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L. Introduction

Since first reported in 1982 [1], physical mesomechanics
has made significant contributions to the materials science
and related communities, Introducing the concept of struc-
mural levels in solid-state media under deformation [2], phy-
sical mesomechanics [3, 4] has unified continuum mechanics
and dislocation theory. Consequently, it has successfully
explained various crystallographic phenomena on a sound
physical basis, which previously was understood in rather
empirical fashions. From this viewpoint, it can be said that
physical mesomechanics has brought a new epoch in mate-
rials science and related fields. One very important aspect
of physical mesomechanics that differentiates this theory
from other conventional theories is its universality. The the-
ory is basically applicable to any heterogeneous solid-state
nedia, regardless of the type of the loading or scale size. In
‘addition, it is capable of describing all the stages of defor-
‘mation, including the fracturing stage, on the same theore-
fical basis. These features make the theory attractive for
arious engineering applications [4].

It should be emphasized that this universality of physical

esomechanics comes from the fact that the theory is formu-
Lated at the most fundamental level in science, i.e., the
Seoretical formulation is based on the principle of gauge
ssmmetry [5]. From this standpoint, it can be said that phy-
sical mesomechanies is analogous to other gauge theories
smech as Maxwell’s electrodynamics and Einstein's general
ativity, In fact, various physical-mesomechanical interpre-
ations can be rationalized through the analogy to electrody-
amics. Good examples are the similarity between the plastic
ation wave and electromagnetic wave as the Poyn-
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The theoretical foundation of physical mesomechanics is viewed as a field theory analogous fo electrodynamics. The electromagnetic
field is reviewed as a compensation field necessary to make the Shridinger equation invariant under local phase ransformation on the
wave function of a charged particle. The derivation of the Maxwell equation based on this view is reviewed, and the basic equation of
physical mesomechanics is characterized as 2 field equation analogous to the Maxwell equation. The underlying mechanism for this
compensation effect is argued in terms of the broad sense of the Lenz law and its physical interpretation is discussed.

ting vectors cartying the field energy [6, 7], and the similarity
between electric breakdown of gas media and fracture of
solid-state media as the final stage ofthe energy dissipation
process [8].

Previously, I have discussed the analogy between phy-
sical mesomechanics and electrodynamics for various ob-
servations and interpreted their physical meanings [6-8].
On this anniversary issue, [ would like to focus on the fun-
damental similarity between the two theories. Rather than
going into details of each individual observation, 1 will des-
cribe the big picture of my view of physical mesomechanics
as a theory fundamentally analogous to electrodynamics,
where the temporal and spatial variations of field variables
compensate each other to achieve certain stability in the
underlying dynamics. As the physical process to actualize
this compensation mechanism, the basic equation governing
the dynamics of field variables will be discussed from the
viewpoint of the Lenz law. It will be shown that the two
theories are not only formulaically but also physically ana-
logous, which in turn rationalizes the universality of physi-
cal mesomechanics.

2. Electrodynamies and gquantum dynamics

The analogy between physical mesomechanics and elect-
rodynamics can be most conveniently described by consi-
dering electrodynamics in connection with guantum dyna-
mics. Aitchson and Hey [9] describe this subject and related
physics comprehensively. In short, it can be explained as
follows. In quantum dynamics, the electromagnetic field |
can be viewed as a compensation field to gain the gauge
(local) symmetry in the theory. Consider that the wave func-



tion of a charged particle is under a phase L{1) transforma-
tion. The phase transformation basically represents a dis-
placement in space-time (see below), and it is unnatural to
postulate that all the charged particles in the universe are
under the same transformation; thus we have to let each
particle experience different transformation. Then a question
arises. |s the transformation of each particle completely in-
dependent of each other? The answer is no. They are some-
how related to each other, otherwise the dynamics of each
particle cannot be deseribed by the same form of the Shri-
dinger equation, i.e., the theory must be reformulated. In
other words, the particle can no longer be a free particle,
and must interact with each other through the potential term
in the Shriadinger equation. This interaction can be repre-
sented by means of a compensation field, and the electric
and magnetic field vectors are a vector representation of
the field.

In the field theoretical term, the above situation can be
stated as follows: “To make the Shridinger equation inva-
riant under the situation where the wave function of a charg-
ed particle experiences locally defined phase transformation,
it 15 necessary to introduce interaction between this particle
and other surrounding charged particles”. In this situation,
since the Shrisdinger equation contains temporal and spatial
derivatives of the wave function, it becomes necessary to
redefine the operation of differentiation so that these deriva-
tives transform in the same fashion as the wave function
itself, i.e., it is necessary to replace the derivatives by
covariant derivatives [10]. Otherwise the Shridinger equa-
tion does not remain invariant under the phase transforma-
tion, as mentioned above. The covariant derivatives can be
introduced by adding extra terms to the spatial and temporal
partial differentiation as below [9]:

D=V -igd, (1.1)
D° -_£+a'q¢, : (1.2)
ot

where 4 and ¢ are the additibnal terms needed for the spatial
and temporal derivatives, and g is the electric charge of the
particle. To keep the Shridinger equation invariant, it is
further necessary that the compensation field obey a certain
transformation. As shown below, this transformation de-
pends on the phase that the wave function transforms (note
that Eqgs. (2.1)+2.3) contain the same function ¥). Thus for
a given phase transformation, the request of gauge symmetry
specifically determines the way the particle interacts with
the field. In fact, the additional terms introduced in Eqs. (1.1)
and (1.2) represent the vector and scalar potential of the
electromagnetic field. The combination of the phase trans-
formation (the medium field transformation) and the asso-
ciated transformation of the compensation field (the gauge
field transformation) is referred to as the gauge transfor-
mation, and it can be written in the following form.

y'=eThy, (2.1)

A=Ad+Vy, (2.2)
R et
¥=4-—. (2.3)

Here A and ¢ are the vector and scalar potential of the
field, and  is the wave function. Equation (2.1) represents
the medium field transformation, and Eqgs. (2.2) and (2.3)
the compensation field transformation.

For the purpose of comparing electrodynamics and phy-
sical mesomechanics, it is helpful to take some time to con-
sider the meaning of the phase transformation [11]. Consider
a wave packet describing the wave function of a charged
particle is displaced spatially, temporally, or both. The space
part of the wave function representing the states before and
after the transformation can be written as follows

w(r - 8) =U,(B)y(r). (3)

When the displacement is infinitesimally small, the left-
hand side of the above equation can be Taylor-expanded as

a8
y(r-8)=vy(x, y,2)- ﬁawin »2)+
2 a2
+ P
2 o
The right-hand side of Eq. (4) can be written in the form
of e @) and extending the expression to three dimen-

sions, the transformation in Eq. (3) can be written in the
following form.

U,(8)=¢y(r). (5)

The next level of question is that we know that the me-
dium field variable y obeys the Shrédinger equation but is
there any equivalent equation that governs the compensation
field variables? The answer to this question is yes, and it
can be derived through the concept of least action principle.
In the same sense as an equation of motion can be derived
by posmlating that when a state changes from one to another
under transformation the variation should be zero, we can
derive a basic equation that governs the compensation field
variable. After some mathematical manipulation, the equa-
tion can be written in the following form, and this is nothing
but the well-known Maxwell equation:

W(x, y, 2).... (4)

v.E=£, (6.1)
E'l:
= - 8l
VeE=——vo] 6.2
% 5 (6.2)
o 2k =
VxB= ot [ 6.3
xB=¢g, a:“‘“’ (6.3)
V-B=0. (6.4)

Needless to say, E is the electric field, p is the charge
density, &, and p, are the electric permittivity and magnetic
permeability of the medium, B is the magnetic field, and 3
j is the current density.



3. Equivalent picture in physical mesomechanics

Mow consider the equivalent picture in deformation. The
gauge field associated with the dynamics of plastic deforma-
tion was originally derived in conjunction with the general
transformation GL{R, 3) [1-3], which is basically a non
Abelean transformation unlike the phase Li1) transforma-
tion in electrodynamics. However, after summation over
the group indices, the basic equation can be written in the
same [orm as the Maxwell equation [1-3].

Let us begin with the consideration of the medium field
wansformation. Here, for simplicity, I will consider a two-
dimensional model, but the model can be extended to three
dimensions with the same argument. Consider in Fig. 1 that
a point P(x, y) and another point O(x +1', y+7°) inthe
vicinity of P displace in unit time to points P' and &, res-
pectively. The position vectors associated with this transfor-
mation can be written as follows:

OP' = OP +V(x, y), (7.1)
00' =00 +¥(x+n', y+1°). (7.2)

Here V¥ is the displacement vector per unit time, and '
and 1 are the x and y components of the line element vector
PO. By subtracting Eq. (7.1) from Eq. (7.2), we can express
the line element vectors before and after the transformation
as

PQ'=PO+[V(x+7', y+n") =¥ (x, )]

By expressing the content of the bracket on the right-
hand side of this expression in terms of spatial derivatives
of V¥ up to the first order and denoting vectors P{ and

E' by (m',n?) and (M, 0, respectively, the transfor-
mation can be written in the following form:

Su Su
il 1 Fo e | Eas
ax
B &)
i O Y e AR
e
ich can be conveniently expressed as below
fi=U 7, (82)
U=1+§, (8.3)
I'is the unit matrix and [ is the matrix known as the
rtion matrix
o
g oy
= : 9
o ©)
& oy

u and v are the x and y component of vector V. By
ing the components of the distortion matrix as the first-
term of the infinite series of the expanded form of
x+n', y+n")=V(x,»)]. eg. By = (@ufaxm' +
(&%u/ax*)(n')? 21+ ..., the transformation matrix U in
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Fig. 1, Change in the length of line clement represented as linear transfor-
mation

Eq. (8.2) can be viewed as the first-order term of an exponen-
tial expression equivalent to Eq. (5). This together with the
fact that the transformation in Eq. (3) represents quantum
dynamical displacement and Eq. (8.2) literally represents
classical dynamical displacement rationalizes referring to
the transformation I/ as a phase transformation [1-4].

To further explore the physical meaning of the above
transformation, consider the following three cases.

Case 1. Displacement vector V' is a constant

This is the case where all the points of the medium dis-
place for the same amount, and evidently the situation re-
presents a rigid body motion. [ in Eq. (8.3) is zero because
all the derivatives in Eq. (9) is zero, and there is no deforma-
tion at all.

Case 2. Displacement vector V' is a variable
but distortion mairix B is a constant

This is the case where the medium evidently deforms
because different points displace for different amounts. In
this case, it 15 convenient to divide the distortion matrix
into the symmetry term £ and anti-symmetry term :

B=c+um, (10.1)
where
au 1{@&]
¥ fie 2\ & (102)
1fdv ou &
2\ oy ay
and
: _1(@_@]
0= et {10.3)
1fov_ou : .
2l ax



Eqs. (10.1)-(10.3) are the well-kwon expressions in the

elastic theory, where %, Ly 2 Ll + @] and
g g S A By

% [gri = % are usually denoted by parameters €, &,,,
E,,. and o, and referred to as the normal strain n the
x(y) direction, the shear strain, and rotation, respectively.
In Case 2, these parameters are all constants. From the gauge
theoretical viewpoint, this corresponds to a global transfor-
mation where the parameters representing the transformation
matrix are independent of space or time coordinates, It
should be noted that the second term of the right-hand side
of Eq. (10.1) is characterized by only one parameter o, Since
this term represents rotation and m is a constant, the situation
indicates that the rotation is common to the whole medium,
i.e.. it represents a rigid body rotation.

Case 3. Distortion matrix  depends on space
coordinates

This is the case that physical mesomechanics defines as
the plastic deformation. There are two important changes
from Case 2. First, the parameters €., g, £, and @,
are no more spatial independent, thus rotation becomes sub-
stantial in deformation, i.e., deformation has the rotational

made [1-4]. Second, since the first order derivatives

6‘_u El_u etc.) depend on the space coordinate, it becomes

necessary to introduce covariant derivatives equivalent to
Eqs. (1). Then by making use of the variation method and
other mathematical procedure in the same way as the electro-
dynamics case, equations corresponding to the Maxwell
equations can be derived. After summation over the group
indices, the field equations can be written in the following
form:

v.7=0 (1L.1)
I

Vxl =—0, 11.2

= (11.2)

T ) A

vxdnp_spaﬂ/up, (11.3)

V-6=0. (11.4)

Figure 2 pictorially represents the above situation where
each segment experiences deformation associated with cons-
tant parameters, and the deformation of the whole body is

Casze 1 :
= :
s [
Case 2 : E:’ lw m
I:} : @y}

Fig. 2. Pictorial representation of transformation describing deformation
under three different conditions

represented by the spatial dependence of these parameters,
Each segment is called the deformation structural element
(DSE) [1-4]. It is important to note that the DSE has nothing
to do with the physical dimension (size). All that matter is
that the dynamics within a given DSE can be characterized
by the same &,,, £,,, £, and @_. This is the key to the
applicability of physical mesomechanics regardless of the
scale, including the nano/microscale,

It is interesting to note that the elastic theory uses cons-
tant €., €,,. £, and o, and therefore describes the
dynamics of individual DSE {Case 2). From this view and
in analogy to the gravitational field, the elastic theory corres-
ponds to the theory of special relativity and physical meso-
mechanics corresponds to general relativity, as Utivama [12]
explains the gravitational theory on the same idea.

4. The Lenz law and wave characteristics

Equations 6 and 11 yield wave solutions, known as
electromagnetic and plastic deformation waves [3, 4, 6, 7],
respectively. The wave solution is basically a stable solution,
where the temporal and spatial variations compensate each
other via the mutually opposite signs in front of the spatial
and temporal secondary derivatives in the wave equation.
From the physical viewpoint, this stability is associated with
the Lenz law. To explore this further, let us first consider
the electrodynamic case known as the Faraday—Lenz law.
Imagine that a positive ion starts to move rightward under
the influence of some external agent. This causes a displace-
ment current to flow. Via Eq. (6.3), the displacement current
generates a magnetic field in the following fashion (Fig. 3).
At a point in front of the positive ion on its path, the right-
ward electric field increases as the ion approaches. There-
fore, the displacement current 8E/ 8¢ is rightward, or in the
same direction as £ itself. Consequently, a magnetic field is
induced in such a way that it goes into the page below the
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Fig. 3. The Faraday-Lenz law. Dashed lines represent daf @, and dash-
dotted lines represent induced electric fields. The initial electric field
generated by the positive ion is represented by solid lines, while the
temporal change in the electric field due to the motion of the ion is
represented by dashed lines



Fig 4. The Lenz law in physical mesomechanics. Solid arrows represent
welocity cansed by the initial rotation due to an external torque and dashed
arrows represent induced acceleration

ion path and comes out of the page above the path. Before
the ion starts to move, there was no magnetic field at this
point. So, the motion of the ion causes do/d¢ to be into the
page below the path and out of the page above the path, or
fm,/dt is in the same direction as w itself. Via Eq. (6.2),
this temporal change in the magnetic field induces a leftward
electric field on the path of the positive ion, as indicated at
the right end of Fig. 3. Evidently, this electric field counter-
acts on the initial motion of the ion. A point behind the
positive ion where the electric field due to the ion is leftward,
a similar thing happens. As the ion moves farther away from
the point, the electric field strength decreases and therefore
SE/dt is opposite to E itself, or the displacement current
flows rightward. Thus, the induced magnetic field and its
temporal change is the same as in front of the ion, and con-
sequently, an electric field counteracting on the initial move-
ment of the ion is induced,

An equivalent picture can be drawn in physical mesome-
chanics, Imagine that a certain DSE rotates clockwise under
the influence of an external agent (by an external torque).
As Fig. 4 pictorially represents, this induces an upward ve-
locity at the boundary with the left neighboring DSE and a
downward velocity at the boundary with the right neigh-
boring DSE. This is represented by Eq. (11.2). Since the
velocity was initially zero at these boundaries, this means
that the acceleration field is as shown in the right picture of
Fig. 4. E'V,u'"ﬂ.! in the first term of the right-hand side of Eq.
(11.3) represents acceleration. Thus via Eq. (11.3) (i.e., via
V x (b}, @ is induced in such a way that it goes into the page
at the right side of the right acceleration and at the left side
of the left acceleration, and it comes out of the page at the
left side of the right acceleration and right side of the left
acceleration. Evidently, this induced rotation counteracts
the initial rotation due to the external force. Mote that since
the medium constant £, has a dimension of density
(kg/m*) [13], the first term on the right-hand side of
Eq. (11.3) has a dimension of force per unit volume, and
the counter effect represented by the left-hand side of Eq.
{11.3) can be interpreted as a counter force per unit volume.

One distinction in the physical mesomechanics case from
the electrodynamics case is that the counter effect is due to
the negative sign of the third equation (Eq. 11.3), rather
than the second equation (Eq. (11.2)). From this standpoint,
in the case of physical mesomechanics, the third equation
(Eq. (11.3)) rather than the second equation represents the
Lenz law,

The fracture can be understood along the same line of
argument. Experiments [7, 14] indicate that fracture takes
place when the plastic deformation wave decays. As discuss-
ed above, the wave characteristic basically represents stabi-
lity in dynamics, which is sustained by the compensation
mechanism between the temporal and spatial variation of
field variables. Thus the loss in wave characteristics is ba-
sically the loss in stability. Materials fracture when the dy-
namics governing the deformation becomes unstable and
the displacement vector ¥ monotonically increases in one
direction, leading to the formation of a crack. This rational-
izes the fracture as the final stage of deformation [14]. In
terms of the Lenz law, it can be said that when a medium
loses the spatial-temporal compensating mechanism, it loses
the capability of maintaining its state as a continuous solid-
state, and this event is the fracture. It is interesting to note
that from this viewpoint, the fracture is analogous to the
electric breakdown where the dielectric medium becomes
conductive and the electromagnetic wave decays [8].

5. Application to nano/microscience

Finally, I would like to briefly discuss the applicability
of physical mesomechanics to nano/microscience, one of
the most important emerging fields of recent science. Note
that no comprehensive theory is available to describe many
aspects of material properties and interactions at nano/mic-
roscale levels, and this causes practical problems such as
the life of microsystems is substantially shorter than expect-
ed. Detailed analysis on the applicability of physical meso-
mechanics to these scale level is out of the scope of this
paper, and I would just like to raise two questions: (a) if the
theoretical basis of physical mesomechanics is valid in the
nano/microscale levels, and (b) if the theory relies on a mac-
roscopic parameter. As for the first point, physical meso-
mechanics is based on the symmetry in physics, which is
scale-insensitive, The deformation structural element is de-
fined independent of the material structure, Tt is thus evident
that the theoretical basis is valid at the nano/microscale le-
vels without modification.

The answer to the second question is not straightforward.
There are two medium dependent constants, &, and p;, in
the basic equation of physical mesomechanics (Eq. (11)).
Of these two, £, is the density of the medium, and can be
defined in the nano/microscale levels in the same way as
the macroscale [6]. The other parameter i, is interpreted
as related to the stiffness [6]. The concept of stiffness is
based on the approximation where the restoring force (gene-
rally known as the spring force) is proportional to the displa-
cement. In the macroscale level, this is a good approximation
when the displacement is small. It is not clear to me in the
nano/microscale level if this approximation is good, or, if it
is good, what is the range of the small displacement where
the approximation is valid with respect to the object size.
However, considering the likeliness that the restoring force
is still a function of the displacement in the short distance



limit and that the function is Taylor-expandable, there ought
to be arange of displacement where the linear approximation
is valid and within that range a stiffness can be defined. It
should be noted that the resultant ., in this range could be
substantially different from that in the macroscale level; it
is essential to determine the nano/microscopic stiffness ex-
perimentally. Also be noted is that the situation is fundamen-
tally different from the use of a statistical parameter such
as a diffusion coefficient for a nanoscale system, which is
not an unusual practice in other theories, and in my opinion,
15 incorrect.

6. Conclusion

Physical mesomechanics has been viewed as a field
theory analogous to electrodynamics. The basic equation
governing the translational and rotational displacement has
been derived in the same fashion as the Maxwell equation
is derived in connection with the gauge symmetry associated
with the phase transformation of the wave function of a
charged particle. The underlying physics has been discussed
from the viewpoint of the Lenz law. Through these discus-
sions, the interpretation of fracture of solid-state media as
the final stage of deformation has been rationalized. The
applicability of physical mesomechanics to nano/micro
systems has been briefly examined.
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