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The article presents a novel relay control design strategy for some classes of nonlinear systems. The main idea of this work is to use an Linear Parameter-Varying (LPV) modeling to design nonlinear switching surfaces. This modeling is motivated by the fact that numerical tools such as LMI may be used by exploiting the quasi-linear structure of the system. Here we propose LMI formulation providing criteria for the design of switching surfaces. This design is seen as the synthesis of Parameter Dependent Relay (PDR). The second contribution of this article is the implementation of this relay strategy for Permanent Magnet Synchronous Motors (PMSM). Since the LPV framework can encompass the PMSM model, the obtained relay control depends on the motor speed variations. Experimental results on a PMSM are presented.

I. INTRODUCTION

The design of switching controller for nonlinear systems with input constraints represents a challenging area in control theory [START_REF] Tsypkin | Relay Control Systems[END_REF], [START_REF] Emel'yanov | Variable Structure Automatic Control Systems[END_REF], [START_REF] Flügge-Lotz | Discontinuous automatic control[END_REF], [START_REF] Saberi | Special Issue: Control of Linear Systems Subject to Hard Constraints[END_REF]. Among the class of systems with input constraints [START_REF] Tarbouriech | Control of uncertain systems with bounded inputs[END_REF], [START_REF] Zaccarian | Modern anti-windup synthesis: control augmentation for actuator saturation[END_REF], relay feedback control has been applied in a wide range of technical domains. It may be found for example in servos-mechanisms in mechanics or in hydraulic systems, in power-electronic actuators with Pulse-Width Modulation (PWM) etc. Such control systems have been used in variable structure control [START_REF] Tsypkin | Relay Control Systems[END_REF], [START_REF] Edwards | Sliding mode control -Theory and applications[END_REF], [START_REF] Emel'yanov | Variable Structure Automatic Control Systems[END_REF], [START_REF] Utkin | Sliding modes in control optimization[END_REF], since they offer interesting robustness properties faced to particular perturbations. The design of relay control systems is a non-trivial issue: the control design procedure has to take into account complex phenomena such as zeno solutions [START_REF] Schumacher | Time-scaling symmetry and Zeno solutions[END_REF], limit cycles [START_REF] Boiko | Oscillations and transfer properties of relay servo systems -the locus of a perturbed relay system approach[END_REF], [START_REF] Johnson | Review of sensorless methods for brushless DC[END_REF], [START_REF] Gonc ¸alves | Global stability of relay feedback systems[END_REF] and sliding modes [START_REF] Utkin | Sliding modes in control optimization[END_REF], [START_REF] Tsypkin | Relay Control Systems[END_REF], [START_REF] Fridman | An averaging approach to chattering[END_REF]. In fact the system dynamics are inherently hybrid since to each control value we may associate a discrete state variable. Therefore, the synthesis of a relay feedback can be related with the design of switching surfaces in hybrid systems [START_REF] Van Der Schaft | An introduction to hybrid dynamical systems[END_REF], [START_REF] Liberzon | Switching in Systems and Control, ser. Systems & control. Systems & Control: Foundations & Applications[END_REF], [START_REF] Bolzern | Quadratic stabilization of a switched affine system about a nonequilibrium point[END_REF], [START_REF] Deaecto | Switched affine systems control design with application to DC-DC converters[END_REF].

Although relay feedback has been studied for a long time, there are still many unsolved issues. For the moment very few numerical tools exist for designing switching surfaces while optimizing the system performances or the size of the domain of attraction. Sliding mode control theory is well developed for generic nonlinear switching surfaces. However, for relay control, the exiting numerical optimization approaches can only handle switching surfaces described by affine hyperplanes [START_REF] Hetel | Sampled-data control of LTI systems with relay: a convex optimization approach[END_REF], [START_REF] Polyakov | On practical stabilization of systems with delayed relay control[END_REF].

The main idea of this work is to use a Linear Parameter-Varying (LPV) [START_REF] Biannic | Parameter varying control of a high performance aircraft[END_REF], [START_REF] Bara | Parameter-dependent state observer design for affine LPV systems[END_REF], [START_REF] Daafouz | Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties[END_REF], [START_REF] Geromel | Robust stability of time varying polytopic systems[END_REF] modeling in order to design nonlinear switching surfaces. The LPV formulation has a long history in the automatic control literature. This modeling enables the use of well known linear design approaches to the case of nonlinear systems. The plant dynamics are rewritten in such a manner that the system nonlinearities are embedded in linear models as time-varying parameters. Powerful numerical optimization tools (such as LMI solvers [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]) can be applied in the design procedure by exploiting the quasi-linear system structure. The main theoretical contribution of the article is to provide criteria for the design of nonlinear switching surfaces by using an LMI formulation. From the point of view of LPV systems, the design of nonlinear switching surfaces is seen as the synthesis of Parameter Dependent Relay (PDR). For the sake of generality we consider a wide class of relays which is not only restricted to the classical sign controller (vector taking ± one as elements), but may take any values in the vertices of a time-varying convex polytope. Such a control can also encompass the simplex type variable structure control [START_REF] Bartolini | Simplex sliding mode control of multi-input systems with chattering reduction and mono-directional actuators[END_REF], [START_REF]Simplex methods for nonlinear uncertain sliding-mode control[END_REF], [START_REF] Bajda | Vector method of design of sliding motion and simplex algorithms[END_REF] for which few LMI design procedure exist. From a practical point of view, the second contribution of the article is the illustration of the proposed methodology for the control of a Permanent Magnet Synchronous Motor (PMSM). Indeed, PMSM are usually controlled by relays and thus only a finite set of control values is available. However in most of classical control design methods the use of averaging and PWM ignores the relay nature of the actuator [START_REF] Bodson | High performance nonlinear feedback control of a permanent magnet stepper motor[END_REF], [START_REF] Sira-Ramírez | A Passivity plus Flatness Controller for Permanent Magnet Stepper Motor[END_REF]. Here we propose a direct relay control which may use the advantages of the switching actuator in power electronics. The LPV framework encompasses the PMSM model. The obtained switching surfaces depend in a nonlinear manner on the motor speed. Preliminary results have been proposed in the conference version [START_REF] Delpoux | Permanent Magnet Synchronous Motor control via Parameter Dependent Relay Control[END_REF]. The article is divided into five sections. Section II presents the motivation of the article. An LPV representation is derived from the PMSM model and the relay nature of the actuators is exhibited. Section III is dedicated to the design of the PDR control for generic model of LPV systems. In Section IV, an LMI criterion is proposed for the stabilization problem. This section also provides tools for the estimation of the domain of attraction. The theory presented in this article is illustrated through an academic example in Section V. The last section, Section VI, is devoted to the real implementation of the control design procedure on a PMSM.

Notations: The identity (or null) matrix with appropriate dimension is denoted by I (or 0). For a real square symmetric matrix M, M > 0 (M < 0) indicates that M is positive (negative) definite. For a full rank square symmetric matrix M , M -1 denotes the inverse of M . In a symmetric matrix * denotes an element that may be inferred by symmetry.

For a matrix A ∈ R n×n , we denote the Hermitian of A by: He{A} = A + A T . We denote by I N the set {1, 2, . . . , N }. The symbol ∆ N denotes the unit simplex in R N defined by:

∆ N = µ ∈ R N : µ i ≥ 0, i ∈ I N , N i=1 µ i (t) = 1 .
For a given set S ∈ R n the symbol conv(S) denotes the closed convex hull of the set. For a symmetric positive definite matrix P ∈ R n×n and a positive scalar c we denote

E(P, c) = {x ∈ R n : x T P x ≤ c}. Let B(x, c) denotes the open ball centered on x ∈ R n with radius c > 0, B(x, c) = {y ∈ R n : |x -y| < c}.
Given a constant scalar U > 0, we define the finite set

Ψ m (U ) = {u ∈ R m : u i ∈ {-U, U }, i ∈ I m }.
Given a continuous function f : R n → R and a compact set S we denote by

argmin s∈S f (s) = {s ∈ S : f (s) ≤ f (r), ∀r ∈ S}. For a set S ⊂ R m , K ∈ R m×n , we denote C S (K) = {x ∈ R n : Kx ∈ conv(S)}.

II. MOTIVATION

In this section the speed model of the PMSM is presented and the practical problem that motivated our research is introduced. The equations [START_REF] Tsypkin | Relay Control Systems[END_REF] give the standard PMSM model in the phase (or winding) variables [START_REF] Marino | Nonlinear adaptive control of permanent magnet step motors[END_REF]:

                   L di α dt = v α -Ri α + KΩ sin(n p θ), L di β dt = v β -Ri β -KΩ cos(n p θ), J dΩ dt = K (i β cos(n p θ) -i α sin(n p θ)) -f v Ω -τ, (1) 
where v α and v β are the voltages applied to the two phases of the PMSM, i α and i β are the two phase currents, L is the inductance of a phase winding, R is the resistance of a phase winding, K is the back-EMF constant (and also the torque constant), n p is the number of pole pairs (or rotor teeth), J is the moment of inertia of the rotor (including the load), f v is the coefficient of viscous friction and τ represents the load torque. The variable θ is the angular position of the rotor, Ω = dθ/dt is the angular velocity of the rotor. While for particular applications the variable θ can be included in the state vector, in this article we consider only the speed control, justifying the fact that θ is not in the state vector. We are interested in the stability of the velocity in a constant value. In this case the position θ is time varying. For this reason θ is not included in the state vector.

The non-linear state space representation of the system of equations ( 1) is given by:

ẋαβ (t) = f (x αβ , t) + Bv αβ (t) + D̟(t), (2) 
where x T αβ = i α i β Ω , v T αβ = v α v β and ̟ = τ . The function f (x αβ , t) is defined by: f (x αβ , t) =           - R L i α (t) + K L Ω(t) sin(n p θ(t)) - R L i β (t) - K L Ω(t) cos(n p θ(t)) K J (i β (t) cos(n p θ(t)) -i α (t) sin(n p θ(t))) - f v J Ω(t)           , B =     1 L 0 0 1 L 0 0     and D =    0 0 1 J    .
Considering that each motor phase is actuated via commutation, the control vector v αβ belongs to the set Ψ 2 (V ), where V represents the maximal voltage. 
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Model in the rotating frame (d -q)

In the phases frame the signals i α and i β vary at n p times the frequency of rotation. This high frequency problem is alleviated by the use of the direct quadrature (d -q) transformation, also known as the Park transformation [START_REF] Park | Two-reaction theory of synchronous machines generalized method of analysis-part I[END_REF]. This transformation changes the frame of reference from the fixed phase axes to axes moving with the rotor. Equation ( 3) gives the transformation performed to obtain the rotating frame:

R(θ(t)) = cos(n p θ(t)) sin(n p θ(t)) -sin(n p θ(t)) cos(n p θ(t)) , i d (t) i q (t) = R(θ(t)) i α (t) i β (t) and v d (t) v q (t) = R(θ(t)) v α (t) v β (t) . (3) 
The state space representation is then given by:

ẋdq (t) = A dq (Ω(t))x dq (t) + Bv dq (t) + D̟(t), (4) 
where x T dq = i d i q Ω , v T dq = v d v q , and,

A dq (Ω(t)) =           - R L n p Ω(t) 0 -n p Ω(t) - R L - K L 0 K J - f v J           .
The matrices B and D remain unchanged. Consider that Ω(t) ranges between known extremal values Ω(t) ∈ [Ω, Ω]. In this frame the PMSM can be described using an LPV state space representation. The state space representation of the system depends linearly on a vector of time-varying parameters: Ω(t). The model may be represented as follows:

     ẋdq (t) = A(α(t))x dq (t) + Bv dq (t) + D̟(t), A(α(t)) = N A i=1 αi(t)Ai, ∀i, αi(t) ≥ 0, i αi(t) = 1, (5) 
where

N A = 2, with A 1 = A dq (Ω), A 2 = A dq (Ω).
The controls v dq (t) are defined for all θ ∈ [0, 2π] by:

v dq (t) = k(x dq (t), θ(t)), ∀k ∈ R n × [0, 2π] → R m (6) 
Note that the control v dq (t) is a PDR control which takes values in a finite set of vectors depending on θ:

{u ∈ R 2 : ∃v ∈ Ψ 2 (V ), u = R(θ(t))v}.
The input vector in the different frames is represented in Fig. 1. For a given V , the objective is to determine the switching surfaces in the state space, which ensure the closed loop stability of the system (5) with the control law ( 6). This represents one of the motivations for the theoretical developments in the paper.

III. PARAMETER DEPENDENT RELAY (PDR) CONTROL

In this section we will present a generic model of LPV systems. This LPV framework encompasses the PMSM model. Local stabilization results will be presented for this model.

A. Generic problem formulation

We consider the class of Linear Parameter-Varying (LPV) systems with the state-space realization:

ẋ = A(µ)x + B(µ)u, (7) 
where x ∈ R n is the state vector and u ∈ R m is the control vector, the matrices A ∈ R n×n , B ∈ R n×m are polytopic matrices with the following form:

A(µ(t)) = N i=1 µ i (t)A i , B(µ(t)) = N i=1 µ i (t)B i , (8) 
with A 1 , . . . , A N , B 1 , . . . , B N being known constant matrices. The vector

µ(t) = µ 1 (t) . . . µ N (t)
T is a vector of real and known parameters which evolves piecewise continuously in the unit simplex ∆ N . Such models are interesting since they can be useful for absorbing locally the behavior of more complex affine nonlinear systems [START_REF] Blanchini | Set-Theoretic Methods in Control, ser. Systems & Control: Foundations & Applications[END_REF], [START_REF] Rugh | Research on gain scheduling[END_REF]. Here we consider the LPV representation as a starting point. From now, the manner in which it is obtained from a nonlinear model is neglected (see [START_REF] Rugh | Research on gain scheduling[END_REF] for details).

We assume that for each µ ∈ ∆ N the control u may only take values in a finite set which depends on the parameter µ. We define this set of finite values V µ by:

V µ = {v i (µ), i ∈ I k }, v i : ∆ N → R m , ∀i ∈ I k . (9) 
We consider that conv(V µ ) is a non empty bounded set containing the origin in its interior for any µ ∈ ∆ N . The objective is to find a PDR control u = K d (x, µ) which locally stabilizes the system (7):

K d : R n × ∆ N → V µ . (10) 
Given that u is discontinuous, the closed loop vector field is discontinuous. System solutions are considered in the sense of Filippov [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides: Control Systems, ser. Mathematics and its Applications[END_REF]. We recall the definition of local asymptotic stability. One poses:

ẋ = f (t, x(t)), where f (t, x(t)) = A(µ(t))x(t) + B(µ(t))K d (x(t), µ(t)). (11) 
Definition 1. [START_REF] Bacciotti | Liapunov Functions and Stability in Control Theory[END_REF] The equilibrium point x = 0 of (11) is

• stable if, for each ǫ > 0, there is δ = δ(ǫ, t 0 ) > 0 such that ||x(t 0 )|| < δ ⇒ ||x(t)|| < ǫ, ∀t ≥ t 0 ≥ 0,
• locally asymptotically stable at the origin if it is stable and there is c = c(t 0 ) > 0 such that x(t) → 0 as t → ∞, for all ||x(t 0 )|| < c.

B. Stabilization by PDR control

In this subsection we present a method for the construction of the PDR control [START_REF] Boiko | Oscillations and transfer properties of relay servo systems -the locus of a perturbed relay system approach[END_REF]. The main idea is to use the existence of any stabilizing control law (possibly continuous) in order to redesign a locally stabilizing relay control. The following proposition allows to use a previously designed control law to find a relay based one. Proposition 1. Consider system [START_REF] Edwards | Sliding mode control -Theory and applications[END_REF] with the description [START_REF] Utkin | Sliding modes in control optimization[END_REF]. Consider Γ ⊂ R n be a domain containing x = 0. Assume that there exists a control u = K(x, µ), with K :

R n × ∆ N → R m such that K(x, µ) ∈ conv(V µ ), ∀µ ∈ ∆ N , x ∈ Γ \ {0}. Let V (x), V : Γ → R, be a continuously differentiable function such that W 1 (x) ≤ V (x) ≤ W 2 (x), ∂V ∂x (A(µ)x + B(µ)K(x, µ)) < -W 3 (x), ∀µ ∈ ∆ N , x ∈ Γ \ {0}, (12) 
where W 1 (x), W 2 (x) and W 3 (x) are continuous positive definite functions on Γ. Then system [START_REF] Edwards | Sliding mode control -Theory and applications[END_REF] with the control law:

u = K d (x, µ) ∈ argmin v∈Vµ ∂V ∂x B(µ)v, x ∈ Γ, (13) 
is locally asymptotically stable when solutions are understood in the sense of Filippov. Furthermore, for any level set L V (c) = {x ∈ R n : V (x) ≤ c} such that L V (c) ⊆ Γ, the following relation is satisfied for any Filippov solution x(t) originating from the initial condition x 0 :

x 0 ∈ L V (c) ⇒ lim t→∞ ||x(t)|| = 0, (14) 
i.e. L V (c) is an inner estimation of the domain of attraction.

Proof: In order to show the local stability of the closed loop system when solution are understood in the sense of Filippov [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides: Control Systems, ser. Mathematics and its Applications[END_REF] we consider the differential inclusion ẋ ∈ F (x, t), where

F (x, t) = conv A(µ(t))x + B(µ(t))ũ, ũ ∈ argmin v∈Vµ ∂V ∂x B(µ(t))v , µ(t) ∈ ∆ N , (15) 
and show that:

max y∈F (x,t) ∂V ∂x y < -W 3 (x), ∀x ∈ Γ \ {0}, y ∈ F (x, t). (16) 
This is a sufficient condition for local stabilization [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides: Control Systems, ser. Mathematics and its Applications[END_REF], since V (x) acts as a Lyapunov function. Furthermore [START_REF] Bolzern | Quadratic stabilization of a switched affine system about a nonequilibrium point[END_REF] implies that the level sets of V contained in Γ provide an inner estimation of the domain of attraction since they are invariant sets. Suppose that there exists a feedback u = K(x, µ), such that (12) holds, i.e. there exists a state feedback such that the equilibrium point x = 0 is locally asymptotically stable (see Theorem 4.9 p.152 [START_REF] Khalil | Nonlinear systems 3rd edition[END_REF]). Then one has:

∂V ∂x (A(µ)x + B(µ)K(x, µ)) < -W 3 (x), ∀x = 0, ∀µ ∈ ∆ N . ( 17 
) Since ∀x ∈ Γ, µ ∈ ∆ N ⇒ K(x, µ) ∈ conv(V µ ), then for any x ∈ Γ and µ ∈ ∆ N there exist k scalars α i (x, µ) ≥ 0, i ∈ I k , with k i=1 α i (x, µ) = 1 such that: K(x, µ) = k i=1 α i (x, µ)v i (µ), (18) 
holds. From ( 17) and ( 18) we have:

k i=1 α i (x, µ) ∂V ∂x (A(µ)x + B(µ)v i (µ)) + W 3 (x) < 0, ∀µ ∈ ∆ N and ∀x ∈ Γ \ {0}. (19) 
Considering α i (x, µ) > 0, µ ∈ ∆ N and i ∈ I k , then for any x ∈ Γ \ {0} there must be at least one, x-dependent index,

i = i(x) ∈ I k such that: ∂V ∂x (A(µ)x + B(µ)v i (µ)) < -W 3 (x), ∀µ ∈ ∆ N . (20) 
Consider the subset of control vectors in V µ minimizing the expression (20):

V min (x, µ) = argmin v∈Vµ ∂V ∂x (A(µ)x + B(µ)v) . (21) 
Note that A(µ)x does not depend on v i , thus for a given x the subset V min (x, µ) can be rewritten as

V min (x, µ) = argmin v∈Vµ ∂V ∂x (B(µ)v) . (22) 
Since there exists at least one index such that (20) holds, then for all x ∈ Γ \ {0} there exist at least one control v ∈

V min (x, µ) ⊂ V µ such that ∂V ∂x (A(µ)x + B(µ)v) < -W 3 (x), ∀µ ∈ ∆ N . (23) 
When for some x ∈ Γ \ {0} there are several minimizers in V min (x, µ) (that is the cardinal of V min (x, µ) is greater than 1), then for any control vector ũ ∈ V min (x, µ)

∂V ∂x (A(µ)x + B(µ)ũ) < -W 3 (x), ∀µ ∈ ∆ N . (24) 
In this case, given any two minimizers ∀ũ a , ũb ∈ V min (x, µ), ∀x ∈ Γ \ {0} one has

∂V ∂x (A(µ)x + B(µ)ũ a ) < -W 3 (x) and ∂V ∂x (A(µ)x + B(µ)ũ b ) < -W 3 (x). (25) 
Therefore ∀x ∈ Γ \ {0}, ∀µ ∈ ∆ N and ∀ρ ∈ [0, 1] one has:

ρ ∂V ∂x (A(µ)x + B(µ)ũ a ) < -ρW 3 (x)
and

(1 -ρ) ∂V ∂x (A(µ)x + B(µ)ũ b ) < -(1 -ρ)W 3 (x). (26) 
By summing the two inequalities in [START_REF]Simplex methods for nonlinear uncertain sliding-mode control[END_REF] ∀x ∈ Γ \ {0} and ∀µ ∈ ∆ N one has

∂V ∂x (A(µ)x + B(µ)ũ) < -W 3 (x), ∀ũ ∈ conv(V min (x, µ)), ∀µ ∈ ∆ N . (27) 
Considering the differential inclusion [START_REF] Liberzon | Switching in Systems and Control, ser. Systems & control. Systems & Control: Foundations & Applications[END_REF] then from [START_REF] Bajda | Vector method of design of sliding motion and simplex algorithms[END_REF] we have that

∂V ∂x y < -W 3 (x), ∀x ∈ Γ \ {0}, ∀y ∈ F (x, t), (28) 
which using ( 16) is sufficient for the local stability with the control function [START_REF] Fridman | An averaging approach to chattering[END_REF] when solutions are understood in the sense of Filippov.

Remark 1. The previous theorem uses the existence of any stabilizer K(x, µ) (possibly continuous) in order to redesign a PDR control K d (x, µ) which takes values only in the set V µ (x, µ). Comparing ( 17) with [START_REF] Bodson | High performance nonlinear feedback control of a permanent magnet stepper motor[END_REF] we have shown that the PDR has at least the same guaranteed decay of the Lyapunov function as K(x, µ). The result provides a general theoretical framework for the design of PDR. In the following section we will show how this result can be used in a constructive manner.

IV. LMI DESIGN CONDITION

In this section the LMI framework [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF] is exploited to provide tractable and constructive conditions for the design of a PDR control. An estimation of the domain of attraction with the proposed control law is equally provided. Generally, when using a relay control law, only local stability may be ensured. Therefore, it is of interest to provide an estimation of the domain of attraction.

Considering that for all µ ∈ V µ , conv(V µ ) is non empty and contains the origin in its interior, remark that there exists a polytopic region:

Q = conv({q 1 , q 2 , . . . , q p }) = {z ∈ R m : h i z ≤ 1, i ∈ I N h }, such that Q ⊂ conv(V µ ), ∀µ ∈ ∆ N and 0 ∈ Int{Q}. (29)
Using the polytope Q one can adjust the design conditions to include an LMI based optimization of the domain of attraction. Proposition 2. Consider system [START_REF] Edwards | Sliding mode control -Theory and applications[END_REF]. Consider Γ ⊂ R n be a domain containing x = 0. Assume that there exists Q = Q T > 0, Y i ∈ R m×n , i ∈ I N and a positive scalar δ such that:

He{(A i + A j )Q + B i Y j + B j Y i } < -2δQ, i, j ∈ I N , (30a) 
1 h i Y j * Q > 0, i ∈ I N h , j ∈ I N , (30b) 
eI I * Q > 0. ( 30c 
) Let u = K d (x, µ) ∈ argmin v∈Vµ x T Q -1 B(µ)v, x ∈ Γ. (31) 
Then the equilibrium point x = 0 of the closed-loop system (7)-( 31) is locally asymptotically stable. An estimation of the domain of attraction is provided by the ellipsoid

E(Q -1 , 1) containing the ball B(0, √ ǫ) with ǫ = 1 e , i.e. ∀x(0) ∈ E(Q -1 , 1), lim t→∞ ||x(t)|| = 0.
Proof: Assume that the set of LMI conditions (30) holds for system [START_REF] Edwards | Sliding mode control -Theory and applications[END_REF] with the description [START_REF] Utkin | Sliding modes in control optimization[END_REF]. Multiplying the set of LMIs (30a) by µ i , µ j ∈ ∆ N , i, j ∈ I N and summing, followed by the multiplication of both side by Q -1 yields

2x T Q -1   N i=1 N j=1 µ i µ j A i + B i K j + A j + B j K i 2   < -2δx T Q -1 x, ∀x = 0, (32) 
with

K i = Y i Q -1 . Then the function V (x) = x T Q -1 x, satisfies ∂V ∂x (A(µ)x + B(µ)K(x, µ)) < -2δV (x), ∀x ∈ R n \ {0}, ∀µ ∈ ∆ N , (33) 
with

K(x, µ) = N i=1 µ i Y i Q -1 x. (34) 
Then u = K(x, µ) is a global stabilizer for system [START_REF] Edwards | Sliding mode control -Theory and applications[END_REF]. It will be used for re-designing a locally stabilizing PDR based on Proposition 1.

First we compute a domain Γ where K(x, µ) ⊂ conv(V µ ), ∀µ ∈ ∆ N . The set of LMI constraints (30b) ensures that

∀x ∈ E(Q -1 , 1) ⇒ K(x, µ) ∈ Q ⊂ conv(V µ ), ∀µ ∈ ∆ N . (35) 
To prove this we use the Constrained Quadratic Lemma (given in the Appendix) as follows. Using [START_REF] Sira-Ramírez | A Passivity plus Flatness Controller for Permanent Magnet Stepper Motor[END_REF] with the definition of K(x, µ) in [START_REF] Rugh | Research on gain scheduling[END_REF], one can note that for the condition [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides: Control Systems, ser. Mathematics and its Applications[END_REF] to be true, it is sufficient that none of the hyperplanes h i Y j Q -1 x = 1, i ∈ I N h , j ∈ I N , crosses the ellipsoid E(Q -1 , 1). With Lemma 1, it leads to:

1 ≤ min hiYj Q -1 x=1 x T Q -1 x = min i∈IN h h i Y j Q -1 Q(Y j Q -1 ) T (h i ) T -1 . (36) 
Using the Schur complement Lemma, the latter leads to (30b).

To guarantee that B(0, √ ǫ) is included in the domain of attraction E(Q -1 , 1), we add the constraints

x T x < ǫ ⇒ x T Q -1 x < 1. ( 37 
) If x T Q -1 x < 1 ǫ
x T x then (37) holds, with e = 1 ǫ the LMI problem becomes (30c). Therefore if (30b) holds we obtain that

for K(x, µ) ∈ Q ⊂ conv(V µ ), ∀x ∈ E(Q -1 , 1), µ ∈ ∆ N . Applying Proposition 1, with Γ = L v (1) = E(Q -1 , 1), K(x, µ)
defined in [START_REF] Rugh | Research on gain scheduling[END_REF] and satisfying the constraint [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides: Control Systems, ser. Mathematics and its Applications[END_REF], allows to show that the control law [START_REF] Marino | Nonlinear adaptive control of permanent magnet step motors[END_REF] ensures the local stabilization in E(Q -1 , 1). Furthermore, using [START_REF] Khalil | Nonlinear systems 3rd edition[END_REF] we show that the domain of attraction contains the ball B(0, √ ǫ).

Remark 2. Proposition 2 is inspired by convex optimization arguments from [START_REF] Hu | Control Systems With Actuator Saturation: Analysis and Design[END_REF], [START_REF] Hindi | Analysis of Linear Systems with Saturation using Convex Optimization[END_REF], [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach[END_REF]. The feasibility of the LMI optimization problem [START_REF] Delpoux | Permanent Magnet Synchronous Motor control via Parameter Dependent Relay Control[END_REF] with some matrix Q, guarantees that any solutions of the LPV system [START_REF] Edwards | Sliding mode control -Theory and applications[END_REF] with the control [START_REF] Fridman | An averaging approach to chattering[END_REF] originating from the invariant ellipsoid E(Q -1 , 1) is converging to the origin with a decay rate δ. By minimizing e, we increase the radius √ ǫ of the ball B(0, √ ǫ) included in E(Q -1 , 1). This allows to provide an inner ellipsoidal approximation E(Q -1 , 1) of the domain of attraction.

V. ACADEMIC EXAMPLE

In order to illustrate the results presented in this section, we propose to show simulations through a simple second order system so that the trajectories of the system can be plotted in a two dimensions phase portrait. We consider the system:

ẋ(t) = A 0 x(t) + B 0 (x 1 (t))u(t), (38) 
with x = [x 1 x 2 ] T in R 2 , u ∈ R 2 , A 0 ∈ R 2×2 and B 0 ∈ R 2×2 defined by A 0 = 0 3 1 1
, B 0 (x 1 (t)) = 1 + 0.5 sin(x 1 (t)) 0 0 1 + 0.5 sin(x 1 (t)) .

For each x 1 (t), the control u(t) is constrained to switch among four different values in the set {R(x 1 (t))ρ, ρ ∈ Ψ 2 (V )}. The matrix R(x 1 (t)) is the rotation matrix defined by

R(x 1 (t)) = cos(x 1 (t)) sin(x 1 (t)) -sin(x 1 (t)) cos(x 1 (t)) . ( 39 
)
The relay value V is equal to 10, leading to two inputs each taking values in {-V, V } which is a square of side length 2 × V . Considering as bounded time-varying parameter sin(x 1 ), cos(x 1 ), the system (38) may be rewritten as an LPV system of the form (7) defined by:

ẋ(t) = Ax(t) + B(µ(t))u(t) (40) 
with

A = A 0 and B(µ(t)) = 2 i=1 µ i (t)B i = B 0 (x 1 (t)), where µ 1 (t) = 1 -sin(x 1 (t)) 2 , µ 2 (t) = 1 + sin(x 1 (t)) 2 and 
B 1 = 0.5 0 0 0.5 , B 2 = 1.5 0 0 1.5 .
The control u takes values in the finite set (9) defined by

V µ(t) = {v i (µ(t)), i ∈ 1, . . . , 4} = {R(x 1 (t))ρ, ρ ∈ Ψ 2 (V )}. (41) 
In order apply Proposition 2 we need to construct a polytopic region Q such that equation ( 29) is satisfied. Note that all squares defined by conv(V µ(t) ) are centered at 0 and have the same size thus the disc of radius V centered at 0 belong to all conv(V µ(t) ) (see Fig. 2). This disc can be approximated by the polytope Q represented in brown Fig. 2 for

v 2 (µ) = R(x 1 )[V -V ] T v 3 (µ) = R(x 1 )[-V -V ] T v 4 (µ) = R(x 1 )[-V V ] T v 1 (µ) = R(x 1 )[V V ] T v 1 v 2 q 1 q 2 q i q N R(x 1 ) h i 0 Fig. 2.
Representation of control sets Vmu for the system in the simulation example.

which the vertices q i are given by

q i+1 = V       cos 2iπ p sin 2iπ p       , i = 0, . . . , p -1. (42) 
Each face of the polytope can be characterized by its normal:

h i+1 = q i + q i+1 1 + cos 2π p , i = 0, . . . , p -1. (43) 
The simulations are realized using Matlab/Simulink and the LMI in the Proposition 2 are solved using SeDuMi ( [START_REF] Labit | SeDuMi Interface 1.02: a Tool for Solving LMI Problems with SeDuMi[END_REF]). In order to approximate the inscribed disc by the polytope Q we take p = 15. Choosing a decay rate δ = 4 and applying Proposition 2, the LMI solver returns the matrices Q and Y i , i ∈ I 2 matrices: 

Q = 43.
The Q matrix defines the parameter dependent relay control [START_REF] Marino | Nonlinear adaptive control of permanent magnet step motors[END_REF] and thus the switching regions. These regions are plotted Fig. 3 as function of the states x 1 and x 2 . On this figure r 1 is the region for which the argument of the minimum is given for the

control input v 1 (µ(t)) = R (x 1 (t)) [V V ] T , r 2 for v 2 (µ(t)) = R (x 1 (t)) [V -V ] T , r 3 for v 3 (µ(t)) = R (x 1 (t)) [-V V ] T , r 4 for v 4 (µ(t)) = R (x 1 (t)) [-V -V ] T .
To illustrate the theoretical results, one proposes to compare the Continuous State Feedback (CSF) control law [START_REF] Rugh | Research on gain scheduling[END_REF] with the PDR control [START_REF] Marino | Nonlinear adaptive control of permanent magnet step motors[END_REF]. In the continuous case, the control input applied to the system denoted by ρ in the description of the system is in R 2 but it has elements saturated in the interval [-V, V ]. The phase portrait of the states x 1 and x 2 for both cases are plotted Fig. 4. On theses figures, we have plotted in red the ellipsoid E(Q -1 , 1), characterizing the domain of attraction of the system. The brown lines represent the hyperplanes h i Y j Q -1 = 1. In accordance with condition [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides: Control Systems, ser. Mathematics and its Applications[END_REF] it shows that none of the hyperplanes crosses the domain of attraction.

The first simulation is executed while taking initial conditions outside the attractive ellipsoid. On the figure, the initial condition is denoted by x 0,1 . One observes that outside the attraction domain, the closed-loop system does not converge to the origin. The second simulation is realized with the initial condition x 0,2 , near the domain of attraction, but outside. The figures show that in this case, the trajectories are converging to the origin. Finally, the initial condition x 0,3 is taken inside the domain of attraction. In this case the trajectories also converge to the origin. For this example the attractive ellipsoid contains the ball |x| < ǫ with ǫ = 1.28 and the initial condition x 0,3 with |x 0,3 | = 4.14. Note that |x 0,1 | = 7.07 and |x 0,2 | = 4.24, this gives an idea about the conservatism introduced in the estimation of the domain of attraction. In comparison with the static feedback proposed in [START_REF] Delpoux | Permanent Magnet Synchronous Motor control via Parameter Dependent Relay Control[END_REF], the same settings lead to ǫ equal to 0.58, the PDR enlarges considerably the ellipsoid estimation of the domain of attraction. 

VI. PMSM APPLICATION

This section is devoted to the experimental application on the PMSM, to illustrate the proposed control design methodology on a concrete case.

A. Test-bench description

The experiments are realized using a stepper motor bench developed in LAGIS at École Centrale de Lille (see Fig. 5). The parameters of the motor with coils in series have been identified using the offline procedure described in [START_REF] Delpoux | Parameter estimation of permanent magnet stepper motors without mechanical sensors[END_REF], leading to L = 9mH, R = 3.01Ω, K = 0.27N.m.A -1 and J = 3.18.10 -4 kg.m 2 . The number of pole pairs is n p = 50. The input voltages v a and v b of each coil are delivered by two D/A outputs of the dSpace card and amplified by two linear power amplifiers (this means that the controls are directly applied to the coils without PWM implementation). The currents i a and i b are measured using Hall effect sensors with a precision of 1% of the nominal current I n = 3A. The power supply provides a maximum voltage v max = 20V and i max = 3A. The sampling period for this experiment is constant and equals to 10 -4 s for the control.

B. Experimental results

We design a control law where we consider that only four control inputs are available. In this article, the control design is considered with the assumption that there is no external torque (i.e. τ = 0). In the section tracking, an unknown torque will still be applied to the motor to show the disturbance rejection property of the new PDR control law. An integral action is implemented with ζ the ouput of the integrator (ζ(0) = 0)) [START_REF] Ogata | Modern Control Engineering, ser. Instrumentation and controls series[END_REF] to ensure tracking performance with respect to a reference Ω ref . The integral action given by:

ζ = Ω -Ω ref = Cx -Ω ref , C = [0 0 1], ( 45 
)
where ζ is the output of the integrator (ζ(0) = 0). The combination of the state space representation (4) and the integral action without torque can be re-written as:

ẋdq ζ ż = A dq (Ω) 0 C 0 A(Ω) x dq ζ z + B 0 B u - 0 I I Ω ref ( 46 
)
where u is constrained to switch among four different values in the set {R(θ)ρ, ρ ∈ Ψ 2 (V )}. The matrix R(θ) is defined by equation [START_REF] Flügge-Lotz | Discontinuous automatic control[END_REF]. In this section, two different control strategies are proposed to show the experimental behavior of the PDR control applied to PMSM. Firstly, we are interested in the motor stabilization starting from non-zero initial conditions, next a velocity tracking strategy is proposed. 1) Stabilization to the origin: In the same way as the simulations, the stabilization is realized on the PMSM starting from different initial conditions to the origin. Here the PDR control is proposed based on Proposition 2 applied to model (46) with To compare the experimental behavior of the PDR control with the classical Continuous State Feedback (CSF) control, [START_REF] Rugh | Research on gain scheduling[END_REF]) starting from non null initial velocity, we have plotted in Fig. 6 the velocity evolution for three different cases (Open Loop, CSF and PDR). This control law is applied to the system by using linear amplifiers, without any PWM module. Knowing that the PMSM is a stable system, it is important to show that the stabilization performance are better than the open loop performance. For this reason, the blue curve represents the open-loop stabilization. The red line represents the CSF while the green one represents the PDR. The figure shows that the closed loop performances are better than the open loop performances (better settling-times and transient responses). The closed loop strategies show similar settling time given that the PDR uses only 4 inputs control values.

Ω ref = 0. It leads to a control law of the form v αβ = argmin ρ∈Ψ2(V ) z T Q -1 R(-θ)ρ where Q =     29 
v αβ = R(-θ)Y (Ω)Q -1 z, (obtained from
2) Velocity tracking: In this section we compare the behavior of the CSF and PDR for the tracking of a slowly varying velocity, although the proposed theoretical developments do not cover this case. The velocity profile is chosen according to industrial test trajectories [START_REF] Hamida | An Adaptive Interconnected Observer for Sensorless Control of PM Synchronous Motors With Online Parameter Identification[END_REF]. The robustness of the proposed approach is also tested by applying an external torque to the motor produced by a Electromagnetic Particle Brake.

Figure 7 exhibits the comparison between the CSF and the PDR when no external torque is applied to the motor. Without additional torque the velocity tracking is accurate in both cases: it shows that at steady state the desired trajectory is tracked with a precision around 1rad.s -1 for the PDR control. It must be noted that chattering phenomena appear in the PDR case leading to a sightly higher tracking error. However, in this case only four control inputs are used for the control.

Figure 8 shows the experimental result of the velocity tracking similarly to the previous figure. At time t = 7s an unknown external torque is applied to the motor using an Electromagnetic Particle Brake. On this figure, the plot of the tracking errors shows that in the presence of external torque, the PDR is more robust to disturbances than CSF. Indeed the perturbation is rejected only by the PDR control. This results is more clearly illustrated on Figure 9, where a focus on both trajectories tracking is represented. We can see that the PDR control (represented in red) provides a better velocity tracking performance. Moreover, for the CSF case, when the load torque is applied, the power amplifiers are in saturation.

Finally, the last figure, Figure 10 shows the PDR inputs control applied to the motor on a small time window. The figure shows that indeed, the PDR do not behave as a PWM with regular switching instant but it switches only when needed.

VII. CONCLUSION

In this article we have proposed a novel relay control strategy. The main idea of this work was to use LPV modeling to design nonlinear switching surfaces. This modeling has been motivated by the fact that powerful numerical tools such as LMI could be used. Here we have proposed an LMI formulation to provide criteria for the design of nonlinear switching surfaces. This design was referred as Parameter Dependent Relay (PDR). The second contribution of this article was the implementation of this relay strategy for Permanent Magnet Synchronous Motors (PMSM). Since the LPV framework encompasses the PMSM model, experimental results on a PMSM have been proposed. These results have shown that stabilization and good trajectory tracking was possible despite the finite set of control inputs. The load torque introduction has shown the good disturbance rejection properties of the PDR control. The analysis of disturbance rejection represents an interesting future work. APPENDIX Lemma 1. ( [START_REF] Hindi | Analysis of Linear Systems with Saturation using Convex Optimization[END_REF]). Let V (x) = x T Q -1 x, where Q = Q T > 0, C be a row vector in R n and r be a nonzero scalar. Then the minimum of V along the hyperplane {x|Cx = r} is given by α r = r 2 CQC T 6.5 
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