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ABSTRACT

Nuclear Magnetic Resonance (NMR) is a powerful tool for

observing the motion of biomolecules at the atomic level. One

technique, the analysis of relaxation dispersion phenomenon, is

highly suited for studying the kinetics and thermodynamics of

biological processes. Built on top of the relax computational

environment for NMR dynamics is a new dispersion analysis designed

to be comprehensive, accurate and easy to use. The software

supports more models, both numeric and analytic, than current

solutions. An automated protocol, available for scripting and driving

the GUI, is designed to simplify the analysis of dispersion data for

NMR spectroscopists. Decreases in optimisation time are granted

by parallelisation for running on computer clusters and by skipping

an initial grid search by using parameters from one solution as

the starting point for another – using analytic model results for the

numeric models, taking advantage of model nesting, and using

averaged non-clustered results for the clustered analysis.

Availability: The software relax is written in Python with C modules

and is released under the GPLv3+ licence. Source code and

precompiled binaries for all major operating systems are available

from http://www.nmr-relax.com.

Contact: edward@nmr-relax.com

Biological macromolecules are intricate machines and their

functions are closely related to their motions. These motions can be

studied experimentally at the atomic level by NMR spectroscopy.

Many important biological processes occur on the µs to ms

timescale and, for atoms exchanging between different states, NMR

relaxation dispersion can be observed. By studying this exchange

process, kinetic and thermodynamic information can be obtained.

For exchanging atoms, their nuclear spin magnetisation is

described by the Bloch-McConnell equations (McConnell, 1958).

∗to whom correspondence should be addressed

Using experimental data the solution to these equations reveals

both populations of the molecular states (thermodynamics) and

rates of exchange between them (kinetics). Though the general

solution valid for all motions remains intractable, analytic solutions

with restricted motions are available and are frequently used. The

equations can also be solved numerically.

Two NMR dispersion methods are used for analysing motions:

single, zero, double, or multiple quantum (SQ, ZQ, DQ, MQ)

CPMG (Carr and Purcell, 1954; Meiboom and Gill, 1958); or R1ρ

(Deverell et al., 1970). Combined SQ, ZQ, DQ, and MQ data will be

labelled as multiple-MQ or MMQ data. Various models are used to

analyse different data and motions. The simplest is that of no motion

(No Rex). For SQ CPMG-type experiments, analytic models include

the original Luz and Meiboom (1963) multiple-site fast exchange

models (LM63), the Carver and Richards (1972) and population-

skewed Ishima and Torchia (1999) 2-site models for most time

scales (CR72, IT99), and the Tollinger et al. (2001) 2-site very slow

exchange model (TSMFK01). The CR72 model has been extended

by Korzhnev et al. (2004) for MMQ data. For R1ρ-type data analytic

equations include the Meiboom (1961) 2-site fast exchange model

for on-resonance data (M61), extended by Davis et al. (1994) to

off-resonance data (DPL94), and the Trott and Palmer (2002) and

Miloushev and Palmer (2005) 2-site models for non-fast and all

time scales (TP02, MP05). Different numeric solutions (NS) can

be designed for SQ or MMQ data.

Diverse software solutions exist for analysing relaxation

dispersion data including CPMGFit (http://www.palmer.hs.columbia

.edu/software/cpmgfit.html), cpmg fit (available upon request from

Dmitry Korzhnev), CATIA (Hansen et al., 2008), NESSY (Bieri and

Gooley, 2011), GUARDD (Kleckner and Foster, 2012), ShereKhan

(Mazur et al., 2013), and GLOVE (Sugase et al., 2013). The

software relax (d’Auvergne and Gooley, 2008) is a platform for

studying molecular dynamics using experimental NMR data and can

be used as a numerical computing environment. Herein support for

relaxation dispersion within relax is presented. Distributed as part of
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Table 1. Comparison of model support for different dispersion software
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CPMGFit ✓ ✓ ✓ ✓

cpmg fit ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CATIA ✓

NESSY ✓ ✓ ✓ ✓

GUARDD ✓ ✓

ShereKhan ✓ ✓ ✓

GLOVE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

relax ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

relax, this is the most comprehensive dispersion package supporting

the greatest number of dispersion models and NMR data types.

The number of dispersion models supported by relax is

extensive (Table 1). This allows for detailed comparisons between

modern numeric and traditional analytic approaches. Different

user interfaces (UIs) can be employed to analyse dispersion data

including the prompt, scripting, and graphical user interface (GUI).

The scripting UI enables the greatest flexibility and allows for

most analysis protocols to be replicated. By implementing a novel

automated analysis and providing an easy to use GUI based on this

auto-analysis, the study of dispersion data is much simplified.

The setup of the auto-analysis includes defining the molecular

system, loading the dispersion data directly from peak lists,

clustering atoms with the same kinetics, modifying the list of

dispersion models, and setting up Monte Carlo (MC) simulations

for error propagation. Execution involves sequential optimisation of

the models, fixed model elimination rules to remove failed models

and failed MC simulations increasing both parameter reliability

and accuracy (d’Auvergne and Gooley, 2006), and a final run

whereby AIC model selection is used to judge statistical significance

(Akaike, 1973; d’Auvergne and Gooley, 2003). The optimisation is

designed for absolute accuracy and robustness but, as this can take

time, it has been parallelised at the spin cluster and MC simulation

level to run on computer clusters using OpenMPI. Three additional

methods are used to speed up calculations, all designed to skip the

computationally expensive grid search. The first is model nesting –

the more complex model starts with the optimised parameters of the

simpler. The second is model equivalence – when two models have

the same parameters. For example the CR72 model parameters are

used as the starting point for the CPMG numeric models resulting

in a huge computational win. The third is for spin clustering – the

analysis starts with the averaged parameter values from a completed

non-clustered analysis.

The dispersion analysis in relax is implemented in Python using

NumPy and the GUI using wxPython. Optimisation using the

Nelder-Mead simplex and log-barrier constraint algorithms from

the minfx library (https://gna.org/projects/minfx/) removes the need

for numerical gradient approximations which add a second numeric

layer to the NS models. Data visualisation is via the software Grace.
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