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Abstract—The development of real-time embedded systems is
quite complex because of the wide range of execution platforms
and of the importance of non-functional requirements. Further-
more, Model Driven Engineering is particularly suitable for han-
dling the diversity of implementation targets. Therefore, several
real-time embedded systems development suites leverage Model
Driven Engineering by automatically generating platform-specific
code from high-level design models. Such tools may also takenon-
functional requirements into account by integrating verification
activities. These activities typically rely on the generation of
formal models from the same high-level design descriptionsused
for code generation. However, few tool suites support both code
and formal model generation. Furthermore, among these, most
overlook real-time operating systems mechanisms. Therefore,
both code and formal models generated by these tool suites may
not behave as specified in the high-level design descriptions. The
present work extends the SExPIsTools code generator tool suite
with a support for the generation of formal models. The proposed
strategy relies on the composition of formal model fragments
described using an extension of the classical Time Petri Nets. This
paper presents a formalization of this composition that generically
considers the behavior of platforms. As an illustration, wethen
give the formal model describing the behavior of an application
on two different platforms (OSEK/VDX and VxWorks) and check
a safety property on both models.

Keywords—Real-time operating systems, Model Driven Engi-
neering, Time Petri Nets, Multi-platform deployment, Formal model.

I. I NTRODUCTION

Real-Time Embedded Systems (RTES) increasingly sur-
round us in various domains (aircrafts, cars, cell phones,
robotics, etc.). RTES engineers are confronted with the chal-
lenge of developing more complex, higher quality systems,
with shorter development cycles at lower costs. Model Driven
Engineering (MDE) helps engineers to develop tool suites
that partially automate the development of RTES. Using
model transformations, these tool suites mainly produce either
executable code or formal models from high-level design
descriptions of RTES.

Some of these tool suites have both code and formal mod-
els generation processes. However, the mechanisms of Real-
Time Operating Systems (i.e., executable software platforms
supporting real-time applications, RTOS) are often ignored

by these generation processes. As a result, generated code
and generated formal models may not behave as specified in
the high-level design description. Consequently, verification
and validation activities applied on the RTES development
could provide erroneous results. For instance, the detection
of malfunctions (e.g., wrong treatments of critical data, or
bad scheduling of real-time multitasking applications) could
be compromised.

Nevertheless, among these tool suites, some consider real-
time aspects in their generation processes. They thus take the
deployment of real-time applications on RTOS (i.e., mapping
of application concepts to execution platform services in order
to execute them) into account. However, none of them satisfies
the four criteria given below:

• Portability of real-time applications to adapt to the
RTOS heterogeneity;

• Reusability of generation processes for a rapid mi-
gration of these applications in a multi-platform de-
ployment case;

• Maintainability of RTES to help all stakeholders in
their interventions;

• Correctnessof generation processes in ordrer to have
confidence in RTES development.

This work is part of an overall strategy of RTES develop-
ment using a MDE approach. This strategy is supported by a
tool suite called SExPIsTools (for Software Execution Platform
Inside Tools). In order to satisfy the criteria previously given,
SExPIsTools relies on the following approach:

• considering any RTOS as parameter of generation
processes to achieve multi-platform deployment;

• writing more generic transformation rules to be
independent from the considered RTOS;

• separating domain concerns(i.e., application de-
ployment choice, RTOS consideration, transformation
rules and verification and validation activities) to clar-
ify interventions of each domain specialist;

• formalizing transformation rules to increase the
correctness of generation processes.



In the present paper, we focus on the latter point. We need
to construct RTES formal models, i.e., models of the whole
system including the RTOS. For this purpose, our approach
relies on a single transformation that does not depend on any
specific RTOS. This transformation composes multiple formal
model fragments independently of the target RTOS. Each of
these fragments represents a part of the formal model that
captures the behavior of the RTES.

As a basis of the construction, we use roles to generically
identify connection points. These roles are used as a glue
between the formal fragments. As a consequence, a new
definition is presented to represent these formal fragments
based on roles. The class of models we use is Time Petri Nets
(TPN). The generic construction is then formalized as a basis
of the transformation rules. Finally, an application example is
proposed to illustrate a multi-platform deployment case, where
two RTOS are considered. As a result of this experimentation, a
scheduling safety property is verified on both resulting models.

This paper extends our previous work [1] in which the
fundamental rules of composition have been presented. An
extension of these rules is given here to both 1) compose
formal models of multitasking deployed applications with
priority policy, and 2) provide a first validation of the generic
construction.

Section II presents multi-platform deployment related
works within a MDE approach [2]. A description of SEx-
PIsTools is then given in Section III. Section IV gives the
formal definition of the TPN fragments composition operator,
which is based on roles. The application of this operator to the
construction of whole RTES formal models is then described in
Section V. Application examples are presented in Section VI.
The benefits and limits of this approach are discussed in
Section VII. Finally, we conclude in Section VIII.

II. RELATED WORKS

The following sub-sections present existing tool suites
related to the multi-platform deployment problem.

Firstly, some code generators are introduced. Formal model
generation tool suites are then presented, some of which are
also capable of generating code. Finally, we will take a stand
on the adopted approach.

A. Code generator tool suites

In order to promote the reuse of deployment tools within
a single code generator, the genericity of processes has been
at the heart of concerns. For instance, TransPI [3] relies on
a two-step approach to generate specific code. A first phase
considers a generic behavioral representation of the RTOS
API (Application Programming Interface) in accordance with
POSIX standard. In a second phase, the deployment is refined
by configuring the process rules with the API of the targeted
RTOS. However, the configuration of new rules does not fully
satisfy the reuse of such a process since the tool must be
modified.

A similar experimentation [4] improves reuse by specifying
the RTOS concerned by the deployment without modification
of the process. This orientation has been thought with the aim
of porting real-time applications. This strategy relies onthe

transcription of code snippets by configuration of functions
with RTOS information. Those information come from compo-
nents of the targeted RTOS whose architecture was previously
modeled by the generic modeling language AADL, which
is dedicated to the real-time domain. The flexibility of this
process meets the heterogeneous requirements of platforms.

Another approach [5] also contributes to the multi-platform
deployment problem. This fills the behavioral gap in the
SRM package of the MARTE UML profile [6]. Before deal-
ing with the RTOS behavior, a transformation process was
developped [7] to generate a deployed application model
by considering the targeted RTOS structure described with
SRM. Descriptions of executable concepts (i.e., resources
and services of the API) of the targeted platform required
by the application are instantiated through the deployment
process. This instantiation is completed by a refinement of
descriptions depending on both application data and location
of elements playing a generic role (e.g., a task priority or a
counting semaphore capacity) within the considered platform.
The integration of the behavioral aspect is also based on this
notion of role. Code snippets are assigned to execution services
(e.g., a task creation or a semaphore taking) in accordance with
Java or C++/POSIX implementations.

The main interest of the two last contributions is the
independence of specialists during their interventions regarding
the tool suite. This criterion guarantees the quality of main-
tainability, which is added to the already mentioned reusability
and portability. Despite this, these contributions present a
major drawback that is inherent to all code generators. The
formalization is indeed absent from the addressed processes.
This weakness prevents specialists from applying verification
activities on deployed applications.

B. Formal model generation tool suites

The tool suites presented in this section encourage the
behavioral formalization of RTOS.

1) Without code generator:An approach [8] has recently
launched a formal synthesis for composing behavioral models
of RTES. In order to achieve this, both application and plat-
form are modeled with adequate modeling language. With the
help of an Algebra of Communicating and Shared Resources
(ACSR), behavior of the targeted platform is formalized.
Behavior of the application is described by a Timed and
Resource-oriented Statechart (TRoS) including both time an-
notations and resource constraints. A model of the deployed
application is then composed with the obtained formal models
and used for analysis. This synthesis provides a detailed
design of RTES by formalizing their implementation with a
complementary manner. Unfortunately, this process is complex
to use, which forces stakeholders to have a good knowledge
of formalization tools. Moreover, the composition requires
a strong dependency of the application with respect to the
platform.

Metropolis [9] supports both design and analysis of hetero-
geneous embedded systems on the basis of the platform-based
methodology. The behavioral representation is illustrated by
entities such as concurrent and communication activities.In
addition, this environment offers the possibility to use formal
languages in accordance with the LTL logic for verifying both



functional and non-functional properties once the deployment
reached by mapping of the system components with the plat-
form entities is described. Similarly, GME [10] includes use
constraints on the representation of executable concepts thanks
to the Platform Modeling Language (PML). This consideration
mixed with the integration of formal languages to describe the
behavior of platforms provides a deeper design of embedded
systems. However, the genericity of modeling languages used
for describing the platforms does not facilitate the treatment
of particular domains such as real-time. Furthermore, trans-
formation rules are not entirely clear. This leads to a less
meaningful separation of domain skills and consequently to
a maintainability decrease.

2) With code generator: More specifically to RTES,
Ptolemy project [11] is further adapted for describing ex-
ecution models. The definition of those models relies on
the actor-oriented design and revolves around mechanisms of
concurrency and communication implemented between RTES
components. The behavior represented within those models
is translatable into several execution semantics. This benefit
offers a code-formal model duality of deployed applications.
This approach thus achieves a wide coverage of software
execution platforms. Nevertheless, the concepts of structural
representation are only intended for the modeling of appli-
cations with this approach, and not for RTES themselves.
Mechanisms such as RTES components synchronization must
therefore be simulated with other verification tools. In spite
of a very high completeness, the RTES maintainability with
Ptolemy is once again called into question.

C. Positioning

In order to highlight both advantages and drawbacks of
the works presented above, Table I classifies the tool suites
according to their uses. Depending on whether a given tool
suite addresses only code generation, only formal models
generation, or both it will be in the first, second, or third
column respectively. The first row is for tool suites that are
not adapted to RTOS, while the second row is for tool suites
that are adapted to RTOS.

TABLE I: Tool suites comparison

Code Formal Code & Formal

Not adapted to
RTOS

Metropolis [9]

GME [10]

Adapted to
RTOS

TransPI1 [3] ACSR+TRoS2 [8] Ptolemy3 [11]

snippets+AADL [4]

SRM [5]
1 Less suitable for both reusability and maintainability
2 Less suitable for reusability
3 Less suitable for maintainability

Ptolemy seems to be the most versatile. Nevertheless,
stakeholders distinction does not appear clearly, which does
not facilitate maintainability.

Within MDE, alternative approaches were compared [12]
to meet these requirements. The adopted strategy offers the
possibility to capitalize most RTOS descriptions for multi-
platform deployment in a generic way.

In conjunction with this objective, SExPIsTools inte-
grates the Real-Time Embedded Platform Modeling Lan-
guage (RTEPML) [13]. RTEPML was developed with the
aim of representing executable platform concepts dedicated
to the real-time domain. To further detail their representation,
RTEPML [14] has been enriched to describe their behavior
in TPN. However, the generation process used to take into
account these behavioral descriptions needs to be formalized,
which was started in [1], and is continued in the work
presented in this paper (see Sections IV and V).

III. SEXPISTOOLS

This section presents SExPIsTools. Firstly, the modeling
language RTEPML used to describe RTOS mechanisms is
presented. Then, both deployment and formal models gener-
ation processes integrated in SExPIsTools are described. The
role notion used as a generic basis of transformation rules is
highlighted.

A. Modeling with RTEPML

RTEPML distinguishes the RTOS structural modeling from
the behavioral RTOS modeling.

1) Structural description: RTEPML is born from SRM
package [7] mentioned in the previous section. SRM allows the
description of a large number of RTOS [15] and had identified
all concepts and their mechanisms present in RTOS. In SRM,
these concepts are called resources (e.g., task, semaphore, etc.).
RTEPML keeps the same taxonomy. In Figure 1, a small
part of OSEK/VDX RTOS [16] and VxWorks RTOS [17]
descriptions in RTEPML are given. The task concept, called
schedulable resource in RTEPML, is described for both RTOS.

Fig. 1: Structural representation of OSEK/VDX platform

As depicted in Figure 1, thanks to the notion of roles
(represented in bold between french quotation marks), we



could specify thepriority (an integer) ofOSEKVDX Task
or of VxWorks Task. This priority plays the role of priority
element (<<priorityElement>>) for both tasks. Roles are
thus used to identify both structures and features of each
RTOS resource. As another example, on OSEK/VDX model,
the<<terminateService>> role characterizes theterminate-
Service of OSEKVDX Task in Figure 1.

Sometimes, certain concepts do inherently not exist on
RTOS. As an example, the periodic task concept is missing
on both OSEK/VDX and VxWorks platforms. With RTEPML,
sets of concepts (i.e., identified with theDesignPrototype
role in Figure 1) can be composed to translate this kind of
concept. Thus, aPeriodicTask concept could be viewed at
a composition of aTask and an Alarm for OSEK/VDX.
As regards VxWorks, thePeriodicTask concept is differently
composed of aTask and aWatchdog synchronizing with a
Semaphore.

2) Behavioral description:The behavioral description al-
lows to represent the life cycle of RTOS concepts. Figure 2
extends the representation of OSEK/VDX concepts, given
in Figure 1. The<<behavioralPrototype>> role leads to
the assignation of a behavioral description to each concept,
including services.

Fig. 2: Behavioral representation of OSEK/VDX platform

Each behavioral description is translated into a Time Petri
Net (TPN) [18] [19] whose definition is given Section IV.
This class of model is used to describe both synchronism and
parallelism, as well as time evolution. Therefore, TPN are well
adapted to our concerns.

In the example given in Figure 2, the TPN describingOS-
EKVDX AlarmBehavior represents the periodic activation of

OSEKVDX Alarm. Informally, once a token is present in the
ENABLE place, making itmarked, one token is periodically
distributed in the ACTIVATION place. Distribution of tokens
is initially achieved once the left transition, represented as a
black rectangle, is triggered (i.e., when ENABLE is marked
and the transition clock has reached0 time unit). The peri-
odicity is then guaranteed by the right transition triggering
(i.e., when LAPSE is marked and the transition clock has
reachedp time units). With clocks on transitions, we can
consequently add as many time constraints as necessary, e.g.,
on theOSEKVDX TaskBehavior TPN, a delay between the
READY and RUNNING places could represent the required
time to start the task execution.

B. Model generation processes within SExPIsTools

SExPIsTools is designed for multi-platform deployment.
Both code and formal model generations are performed in two
steps. Figure 3 depicts these two steps.

Fig. 3: Multi-platform deployment process within SExPIsTools

The first one concerns the deployment. This is common to
both generations, which avoids to deploy twice. The applica-
tion is deployed on a specific RTOS [12] [13]. The considered
RTOS is given as a parameter of the deployment process.
Transformation rules of the process are defined independently
from the targeted RTOS. This independence is possible thanks
to roles previously highlighted. The deployment is performed
by mapping each application concept with its execution on
the targeted RTOS. The mapping consists in locating the role
of the executable concept corresponding to each application
concept through the RTOS model. Once a correspondance is
established, the structure of the located executable concept
is instanciated, i.e., duplicated. Each instance is afterwards
enriched by specifying its features with the help of the appro-
priate roles. Features specification emanates from application
concepts information. All these specified instances finally
constitute the model of the deployed application (i.e., the
platform specific model of Figure 3).

The following step concerns either the code generation
or the formal model generation. These both processes take
in input the same generated deployed application model.



The code generator being not our focus in this paper, we
only present the formalization of the deployed application
model. Similarly to the deployment, the generation processof
deployed application formal models instanciates TPN behav-
ioral descriptions [14]. The location of each TPN is carried
out from the structural instances of the deployed application
model. Indeed, knowing the source executable concept of each
structural instance, the corresponding TPN fragment is located
with the<<behavioralPrototype>> role. Each corresponding
TPN is thus duplicated giving a TPN behavioral instance (or
each TPN fragment).

The generation of these TPN fragments engages their com-
position to constitute a global formal model of the deployed
application. The elements serving as connection points must be
located through the set of these TPN fragments. Similarly to
the structural part, these elements are also located with roles.
As instantiation rules, composition rules are based on these
roles. In the interest of consistency, we have formalized the
sequence of composition rules. This sequence is ordered to
avoid any ambiguity in the formal model construction. The
TPN fragments are therefore categorized according to RTOS
concepts generalized in RTEPML:

• Concurrent resources: tasks, interruptions, alarms,
etc.

• Interaction resources: semaphores, message queues,
shared data, events, etc.

• Routines: application treatment including services
called within the application. This treatment is only
represented by the execution time.

The following Algorithm 1 informally describes the se-
quence of composition rules. We admit here that TPN frag-
ments were already instanciated.

Each composition rule is labelled from a) to d) in com-
ments through this algorithm. Firstly, a) each routine instance
is composed of all its called service instances. Then, each
concurrent resource must be composed with its execution
routine. The execution routine is called the entry point of
the concurrent resource. Each entry point is located with the
<<entryPointElement>> role (see Figure 2). As a conse-
quence, b) each concurrent resource instance is composed with
its entry point. The next composition c) concerns all concurrent
resource instances in order to put them in concurrency. As a
final step, d) interaction resource instances are composed with
the set of composed concurrent resource instances so that these
latter interact with some of them.

This order will be respected in Section V in which these
rules will be formalized. Next, in Section IV, the composition
operator of TPN based on roles is defined to formally express
these rules afterwards.

IV. TPN COMPOSITION BASED ONROLES

In order to define the composition of TPN fragments, roles
are added to the TPN modeling. These roles are therefore
assigned to places. The interest of such a method is to merge
places [20] [21], which are the connection points of the
deployed system that must be generated in TPN.

Algorithm 1 Composition rules

Input:
• IS = {IS

R1 , IS
R2 , . . . , IS

Rl}; // The service calls
behavioral instances with∀j ∈ [1, l], IS

Rj ⊆ IS
and l the number of routines to compose
• IC = {iC1, iC2, . . . , iCm}; // m concurrent re-

sources behavioral instances
• II = {iI1, iI2, . . . , iIn}; // n interaction resources

behavioral instances
Output:

• M // The composed deployed application behav-
ioral model

1: for j = 1 to l do
2: // a) Each routine behavioral instance is composed
3: iRj ← ruleComposeRoutine(IS

Rj )
4: end for
5: for k = 1 to m do
6: for all j such that1 ≤ j ≤ l do
7: if ∃iRj such thatiRj is the entrypoint ofiCk then
8: // b) Each entry point is composed
9: iEPk ← ruleComposeEntryPoint(iCk, iRj)

10: else
11: iEPk ← iCk

12: end if
13: end for
14: end for
15: for all k such that1 ≤ k ≤ m do
16: IEP ← {iEP 1} ∪ · · · ∪ {iEPk} ∪ · · · ∪ {iEPm}
17: end for
18: // c) All concurrent resources are composed
19: iCR ← ruleComposeConcurrentResources(IEP )
20: // d) All interaction resources are composed
21: iIR ← ruleComposeInteractionResources(iCR, II)
22: M ← iIR

In this section, TPN with roles are firstly defined. The
definition of the instantiation of TPN with roles is then given.
Finally, the composition of TPN is highlighted through a
synchronization formalism based on roles.

A. Formal definition of TPN with roles

TPN are a timed extension of classical Petri nets [22]
in which an implicit clock and an explicittime interval are
associated with each transition of the net. Informally, theclock
measures the time since the transition has been (continuously)
enabled, whereas the interval is interpreted as afiring con-
dition: the transition, once enabled, may be fired only if the
value (orvaluation) of its clock belongs to the time interval.

In the following, N denotes the set of natural numbers,
R≥0 the set of non-negative real numbers,∅ is the empty set
and0 is the null vector.

Definition 1 (TPN): A TPN T is a tuple〈P, T,Pre,Post,
m0, Is〉 where:

• P is a finite, non-empty set ofplaces;

• T is a finite, non-empty set oftransitions;

• Pre : P ×T → N is thebackward incidence function;



• Post : P × T → N is the forward incidence function;

• m0 is the initial marking of the net;

• Is : T → N × (N ∪ {+∞}) assigns a statictime
interval to each transition.

A marking of the netT is an application fromP to N

giving for each place of the net the number of tokens it
contains. A transitiont ∈ T is enabledby a markingm,
which is denoted byt ∈ enabled(m), if all of its input
places contain ”enough” tokens; more formally,enabled(m) =
{ t ∈ T | ∀p ∈ P, m(p) ≥ Pre(p, t) }. A transition t ∈ T
is newly enabledby the firing of transitiontf from the
marking m, which is denoted byt ∈↑ enabled(m, tf), if
it is enabled by the final markingmf defined by ∀p ∈
P, mf (p) = m(p) − Pre(p, tf ) + Post(p, tf ) but not by
the intermediate markingmi defined by∀p ∈ P, mi(p) =
m(p) − Pre(p, tf ). More formally, ↑enabled(m, tf) =
enabled(mf)

⋂

((T \ enabled(mi)) ∪ {tf}).

Finally, for any intervalIs, we denote byIs
↓ the smallest

left-closed interval with lower bound0 that containsIs. For
each transitiontr there is an associated clockxtr. We consider
valuations on the set of clocks{ xtr | tr ∈ T } and we will
slightly abuse the notations by writingv(tr) instead ofv(xtr)
to denote the valuation of the clock associated with transition
tr.

The operational semantics of a TPN can be formally
described as a time transition system; as it is a special caseof
the semantics of TPN with read and inhibitor arcs (given in
Def. 3, we will omit it here for the sake of clarity.

In order to model such behaviors as conditional executions
and preemption mechanisms, TPN have been extended with
read arcs(represented in the following with a white square
instead of a regular arrow) andinhibitor arcs(represented with
a white circle). It should be noted that these arcs only impact
the enabling rules of the net but not the marking obtained
by firing a transition: read arcs test the presence of tokens in
places without consuming them, whereas an inhibitor arc is
used to stop the elapsing of time on a transition as long as
there is a certain number of tokens in the place.

Definition 2 (TPN with read/inhibitor arcs):A TPN with
read and inhibitor arcs (RITPN) is a tuple TRI =
〈T ,Read, Inh〉 where:

• T = 〈P, T,Pre,Post, m0, Is〉 is a TPN,

• Read : P × T → N is the read function;

• Inh : P × T → N∪ {+∞} is the inhibition function1.

Informally, a transition is enabled if there are ”enough
tokens” in the places linked by either input arcs or read arcs
and if there are ”not too many tokens” in the places linked
by inhibitor arcs. More formally, the definition of the set of
transitions enabled by a markingm is updated as follows:

enabled(m) = {t ∈ T | ∀p ∈ P,

Inh(p, t) > m(p) ≥ max(Pre(p, t),Read(p, t))}

1If no inhibitor arcs links a transitiont to a placep, thenInh(p, t) = +∞.

The definition of the set of transitions newly enabled from a
markingm by the firing of a transitiontf is similarly updated.

Definition 3 (Semantics of the RITPN): The operational
semantics of the RITPN with read and inhibitor arcsTRI

defined above is given by the time transition systemS =
(Q, q0 →) such that:

• Q = N
P × R

T
≥0;

• q0 = (m0,0);

• →∈ Q× (T ∪R≥0)×Q is thetransition relationand
is composed of:
◦ thediscrete transition transition, defined∀tf ∈

T by (m, v)
tf
−→ (m′, v′) iff:

(tf ∈ enabled(m);
v(tf ) ∈ Is(tf );
∀p ∈ P , m′(p) = m(p) − Pre(p, tf ) +
Post(p, tf );
∀t ∈ T , v′(t) =
{

0 if t ∈↑enabled(m, tf )

v(t) otherwise
;

◦ the discrete transition transition, defined∀d ∈
R≥0 by (m, v)

d
−→ (m, v′) iff ∀t ∈

enabled(m), ∀δ ∈]0; d], (v(t) + δ) ∈ Is
↓(t).

Definition 4 (RI TPN with roles): A RI TPN with roles is
a tupleN = 〈TRI , R, λ〉 where:

• TRI is a RI TPN,

• R is a finite set of roles,

• λ : P → R ∪ {⊥} is the function assigning a role to
a place and⊥ denoting that no role is assigned to a
place. Hereafter, some notations and properties of this
function are enumerated:

1) Pλ = {p ∈ P | λ(p) 6= ⊥} is the set of places
with role.

2) λ\Pλ
: Pλ → R is an injective function;

3) λ−1 : R ∪ {⊥} → P ∪ {∅} such that






∀r ∈ R, λ−1(r) =

{

p if λ(p) = r

∅ otherwise
λ−1(⊥) = ∅

The operational semantics of the RITPN with rolesN =
〈TRI , R, λ〉 is the same as that of RITPN. Indeed, the use
of roles within the definition of RITPN does not impact its
semantics.

B. Instantiation of RITPN with roles

As seen previously, all RITPN fragments are instantiated
before being composed. In order to distinguish the fragments to
compose, atomic elements such as roles, places and transitions
must be identified according to the instances names, but also
according to referenced instances names.

Indeed, referenced instances emerge when instances are
service calls. Each service call refers to a resource instance.
As an example, a task activation service refers to a task. The
two concepts are distinguished because this has an impact
during the composition between a service call instance and



its referenced resource instance. For this reason, the renaming
of a role and a renaming of places and transitions are dis-
tinctly separated. This distinction is made with the following
instantiation operator.

Let N = 〈P, T,Pre,Post,m0, Is,Read, Inh, R, λ〉 be the
RI TPN with roles to instantiate. The following labelsins
andref respectively gives the names of the instance and the
referenced instance. If the instance is a resource, there isno
referenced instance withref = ins. The global renaming
function ⇁ is a bijective function fromSet to Set′ where
Set ∈ {P, T,R}.

Definition 5 (Instantiation of RITPN with roles): The
instantiation ofN denoted byNins = Ins(N , ins, ref) =
〈Pins, Tins,Preins, Postins,m0−ins, Is−ins,Readins, Inhins, Rref , λins〉

is defined by:

Nins = Ins(N , ins, ref)

= N Pins = {pins s.t. p ∈ P andp ⇁ pins},
Tins = {tins s.t. t ∈ T and t ∈ T, t ⇁ tins},
Rref = {rref s.t. r ∈ R and r ⇁ rref},
∀p ∈ P,∀t ∈ T,∀r ∈ R, s.t. p ⇁ pins, t ⇁ tins,

andr ⇁ rref we have:
Preins(pins, tins) = Pre(p, t),
Postins(pins, tins) = Post(p, t),
Readins(p, t) = Readins(pins, tins),
Inhins(p, t) = Inhins(pins, tins),
λins(p) = r iff λins(pins) = rref
λins(p) = ⊥ iff λins(pins) = ⊥

C. Specific extension of instantiated RITPN with roles

Once RI TPN are instantiated, we have sometimes been
faced with the need to extend them according to the application
to deploy. For intance, in a real-time system based on a
cooperative multitasking application with priorities, eligible
low priority tasks are inhibited by eligible high priority tasks
when allocating the processor.

We have focused on this case through this paper in order to
enrich our previous work [1] in which all tasks had the same
priorities. The cooperative multitasking case with priorities is
depicted in Figure 4. The RITPN NT1 = Ins(N , ins, ref)
is an instance of concurrent resource such that a periodic
task whereref = ins = T 1. In bold, some places with
inhibitor arcs, represented with circles, are connected to
the resumeT1 transition to inhibit the state change from
READYT1 to RUNNINGT1. The marking of one of the
places set{READYT2, READYT3, . . . , READYTx} carries
out this inhibition action and ensures the cooperative schedul-
ing of tasks.

This action being a scheduling specific case, we defined
a dedicated operator for adapting instantiated RITPN of
concurrent resources such thatNT1 to a cooperative scheduling
context.

LetNins = 〈Pins, Tins, . . . , λins〉 be a RI TPN with roles
of a concurrent resource firstly instantiated as previouslyseen.
N cs

ins = 〈P cs
ins, T

cs
ins, . . . , λ

cs
ins〉 represents the same instance

extended according to a set ofn concurrent resources identified
by INS = {ins1, ins2, . . . , insn} with upper priorities.

Definition 6 (Extension of RITPN with roles):
Cooperative scheduling of concurrent resources:The

ENABLET1

enablingT1

LAPSET1

ACTIV ATIONT1

activationT1

SUSPENDEDT1

terminatedStateT1

[inc; inc]

incrementT1

[period; period]

cycleT1

[0;0 ]

resumeT1

READYT1

activatedStateT1

READYT2

activatedStateT2

READYT3

activatedStateT3

READYTx

activatedStateTx

[0; 0]

activateT1

PROCESSORT1

processorT1resumedStateT1

RUNNINGT1

startT1

STARTT1

[0; 0]executeT1

endT1

ENDT1

NT1

Fig. 4: Specific extension of periodic task in RITPN for cooperative multitasking

extension ofNins in concurrence withn instances adapted to
a cooperative scheduling is denoted by:

N cs
ins = CoopSched(Nins, INS)

with ∀t ∈ Tins, ∃Pre(λ−1(activatedStateins), t) ∈
Preins and∃Post(λ−1(resumedStateins), t) ∈ Postins

Formally, this definition gives:

• Rcs
ins = Rins ∪RINS with RINS =

⋃

∀i∈[1,n]

{rinsi};

• P cs
ins = Pins ∪ PINS with PINS =

⋃

∀i∈[1,n]

{pinsi};

• T cs
ins = Tins;

• λcs
ins : P

cs
ins → Rcs

ins is defined by:
◦ ∀p ∈ P cs

ins \ PINS , λcs
ins(p) = λins(p)

◦ ∀p ∈ PINS and ∀i ∈ [1, n], λcs
ins(p) =

rinsi with rinsi ∈ RINS

• Pre
cs
ins : P cs

ins × T cs
ins → N is defined ∀p ∈

P cs
ins and∀t ∈ T cs

ins by Pre
cs
ins(p, t) = Preins(p, t);

• Post
cs
ins : P cs

ins × T cs
ins → N is defined ∀p ∈

P cs
ins and∀t ∈ T cs

ins by Post
cs
ins(p, t) = Postins(p, t);

• m0
cs
ins : P cs

ins → N is defined ∀p ∈
P cs
ins by m0

cs
ins(p) =

{

m0ins(p) if p ∈ P cs
ins \ PINS

m0INS(p) if p ∈ PINS

with m0INS is

defined bym0INS : PINS → N;

• Is
cs
ins : T cs

ins → I is defined∀t ∈ T cs
ins by Is

cs
ins(t) =

Isins(t);

• Read
cs
ins : P cs

ins × T cs
ins → N is defined ∀p ∈

P cs
ins and∀t ∈ T cs

ins by Read
cs
ins(p, t) = Readins(p, t);



• Inh
cs
ins : P cs

ins × T cs
ins → N is defined ∀p ∈

P cs
ins and ∀t ∈ T cs

ins by Inh
cs
ins(p, t) =



































Inhins(p, t) if p ∈ P cs
ins \ PINS

1 if



























p ∈ PINS

t ∈ T cs
ins ,

∃Pre(λ−1(activatedStateins), t) ∈ Preins

and
∃Post(λ−1(resumedStateins), t) ∈ Postins

D. RI TPN Synchronization based on roles

In order to synchronize some RITPN, we must clarify the
definition of the composition of RITPN, which will be based
on roles assigned to places. LetN1, . . . ,Nn be n RI TPN
Ni = 〈Pi, Ti,Prei,Posti,m0i , Isi , Readi, Inhi, Ri, λi〉 with
roles such that∀k 6= k′ ∈ [1, n] =⇒ Tk ∩ Tk′ = ∅ andPk ∩
Pk′ = ∅. The compositionN = 〈P, T,Pre,Post,m0, Is, R, λ〉
of the previous RITPN with roles will be denoted byN =
N1||N2|| . . . ||Nn. Linked to this composition, we define a
function leading to the merging of places whose assigned roles
will be taken into account in parameters.

The merging function֒→ is a partial function from(R1 ∪
{•}) × (R2 ∪ {•}) × · · · × (Rn ∪ {•}) → P × R where•
is a special symbol used when a RITPN is not involved in
a particular merge of the global system. We then extend the
definition of the assigning inverse function withλ−1(•) = ∅

The composition ofn RI TPN with m merging is denoted
by

(

N1|| . . . ||Nn

)

(r1
1
, . . . , r1n) →֒ (p1, r1)

. . .

(rm
1
, . . . , rmn ) →֒ (pm, rm)

with ∀i ∈ [1, n], ∀j ∈ [1,m] , rji ∈ Ri, rj ∈ R andpj ∈ P ,
and∀k ∈ [1,m], k 6= j ⇒ rki 6= rji

We will subsequently use the following notations:

• Let Pmerged
i ⊆ Pi be the set of places of the net

Ni merged by the composition. FormallyPmerged
i =

⋃

∀j∈[1,m]

{λ−1
i (rji )}

• Let P →֒ ⊆ P be the set of places of the netN ob-
tained by the merging. FormallyP →֒ =

⋃

∀j∈[1,m]

{pj}

Definition 7 (Composition of RITPN with roles): The
composition of then RI TPN Ni with the merging →֒
denoted by:

N =
(

N1|| . . . ||Nn

)

(r1
1
, . . . , r1n) →֒ (p1, r1)

. . .

(rm
1
, . . . , rmn ) →֒ (pm, rm)

is defined by:

• R =

(

⋃

∀i∈[1,n]

(

Ri\
⋃

∀j∈[1,m]

{rji }
)

)

∪

(

⋃

∀j∈[1,m]

{

rj
}

)

;

• P =

(

⋃

∀i∈[1,n]

Pi \ P
merged
i

)

∪ P →֒;

• T =
⋃

∀i∈[1,n]

Ti;

• λ : P → R is defined by:
◦ ∀p ∈ P \P →֒ meaning that∃i such thatp ∈ Pi

thenλ(p) = λi(p)
◦ ∀pj ∈ P →֒, meaning thatp is the result of a

merging,λ(pj) = rj

• Pre : P × T → N is defined ∀p ∈
P and ∀t ∈ Ti ⊆ T by Pre(p, t) =


























Prei(p, t) if p ∈ P \ P →֒ andp ∈ Pi

Prei(p
′, t), if







p ∈ P →֒ andp′ ∈ Pi

(. . . , rki , . . . ) →֒ (p, λ(p))

λi(p
′) = rki

0 otherwise.

• Post : P × T → N is defined ∀p ∈
P and ∀t ∈ Ti ⊆ T by Post(p, t) =


























Posti(p, t) if p ∈ P \ P →֒ andp ∈ Pi

Posti(p
′, t), if







p ∈ P →֒ andp′ ∈ Pi

(. . . , rki , . . . ) →֒ (p, λ(p))

λi(p
′) = rki

0 otherwise.

• m0 : P → N is defined∀p ∈ P by: m0(p) =






m0i(p) if p ∈ P \ P →֒ andp ∈ Pi

n
∑

i=1

m0i

(

λ−1(rki )
)

if

{

p ∈ P →֒

(rk1 , . . . , r
k
n) →֒ (p, λ(p))

• Is : T → I is defined∀t ∈ T by: Is(t) = Isi(t) if t ∈
Ti;

• Read : P×T → N is defined∀p ∈ P and∀t ∈ Ti ⊆ T
asPre(p, t);

• Inh : P × T → N is defined∀p ∈ P and∀t ∈ Ti ⊆ T
asPre(p, t)

As an example,N =
(

N1||N2||N3

)

(r1, r2, •) →֒ (p, r)

is the parallel composition of the 3 TPN, i.e.,N1, N2 andN3,
where the placep1 ∈ P1 such thatλ1(p1) = r1 and the place
p2 ∈ P2 such thatλ2(p2) = r2 are merged. The name of the
place obtained by this merging inN is p ∈ P and its role is
λ(p) = r ∈ R.

Property 1 (Associativity):The composition of TPN with
roles is associative in the following sense:

(

N1||N2||N3

)

(r1, r2, r3) →֒ (p, r)
=

(

(

N1||N2

)

(r1,r2) →֒(p12,r12)
||N3

)

(r12,r3) →֒(p,r)

=

(

N1||

(

N2||N3

)

(r2,r3) →֒(p23,r23)

)

(r1,r23) →֒(p,r)

Property 2 (Commutativity):The composition of TPN
with roles is commutative:

(

N1||N2

)

(r11 , r12) →֒ (p1, r1)

. . .

(rk1 , rk2 ) →֒ (pk, rk)

=

(

N2||N1

)

(r12 , r11) →֒ (p1, r1)

. . .

(rk2 , rk1 ) →֒ (pk, rk)

V. CONSTRUCTION AND ILLUSTRATION

The definitions presented above will help with the formal
construction of behavioral models expressed as RITPN. This



construction will serve as a basis for the transformation process
within the SExPIsTools framework (Figure 3). As described in
Algorithm 1, the process consists of four successive compo-
sition rules, detailled in the paragraphs below and defined by
equations (1) to (4).

A construction example in RITPN is provided to illustrate
the method. Figure 5 presents some RITPN with roles,
one per box, instantiated and ready for construction. Every
operation details the fragments involved in the composition.
The mergeable places are represented in double circle and
those ready to be merged are connected by a hook-dotted arc
with a letter corresponding to the construction step, i.e.,the
sequence of rules in Algorithm 1. Finally, roles are indicated
above and to the right of places.

The whole model is describing a monoprocessor applica-
tion Proc with two periodic tasksT 1 and T 2 sharing the
same semaphoreS. A cooperative multitasking is established
betweenT 1 andT 2 with a non-preemptive context.T 2 has a
higher priority thanT 1. Each task points to an execution rou-
tine composed of three services called in the following order:
Getk(S);Releasek(S);Terminatek(Tk) with k ∈ [1, 2].

a) ruleComposeRoutine:The list of services considered
in RTEPML is not exhaustive at the moment. The instructions
described in RITPN are currently activation and termination
of task, acquisition and release of semaphore and waiting,
notification and inhibition of event.

Let n be the number of call services described follow-
ing: {NS1,NS2, . . . ,NSn} such that∀i ∈ [1, n],NSi

=
Ins(NS , Si, ref Si) with NS the RI TPN describing a ser-
vice, Si the instance name andref Si the referenced in-
stance name. The routine construction then impliesn − 1
compositions, each one havingmj mergings of places with
j ∈ [1, n − 1]. The construction of a routine instanceNR is
given by (1).

Illustration 1 (see Figure 5):By applying NR

from (1), ∀k ∈ [1, 2], NTkBody is built from RI TPN
{NGetk(S),NReleasek(S),NTerminatek(Tk)}. This sequence
describes in the order, an acquisition ofS, a release ofS and
a termination ofTk.

b) ruleComposeEntryPoint:Each resource points to a
routine described byNR previously formed. Consequently,
NR is composed withNCτ = Ins(NC , Cτ , Cτ ) whereNC

is the RI TPN describing a concurrent resource andCτ is the
label indexed to identify each instance. The constructionNEP

of a concurrent resource instance with its executable body is
given by (2) for m mergings (we admit here that specific
extensions ofNCτ have already been applied for the needs
of the application in this equation).

Illustration 2 (see Figure 5):By applyingNEP from (2),
∀φ ∈ [1, 2], NTaskφ withBody is built composingNTφ with its
entry pointNTφBody. Prior to each composition,NT1 has been
extended since this task has the lowest priority. This extension
has thus been achieved by theCoopSched(NT1, {T 2}) oper-
ation.

c) ruleComposeConcurrentResources:At this stage,
concurrent resources must be linked together with the aim of
being scheduled by the same processor.

Let qC be the number of concurrent resources with their
composed executable bodies such that∀iC ∈ [1, qC ], each
resource is described byNEP iC

in accordance withNEP

previously formed. The construction then impliesqC −1 com-
positions, each one havingmjC mergings withjC ∈ [1, qC−1].
The construction ofNCR is given by (3).

Illustration 3 (see Figure 5):By applyingNCR from (3),
NDeployedApplicationCR

is firstly composed ofNT1 withBody

andNT2 withBody.

d) ruleComposeInteractionResources:Note that the
processor is also a shared resource. It will therefore be
considered as an interaction resource.

Let qI be the number of interaction resources considered
such that∀iI ∈ [1, qI ], each resource is described byNIiI

=
Ins(NI , IiI , IiI ) with NI the TPN describing an interaction
resource. Each interaction resource is composed withNCR

previously formed. The global construction then impliesqI
compositions, each one havingmjI mergings withjI ∈ [1, qI ].
The global compositionNIR is given by (4).

Illustration 4 (see Figure 5):By applying NIR

from (4), NDeployedApplication is finalized by composing
NDeployedApplicationCR

, NS andNProc.

VI. EXPERIMENTATION

We illustrate the use of the formal model generation
process on a case study. This case study is adapted from a
schedulability case [23] in the context of cooperative multi-
tasking.

A. Case study description

We consider an application with three concurrent real-time
activities implemented as three real-time schedulable tasksT 1,
T 2 andT 3. The concurrency of these tasks emanates from a
cooperative multitasking scheduler (based on a non-preemptive
priority policy). Here are their characteristics:

• T 1 is periodic with periodP1 = a with a ∈ [0,+∞[
and has an execution timeC1 ∈ [10, 20].

• T 2 is sporadic with only a minimal delay ofP2 = 2a
time units between two activations. The execution time
of T 2 is C2 ∈ [18, 28].

• Finally,T 3 is periodic with periodP3 = 3a time units
and has an execution timeC3 ∈ [20, 28].

These three tasks are defined with the following priority
order: T 1 > T 2 > T 3. Period a of T 1 is a parameter
determining the limit condition of schedulability of the tasks.

B. Purpose

The formal model generation process will be applied for
two different RTOS. The two chosen RTOS are those used
to present RTEPML in Section III: OSEK/VDX [16] and
VxWorks [17]. Both are used in the industrial sector, have
different API and behave differently. Roméo [24], the model-
checking tool developed within our team is used to check the
generated formal models.



NR =

(

(

(

NS1 ||NS2

)

(endref S1
, startref S2

) →֒ (SS1→S2
,⊥)

(r2
S1

, r2
S2

) →֒ (p2
S2

, r2
S2

)

. . .

(r
m1
S1

, r
m1
S2

) →֒ (p
m1
S2

, r
m1
S2

)

||NS3

)

(endref S2
, startref S3

) →֒ (SS1S2→S3
,⊥)

(r2
S1S2

, r2
S3

) →֒ (p2
S3

, r2
S3

)

. . .

(r
m2
S1S2

, r
m2
S3

) →֒ (p
m2
S3

, r
m2
S3

)

. . . ||NSn

)

(endref Sn−1
, startref Sn

) →֒ (SS1S2...Sn−1→Sn
,⊥)

(r2
S1S2...Sn−1

, r2
Sn

) →֒ (p2
Sn

, r2
Sn

)

. . .

(r
mn−1
S1S2...Sn−1

, r
mn−1
Sn

) →֒ (p
mn−1
Sn

, r
mn−1
Sn

)

(1)

with ∀k ∈ [1,mj] andn ≥ 2 if k ≥ 2 thenrkS1...Sj
= rkSj+1

NEP =
(

NCτ
||NR

)

(startCτ
, startref S1

) →֒ (S,⊥)

(endCτ
, endref Sn

) →֒ (E,⊥)

(r3
Cτ

, r3
R

) →֒ (p3
Cτ

, r3
R

)

. . .

(rm
Cτ

, rm
R

) →֒ (pm
Cτ

, rm
R

)

(2)

with ∀k ∈ [1,m] if k ≥ 3 thenrkCτ
= rkR

NCR =

(

(

NEP 1
||NEP 2

)

(processorEP1
, processorEP2

) →֒ (PEP 1→EP2
, processorProc)

(r2
EP1

, r2
EP2

) →֒ (p2
EP2

, r2
EP2

)

. . .

(r
m1
EP1

, r
m1
EP2

) →֒ (p
m1
EP2

, r
m1
EP2

)

. . . ||NEP qC

)

(processorProc, processorEPqC
) →֒ (PEP1...EPqC−1→EPqC

, processorProc)

(r2
EP1...EPqC−1

, r2
EPqC

) →֒ (p2
EPqC

, r2
EPqC

)

. . .

(r
mqC−1
EP1...EPqC−1

, r
mqC−1
EPqC

) →֒ (p
mqC−1
EPqC

, r
mqC−1
EPqC

)

(3)

with ∀kC ∈ [1,mjC ] andqC ≥ 2 if kC ≥ 2 thenrkC

EP 1...EP jC
= rkC

EP jC+1

NIR =

(

(

NCR||NI1

)

(r1
P

, r1
I1

) →֒ (p1
I1

, r1
I1

)

. . .

(r
m1
P

, r
m1
I1

) →֒ (p
m1
I1

, r
m1
I1

)

. . . ||NIqI

)

(r1
PI1...IqI−1

, r1
IqI

) →֒ (p1
IqI

, r1
IqI

)

. . .

(r
mqI
PI1...IqI−1

, r
mqI
IqI

) →֒ (p
mqI
IqI

, r
mqI
IqI

)

(4)

with ∀kI ∈ [1,mjI ] andqI ≥ 1, rkI

PIjI−1
= rkI

IjI

The aim is to verify the limits of the schedulability and
the valid values of parametera (i.e., the period ofT 1). The
application is schedulable if each activity always has at most
one running instance.

The sufficient condition ensuring that the system is schedu-
lable with a non-preemptive priority policy requires a processor
loadU such that:

U =
n
∑

i=1

(Ci/Pi) ≤ 1 (5)

with n representing the number of tasks,Ci indicating the
worst execution time of each task, andPi being the period
(resp. minimal delay) of each periodic (resp. sporadic) task
Ti.

The theoretical expected values (calculated without taking
into account the RTOS mechanism) for thea parameter are
a ≥ 44 [25]. We expect that our formal verification on the
two deployed application on VxWorks and OSEK/VDX leads
to the same result.

C. Formal composition fragment

For the sake of clarity, Figure 6 only shows the behavioral
arrangement of taskT 3 (NT3) considering the OSEK/VDX
norm (Figure 6(a)) on the left side, and the VxWorks platform
(Figure 6(b)) on the right side.

T 3 has been chosen as an illustration instead of other tasks
because it has the lowest priority. Consequently, it presents
the most complex case. We can indeed note the presence of
inhibition arcs since tasks are scheduled in accordance with a
cooperative multitasking non-preemptive priority policy. The
NT3 instance has consequently been extended by applying
CoopSched(NT3, {T 1, T 2}), for each targeted RTOS.

The body ofT 3 is simplified and contains only one service
call to suspend(in OSEK/VDX variant) orpend(in VxWorks
variant).

On both Figure 6(a) and Figure 6(b), roles appear in
bold to highlight connection points useful for the composition
through the RITPN. In a similar manner, the mergeable
places connected by a hook-dotted arc are the ones located
to composeT 3 and its body according to equation (2).

The same reasoning is obviously applied toT 1 and T 2



before composing them withT 3 in compliance with our
formalization through equations (3) and (4).

D. Application verification

Once the models are composed, they have subsequently
been checked using Roméo in order to determine the limit
value ofa so that the RTES application is schedulable. Given
the structure of both nets, the systems are schedulable if, at
any time, there is at most one token in each place (the nets
are then said to besafe). Additionally, Roméo provides the set
of values of parametera for which the property is true. The
outcome is given hereafter:

——-
Checking property AG[0,inf]bounded(1) on TPN:
”/home/clelionnais/TPN/OSEKVDX NonPreemptiveApplication.xml”
Waiting for response...
Result:
{a >= 44
}

——-
Checking property AG[0,inf]bounded(1) on TPN:
”/home/clelionnais/TPN/VxWorks NonPreemptiveApplication.xml”
Waiting for response...
Result:
{a >= 44
}

Both results match the theoretical value mentionned earlier.
We can thus observe that taking into account RTOS mech-
anisms does not change the theoretical result in this case.
Expected constraints are therefore satisfied.

Other properties could be verified, for which taking RTOS
mechanisms into account could have an impact. However, this
is beyond the scope of this paper. Alternatively, the same
property could also be verified starting from a different design
model. For instance, we could attempt to model periodicity
with a delay instead of an alarm. In such a case, we would be
able to verify that the expected properties are not preserved.

However, the purpose of our present case study is simply to
illustrate that we can support different platforms (OSEK/VDX
and VxWorks) without changing our formalization rules.

VII. B ENEFITS AND L IMITS

One of the major advantage of SExPIsTools is the multi-
platform deployment process. The possibility of capitalizing a
large number of RTOS models as a parameter of the process,
satisfies both reusability and portability criteria. The role
notion presented in this paper encourages us in this way to
provide more genericity to our transformation rules.

This role notion also fulfills the maintainability require-
ments. Composition rules have been written independently
of the RTOS modeling. In addition, the formalization of
these rules could have been done without dealing with other
stakeholders concerns. Our Algorithm 1 has been strengthened,
detecting errors (i.e., TPN fragments composition ambiguity
within rules). As a result, the correctness of the generation
process has been improved.

Furthermore, a deployment on two RTOS with different
mechanisms has been achieved to show our strategy. The same

safety property of schedulability has been verified on both
deployments. This illustrates both genericity and correctness
of deployed application model construction in TPN.

Another important point is the behavioral modeling in TPN.
This results in the possibility to apply verification activities.
Moreover, the verification of time properties such as RTES
time constraints is possible.

However, to date, this synthesis is an ongoing sketch of
proof. The purpose of such a work is to demonstrate the
feasability to develop a versatile tool suite. This experimen-
tation must deal with other aspects by considering:

• more complex RTOS mechanismssuch as preemp-
tion, priority ceiling protocol or special queues of
message box;

• other RTOS descriptions such as ARINC-653 [26],
which presents other concepts (e.g., memory parti-
tion);

• other verifications such as time constraints;

• more precisely the application, so that it is not seen
as just an ordered sequence of called services.

VIII. C ONCLUSION

In this paper, we have presented a first formalization of the
formal model generation process of our SExPIsTools tool suite.
As its name suggests, this process generates, from high-level
design descriptions, a formal model of the deployed application
on a specific RTOS.

The presented formalization focuses on both instantiation
and composition rules of the generation process. Indeed, sev-
eral formal model fragments describing parts of the RTOS and
RTES behaviors need to be instantiated and composed. This
results in a verifiable global model of the deployed application.
The composition rules are independent of a specific RTOS
thanks to the notion of role. This notion is an essential point
of our strategy and represents a major benefit compared to
other existing approaches.

This formalization leads to the definition of a new class of
Petri Net, the Time Petri Net with roles and read/inhibitor arcs.
A new operator, compared to our previous work [1], has been
defined. It allows to model the cooperative scheduling of non-
preemptive tasks. This comes to strengthen the instantiation of
RI TPN behavioral fragments according to a priority policy
before composing them.

An example of a composition of an application with two
RTOS (OSEK/VDX and VxWorks), taking into account the
different behavior of the platform, has been given.

Future prospects are scheduled in order to meet the needs
identified in Section VII. We are exploring the possibility of
extending the formalization with other model classes such as
Scheduling TPN [27], where both cooperative and preemptive
scheduling are considered.
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Fig. 5: Deployed application of semaphore sharing composedin RI TPN



LAPSET3

ACTIV ATIONT3

activationT3

SUSPENDED

terminatedStateT3

[3a; 3a]

cycleT3

[0; 0]

resumeT3

READYT3

activatedStateT3

READYT1

activatedStateT1

READYT2

activatedStateT2

[0; 0]

activateT3

PROCESSORT3

processorT3

resumedStateT3

RUNNINGT3

startT3

STARTT3

[0; 0]executeT3

endT3

ENDT3

NT3

NT3 withBody

PROCESSORTerminate3(T3)

processorT3

endT3

ENDTerminate3(T3)

resumedStateT3

RUNNINGTerminate3(T3)

terminatedStateT3

SUSPENDEDTerminate3(T3)

startT3

STARTTerminate3(T3)

[0; 0]

terminateTerminate3(T3)

DEADLINETerminate3(T3)

[20; 28]

delayTerminate3(T3)

NTerminate3(T3)

NT3Body

(b)

(b)

(b)

(b)

(b)

(a) OSEK/VDX

WD ENABLEDT3
[3a; 3a]

cycleT3

WD ELAPSEDT3

[0; 0]wdExecuteT3

START wdStartT3
[0; 0]

wdStartT3

START semGiveT3
[0; 0]

semGiveT3

END semGiveT3

SEM FULLT3

countT3

SEM EMPTYT3

discountT3

PENDEDT3

suspendedStateT3

[0; 0]

resumeT3

READYT3

activatedStateT3

READYT1

activatedStateT1

READYT2

activatedStateT2

[0; 0]wakeT3

PROCESSORT3

processorT3

resumedStateT3

EXECUTINGT3

startT3

STARTT3

[0; 0]executeT3

endT3

ENDT3

NT3

NT3 withBody

PROCESSORTake3(SEM T3)

processorT3

endT3

ENDTake3(SEM T3)

resumedStateT3

EXECUTINGTake3(SEM T3)

suspendedStateT3

PENDEDTake3(SEM T3)

SEM FULLTake3(SEM T3)

countT3

SEM EMPTYTake3(SEM T3)

discountT3

startT3

STARTTake3(SEM T3)

[0; 0] takeTake3(SEM T3)

[0; 0]

pendTake3(SEM T3)

DEADLINETake3(SEM T3)

[20; 28]

delayTake3(SEM T3)

NTake3(SEM T3)

NT3Body

(b)

(b)

(b)

(b)

(b)

(b)

(b)

(b) VxWorks

Fig. 6: RI TPN of periodic task implemented on two different RTOS


