̂(t) = xp̂(t) + x(t)− xp̂(t− h) xp(t)=e
Ah

x(t)+

t
∫

t−h

e
A(t−s)

Bu(s)ds see eq. (8) for the integral expression
t
∫

t−h

e
A(t−s)

[

Bu(s)+d(s+ h)
]

ds

ẋp̂(t)=Axp̂(t)+Bu(t)+ Ẋp̂(t)=AXp̂(t)+Bu(t)+ ẋp(t)=Axp(t)+Bu(t)+
Reduced

system
e
Ah

d(t) d(t)+e
Ah
[

d(t)−d(t−h)
]

d(t+ h)

Let f be a Lipschitz continuous function and assume the
control

u(t) = f(xp̂(t)) (13)

is such that the origin is a globally exponentially sta-
ble equilibrium point of the nominal system (5) with
d(t) = 0. The function f : Rn → R

m is locally Lipschitz
and xp̂ is continuous so Assumption 3 holds. Besides,
Theorem 4.14 in [6] guarantees the existence of a Lya-
punov function V (xp̂) that satisfies

c1||xp̂|| ≤ V (xp̂) ≤ c2||xp̂||

V̇ (xp̂) ≤ −c3||xp̂||
∥
∥
∥

dV
dxp̂

∥
∥
∥ ≤ c4||xp̂||

(14)

with c1, c2, c3 and c4 positive constants. In addition, the
perturbation of system (5) is bounded and the following
maximization holds

||eAhd(t)|| ≤ ||eAh||dmax, ∀t ≥ 0. (15)

Therefore, the assumptions of Lemma 9.4 in [6] are ful-
filled (equations (14) and (15)) so one deduces that for
all t ≥ 0

||xp̂(t)|| ≤ β||x(0)||e−αt + γ||eAh||dmax (16)

with α, β and γ positive constants that depends on c1,
c2, c3 and c4.

Since (5) and (10) have the same form when d(t) = 0,
the controller

u(t) = f(Xp̂(t)) (17)

guarantees thatXp̂ = 0 is a globally exponentially stable
equilibrium point of the nominal system (10) with d(t) =
0. Similarly to u(t) = f(xp̂(t)), Assumption 3 is verified
for u(t) = f(Xp̂(t)). Besides, inequalities (14) still holds

for Xp̂:

c1||Xp̂|| ≤ V (Xp̂) ≤ c2||Xp̂||

V̇ (Xp̂) ≤ −c3||Xp̂||
∥
∥
∥

dV
dXp̂

∥
∥
∥ ≤ c4||Xp̂||.

(18)

From Assumption 12, the inequality

∥
∥
∥d(t) + eAh

[

d(t)− d(t− h)
]∥
∥
∥ ≤ dmax + h||eAh||Dmax,

(19)
is verified for all t ≥ h. Relations (18) and (19) comply
with the assumptions of Lemma 9.4 in [6] so the following
inequality is obtained

||Xp̂(t)|| ≤ β||x(0)||e−αt + γ
[

dmax + h||eAh||Dmax

]

(20)
for all t ≥ h. The constants α, β and γ are the same
as in (16) because they only depend on the form of the
undisturbed system. As it has been mentioned before,
systems (5) and (10) have the same representation χ̇ =
Aχ + Bu(t) when there is no perturbation (Reduced
system in Table 1). Then from the evaluation of (4) and
(9) in t− h, it follows that

||x(t)|| ≤ ||xp̂(t− h)||+ ηdmax

and

||x(t)|| ≤ ||Xp̂(t− h)||+ ηhDmax (21)

with η =

∥
∥
∥
∥
∥

0∫

−h

eAsds

∥
∥
∥
∥
∥
. As a result, if (1) is controlled by

the feedback u(t) = f(xp̂), the inequality

||x(t)|| ≤ β||x(0)||eαhe−αt +
[

η + γ||eAh||
]

dmax

︸ ︷︷ ︸

r1

(22)
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holds and, if (1) is controlled by the feedback u(t) =
f(Xp̂), the inequality

||x(t)|| ≤ β||x(0)||eαhe−αt+γdmax +
[

η + γ||eAh||
]

hDmax

︸ ︷︷ ︸

r2

(23)
is verified. This proves the following theorem.

Theorem 13 Consider system (1), predictor-controllers
(3)-(13) and (7)-(17), resulting in error bounds respec-
tively r1 in (22) and r2 in (23). If the bounds on d(t)
comply with the relations

dmax

Dmax

> h
||eAh||

||eAh|| − 1
, (24)

then one gets r2 < r1.

Note that the inequality ||eAh|| > 1 is always true since
h > 0. Theorem 13 and equations (22) and (23) show
that the construction of a Lipschitz controller with the
new prediction Xp̂ given by (17) leads to a smaller error
bound than designing a controller with the standard pre-
diction (13). Consequently, the new predictive scheme is
said to better attenuate the disturbances than the stan-
dard one.

Note that some additional assumptions on the eigenval-
ues ofA would be necessary to determine whether or not
(24) is fulfilled for a given h. Besides, systems are usually
such that ||eAh|| >> 1 so (24) can be approximated by

dmax

Dmax

> h. (25)

In this case, the attenuation only depends on the dynam-
ics of the perturbation with respect to the delay size.
However, the converse of Theorem 13 is not true; even if
the perturbation does not comply with (24), a controller
using the new prediction can better attenuate the pertur-
bation but it is not guaranteed. Theorem 13 applies to a
wide range of linear and nonlinear controllers. This gives
the possibility to robustly stabilizeXp̂ at zero. However,
even if Xp̂ converges to zero, there is an inevitable error,
ηhDmax in (21), independent from the control and that
cannot be reduced for time-varying disturbances.

4 Simulation

4.1 Model presentation

A second order perturbed system has been chosen to
illustrate the results. Its state space representation is

ẋ(t) =

[

0 1

−a0 −a1

]

x(t) +

[

0

1

]

u(t− h) +

[

0

d(t)

]

(26)

with a0 = 9 and a1 = −3. The parameters chosen for all
the simulations are h = 0.5 s and x(0) = [1.5, 1]T . In the
sequel, the components of a vector are denoted by the
subscript “i”. For instance, one has xp̂ = [xp̂1, xp̂2]

T .

4.2 Comparison of the schemes for constant distur-
bances

In this subsection, Propositions 6 and 11 are illustrated.
The objective consists in making the predictions xp̂ and
Xp̂ tend to zero and, in evaluating the behaviour of x.
For that reason, two PID controllers are chosen to ro-
bustly stabilize delay free systems (5) and (10). Two sim-
ulations have been carried out with piecewise constant
perturbation:

• Simulation 1. The controller

u(t) = kpxp̂1(t) + kdẋp̂1(t) + ki

∫ t

0

xp̂1(s)ds

forces xp̂ to tend to zero.
• Simulation 2. The controller

u(t) = kpXp̂1(t) + kdẊp̂1(t) + ki

∫ t

0

Xp̂1(s)ds

forces Xp̂ to tend to zero.

Results are displayed on Figures 1 and 2. For simulation
1, the predictive state xp̂ is indeed stabilized at zero but
the real state x converges to a constant. The value of
this constant is explicitely given in Proposition 6. For
simulation 2, both state x and prediction Xp̂ go to zero
as it was stated in Proposition 11; the perturbation is
perfectly rejected. The PID coefficients are the same in
both cases, kp = 45, kd = 18 and ki = 60. It is shown
that synthesizing robust control on system (10) (sim-
ulation 2) is much more efficient than synthesizing on
system (5) (simulation 1). As a comparison, in [7], the
controller obtained by filtering the standard predictive
feedback is not able to reject perfectly a constant distur-
bance. It has been illustrated that asymptotic stabiliza-
tion is obtained for piecewise constant disturbance. For
time-varying perturbation, only practical stability can
be achieved as it will be shown in the next subsection.

4.3 Comparison of the schemes for time-varying dis-
turbances

The objective is to illustrate Theorem 13. A state feed-
back control has been chosen to stabilize the system: the
function f defined in the proof of (13) is f(χ) = Kχwith
K ∈ R

m×n with χ being xp̂ or Xp̂. It is reminded that
any kind of robust controllers for delay-free systems can
be designed on the reduced models (5) and (10). The
two following controllers are going to be compared:
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Fig. 1. Simulation 1: comparison between xp̂1 and x1 with
piecewise constant perturbation
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Fig. 2. Simulation 2: comparison between Xp̂1 and x1 with
piecewise constant perturbation

• the standard predictive state feedback control

u(t) = −Kxp̂(t); (27)

• the new predictive state feedback control

u(t) = −KXp̂(t). (28)

For a fair comparison, the gain matrices K are the same
for both controllers, K = [45, 18]. In the delay-free case
and without disturbances, the feedback u(t) = −Kx(t)
drives (26) to zero in about 1.5 s. Consequently, the delay
h = 0.5 s is very large with respect to the dynamics of
the delay-free system. In this case, the system cannot be
stabilized with a memoryless feedback control even in

the disturbance-free case. Consequently, it is necessary
to use a predictive feedback. The signal d is defined as

d(t) = 3 sin(0.5t)

so dmax = 3 and Dmax = 1.5. For this system, ||eAh|| ≈

7.32 so h
||eAh||

||eAh||−1
≈ 0.58 then criterion (24) is verified.

Figure 3 confirms that (28) attenuates better the per-
turbation than (27) because ||x(t)|| with controller (27)
is smaller than ||x(t)|| with controller (28) during the
steady state.

When perturbations are very fast time-varying, a low-
pass filter can be added to the standard feedback (27), as
in [7], to achieve a better attenuation of the disturbance.

These simulations confirm that designing a controller
thanks to the new predictive scheme, i.e, a controller us-
ingXp̂, leads to the perfect rejection of constant pertur-
bations and a better attenuation of time-varying pertur-
bations than a controller using xp̂ (provided that (24)
holds).

0 5 10 15 20 25
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0

2
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0
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4

 

 

||x|| with (27)

||x|| with (28)

d
(t
)

||
x
(t
)|
|

time (s)

time (s)

Fig. 3. Disturbance and state norm comparison

5 Conclusion

It has been shown that the perturbation effects can be
indirectly included in a new prediction even though dis-
turbances are unknown. Then, the modifications on the
reduction method have been investigated. It has been
proved that controllers designed using the new predic-
tive approach perform a better disturbance attenuation
for a wide class of disturbances. All the results are illus-
trated by simulations.
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