N

N
N

HAL

open science

Formal Synthesis of Real-Time System Models in a
MDE Approach
Cédrick Lelionnais, Jérome Delatour, Matthias Brun, Olivier Henri Roux,
Charlotte Seidner

» To cite this version:

Cédrick Lelionnais, Jéréme Delatour, Matthias Brun, Olivier Henri Roux, Charlotte Seidner. Formal
Synthesis of Real-Time System Models in a MDE Approach. TARIA Journals, 2014, International

Journal on Advances in Systems and Measurements, 7 (1&2), pp.115-128. hal-01093769

HAL Id: hal-01093769
https://hal.science/hal-01093769
Submitted on 15 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01093769
https://hal.archives-ouvertes.fr

Formal Synthesis of Real-Time Sy

Cédrick Lelionnais,
Jerdome Delatour,
and Matthias Brun

ESEO-TRAME
Angers, FRANCE
Email: cedri ck. | el i onnai s@seo. fr
Email: j er one. del at our @seo. fr
Email: mat t hi as. brun@seo. fr

Email:

Abstract—The development of real-time embedded systems is
quite complex because of the wide range of execution platfors
and of the importance of non-functional requirements. Further-
more, Model Driven Engineering is particularly suitable for han-
dling the diversity of implementation targets. Therefore, several
real-time embedded systems development suites leverage déb
Driven Engineering by automatically generating platform-specific
code from high-level design models. Such tools may also taken-
functional requirements into account by integrating verification
activities. These activities typically rely on the generabn of
formal models from the same high-level design descriptionased
for code generation. However, few tool suites support bothazde
and formal model generation. Furthermore, among these, mas
overlook real-time operating systems mechanisms. Therefe,
both code and formal models generated by these tool suites ma
not behave as specified in the high-level design descriptisnThe
present work extends the SExPIsTools code generator tool se
with a support for the generation of formal models. The propsed
strategy relies on the composition of formal model fragmerg
described using an extension of the classical Time Petri NetThis
paper presents a formalization of this composition that gearically
considers the behavior of platforms. As an illustration, wethen
give the formal model describing the behavior of an applicabn
on two different platforms (OSEK/VDX and VxWorks) and check
a safety property on both models.

Keywords—Real-time operating systems, Model Driven Engi-
neering, Time Petri Nets, Multi-platform deployment, Formal model.

Real-Time Embedded Systems (RTES) increasingly su
round us in various domains (aircrafts, cars, cell phone
robotics, etc.). RTES engineers are confronted with thé-cha
lenge of developing more complex, higher quality systems
with shorter development cycles at lower costs. Model Drive

INTRODUCTION

Engineering (MDE) helps engineers to develop tool suites
that partially automate the development of RTES. Using

model transformations, these tool suites mainly produteei

executable code or formal models from high-level design

descriptions of RTES.

Some of these tool suites have both code and formal mod-
els generation processes. However, the mechanisms of Real-

Time Operating Systems (i.e., executable software plaisor
supporting real-time applications, RTOS) are often igdore

stem Models in a MDE Approdat

Olivier H. Roux
and Charlotte Seidner

IRCCyN - Université de Nantes
Ecole Centrale de Nantes
Nantes, FRANCE

Email: ol i vi er-h. roux@rccyn. ec-nantes. fr

charlotte.seidner@rccyn. ec-nantes. fr

by these generation processes. As a result, generated code
and generated formal models may not behave as specified in
the high-level design description. Consequently, vetifica

and validation activities applied on the RTES development
could provide erroneous results. For instance, the detecti

of malfunctions (e.g., wrong treatments of critical data, o
bad scheduling of real-time multitasking applicationsyldo

be compromised.

Nevertheless, among these tool suites, some consider real-
time aspects in their generation processes. They thus hake t
deployment of real-time applications on RTOS (i.e., magpin
of application concepts to execution platform servicesriteo
to execute them) into account. However, none of them satisfie
the four criteria given below:

e Portability of real-time applications to adapt to the

RTOS heterogeneity;

Reusability of generation processes for a rapid mi-
gration of these applications in a multi-platform de-
ployment case;

Maintainability of RTES to help all stakeholders in
their interventions;

Correctnessof generation processes in ordrer to have
confidence in RTES development.

This work is part of an overall strategy of RTES develop-
ment using a MDE approach. This strategy is supported by a
tool suite called SExPIsTools (for Software Execution felan

Tnside Tools). In order to satisfy the criteria previouslyem,
SSExPIsTools relies on the following approach:

e considering any RTOSas parameter of generation

processes to achieve multi-platform deployment;

writing more generic transformation rules to be
independent from the considered RTOS;

separating domain concerns(i.e., application de-
ployment choice, RTOS consideration, transformation
rules and verification and validation activities) to clar-
ify interventions of each domain specialist;

formalizing transformation rules to increase the
correctness of generation processes.

In the present paper, we focus on the latter point. We neettanscription of code snippets by configuration of funcsion
to construct RTES formal models, i.e., models of the wholewith RTOS information. Those information come from compo-
system including the RTOS. For this purpose, our approachents of the targeted RTOS whose architecture was preyiousl
relies on a single transformation that does not depend on anyodeled by the generic modeling language AADL, which
specific RTOS. This transformation composes multiple fdrmais dedicated to the real-time domain. The flexibility of this
model fragments independently of the target RTOS. Each gbrocess meets the heterogeneous requirements of platforms
these fragments represents a part of the formal model that

captures the behavior of the RTES. Another approach [5] also contributes to the multi-platior

deployment problem. This fills the behavioral gap in the
As a basis of the construction, we use roles to genericall\6RM package of the MARTE UML profile [6]. Before deal-
identify connection points. These roles are used as a gluleg with the RTOS behavior, a transformation process was
between the formal fragments. As a consequence, a nedevelopped [7] to generate a deployed application model
definition is presented to represent these formal fragmentsy considering the targeted RTOS structure described with
based on roles. The class of models we use is Time Petri Ne®RM. Descriptions of executable concepts (i.e., resources
(TPN). The generic construction is then formalized as asbasiand services of the API) of the targeted platform required
of the transformation rules. Finally, an application exéemip by the application are instantiated through the deployment
proposed to illustrate a multi-platform deployment caseerg process. This instantiation is completed by a refinement of
two RTOS are considered. As a result of this experimentaéion descriptions depending on both application data and locati
scheduling safety property is verified on both resulting eied of elements playing a generic role (e.g., a task priority or a
. . , . counting semaphore capacity) within the considered piatfo
fun52;731eﬂ?gle:u?exsteggioonﬁlgopsriﬁ\gr?urfa\\;veorlb(egzlg g]revgg:ftg dtheAThe integration of the behavioral aspect is also based @n thi
- Motion of role. Code shippets are assigned to executioncssrv

feg(rtr?]r;lﬂogl;ltsheosfe rr?tjllfitsa éiir?lvedne r}grzdtoabom:ah)oﬁgn\]\ﬁ?hsfe.g., a task creation or a semaphore taking) in accordaitice w
g deploy PP Java or C++/POSIX implementations.

priority policy, and 2) provide a first validation of the geite
construction. The main interest of the two last contributions is the
independence of specialists during their interventiogarging

the tool suite. This criterion guarantees the quality of mnai
tainability, which is added to the already mentioned reilisab
and portability. Despite this, these contributions présan
major drawback that is inherent to all code generators. The
formalization is indeed absent from the addressed prosesse
This weakness prevents specialists from applying verifinat
I%lctivities on deployed applications.

Section 1l presents multi-platform deployment related
works within a MDE approach [2]. A description of SEx-
PlsTools is then given in Section Ill. Section IV gives the
formal definition of the TPN fragments composition operator
which is based on roles. The application of this operatohéo t
construction of whole RTES formal models is then described i
Section V. Application examples are presented in Sectian VI
The benefits and limits of this approach are discussed i

Section VII. Finally, we conclude in Section VIII.))
B. Formal model generation tool suites

Il. RELATED WORKS The tool suites presented in this section encourage the

The following sub-sections present existing tool suites?€havioral formalization of RTOS.

related to the multi-platform deployment problem. 1) Without code generatorAn approach [8] has recently

Firstly, some code generators are introduced. Formal mod&funched a formal synthesis for composing behavioral nsodel
generation tool suites are then presented, some of which aff RTES. In order to achieve this, both application and plat-

also capable of generating code. Finally, we will take adtan 0" are modeled with adequate modeling language. With the
on the adopted approach. help of an Algebra of Communicating and Shared Resources

(ACSR), behavior of the targeted platform is formalized.
Behavior of the application is described by a Timed and
Resource-oriented Statechart (TRoS) including both time a
In order to promote the reuse of deployment tools withinnotations and resource constraints. A model of the deployed
a single code generator, the genericity of processes has beapplication is then composed with the obtained formal model
at the heart of concerns. For instance, TransPI [3] relies oand used for analysis. This synthesis provides a detailed
a two-step approach to generate specific code. A first phagiesign of RTES by formalizing their implementation with a
considers a generic behavioral representation of the RTO8mplementary manner. Unfortunately, this process is déexnp
API (Application Programming Interface) in accordancehwit to use, which forces stakeholders to have a good knowledge
POSIX standard. In a second phase, the deployment is refined formalization tools. Moreover, the composition reqgsire
by configuring the process rules with the API of the targeteda strong dependency of the application with respect to the
RTOS. However, the configuration of new rules does not fullyplatform.
satisfy the reuse of such a process since the tool must be
modified.

A. Code generator tool suites

Metropolis [9] supports both design and analysis of hetero-
geneous embedded systems on the basis of the platform-based
A similar experimentation [4] improves reuse by specifyingmethodology. The behavioral representation is illustraby
the RTOS concerned by the deployment without modificatiorentities such as concurrent and communication activities.
of the process. This orientation has been thought with tire ai addition, this environment offers the possibility to usenfal
of porting real-time applications. This strategy reliestbe languages in accordance with the LTL logic for verifying oot

functional and non-functional properties once the depleym In conjunction with this objective, SExPIsTools inte-
reached by mapping of the system components with the plagrates the Real-Time Embedded Platform Modeling Lan-
form entities is described. Similarly, GME [10] includeseus guage (RTEPML) [13]. RTEPML was developed with the
constraints on the representation of executable condegt&$ aim of representing executable platform concepts dedicate
to the Platform Modeling Language (PML). This considenatio to the real-time domain. To further detail their represtota
mixed with the integration of formal languages to descrii®t RTEPML [14] has been enriched to describe their behavior
behavior of platforms provides a deeper design of embeddeid TPN. However, the generation process used to take into
systems. However, the genericity of modeling languaged useaccount these behavioral descriptions needs to be foradaliz
for describing the platforms does not facilitate the tremttn which was started in [1], and is continued in the work
of particular domains such as real-time. Furthermore,stran presented in this paper (see Sections IV and V).

formation rules are not entirely clear. This leads to a less

meaningful separation of domain skills and consequently to I1l. SExPIsTooLs

a maintainability decrease. This section presents SExPIsTools. Firstly, the modeling

2) With code generator: More specifically to RTES, language RTEPML used to describe RTOS mechanisms is
Ptolemy project [11] is further adapted for describing ex-Presented. Then, both deployment and formal models gener-
ecution models. The definition of those models relies oration processes integrated in SExPIsTools are descritfesl. T
the actor-oriented design and revolves around mechaniéms Eole notion used as a generic basis of transformation rsles i
concurrency and communication implemented between RTESighlighted.
components. The behavior represented within those models
is translatable into several execution semantics. Thiefiten A. Modeling with RTEPML
offers a code-formal model duality of deployed applicasion prEpML distinguishes the RTOS structural modeling from
This a.pproach thus achieves a wide coverage of softwarg e penavioral RTOS modeling.
execution platforms. Nevertheless, the concepts of strakt o)
representation are only intended for the modeling of appli- 1) Structural description:RTEPML is born from SRM
cations with this approach, and not for RTES themselvespackage [7] mentioned in the previous section. SRM allows th
Mechanisms such as RTES components synchronization mudgescription of a large number of RTOS [15] and had identified
therefore be simulated with other verification tools. Intspi all concepts and their mechanisms present in RTOS. In SRM,
of a very high completeness, the RTES maintainability withthese concepts are called resources (e.g., task, semagtwye
Ptolemy is once again called into question. RTEPML keeps the same taxonomy. In Figure 1, a small

part of OSEK/VDX RTOS [16] and VxWorks RTOS [17]
descriptions in RTEPML are given. The task concept, called

C. Positioning schedulable resource in RTEPML, is described for both RTOS.
In order to highlight both advantages and drawbacks of « metamodel »

the works presented above, Table | classifies the tool suites RTEPML

according to their uses. Depending on whether a given tool

suite addresses only code generation, only formal models

generation, or both it will be in the first, second, or third conforms o e
column respectively. The first row is for tool suites that are 3 e | ARINC-653
not adapted to RTOS, while the second row is for tool suites | Platform | Platform
that are adapted to RTOS. 5 <<sansdumBsResoirees>
« model » priority iorit =
OPSI:'I:(f/x—II)nX i VxWork_s ~ .e:\trypaint : <<entryPointElement>>
TABLE I: Tool suites comparison TaskFunction) :
<<Infzgee;2;pa>> <<s"gsdél|'(a\lb[’)=)(k_€l'saoslll<"e>> <y <<DesignPrototype>>
| Code | Formal | Code & Formal | ;‘ [priotity + <<prion | el Bntaies
Not adapted to Metropolis [9] ? OSEKVDX F .e.'.my_pm'«""y s i 5
RTOS GME [10] TaskFunction terminateTask() : <<terminateservice>>| |
TransPl [3] ACSR+TRo0S [8] | Ptolemy [11] OSEKVDK periodicTask
Adapted to . -
RTOS Snippets+AADL [4] L 0
SRM [5] Z
1 Less suitable for both reusability and maintainability L2 S T T
2 Less suitable for reusability priory - <<priorlyBlement>> _
? Less suitable for maintainabi"ty <<Alarm>> o) T
‘ OSERVDX. Alarm l semGivel): <<mlqeaseselvice>>
cycletime : <<periodElement>> |
Ptolemy seems to be the most versatile. Nevertheless, T VxWiorks Watchdog
f et H f i cycle : i
stakeholders distinction does not appear clearly, whicksdo Vaorks iypoi ;
WdFunction ’

not facilitate maintainability.

o i Fig. 1: Structural representation of OSEK/VDX platform
Within MDE, alternative approaches were compared [12]

to meet these requirements. The adopted strategy offers the
possibility to capitalize most RTOS descriptions for multi As depicted in Figure 1, thanks to the notion of roles
platform deployment in a generic way. (represented in bold between french quotation marks), we

could specify thepriority (an integer) of OSEKVDX_Task OSEKVDX_Alarm. Informally, once a token is present in the
or of VxWorks_Task. This priority plays the role of priority ENABLE place, making itmarked one token is periodically
element g<priorityElement>>) for both tasks. Roles are distributed in the ACTIVATION place. Distribution of token
thus used to identify both structures and features of eacts initially achieved once the left transition, represenss a
RTOS resource. As another example, on OSEK/VDX modelblack rectangle, is triggered (i.e., when ENABLE is marked
the < <terminateService>> role characterizes therminate- and the transition clock has reachedime unit). The peri-
Service of OSEKVDX_Task in Figure 1. odicity is then guaranteed by the right transition trigggri
. . _ . i.e., when LAPSE is marked and the transition clock has

Sometimes, certain concepts do inherently not exist Oflgached; time units). With clocks on transitions, we can
RTOS. As an example, the periodic task concept is missing,nsequently add as many time constraints as necessary, e.g
on both OSEK/VDX and VxWorks platforms. With RTEPML, 5, the OSEKVDX_TaskBehavior TPN, a delay between the
sets of concepts (i.e., identified with tfBesignPrototype peEADY and RUNNING places could represent the required
role in Figure 1) can be composed to translate this kind ofjne to start the task execution.
concept. Thus, @eriodicTask concept could be viewed at
a composition of aTask and anAlarm for OSEK/VDX.
As regards VxWorks, th@eriodicTask concept is differently
composed of dalask and aWatchdog synchronizing with a
Semaphore.

B. Model generation processes within SExPIsTools

SEXxPIsTools is designed for multi-platform deployment.
Both code and formal model generations are performed in two

steps. Figure 3 depicts these two steps.
2) Behavioral description:The behavioral description al- P g P P

lows to represent the life cycle of RTOS concepts. Figure 2 Pmoiication
extends the representation of OSEK/VDX concepts, given iomcd
in Figure 1. The<<behavioralPrototype>> role leads t0 muritasking

the assignation of a behavioral description to each concepﬁpm(i)cdaetlion_\»

including services.
« metamodel »
RTEPML

—

Controlled RTEPML

| conforms to

conforms to X - conforms to

Platform
~-{ Independant
Model

Platform
Description
Model

= \
TPN
[JARINC-653
TPN
OSEK/VDX
TPN

Platform

Deployment
Processus

VxWorks
Platform

/RTOS
description

Deployed

« model »
TPN OSEK/VDX
Platform

T

« model »
PN VxWorks

« model »
TPN ARINC-653
Platform

Platform

T

</

OSEKVDX TaskBehavior

Type>>
Integer

OSEKVDX_Task

ACTIVATION READY

priority ¢

PROCESSOR

<<Routine>>

: <<entryPointElement>>

OSEKVDX

entrypoint

TaskFunction

START

)i

Application

Model - =
Platform ‘

Formal Model

Platform

Specific
Model

Code
Generator

Specific
Formal Model

Deployed
Application
Formal Model

CoDeTonpototpes SUSTENDED RUNIING Fig. 3: Multi-platform deployment process within SExPIsio
‘eriodiclasl

<<BehavioralPrototypeService>>
OSEKVDX_TerminateTaskBehavior

RUNNING START PROCESSOR

The first one concerns the deployment. This is common to
both generations, which avoids to deploy twice. The applica
00) tion is deployed on a specific RTOS [12] [13]. The considered
RTOS is given as a parameter of the deployment process.
Transformation rules of the process are defined indepelydent
from the targeted RTOS. This independence is possible thank
to roles previously highlighted. The deployment is perfedm
by mapping each application concept with its execution on
the targeted RTOS. The mapping consists in locating the role
of the executable concept corresponding to each applitatio
concept through the RTOS model. Once a correspondance is
established, the structure of the located executable pbnce
is instanciated i.e., duplicated. Each instance is afterwards
enriched by specifying its features with the help of the appr

Each behavioral description is translated into a Time Petrpriate roles. Features specification emanates from apiplica
Net (TPN) [18] [19] whose definition is given Section IV. concepts information. All these specified instances finally
This class of model is used to describe both synchronism angbnstitute the model of the deployed application (i.e., the
parallelism, as well as time evolution. Therefore, TPN aedl w platform specific model of Figure 3).
adapted to our concerns.

<<Alarm>>
OSEKVDX_Alarm
[“cycletime i
<<behavioralPrototype>>

SUSPENDED END

<<AlarmBehavior>>
OSEKVDX_AlarmBehavior

ACTIVATION .

Fig. 2: Behavioral representation of OSEK/VDX platform

The following step concerns either the code generation
In the example given in Figure 2, the TPN describ@§- or the formal model generation. These both processes take
EKVDX_AlarmBehavior represents the periodic activation of in input the same generated deployed application model.

The code generator being not our focus in this paper, wélgorithm 1 Composition rules

only present the formalization of the deployed appIicationmput;

model. Similarly to the deployment, the generation proagss
deployed application formal models instanciates TPN behav
ioral descriptions [14]. The location of each TPN is carried
out from the structural instances of the deployed appbecati
model. Indeed, knowing the source executable concept &f eac
structural instance, the corresponding TPN fragment iattxt
with the < <behavioral Prototype>> role. Each corresponding

o Ig ={Isf IsT2, ... 1™} /I The service calls
behavioral instances withj € [1,1], It C Is
and/ the number of routines to compose

Ic = {ic1,ica,---yicm}; /I m concurrent re-
sources behavioral instances

Ir = {ir1,t19,---, 41, }; I/ n interaction resources
behavioral instances

TPN is thus duplicated giving a TPN behavioral instance (OrOutput:

each TPN fragment).

The generation of these TPN fragments engages their com-
position to constitute a global formal model of the deployed 1
application. The elements serving as connection points beis

the structural part, these elements are also located wigls.ro

TPN fragments are therefore categorized according to RTOS®:
concepts generalized in RTEPML: i‘i:
e Concurrent resources: tasks, interruptions, alarms, 12:
etc. 13:

i 14:

e Interaction resources: semaphores, message queues,x.
shared data, events, etc. 16:

e Routines: application treatment including services 1’
called within the application. This treatment is only &
represented by the execution time. ;g:

21:

The following Algorithm 1 informally describes the se-
guence of composition rules. We admit here that TPN frag-22

2:
located through the set of these TPN fragments. Similarly to 3
4:
As instantiation rules, composition rules are based onethes 5
roles. In the interest of consistency, we have formalizexl th 6
sequence of composition rules. This sequence is ordered to”
avoid any ambiguity in the formal model construction. The &

e M /I The composed deployed application behav-
ioral model
for j=1tol do
/I &) Each routine behavioral instance is composed
iRj < ruleCompose Routine(Is™)
end for
for k=1tom do
for all j such thatl < j <1 do
if Jir,; such thatig; is the entrypoint ofic;, then
// b) Each entry point is composed
ippy, < ruleCompose EntryPoint(icy,ir;)
else
igpE < ok
end if
end for
end for
for all k& such thatl < k£ <m do
Igp +{igp1}U---U{ippi} U - U{ippm}
end for
/I ¢) All concurrent resources are composed
icr + ruleComposeConcurrent Resources(Igp)
/I d) All interaction resources are composed
irr < ruleComposelnteraction Resources(icr, Ir)
M <« i

ments were already instanciated.

Each composition rule is labelled from a) to d) in com-
ments through this algorithm. Firstly, a) each routineanse e
is composed of all its called service instances. Then, eacg
concurrent resource must be composed with its executio
routine. The execution routine is called the entry point of
the concurrent resource. Each entry point is located wi¢h th
<<entryPointElement>> role (see Figure 2). As a conse- A.
guence, b) each concurrent resource instance is compoted wi
its entry point. The next composition c) concerns all conenir .
resource instances in order to put them in concurrency. As Y
final step, d) interaction resource instances are compoghd w
the set of composed concurrent resource instances so ésat th

latter interact with some of them. en

dit

In this section, TPN with roles are firstly defined. The
finition of the instantiation of TPN with roles is then give

inally, the composition of TPN is highlighted through a
Qynchronization formalism based on roles.

Formal definition of TPN with roles

TPN are a timed extension of classical Petri nets [22]
which an implicit clock and an explicittime interval are

associated with each transition of the net. Informally,dloek
measures the time since the transition has been (contityous

abled, whereas the interval is interpreted d#iag con-
ion: the transition, once enabled, may be fired only if the

This order will be respected in Section V in which thesevalue (orvaluation) of its clock belongs to the time interval.

rules will be formalized. Next, in Section 1V, the compositi
operator of TPN based on roles is defined to formally express

these rules afterwards. an

IV. TPN COMPOSITION BASED ONROLES

In the following, N denotes the set of natural numbers,

>0 the set of non-negative real numbelisis the empty set

do is the null vector.
Definition 1 (TPN): A TPN T is a tuple(P, T, Pre, Post,

mo, Is) where:

In order to define the composition of TPN fragments, roles
are added to the TPN modeling. These roles are therefore
assigned to places. The interest of such a method is to merge
places [20] [21], which are the connection points of the
deployed system that must be generated in TPN.

e P s a finite, non-empty set gilaces

e T is a finite, non-empty set dfansitions

e Pre: PxT — Nis thebackward incidence function

e Post: P xT — N is theforward incidence functign The definition of the set of transitions newly enabled from a

e my is theinitial marking of the net: markingm by the firing of a transitiort; is similarly updated.

) o Definition 3 (Semantics of the RIPN): The operational
e I, T — Nx (NU{+oo}) assigns a statitime gemantics of the RITPN with read and inhibitor arc§z;
interval to each transition. defined above is given by the time transition systém=

A marking of the net7 is an application fromP to N (@0 —) such that.

giving for each place of the net the number of tokens it o (@ =N" xRZ;
contains. A transitiont € T is enabledby a markingm, -

which is denoted byt € enabled(m), if all of its input * ¢ = (mo,0);
places contain "enough” tokens; more formadlyabled(m) = e —cQx(TURsg) x Q is thetransition relationand
{teT|Vpe P, m(p) > Pre(p,t)}. A transitont € T is composed of:

is newly enabledby the firing of transitiont; from the

marking m, which is denoted byt &t enabledrm, t;), if o thediscrete transition transitiondefinedvt ; €

it is enabled by the final markingn; defined byvp e T by (m,v) - (m', ') iff
P, my(p) = m(p) — Pre(p.ty) + Post(p,t;) but not by - (t; enabledm);
the intermediate marking:, defined byVp € P, m;(p) = v u(ty) € L(ty);
m(p) — Pre(p,t;). More formally, tenabled(m,t;) = = Vp e P, m(p) = m(p) — Pre(p,ty) +
enabled(my) (" (T \ enabled(m;)) U{ts}). Post(p, t¢);

Finally, for any intervall,, we denote by/,* the smallest : WO i1 Teenableo(T’ t) V() -
left-closed interval with lower bound that contains/,. For { e . Mt ;
each transitiortr there is an associated clogk.. We consider .“(t) otherwise N _
valuations on the set of clockzy, | tr € T } and we will o thediscrete transmcain transitiondefinedvd e
slightly abuse the notations by writing¢r) instead ofv(xy,.) R>o by (m,v) — (m,0) iff vt €
to denote the valuation of the clock associated with tramsit enabled(m), V6 €]0;d], (v(t) + 8) € I;*(¢).
tr.

Definition 4 (RLTPN with roles): A RI_TPN with roles is
The operational semantics of a TPN can be formallya tupleN = (Tzz, R, \) where:
described as a time transition system; as it is a specialafase)
the semantics of TPN with read and inhibitor arcs (given in ® 7Trz is @ RLTPN,

Def. 3, we will omit it here for the sake of clarity. e Ris a finite set of roles,

In order to model such behaviors as conditional executions ¢)P 3 R U {1} is the function assigning a role to
and preemption mechanisms, TPN have been extended with a p|ace andL denoting that no role is assigned to a
read arcs(represented in the following with a white square place. Hereafter, some notations and properties of this
instead of a regular arrow) amghibitor arcs (represented with function are enumerated:

a white circle). It should be noted that these arcs only irhpac _ ;
the enabling rules of the net but not the marking obtained b v%\th_r({)?e.e P Ap) # L}is the set of places
by firing a transition: regd arcs test the presence .of_ tokens i 2) A, : P, — R is an injective function;
places without consuming them, whereas an inhibitor arc is 3) /_1*, RU{L} - PU {0} such that
used to stop the elapsing of time on a transition as long as ' if \(p) = r
there is a certain number of tokens in the place. Vre R Ar) = {p p)=

() otherwise

Definition 2 (TPN with read/inhibitor arcs)A TPN with AN L) =0
read and inhibitor arcs (RTPN) is a tuple Tgr =
(T ,Read, Inh) where: The operational semantics of the_RPN with rolesA =

(Trz, R, \) is the same as that of RTPN. Indeed, the use

e T = (P,T,Pre, Post, mg,I;) is a TPN, of roles within the definition of RITPN does not impact its

semantics.

e Read: P xT — N is theread function
e Inh: P xT — NU/{+oo} is theinhibition functiot. B. Instantiation of RITPN with roles

Informally, a transition is enabled if there are "enough AS seen previously, all RITPN fragments are instantiated
tokens” in the places linked by either input arcs or read arc§efore being composed. In order to distinguish the fragsnent

and if there are "not too many tokens” in the places linked COMpose, atomic elements such as roles, places and toassiti
by inhibitor arcs. More formally, the definition of the set of Must be identified according to the instances names, but also

transitions enabled by a marking is updated as follows: according to referenced instances names.
Indeed, referenced instances emerge when instances are
enabled(m) ={t € T'| Vp € P, service calls. Each service call refers to a resource instan
Inh(p,t) > m(p) > max(Pre(p,t), Read(p,t))} As an example, a task activation service refers to a task. The

two concepts are distinguished because this has an impact
LIf no inhibitor arcs links a transition to a placep, thenInh(p, t) = +oo. during the composition between a service call instance and

its referenced resource instance. For this reason, theniaga
of a role and a renaming of places and transitions are diS-;y.s.s,.
tinctly separated. This distinction is made with the foliog

instantiation operator.

Let N = (P, T, Pre, Post, mg, I, Read, Inh, R, \) be the
RI_TPN with roles to instantiate. The following labelss
andref respectively gives the names of the instance and the ACTIV ATION
referenced instance. If the instance is a resource, theme is
referenced instance withef = ins. The global renaming
function — is a bijective function fromSet to Set’ where
Set € {P, T, R}.

Definition 5 (Instantiation of RITPN with roles): The
instantiation of V' denoted byN;,s = Ins(N,ins,ref) =

<P1in37 Tins, Preins, Postins, mo—ins, Is—ins, Readins, Inhjyn s, chf7 >\'Lns>

is defined by:
Nins = Ins(N,ins,ref)
= N

C. Specific extension of instantiated RPN with roles

Pips = {pins stpe P andp g pins}v

Tins = {tins st.t € T andt € T, t — tins},
Rycf ={rpef sSt.r € Randr — 7.y},

Vpe PVte T,Vr € R, St.p — pins,t — tins,

andr — r..y we have:
Preins (pinsytins) = Pre(p, t):
Postins(Dins, tins) = Post(p, t),

Readins (P, t) = Readins (pins 5 tins)7

Inhms(;l), t) : InhinS(pin57tins),
Ains (P) =r |f_f Ains (pins) = Tref
)‘ins(p) = 1 iff)‘ins(pins) =1

enablingr

NT]

activatedStatery

activatedStaterz

cyelers
[period; period] READYr activatedStaters
activationsy

activatedStaters

rrrrrrrr READYj

activatep, [
0: 0]

terminatedStater;

O, O

SUSPENDEDT: RUNN|INGT: PROCESSORT:

process 1

0:0]

idry startr,

ENDry STARTr:

Fig. 4: Specific extension of periodic task in_RPN for cooperative multitasking

extension of\;,,, in concurrence wit instances adapted to
a cooperative scheduling is denoted by:

NEs. = CoopSched(Nips, INS)

Once RLTPN are instantiated, we have sometimes been with V¢t € Tj,s, IPre(A\"(activatedState;,s),t) €
faced with the need to extend them according to the apphicati Pre;,, and 3Post(\~!(resumedState;ys),t) € Postiys

to deploy. For intance, in a real-time system based on a
cooperative multitasking application with priorities,igéble
low priority tasks are inhibited by eligible high prioritagks

when allocating the processor.

Formally, this definition gives:

RS, = Rins UR Ns With Ryns = U {7ins, s

wms

Vie[l,n]

We have focused on this case through this paper in order to cs _ p. ; _ Y
enrich our previous work [1] in which all tasks had the same * P = Fins U Pryvs with Prys WEL[Jlm]{pmsi}’
priorities. The cooperative multitasking case with pties is s _
depicted in Figure 4. The RTPN Ny = Ins(N,ins,ref) o T35 = Tins;
is an instance of concurrent resource such that a periodic o yes . pes _, pes s defined by:

task whereref = ins = T1. In bold, some places with
inhibitor arcs, represented with circles, are connected to
the resumer; transition to inhibit the state change from
READYr; to RUNNINGT,. The marking of one of the
places se{ READY s, READYrs, . .
out this inhibition action and ensures the cooperative dghe

ing of tasks.

This action being a scheduling specific case, we defined
a dedicated operator for adapting instantiated TRIN of
concurrent resources such tiéét; to a cooperative scheduling

context.

LetMns = <PinSa T%nsv s

cs cs
Mns — <Pins7

by INS = {insy,insa, ..

Definition 6 (Extension of RTPN with roles):
resource3he

wms

Cooperative scheduling of concurrent

., READYr,} carries

, Ains) be @ RLTPN with roles
of a concurrent resource firstly instantiated as previossbn.
TS ..., A5 ,) represents the same instance

extended according to a setiotoncurrent resources identified
.,insy } with upper priorities.

o Vp€ P\ Pins, N;s(p) = Ains(p)
o Vp € Piys andVi € [L,n], X (p) =
Tins; with Tins; S RINS
o Prejy, : PP ox Tg — N isdefinedVp €

ms wms K2

PgsoandVt € TSP, by Press (p,t) = Preins(p, t);

wms wms

e Posti,, : P2 ox T¢ — N isdefinedVp €
PgsandVt € TSP, by Postyr (p,t) = Postins(p, t);
e mySs., P — N isdefined Vp €
Piizss by mozgrszs (p) =

; if P2\ P . .
{m()zns(p) I .p € zns\ INS with MoINS is
morns(p) if p € Pins

defined bymo;ng : Pins — N;
o I T — T is definedvt € TSP, by I, (t) =

Isins t ’

e Readj . : P2 x T¢, — N isdefinedVp €
PgsandVi € TS5, by Reads: (p,t) = Read;ns(p, t);

wms wms wms

e Inhj,. Pgs.ox T¢5. — N is defined Vp €
P and Ve T by nhiL(nt) -
Inhins(p,t) if pe P2\ Pins
p € Pins
teTs.
1 if ¢ IPre(A\ " (activatedState;ns),t) € Prej,s
and
JPost(\ " (resumedState;ns),t) € Posti,s

D. RI_TPN Synchronization based on roles

In order to synchronize some RIPN, we must clarify the
definition of the composition of RITPN, which will be based

on roles assigned to places. L&f;,..., N, ben RI_TPN
M = <H, T;, Pre;, Post;, moi,ISi , Read;, Inh;, R;, /\z> with
roles such thatk # k' € [1,n] = TpNTy =0 and P, N
Py, = (). The composition\" = (P, T, Pre, Post, mg, I, R, \)
of the previous RITPN with roles will be denoted byv' =
M |[Nz]] ...][Ny, Linked to this composition, we define

function leading to the merging of places whose assignezsrol

will be taken into account in parameters.

The merging function— is a partial function from(R; U
{8}) x (Ra U {e}) x --- x (R, U{e}) — P x R wheree

is a special symbol used when a_RPN is not involved in
a particular merge of the global system. We then extend the

definition of the assigning inverse function wiT!(e) = ()

e \:P — Ris defined by:
o ¥Vpe P\ P~ meaning thadi such thap € P;

thenA(p) = Ai(p)
o Vp/ € P77, meaning thap is the result of a
merging,A(p’) = 17
P x T — N is defined Vp €
and V¢t € T, C T by Pre(p,t)
Pre;(p,t) if pe P\ P~ andp € P,
p € P77 andp’ € P
Pre;(p/,t), if < (...,rF ...) = (p, \(p))
Xi(p') =}

e Pre
P

0 otherwise.

e Post P x T — N is defined Vp €
P and vVt € T, C T by Post(p,t)
Post;(p,t) if pe P\ P~ andp € P,

pe P~ andp’ € P
(cosrl) = (0, Mp))
Xi(p') =rf

a Post; (p’, t), if

0 otherwise.

e mg : P — N is definedVp € P by: mg(p)
mo;(p) if p€ P\ P~ andp € P;

n 1) | pe P
Smo e {05)

The composition of: RI_TPN with 7 merging is denoted o I:T — Tisdefinedvt € T'by: I5(t) = I, (t) if t €
by T
(N1||-~-||Nn)) o ') o Read: PxT — Nisdefinedtp € Pandvt € T, C T
asPre(p,t);
() s () . :
. ‘ e Inh:PxT — Nisdefinedvp e Pandvte T, C T
with Vi € [1,n], Vj € [1,m] , r'i € R;,” € Randp’ € P, asPre(p, 1)

andVk € [1,m], k # j = rF #r!
We will subsequently use the following notations:

o Let P{"”ge‘i C P; be the set of places of the net

N; merged by the composition. Formally™* 9 =

U ey
Vji€[l,m]
e Let P77 C P be the set of places of the naf ob-
tained by the merging. Formally—~ = |J {p’}
Vji€[l,m]

Definition 7 (Composition of RTPN with roles): The
composition of then RI_TPN A; with the merging —
denoted by:

N = (Ml AN | ety o ot
(7,,77L . 77L) s (p77l77,,77l)
is defined by:
e r= (U e U)o U o)
Vie[l,n] Vj€[l,m] Vji€[l,m]
° P — < U PL \F,imerged) UP‘—>'
Vie[1,n]
e T= U T5
Vie[1,n]

As an example\N = (N1||J\/2||N3)
is the parallel composition of the 3 TPN, i.&\;, N> andN,
where the place, € P, such that\;(p;) = 1 and the place
p2 € Py such that\o(p2) = ro are merged. The name of the
place obtained by this merging ik is p € P and its role is
Ap) =r € R.

Property 1 (Associativity):;The composition of TPN with
roles is associative in the following sense:

(ri,72,0) = (p,r)

<N1 HN2HN3>

N7 ||N N
<< i 2) (TlvT2)‘—’(Pl2v7‘l2)H %>

(Nlu (V211s)

(r1,m2,73) = (P, 1)

(r12,73) = (p,7)

(Tz,r3)%(p23yrzs))

(r1,m23) = (p,7)

Property 2 (Commutativity) The composition of TPN
with roles is commutative:
= (NzHNl) o,

1)

k.

(1 rd) = @', i) < (' rh

ok, rk) o ok, R rhy o R, k)

V. CONSTRUCTION AND ILLUSTRATION

The definitions presented above will help with the formal
construction of behavioral models expressed asTRN. This

construction will serve as a basis for the transformatiatess Let ¢ be the number of concurrent resources with their
within the SExPIsTools framework (Figure 3). As described i composed executable bodies such that € [1,q¢], each
Algorithm 1, the process consists of four successive comporesource is described WEPT,C in accordance with\Vgp
sition rules, detailled in the paragraphs below and defined bpreviously formed. The construction then impligs— 1 com-
equations (1) to (4). positions, each one having;, mergings withjc € [1, gc—1].

. . . . _ Th tructi is gi by (3).
A construction example in RTPN is provided to illustrate e construction i\ is given by (3)

the method. Figure 5 presents some RN with roles, lllustration 3 (see Figure 5):By applying N¢cr from (3),
one per box, instantiated and ready for construction. EverWpepioyedApplicationcp 1S firstly composed oiN71_with Body
operation details the fragments involved in the compasitio andNzo_withBody-

The mergeable places are represented in double circle and .
those reagdy to bg merged are I(Dzonnected by a hook-dotted arc d) ruI_eComposeInteracUonResourcesNot_e that the
with a letter corresponding to the construction step, e, processor 1s also_ a she_lred resource. It will therefore be
sequence of rules in Algorithm 1. Finally, roles are indécht considered as an interaction resource.

above and to the right of places. Let ¢; be the number of interaction resources considered

The whole model is describing a monoprocessor applicaSUch thatvis € [1,qs], each resource is described b, =

tion Proc with two periodic tasksI'l and 72 sharing the Ins(NT. Iy, L) ‘_Nith NI. the TPN des.cribing an interaction
same semaphorg. A cooperative multitasking is established resource. Each interaction resource is c;omposeq Wﬁh%
between'l and T2 with a non-preemptive context’2 has a Préviously formed. The global construction then impligs
higher priority thani'1. Each task points to an execution rou- compositions, eachlo_ne hav]ngj,_ mergings withyr € [L, qr].
tine composed of three services called in the following arde The global compositioth; is given by (4).

Gety(S); Releasey,(S); Terminate(Tk) with k € [1,2]. lllustration 4 (see Figure 5):By applying Nir

a) ruleComposeRoutineLhe list of services considered from (4), Nbepioyeaappiication 18 _finalized by composing
in RTEPML is not exhaustive at the moment. The instructions ¥ DeplovedApplication s N's @NdNproc.
described in RITPN are currently activation and termination
of task, acquisition and release of semaphore and waiting, VI. EXPERIMENTATION

notification and inhibition of event. We illustrate the use of the formal model generation

Let n be the number of call services described follow-process on a case study. This case study is adapted from a
ing: {Ns1,Nss,...,Ns,} such thatvi € [1,n],Ns, = schedulability case [23] in the context of cooperative fult
Ins(Ns, S;,ref_S;) with Ns the RLTPN describing a ser- tasking.
vice, S; the instance name ancef_S; the referenced in-
stance name. The routine construction then impliess 1 A Case study description
compositions, each one having; mergings of places with

j € [1,n — 1]. The construction of a routine instandéz is We consider an application with three concurrent real-time
given by (1). activities implemented as three real-time schedulablestas,
))) T2 andT'3. The concurrency of these tasks emanates from a
llustration 1 (see Figure 5)By applying Nk cooperative multitasking scheduler (based on a non-prteenp

from (1), Vk € [1,2], Nripody is built from RLTPN priority policy). Here are their characteristics:
{NGetk.(S)aNReleasek(S)7NT67‘min_atek(Tk)}- This sequence

describes in the order, an acquisition®fa release o and e T1is periodic with periodP1 = a with a € [0, 00|
a termination ofl'k. and has an execution timg1 < [10, 20].

b) ruleComposeEntryPointEach resource points to a e T2 is sporadic with only a minimal delay df2 = 2a
routine described byVy previously formed. Consequently, time units between two activations. The execution time
N is composed witWe, = Ins(N¢, C,, C,) where N of T2 is C2 € [18,28].

is the RIL. TPN describing a concurrent resource ardis the
label indexed to identify each instance. The constructign-
of a concurrent resource instance with its executable bsdy i

given by (2) form mergings (we admit here that specific These three tasks are defined with the following priority
extensions ofNc, have already been applied for the needsyrger 71 >~ 72 > T3. Perioda of T1 is a parameter

of the application in this equation). determining the limit condition of schedulability of theskes.

lllustration 2 (see Figure 5):By applying Nz p from (2),
Vo € [1,2], Nraske_withBody 1S built composingVr, with its ~ B. Purpose
entry pointNr4poay. Prior to each compositioty has been . . .
extended since this task has the lowest priority. This esiten The formal model generation process will be applied for

has thus b hieved by tBeonSched 79 _ two different RTOS. The two chosen RTOS are those used
afilgn. us been achieved by tBiopSched(Nri, {T2}) oper to present RTEPML in Section Ill: OSEK/VDX [16] and

VxWorks [17]. Both are used in the industrial sector, have
c) ruleComposeConcurrentResourceét this stage, different API and behave differently. Roméo [24], the mlede
concurrent resources must be linked together with the aim athecking tool developed within our team is used to check the
being scheduled by the same processor. generated formal models.

Finally, T3 is periodic with periodP”3 = 3a time units
and has an execution timg3 < [20, 28].

Nr = <((NS1 | |NSz) (endpep g1, starter g55) < (S5y 555, 1) ||N53> (e”drcf_szz*Sm"trcf-sg) = (9518358301

2 2 . 2 2 2 p 2
%, r3,) = 0%, r3,) %, 50135 = Ry 15

my my my myp (m2 mo my mg
(Tslesz)‘H(Pszﬂsz) (TS152'753)(_)(p53’T53)
s ||Nsn> (endpep s, qrstartees 5.0 = (Ss185...8, _1—Sp L) ()
2 2 2 2
(Tsls2---5n—1’rs7l) = (5,075,

g My 1 Mp_1 Mp_1
el o et Th o g Tl rgnTh

with Vi € [1,m;] andn > 2 if k > 2 thenr§ ¢ =7 |
NEP = (NCT ||NR) (starto ,startier g,) < (S, 1) (2)

(endCT s end,,,cf_sn) — (E, 1)
R = 0E)

(I DR O)
with Vk € [1,m] if k>3 thenrf, =1k,

NCR — ((NEP1||NEP2) (pTocessoTEPl,p7‘ocesso7‘EP2) — (PEPlﬁEPg'PTOCSSSOTPTOC)
By TEPy) < Whpy TEPy)
EPq EPgy EPy’ "EPg

C g mq m1 mq
(rgp, TEPy) 7 PEP, TEP,)

C ||NEP‘ZC> (processorproe. processorgp,) < (PEP| _EPy 1 BPgg PTocesiorproc) (3)

2 2 2 2
T ,r — ,
"EPy. BPy 1 "EPq) T PEP., TEP.)

m m m m

qc—1 ac—1 ac—1 ac—1
'r s T — (p s T
(BP{...BPg 1" "EPqq) (EPgq EPgq)

.) . ko _ . kc
with Vko € [1,m;.] andgo > 21if ko > 2 thenrgy, pp, =7pp,
Nip = ((NCR”Nh) (rporry) = @0f - r1) -~-||qu,) (T}DII-'-IqI—l’T}qI)tﬂ (p}ql,r}ql) 4)
my my my my “in m m m
Cphrn) et (TP?{-'-qufl’TIQjI) - (plq(;I’TIqu)

with Vkr € [1,mj,] andql >1, 7‘?_—,11”71 = T]IC;I

The aim is to verify the limits of the schedulability and C. Formal composition fragment
the valid values of parameter (i.e., the period ofl'1). The
application is schedulable if each activity always has astmo
one running instance.

For the sake of clarity, Figure 6 only shows the behavioral
arrangement of task’3 (Nr3) considering the OSEK/VDX
norm (Figure 6(a)) on the left side, and the VxWorks platform

The sufficient condition ensuring that the system is schedutFigure 6(b)) on the right side.

lable with a non-preemptive priority policy requires a pgesor T3 has been chosen as an illustration instead of other tasks
load U such that: because it has the lowest priority. Consequently, it prissen
the most complex case. We can indeed note the presence of
inhibition arcs since tasks are scheduled in accordande avit
cooperative multitasking non-preemptive priority polidshe

n

U= Z(Ci/Pi) <1 () Nrs instance has consequently been extended by applying
i=1 CoopSched(Nrs, {T1,T2}), for each targeted RTOS.
with n representing the number of tasks; indicating the The body ofI'3 is simplified and contains only one service

worst execution time of each task, amtl being the period call to suspendin OSEK/VDX variant) orpend(in VxWorks
(resp. minimal delay) of each periodic (resp. sporadick tas variant).

. On both Figure 6(a) and Figure 6(b), roles appear in

bold to highlight connection points useful for the compiosit
through the RITPN. In a similar manner, the mergeable
places connected by a hook-dotted arc are the ones located
to composel'3 and its body according to equation (2).

The theoretical expected values (calculated without takin
into account the RTOS mechanism) for theparameter are
a > 44 [25]. We expect that our formal verification on the
two deployed application on VxWorks and OSEK/VDX leads
to the same result. The same reasoning is obviously appliedZa and 72

before composing them witlf’3 in compliance with our safety property of schedulability has been verified on both
formalization through equations (3) and (4). deployments. This illustrates both genericity and corress$
of deployed application model construction in TPN.

D. Application verification) o) o
Another important point is the behavioral modeling in TPN.

Once the models are composed, they have subsequentiy,is results in the possibility to apply verification acties.

been checked using Roméo in order to determine the limif;,reqver, the verification of time properties such as RTES
value ofa so that the RTES application is schedulable. Givernma constraints is possible.

the structure of both nets, the systems are schedulabl¢ if, a

any time, there is at most one token in each place (the nets However, to date, this synthesis is an ongoing sketch of
are then said to beafg. Additionally, Roméo provides the set proof. The purpose of such a work is to demonstrate the
of values of parameter for which the property is true. The feasability to develop a versatile tool suite. This experim

outcome is given hereafter: tation must deal with other aspects by considering:

Checking property AG[0,inflbounded(1) on TPN: e more complex RTOS mechanismsuch as preemp-
"lhome/clelionnais/TPN/OSEKVDX_NonPreemptiveApplication.xml” tion, priority ceiling protocol or special queues of
Waiting for response... message box;

Result: .

(a>—44 e other RTOS descriptionssuch as ARINC-653 [26],

} which presents other concepts (e.g., memory parti-
. tion);

Checking property AG[0,inflbounded(1) on TPN:
"Ihome/clelionnais/TPN/VxWorks_NonPreemptiveApplication.xml”
Waiting for response...

e other verifications such as time constraints;

e more precisely the application so that it is not seen

Result as just an ordered sequence of called services.
{a>=44
}

Both results match the theoretical value mentionned earlie VIIl. CONCLUSION

We can thus observe that taking into account RTOS mech-

anisms does not change the theoretical result in this case. |n this paper, we have presented a first formalization of the

Expected constraints are therefore satisfied. formal model generation process of our SExPIsTools todésui
Other properties could be verified, for which taking RTOSAS itS name suggests, this process generates, from high-lev

mechanisms into account could have an impact. However, th@€Sign descriptions, a formal model of the deployed apiptina

is beyond the scope of this paper. Alternatively, the sam@" & Specific RTOS.

property could also be verified starting from a differentiges

model. Eor instance we could attempt to model periodicit The presented formalization focuses on both instantiation
' ’ P P Yand composition rules of the generation process. Indeed, se

\évglg ?Od\?el}arli);;r:ﬁ;etattﬂe()feinea::l?er&n. n su%h a case, ;/ve Wdoeuld bSral formal model fragments describing parts of the RTOS and
P Properties are not preseVe pres pehaviors need to be instantiated and composed. This

However, the purpose of our present case study is simply teesults in a verifiable global model of the deployed appidrat
illustrate that we can support different platforms (OSERX/ The composition rules are independent of a specific RTOS

and VxWorks) without changing our formalization rules. thanks to the notion of role. This notion is an essential poin
of our strategy and represents a major benefit compared to
VII. BENEFITS ANDLIMITS other existing approaches.

One of the major advantage of SExPIsTools is the multi- 1hs formalization leads to the definition of a new class of
platform deployment process. The possibility of capitatiza perj Net, the Time Petri Net with roles and read/inhibitarsa
large number of RTOS models as a parameter of the procesg,new operator, compared to our previous work [1], has been
satisfies both reusability and portability criteria. Thelero yefined. It allows to model the cooperative scheduling of-non
notion presented in this paper encourages us in this way tgreemptive tasks. This comes to strengthen the instaortiaf
provide more genericity to our transformation rules. RI_TPN behavioral fragments according to a priority policy

This role notion also fulfills the maintainability require- before composing them.
ments. Composition rules have been written independently . L :
of the RTOS modeling. In addition, the formalization of __An €xample of a composition of an application with two

these rules could have been done without dealing with otheR OS (OSEK/VDX and VxWorks), taking into account the
stakeholders concerns. Our Algorithm 1 has been strengthen different behavior of the platform, has been given.
detecting errors (i.e., TPN fragments composition amiygui
within rules). As a result, the correctness of the genematio
process has been improved.

Future prospects are scheduled in order to meet the needs
identified in Section VII. We are exploring the possibilitfy o
extending the formalization with other model classes suh a

Furthermore, a deployment on two RTOS with differentScheduling TPN [27], where both cooperative and preemptive
mechanisms has been achieved to show our strategy. The sasgheduling are considered.

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

El

[20]

(11]

[12]

[13]

[14]

[15]

[16]
[17]
(18]

[19]

[20]

[21]

REFERENCES [22]
C. Lelionnais, M. Brun, J. Delatour, O. H. Roux, and C. @i,
“Formal Composition Based on Roles within a Model Driven (23]
Engineering Approach,” in Advances in System Testing andi&&on.
Venice, ltaly: IARIA, Nov. 2013, pp. 27-32. [Online]. Avable:
http://hal.archives-ouvertes.fr/hal-00941024 and wiwvnkmind.org [24]

J. Miller and J. Mukerji, “Model Driven Architecture (MB) Guide,
version 1.0.1.” Tech. Rep., June 2003.

J. C. Maeng, D. Na, Y. Lee, and M. Ryu, “Model-Driven Dewgient

of RTOS-Based Embedded Software,” in Proceedings of theé 21s
International Conference on Computer and Information r&es, ser.
ISCIS'06. Berlin, Heidelberg: Springer-Verlag, 2006, 687—696.

B. Kim, I. Lee, L. T. X. Phan, and O. Sokolsky, “Platform mendent
code generation of real-time embedded software,” in Pdings of the
4th ACM/IEEE International Conference on Cyber-Physical 8y,
ser. ICCPS '13. New York, NY, USA: ACM, 2013, pp. 246-246.

W. El Hajj Chehade, “Contribution to Multiplatform Depyment of
Multitasking Applications by High-Level Execution Sere& Behav-
ioral Modeling,” Ph.D. dissertation, Laboratoire d’'Ingérie Dirigée
par les Modeles des Systemes Temps Réels Embarquég)(LISEA
Saclay, 2011.

Object Management Group (OMG), “UML Profile for Modelirend
Analysis of Real Time and Embbeded Systems (MARTE), ver&idr’
Tech. Rep., June 2011.

F. Thomas, S. Gérard, J. Delatour, and F. Terrier, ‘Bafe Real-Time
Resource Modeling,” in Embedded Systems Specification agsigh
Languages. Springer, 2008, pp. 169-182.

J. Kim, I. Kang, J.-Y. Choi, I. Lee, and S. Kang, “Formalnslyesis
of application and platform behaviors of embedded softveystems,”
Software & Systems Modeling, 2013, pp. 1-21.

A. Pinto, “Metropolis Design Guidelines,” Universityf dCalifornia,
Berkeley, USA, Tech. Rep., Nov. 2004.

J. Davis, “GME: The Generic Modeling Environment,” iro@panion
of the 18" Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, sePSDA
'03. New York, NY, USA: ACM, 2003, pp. 82-83.

E. A. Lee, “Overview of the Ptolemy Project,” EECS Depaent,
University of California, Berkeley, Tech. Rep. UCB/ERL M@8, July
2003.

M. Brun, “Contribution to the Software Execution Ptatin Integration
during an Application Deployment Process,” Ph.D. dissiema Ecole
Centrale de Nantes, Nantes, France, Oct. 2010.

M. Brun and J. Delatour, “Contribution on the SoftwareeEution
Platform Integration During an Application Deployment gees,” in
First Topcased Day, Toulouse, France, Feb. 2011.

C. Lelionnais, M. Brun, J. Delatour, O. H. Roux, and C.idBer,
“Formal Behavioral Modeling of Real-Time Operating Sysghin
14 Int. Conf. Ent. Information Systems - Model Driven Develcgmh
for Information Systems (MDDIS 2012), Wroclaw, Poland, d@012.

F. Thomas, J. Delatour, F. Terrier, and S. Gerard, “Toseaa Frame-
work for Explicit Platform-Based Transformations,” in 11EEE
International Symposium on Object Oriented Real-Time rikigted
Computing (ISORC), May 2008, pp. 211-218.

OSEK/VDX Group, “OSEK/VDX Operating System Specificat,
version 2.2.3,” Tech. Rep., Feb. 2005, http://www.osek-ody/.

WindRiver, “VxWORKS Programmer’s Guide, version 6.9.” Tech. Rep.,
Feb. 2011.

P. M. Merlin, “A Study of the Recoverability of ComputinSystems,”
Ph.D. dissertation, 1974, aAl7511026.

M. Boyer and O. H. Roux, “On the Compared Expressiveneks
Arc, Place and Transition Time Petri Nets,” Fundamentarmtticae,
vol. 88, no. 3, 2008, pp. 225-249.

F. Taiani, M. Paludetto, and J. Delatour, “ComposingaRTime Ob-
jects: A Case for Petri Nets and Girard’s Linear Logic,” iro&edings
of the 4" IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing, ISORC-2001. IEEE, 2001, pp8-2305.

F. Peres, B. Berthomieu, and F. Vernadat, “On the Coitiposof Time
Petri Nets,” Discrete Event Dynamic Systems, vol. 21, n&eht. 2011,
pp. 395-424.

[25]

[26]

[27]

C. A. Petri, “Kommunikation mit Automaten,” Ph.D. dsation,
Institut fur Instrumentelle Mathematik, Bonn, 1962.

G. Bucci, A. Fedeli, L. Sassoli, and E. Vicario, “Timeda& Space
Analysis of Real-Time Preemptive Systems,” |IEEE Transasti on
Software Engineering, vol. 30, no. 2, Feb. 2004, pp. 97-111.

D. Lime, O. H. Roux, C. Seidner, and L. M. Traonouez, “RmmA
Parametric Model-Checker for Petri Nets with Stopwatc¢hies 151

International Conference on Tools and Algorithms for thex€nuction
and Analysis of Systems (TACAS 2009), ser. Lecture Notes om€
puter Science, S. Kowalewski and A. Philippou, Eds., voD%5 York,

United Kingdom: Springer, Mar. 2009, pp. 54-57.

A. Jovanovi¢, D. Lime, and O. H. Roux, “Integer ParaereBynthesis
for Timed Automata,” in 18 International Conference on Tools and
Algorithms for the Construction and Analysis of Systems CHS
2013), ser. Lecture Notes in Computer Science, N. Pitermach a
S. Smolka, Eds., vol. 7795. Rome, ltaly: Springer, Mar. 2043.
401-415.

Airlines Electronic Engineering Committee, “Aviosidpplication Soft-
ware Standard Interface, ARINC Specification 653-1,” TéRép., Oct.
2003, aeronautical radio INC., Annapolis, Maryland, USA.

D. Lime and O. H. Roux, “Formal Verification of Real-Tinfystems
with Preemptive Scheduling,” Journal of Real-Time Systeuus. 41,
no. 2, 2009, pp. 118-151, copyright Springer.

enablingr

ENABLET,

incrementry

[inc; inc]

ACTIVATIONT,

LAPSET

cyclery

[period; period)

Damuaumzn

NDeployed Application

NTl NTQ

activatedStater activatedStaters

LAPSET2

cyclera

[period; period)

activatedStaters

READYr»
processoryy processorys resumers
activatery [resumery []
10501 PROGESSORTs 10:0]
terminatedStater, resumedStater, resumedStaters
.
SUSEENDEDr, NG NG
l' \‘
/ .
.
[0;0] [0; 0] executerss
‘\
\ . .
v . S,
\ /
startr startrs
,
ENDzpy STARTr STARTrs VENDz>
/ ! . v
B . (b) (b)
h . ’
. . Y, counts counts Atarts
i
g ISTART G0, (s, FREEG.i,(s) FREEG..y(s) STARTG.1y(s)
' K i
h
. K .
'
: . Naety(s)
' .
K ' .
'
! H getGet, (5) i getBypassaerys)| | 9etGety(s)
'
H h [0;0] '
h ' h
! H (a)
H '
: N discount s
' h
' Y PNDou) BUSYe.r(s) NDaery(s)
'
'
'
(b)
' v
H counts
H
H 1STARTRercase, (9 STARTRelcases(s)
'
' —
' ' FREERcidase, (s)
'
' ' (a) (a)
[l (b) '
v : ! f
| ' release petcase, (5) rdleaseBypass Relcases () . . releasepeicasey (s)
i H [0:0] [0;0] [0;:0]
\
A \ Nrpeteases(s)
\
\ v discounts énds
\
\ PO S
\
\ X Buéu‘/n.l.w,(. y
Y ' . 5 (a)

\

.
! discounts

/.
s processorry processorra

3 Nrerminates(12)

PROCESSORpcrinate; (1) PROCESSOR e/ minatey(12)

Nproce

B
endr: L processorproc

SUSPENDED 7 minatey (11)

ENDrerminater(r1)

PROCESSOR

Fig. 5: Deployed application of semaphore sharing compasdél_TPN

ENDrerminates(r2)

enablingrs

ENABLET,

incrementra

ine;inc]
[C ctivationra
ACTIVATIONz,
J activaters
terminatedStaters
.
SUSPENI\EDr:
\
\
.
‘\
\
\
\
\
\
\
\
\

'
resumedStatary
.

l
l

.
RUNNINGTermindtey(T2)

/
n

.
terminatedStaters

SUSPENDEDT . rminates(12)

NTS

LAPSEr; activatedStaters
READYr; activatedStater;
cyclers
[3a;3a]
activationrs activatedStaters

O

ACTIVATIONT3

processorrs

activatess [rosumors [

[0;0] [0:0]
v
\
\
dStater T3 ‘I
v
\
s
x RUNNINGrs \
. v
, v
l' \
. . '
, executers [0;0] ‘l
, v
, v
, '
II \
, v
, '
K fdrs startrs i
; :
) 1
Eb) ENDrs-; STARTrs !
K ! (b) (b)
h . . '
N ' \ startry '
h
I) H
! . '
, STARTrcrminates(rs) '
' H N, h
(! ' Terminates(T3) © |
H H '
H ,]
' t#layrpmnmama(-r:x)] :
H
H H 205 28] v
' \ '
' . '
' '
'
3 (b l'
'
h
. .
. '
RUMNINGrerminatey ferminates(T3) N
\ '
\
rocessorrs
n
-l
0;0
050l PROCESSORrc,uinates(13)
.
terminatedStaters endrs

SUSPENDEDr:rminates(T3) ENDrerminateg(T3)

N13Body
N13_withBody

(a) OSEK/N/DX

cyelers

WD_ENADB

wdStartrs

NTS

[D_ELAPSEDrs3

activatedStaters

activatedStater:

START -wdStartrs

m sem{ivers

READYT:1

dctivatedStaterz

processorrs

, : [J’

]
resumedStaters
[}

EXECUTING akeg(SEM_T3)

K K [0;0] PROCESSORT3
v
ll Y
K \
. I’ 2 dedStaters r d Ts “
’ 1
.
. ! PENDEDrs ,(Y\
' B g >
\
,’ " . . EXECUTINGs
. . . e
. 4 .
' B L,
' ; K
' .
1 1 ,/ executers [05 0]
'
; (b) S
) B
1 1 ll 'I
'
l' 1 l' ’
K ! K ndrs startrs
' ' '
: ! ! !
b)
: 'l " E ENDrs STARTTs
' N !
h ' ' h ! (b)
1 1 ' r .
H ' K ¥ 5y startry
' '
(::) ' H STARTrares(sEM-T3)
' 1 ! H
H H ! '
' ! '
' : ! ' NTakes (SEM_T3)
! '
' '
\ ' ! h
' '
' \ (b) dblayrareg(serrs) |
' '
. v : ' [20; 28]
' ' ' '
\ ' ' '
v
1} ' H
'
v
v
\
\
v
\
\
\
\

SEM_EMPTY1,c5(sEM_T3)

1] takerakeg(semrs) !

.
proocessorrs

PROCESSORtakis(sEM-T3)

©E’ﬂdr3

ENDiiiie, (s oni)

suspendedStaters

PENDED ey (SEM 1) Norspod
oay

NI'S,’UJH hBody

(b) VxWorks

Fig. 6: RLTPN of periodic task implemented on two different RTOS

