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Development and stability analysis of the inverse Lax-Wendroff boundary

treatment for central compact schemes1

François Vilar2 and Chi-Wang Shu3

Abstract

In this paper, we generalize the so-called inverse Lax-Wendroff boundary treatment [23]

for the inflow boundary of a linear hyperbolic problem discretized by the recently introduced

central compact schemes [14]. The outflow boundary is treated by the classical extrapolation

and a stability analysis for the resulting scheme is provided. To ensure the stability of the

considered schemes provided with the chosen boundaries, the G-K-S theory [9] is used, first in

the semidiscrete case then in the fully discrete case with the third-order TVD Runge-Kutta

time discretization. Afterwards, due to the high algebraic complexity of the G-K-S theory,

the stability is analyzed by visualizing the eigenspectrum of the discretized operators. We

show in this paper that the results obtained with these two different approaches are perfectly

consistent. We also illustrate the high accuracy of the presented schemes on simple test

problems.
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1 Introduction

In numerical simulation of numerous physical phenomena, the choice in the scheme used is

crucial. For example in aeroacoustics, the flows that generate noises are nonlinear, unsteady

and usually turbulent. This aerodynamic noise is broadband with a fairly wide spectrum.

Furthermore, the amplitudes of the physical variables of the aerodynamic noise are far smaller

than those of the mean flow, and the distance from the noise source to the location of interest

in aeroacoustic problems is quite long. Regarding these remarks, to ensure that the computed

solution is uniformly accurate over such a long propagation distance, the numerical scheme

should have minimal numerical dispersion and dissipation, or in other words should have

a good wave resolution and high order accuracy. A relevant choice is the class of compact

schemes [3, 12, 15, 18]. Compared to the spectral methods, compact schemes can handle

non-periodic boundary conditions a lot more easily, and usually have much smaller numerical

dispersion and dissipation errors than finite difference schemes of the same order of accuracy

on the same mesh. In this paper, we study the particular case of the central compact schemes

(CCS) introduced recently in [14], but the procedure and analysis can be easily generalized

to other compact schemes and general finite difference schemes.

Even though the stencil of compact schemes is usually less wide than for finite differ-

ence methods of the same order of accuracy, particular treatments near the boundaries are

still required. In the present work, the values of the points lying outside the computational

domain, also named ghost points, are evaluated through different procedures: a classical La-

grangian extrapolation at the outflow boundary, and an inverse Lax-Wendroff (ILW) method

at the inflow boundary. The latter one has been introduced in the case of conservation laws

for weighted essentially non-oscillatory (WENO) finite difference schemes in [23], based on

earlier works in [5, 6], and a simplified version has been given in [24]. We first extend the two

boundary treatments to the case of compact schemes. Then, the stability issue is addressed.

The stability problem is a classical feature of numerical schemes, and thus has been

tackled numerous times during the past decades. One of the most powerful tool for stability
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analysis on finite domain might be the normal mode analysis, which is based on the Laplace

transform. The general stability theory based on this technique was given in [9]. This is the

so-called G-K-S theory. In [9], the stability of fully discrete difference schemes are analyzed

for initial boundary value problems (IBVP). Later on, the semidiscrete case has been tackled

in [22]. In the present work, the normal mode analysis is used to ensure stability of central

compact schemes provided with the considered boundary conditions. This study is done for

different orders of accuracy. Due to the high complexity of the algebra involved using G-K-S

theory in the case of very high order of accuracy, the stability is also addressed by visualizing

the eigenvalue spectrum of the discretized operators. At the end, we briefly discuss about

energy stability of the considered schemes and boundary treatments.

This paper is organized as follows. Section 2 presents the central compact schemes

studied. Section 3 contains the definition of the different boundary procedures to define the

ghost point values. In Section 4, G-K-S theory is used to address the stability of the central

compact schemes provided with the presented boundary conditions in the simple case of

initial boundary value linear hyperbolic equations. Eigenvalue spectrum of the discretized

operators are analyzed in Section 5. We show that in the considered cases both methods,

G-K-S and eigenspectrum analysis, exhibit perfectly consistent results, in the semidiscrete

and fully discrete cases. Finally, using the energy method we show that the inverse Lax-

Wendroff inflow boundary treatment maintains the stable and conservative behavior of the

inner scheme, and mimics naturally continuous level results. We also illustrate the relevancy

of the stability analysis done as well as the high accuracy of the presented schemes on simple

test problems.

2 Central compact schemes

In this section, we present the methodology to design central compact schemes (CCS), see

[14], in the simple case of conservation laws. Thus, we consider numerical approximations

3



to the solution of the following problem

∂ u

∂t
+

∂ f(u)

∂x
= 0. (1)

A semidiscrete finite difference scheme can be represented as

(
∂ u

∂t

)

i

= −f(u)xi , (2)

where f(u)xi is the approximation of ∂ f(u)
∂x

at the grid node xi.

The starting point to design these methods was the use of Lele’s compact schemes. In

[13], Lele proposed two kinds of compact schemes. One is a linear cell-centered compact

scheme (CCCS) given by

βfx
i−2 + αfx

i−1 + fx
i + αfx

i+1 + βfx
i+2

=

a
fi+ 1

2
− fi− 1

2

∆x
+ b

fi+ 3

2
− fi− 3

2

3∆x
+ c

fi+ 5

2
− fi− 5

2

5∆x
.

(3)

The other is a cell-node compact scheme (CNCS) given by

βfx
i−2 + αfx

i−1 + fx
i + αfx

i+1 + βfx
i+2

=

a
fi+1 − fi−1

2∆x
+ b

fi+2 − fi−2

4∆x
+ c

fi+3 − fi−3

6∆x
.

(4)

The left hand side of equations (3) and (4) contain the spatial derivatives fx
i at grid

nodes, while the right hand side of equation (3) contains the cell-centered values fi+ 1

2
at the

center xi+ 1

2
= 1

2
(xi + xi+1) of the cell Ii = [xi, xi+1]. The right hand side of equation (4), on

the other hand, only contains the function values fi at the grid node xi. The constraints on

the coefficients α, β and a, b, c corresponding to different orders of accuracy can be derived

by matching the Taylor series coefficients and these have been listed in [13]. Lele showed that

the resolution of cell-centered compact schemes is much better than the cell-node compact

schemes. In this case, the stencil contains both grid points xi and half grid points xi+ 1

2
.

However, only the values at the cell-centers are used to calculate the derivatives at the cell-

nodes. The idea of CCS was so, if the values at both grid and half grid points are used, one
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could get a compact scheme with higher order of accuracy and better resolution. Thus, the

central compact schemes write

βfx
i−2 + αfx

i−1 + fx
i + αfx

i+1 + βfx
i+2

=

a
fi+ 1

2
− fi− 1

2

∆x
+ b

fi+1 − fi−1

2∆x
+ c

fi+ 3

2
− fi− 3

2

3∆x
+ d

fi+2 − fi−2

4∆x
+ e

fi+ 5

2
− fi− 5

2

5∆x
.

(5)

We note that the Lele’s CCCS (3) and CNCS (4) are both special cases of this class of

central compact schemes. These schemes contain the values of the cell-centers, which are

unknown. A way to compute these unknowns is the use of an interpolation procedure, for

example the high order compact interpolation proposed by Lele in [13]. However, doing so

can introduce transfer errors, and thus reduce the resolution for high wave numbers. In [14]

to overcome this drawback, the cell-center values are stored as independent computational

variables and are evaluated using the same scheme as that for the cell nodes, by simply shift-

ing the indices in (5) by 1
2
. Noticed that, this change brings increased memory requirement

for storing cell center values, but it does not increase the computational cost, at least in

one-dimension, since the compact interpolation is replaced by the compact scheme updating

of comparable cost.

For the sake of simplicity, these central compact schemes can be rewritten as cell-node

compact schemes on a twice more refined grid as

βfx
i−4 + αfx

i−2 + fx
i + αfx

i+2 + βfx
i+4

=

a
fi+1 − fi−1

2∆x
+ b

fi+2 − fi−2

4∆x
+ c

fi+3 − fi−3

6∆x
+ d

fi+4 − fi−4

8∆x
+ e

fi+5 − fi−5

10∆x

(6)

The relationships among the coefficients α, β and a, b, c, d, e in equation (5) or (6) are

derived by matching the Taylor series coefficients of various orders. It leads to three families

of central compact schemes: the explicit ones (CCS-E) for which α = 0 and β = 0, the tridi-

agonal ones (CCS-T) where β = 0, and the most generic pentadiagonal ones (CCS-P). In Fig-

ure 1, an example of the high accuracy and very low dissipation error of the central compact

schemes is given. These numerical results have been obtained in the two-dimensional case

of the Euler equations with the eighth-order scheme CCS-T8 provided with the third-order
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TVD Runge-Kutta time discretization, and correspond to the two dimensional advection of

an isentropic vortex, with periodic boundary conditions.
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(a) Final time t = 50
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Figure 1: The distribution of the density along x = 5 for the two dimensional advection of
an isentropic vortex on a 80× 80 Cartesian grid, with the RK3-CCST8 scheme.

Obviously, due to the relatively large stencil of central compact schemes, special treat-

ments of points near the boundaries are required in the case of non-periodic boundary con-

ditions. In [14], the issue of non-periodic boundary conditions is only discussed briefly with

one set of particular boundary treatments which is found to be stable experimentally. In the

next section, we present the boundary procedures to be studied in this paper, for the two

cases of inflow and outflow boundaries respectively.

3 Boundary treatments

To present the particular boundary treatments studied, we consider the simple scalar con-

servation initial boundary value problem (IBVP)





∂ u

∂t
+

∂ f(u)

∂x
= 0, x ∈ [xA, xB], t ≥ 0,

u(xA, t) = g(t), t ≥ 0,
u(x, 0) = u0(x), x ∈ [xA, xB],

(7)

where g(t) is the prescribed boundary condition and u0(x) the initial solution. We assume

that f ′(u(xA, t)) > 0 and f ′(u(xB, t)) > 0, where f ′(u) = df(u)
du

, for t ≥ 0. This assumption
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guarantees the left boundary x = xA is an inflow boundary where a boundary condition is

needed, and the right boundary x = xB is an outflow boundary where no boundary condition

is needed.

Now, let us discretize the domain [xA, xB] by a uniform mesh {xj}j=0,...,n such as

x0 − CA∆x = xA ≤ x0 < x1 < · · · < xn ≤ xB = xn + CB∆x, (8)

where CA ∈ [0, 1) and CB ∈ [0, 1).

Notice that the grid points x0 and xn are not necessarily located on the boundaries xA

and xB, which is chosen on purpose since it is usually not possible to align boundary with

grid points in a two-dimensional domain with complex geometries.

We note that the scheme definition (6) applied on points close to the boundaries involve

the contribution of points outside the considered domain, called ghost points. Thus, we have

to determine in a consistent manner and with an appropriate order of approximation these

ghost points values.

3.1 Outflow boundary

Near the outflow boundary xB, the ghost point values fn+p, for p = 1, . . . , 5 and fx
n+p,

for p = 1, . . . , 4 have to be determined with suitable order of approximation d. It has been

proven in [4] that outflow boundary extrapolation, which complements stable finite difference

scheme, maintains stability for linear hyperbolic initial value problems. Thus, for the outflow

boundary an extrapolation procedure is used. In order to evaluate the ghost values fn+p, let

us introduce the following definition

fn+p = f(un+p), (9)

where the un+p are defined through the use of a Lagrangian extrapolation procedure of the

appropriate order as follows

un+p = Pd(xn+p) =
d∑

j=1

un−d+j

d∏

l=1

l 6=j

(
p+ d− l

j − l

)
, (10)
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where Pd(x) is the Lagrange polynomial of degree (d − 1) satisfying Pd(xn−d+j) = un−d+j,

for j = 1, . . . , d. An equivalent way to do the extrapolation is the use of a Taylor expansion

un+p =
d−1∑

k=0

(p− CB)
k

k!
∆xk u∗ (k), (11)

where u∗ (k) = ∂kPd

∂xk |x=xB
is a (d− k)th order approximation of ∂ku

∂xk |x=xB
.

We will see in the next section that this formulation is consistent with the one used in

the inverse Lax-Wendroff procedure for the inflow boundary condition. Though, on contrary

to formula (10), the extrapolation procedure (11) seems to depend on CB. Actually, after

some simple algebra one can find that these two formulations are perfectly equivalent and

do not depend on the position of the boundary xB.

Now, we extend this boundary extrapolation procedure to the case of compact schemes

defining fx
n+p as

fx
n+p = f ′(un+p)

∂ u

∂x
|x=xn+p

, (12)

where ∂ u
∂x
|x=xn+p

will be evaluate through an extrapolation as follows

∂ u

∂x
|xn+p

=
∂ Pd

∂x
|xn+p

=
1

∆x

d∑

j=1

un−d+j

d∏

l=1

l 6=j

(
p+ d− l

j − l

) d∑

q=1

q 6=j

(
1

p+ d− q

)
. (13)

Thanks to formulas (10) and (13), we are now able to express all the quantities present

in the scheme definition (5), applied to points near the outflow boundary through the inner

points. A similar procedure is also required at inflow boundary.

3.2 Inflow boundary

As for the outflow boundary, the ghost points values f−p, for p = 1, . . . , 5 and fx
−p, for

p = 1, . . . , 4 near the inflow boundary xA, have to be determined with the appropriate order

of approximation. Here, we present two different versions of the inverse Lax-Wendroff inflow

boundary condition.
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3.2.1 Inverse Lax-Wendroff (ILW) procedure

This procedure has been introduced in [23], and provided to finite difference schemes the

ghost values for an inflow boundary using an arbitrary order of approximation and consistent

with the boundary condition g(t). In a similar manner to the outflow treatment, let us set

f−p = f(u−p), (14)

where u−p are evaluated using a Taylor expansion as follows

u−p =
d−1∑

k=0

(−p+ CA)
k

k!
∆xk u∗ (k), (15)

where u∗ (k), the (d−k)th order approximation of ∂ku
∂xk |x=xA

, are this time evaluated by an ILW

procedure, see [23]. Practically, we make use of the PDE, (7), and the boundary condition,

u(xA, t) = g(t), to convert the spatial derivatives into time derivatives, and so determine the

successive “moments” u∗ (k). For example, the first few moments would write

u∗ (0) = u(xA, t) = g(t),

u∗ (1) =
∂ u

∂x
|x=xA

= −
g′(t)

f ′(g(t))
,

u∗ (2) =
∂2u

∂x2
|x=xA

=
f ′(g(t))g′′(t)− 2f ′′(g(t))g′(t)2

f ′(g(t))3
.

Here, we extend this procedure to compact schemes, setting

fx
−p = f ′(u−p)

∂ u

∂x
|x=x−p

. (16)

In this last expression, we see the contribution of u−p which has already been determined

by the ILW procedure. A Taylor expansion of the function ∂ u
∂x

at the boundary leads to

∂ u

∂x
|x=x−p

=
d−2∑

k=0

(−p+ CA)
k

k!
∆xk u∗ (k+1), (17)

where the u∗ (k) have already been computed in the evaluation of u−p.

It has been proven in [23] that this inflow boundary treatment maintains stability of stable

finite difference schemes in the case of linear hyperbolic initial value problems. We will show

9



in the next section that this stability result holds in the case of central compact schemes

as well. But a drawback of this procedure is its high algebraic complexity. The algebra

involved in the ILW procedure relies on the PDEs and thus can be very heavy for very-

high order of approximation, and even worse in the case of fully nonlinear multi-dimensional

systems of equations or for problems with source terms. This reason has motivated the

simplification presented in [24]. In this paper, the authors present a simplified version of

the inverse Lax-Wendroff boundary procedure in which only the first two moments u∗ (0)

and u∗ (1) in the Taylor expansion are evaluated using the ILW. The successive ones are

determined using an extrapolation procedure. In [24], this procedure has been shown to be

numerically stable when applied on a fifth order WENO scheme. Nonetheless this particular

boundary treatment cannot maintain stability for arbitrary order of accuracy. This is the

reason that we present a generalized simplified version wherein the first kd leading terms (in

[24] kd = 2) are determined through the inverse Lax-Wendroff procedure, where naturally

we would like to take the smallest kd which can guarantee stability.

3.2.2 Simplified inverse Lax-Wendroff (SILW) procedure

Let us recall the definition f−p = f(u−p) and the Taylor expansion of the solution at the

boundary

u−p =
d−1∑

k=0

(−p+ CA)
k

k!
∆xk u∗ (k). (18)

This time, only the first kd moments in (18) will be computed by the ILW procedure. For

k = kd, . . . , d − 1, the successive moments are defined through a Lagrangian extrapolation

as u∗ (k) = ∂kPd

∂xk |x=xA
, and thus (18) rewrites

u−p =

kd−1∑

k=0

(−p+ CA)
k

k!
∆xk u

∗ (k)
ilw +

d−1∑

k=kd

(−p+ CA)
k

k!
∆xk u

∗ (k)
ext , (19)

where the successive moments u
∗ (k)
ilw identify the ones computed through the inverse Lax-
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Wendroff procedure and u
∗ (k)
ext the ones defined by

u
∗ (k)
ext =

d∑

j=1

uj−1

∆xk

d∏

l=1

l 6=j

(
1− CA − l

j − l

) d∑

q1=1

q1 6=j

(
1

1− CA − q1

)
. . .

d∑

qk=1

qk 6=j

qk 6=q1,...,qk−1

(
1

1− CA − qk

)
. (20)

For fx
−p = f ′(u−p)

∂ u
∂x
|x=x−p

, a similar procedure is used which writes

∂ u

∂x
|x=x−p

=

kd−2∑

k=0

(−p+ CA)
k

k!
∆xk u

∗ (k+1)
ilw +

d−2∑

k=kd−1

(−p+ CA)
k

k!
∆xk u

∗ (k+1)
ext . (21)

In this section, all the ghost points contribution has been defined through the inner

point variables. Thanks to the three different procedures discussed above corresponding to

the inner scheme, the outflow and the inflow boundaries, respectively, we finally get the

considered semidiscretization.

It has been proven that outflow extrapolation [4] and inflow inverse Lax-Wendroff [23]

maintain stability of a Cauchy stable finite difference scheme. We extend this result to the

central compact scheme case, and also analyze the stability of these schemes provided with

the simplified inverse Lax-Wendroff inflow boundary treatment.

4 Stability

In this section we present the stability analysis of central compact schemes provided with

extrapolation outflow boundary and inverse lax-Wendroff or its simplified version for the

inflow boundary. We start this stability study using the G-K-S theory [9, 22], firstly in the

semidiscrete case then in the fully discrete case using the third-order TVD Runge-Kutta

time discretization. Afterwards, due to the high complexity of the algebra involved in the

G-K-S theory, the stability issue will be addressed via visualizing the eigenspectrum of the

discretized operators. In the end, the results obtained with these two different approaches

will be shown to be perfectly consistent.
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4.1 G-K-S theory

A powerful technique was developed to assess the stability of numerical boundary conditions

by Gustafsson, Kreiss and Sundström, based on the idea of normal mode analysis. This

technique, generally referred to as the G-K-S theory, establishes conditions that the inner

scheme and boundary schemes must satisfy to ensure stability. The specific details of the

theory given in the fully discrete case in [9] and in the semidiscrete case in [22] can be found

in numerous work and will not be detailed here. The essential elements of the propositions

that form the basis of this work follow.

Proposition 1 G-K-S theory asserts that to show stability for the finite-domain problem,

it is sufficient to show that the inner scheme is Cauchy stable on (−∞,+∞), and that each

of the two quarter-plane problems is stable with the use of normal mode analysis. Thus, the

stability of the finite-domain problem is broken into the summation of three simpler problems.

Proposition 2 For each quarter-plane problem that arises from Proposition 1, a necessary

and sufficient condition for stability of the IBVP is that no eigensolution exists. This propo-

sition is true for either the fully discrete case [9], or the semidiscrete case [22].

The interested reader may find the original theorems and statements in the two seminal

papers [9, 22], in which Proposition 1 refers to Theorem 5.4 in [9] and to the Section 3

statements in [22], while Proposition 2 refers to the Section 10 lemmas and theorems in [9]

and to the “Main theorem” in [22].

Both Propositions 1 and 2 rely on a definition of an eigensolution for their quarter-plane

analysis. In the remainder, the definition of an eigensolution is given in the case of the linear

initial boundary value quarter-plane problem





∂ u

∂t
+ A

∂ u

∂x
= 0, x ≥ 0, t ≥ 0,

u(0, t) = g(t), t ≥ 0, if A > 0,
u(x, 0) = u0(x), x ≥ 0,
‖u(., t)‖ < ∞, t ≥ 0,

(22)
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where ‖u(., t)‖ =
∫∞
0

|u(x, t)|2dx. We will use the same definition of the quarter-plane

problem regardless the type of boundary considered, inflow or outflow. The difference will

arise in the presence or not of a prescribed boundary condition u(0, t) = g(t) depending on

the sign of A, see (22). In (22), the right boundary has been removed and the boundary

condition is substituted by the requirement that the L2-norm is finite. We introduce now an

uniform discretization of the domain, such as 0 ≤ x0 = C0 ∆x < x1 < . . . , where {xj}j=0,1,...

are the grid points and C0 ∈ [0, 1) being related to the distance between the boundary x = 0

and the first grid point x0. We now consider a general definition of compact schemes inside

the domain, far enough from the boundary

P
d uj

dt
= −

A

∆x
Quj, for j = r, r + 1, . . . (23)

where the different operators write

P =

pL∑

i=−rL

αi E
i, Q =

pR∑

i=−rR

ai E
i, Eiuj = uj+i,

and r = max(rL, rR). Obviously, near the boundary particular schemes are required. A

generic definition of the boundary schemes is given in

Dj
d uj

dt
= −

A

∆x
Bjuj + g̃j(t), for j = 0, 1, . . . , r − 1 (24)

where Dj and Bj write

Dj =

p j
L∑

i=−r j
L
≥−j

d
j
i E

i, Bj =

p j
R∑

i=−r j
R
≥−j

b
j
i E

i.

In (24), g̃j(t) corresponds to the boundary contribution in the inflow boundary case. In the

remainder, we first consider the semidiscrete case.

4.1.1 Semidiscrete case

Hereon, for the semidiscretization defined previously, we give the following definition of an

eigensolution:
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Definition 1 An eigensolution for the IBVP defined by equations (23)-(24) is the nontrivial

function v(x, s) = e s tφ(x), which satisfies

1) s∆xPvj + AQvj = 0, j = r, r + 1, . . .

2) s∆xDjvj + ABjvj = g̃j(t), j = 0, 1, . . . , r − 1

3) Re(s) ≥ 0

4) For Re(s) > 0, v(x, s) is bounded as x → ∞

5) For Re(s) = 0, v(x, s) = lim
ε→0+

v(x, s+ ε), where v(x, s+ ε) satisfies the conditions a) and

c) with respect with s+ ε (generalized eigensolution)

Then, if one cannot find such a solution it proves the stability of the quarter-plane

problem. Now to illustrate practically this stability analysis, we study the case of the sixth

order tridiagonal central compact scheme CCS-T6. In this case, the numerical approximation

of the spatial derivative, far enough from the boundary (j ≥ 2), is given by

−
ux
j−2

12
+ ux

j −
ux
j+2

12
=

16

9

uj+1 − uj−1

2∆x
−

17

18

uj+2 − uj−2

4∆x
. (25)

Now, to ensure the existence or non-existence of eigensolutions normal mode analysis is

performed, and thus a solution of the form uj(t) = e s t φj, where φj = σKj is assumed. Sub-

stituting this particular solution in the inner semidiscrete scheme produces the characteristic

equation

s̃

(
K2 −

1

12

(
K4 + 1

))
+ sgn(A)

(
16

18

(
K3 −K

)
−

17

72

(
K4 − 1

))
= 0, (26)

where sgn(A) gives the sign of A, and s̃ = s ∆x
|A| is the eigenvalue. The characteristic equation

(26) has only two roots K which yield |K| < 1, for Re(s̃) > 0. The two other roots

will become exponentially unbounded as j becomes large and thus can be ignored. In the

particular case where Re(s̃) = 0, the four roots of the characteristic equations are such that

one yields |K| > 1, another |K| < 1 and the two last roots lie on the unit circle |K| = 1.
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Thus, in this case three roots seem to be admissible in such way that |K| ≤ 1. But actually,

similarly to the previous case for which Re(s̃) > 0, only two roots have to be considered.

Indeed, one of the root lying on the unit circle becomes exponentially unbounded as s̃ gets

perturbed in the right half-plane, and thus does not respect the condition 5) of Definition

1. For instance, in the case where s̃ = 0 the three roots of equation (26) such that |K| ≤ 1

are K1 = 1, K2 = −1 and K3 =
32−7

√
15

17
≃ 0.2876. We have to determine if the first two are

stable to perturbations or not. To do so we substitute s̃ = δ into the characteristic equation

(26) which produces to first order K1 = 1+ δ and K2 = −1 + 15
49
δ, where only the latter lies

inside the unit circle. This is the reason we can state that for any Re(s̃) ≥ 0 the general

solution to be considered has the form

φj = σ1 K
j
1 + σ2 K

j
2 , (27)

where K1, K2 are the two roots with |K| ≤ 1 and σ1, σ2 the two constants which remain to

be determined.

It is clear in equation (25) that for the two first grid points x0 and x1, the value of points

outside the domain has to be defined. The boundary procedures presented in the previous

sections are used to do so. For example, in the outflow quarter-plan problem (A = −1),

extrapolation is used to define u−p and ux
−p, for p = 1, 2. In the end, the particular schemes

respectively on j = 0 and j = 1 write

s̃ (72φ0 − 6φ2) +
1647

10
φ0 − 363φ1 + 358φ2 − 234φ3 +

177

2
φ4 −

71

5
φ5 = 0, (28)

s̃ (72φ1 − 6φ3) +
71

5
φ0 +

159

2
φ1 − 150φ2 + 74φ3 − 21φ4 +

33

10
φ5 = 0. (29)

Substituting the general solution (27) in these boundary schemes yield a two-unknowns

equation system, where the unknowns are the two constants σ1 and σ2. This system has

only the trivial solution unless its determinant is null. Practically, we seek functions of the

general form (27), with |K1| ≤ 1 and |K2| ≤ 1, solutions of the characteristic equation (26)

in the case of a null determinant of the system deriving from the boundary schemes, (28)

and (29). If no such solution exists, it proves the stability of the semidiscrete scheme on
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the considered quarter-plan problem. If one can find such solutions but only in the case

where Re(s̃) < 0, according to Proposition 1 and 2 no eigensolution exists and thus it also

proves stability. In the end, there are only two cases which exhibit instabilities. The first

one is the case where such a solution exists with Re(s̃) > 0. The second one is the case

where a solution exists with at least one of the roots on the unit circle and Re(s̃) = 0. In

this specific situation, the scheme is unstable only if this particular solution is a generalized

eigensolution, see Proposition 1. This last situation will be detailed immediately.

In the considered case of the outflow quarter-plan problem semidiscretization with the

CCS-T6 scheme provided with extrapolation boundary, the only solutions of form (27) en-

suring a null determinant of the boundary system belong to the case where s̃ = 0 and one

of the roots writes K = 1. As shown previously this particular root becomes exponentially

unbounded as s̃ gets perturbed in the right half-plane. Thus these particular solutions are

not eigensolutions of the IBVP under consideration. In the end, one can conclude that

the central compact scheme CCS-T6 provided with extrapolation boundary is G-K-S sta-

ble. This last result holds for any central compact schemes. Consequently, using normal

mode analysis and the G-K-S theory, we have proved that outflow extrapolation boundary

maintains stability in the semidiscrete case of the central compact schemes, for any order of

accuracy and for any position of the boundary (C0 ∈ [0, 1)).

The same analysis can be applied to the inflow quarter-plane problem (A = 1). This time,

a boundary condition of the form u(0, t) = g(t) has to be prescribed. For the purpose of the

stability analysis, g(t) can be set to zero without loss of generality. Under this assumption

and using the inverse Lax-Wendroff boundary treatment, all the ghost point values are set

to zero. In this case, the two boundary schemes respectively on j = 0 and j = 1 write

s̃ (72φ0 − 6φ2) + 64φ1 − 17φ2 = 0, (30)

s̃ (72φ1 − 6φ3) + 64(φ2 − φ0)− 17φ3 = 0. (31)

In this situation, the normal mode analysis tells us that there is no non-trivial function which

is a solution of both the characteristic equation (26) and the boundary schemes equations,
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(30) and (31), at the same time. Finally, one can prove that the inverse Lax-Wendroff

treatment of the boundary also maintain stability in the semidiscrete case of the central

compact schemes, for any order of accuracy and for any position of the boundary.

For the simplified inverse Lax-Wendroff procedure, the same analysis leads to the ex-

pected result that the stability of the semidiscretization depends on the number of leading

term kd used, and on the position of the boundary. The aim is to determine the minimum

number kd of leading terms in the SILW boundary procedure in order to ensure stability of

central compact schemes. The same example as before (CCS-T6 scheme) is used to exhibit

the approach used and the results obtained. In this case, we derive as previously the two

boundary scheme equations, for j = 0 and j = 1. The system obtained will not be given

explicitly here due to its high complexity. Obviously, these two equations depend directly

on the boundary position C0. The procedure was so to compute through the use of the soft-

ware Mathematica the solutions of both characteristic equation (26) and of a null boundary

system determinant, for any boundary position. In the end, we display the maximum real

part of the corresponding eigenvalues s̃, if such function exists, depending on C0 ∈ (0, 1], see

Figure 2.
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Max H Re H s L L

CCST6 -SILW1

Figure 2: Maximum of the real part of the eigenvalues as function of C0 for the CCS-T6
scheme with the SILW boundary condition with one leading term.
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In Figure 2, the case of one leading term is considered. One can see that for positions of

the boundary where C0 ∈ (0, 0.503], the quarter-plane problem possesses solutions. Further-

more, the maximum of the real part of the corresponding eigenvalues is bigger than zero.

This particular solution corresponds to an eigensolution, see Proposition 1, and according to

Proposition 2 the semidiscrete scheme is not stable. For value of C0 close to 0.5, the problem

does not exhibit solution. The scheme is then stable in this particular case. Finally, if the

boundary is far enough from the first grid point, one can see on Figure 2 that the problem

presents solutions, but for which the eigenvalues are less than zero in their real part. These

solutions are not eigensolutions, and thus the scheme is stable for these boundary positions.

In the end, the results displayed in Figure 2 show that one leading term in the simplified

inverse Lax-Wendroff procedure is not enough to ensure stability of the CCS-T6 scheme for

arbitrary position of the boundary. Consequently, we perform the same analysis in the two

cases of two and three leading terms, see Figures 3-(a) and (b).
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(a) Two leading term.
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(b) Three leading terms.

Figure 3: Maximum of the real part of the eigenvalues as function of C0 for the CCS-T6
scheme with the SILW boundary condition with two and three leading terms.

On Figure 3-(a), we can observe that with two leading terms, the semidiscrete scheme

is still unstable in cases where the boundary and the first grid point are very close to each

other. However, with three leading terms, see 3-(b), CCS-T6 scheme is perfectly stable for

any position of the boundary. One can see that for some specific values of C0 ∈ [0.05, 0.73]
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the problem has nontrivial solutions but for which the real part of the eigenvalues is strictly

less than zero. Performing the same analysis with more leading terms, one would find that

for any values of C0, the considered problem does not have nontrivial solutions, similar to the

full ILW boundary condition. In the end, the CCS-T6 scheme requires at least three leading

terms in the simplified inverse Lax-Wendroff boundary treatment to preserve stability for

arbitrary position of the boundary.

The algebraic complexity involved in showing stability of the IBVP is dramatically re-

duced in the semidiscrete case, because time remains continuous. However, numerical stabil-

ity is a fully discrete concept, and a connection between the semidiscrete and fully discrete

stabilities must be used. The procedure presented here allows us to address the stability of

semidiscrete schemes provided with specific boundary treatments. To ensure the relevance

of the stability behaviors observed in the semidiscrete case, we now present the fully discrete

extension of the previous analysis.

4.1.2 Fully discrete case

In the whole study presented, the choice has been made to use the well-known third-order

TVD Runge-Kutta scheme, see [20], as time discretization (other time discretizations can

certainly also be analyzed using the same techniques). We will first recall the stability

domain of such method. To that purpose, let us consider the following general system

d u

dt
= F (t, u). (32)

To derive the eigenvalue problem, we set F (t, u) = s u. This relationship substituted in

the RK3 discretization leads to the time discrete equation

un+1 = (1 + µ+
µ2

2
+

µ3

6
) un, (33)

where un = u(x, tn) and µ = s∆t, with ∆t the time step. Assuming a solution of the

form un = zn u0, where z is a complex number, the stability domain of the considered time
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discretization writes

|z(µ)| ≤ 1, where z(µ) = 1 + µ+
µ2

2
+

µ3

6
, (34)

where z(µ) is nothing but a third-order Taylor expansion of eµ.

We recall that in the semidiscrete case, the normal mode analysis assumes a solution of

form uj(t
n+1) = e s∆t uj(t

n) = e s̃
|A|∆t

∆x uj(t
n). The semidiscrete scheme is stable only if one

cannot find an eigenvalue s̃ lying in the right half-plane, i.e. Re(s̃) > 0, nor any generalized

eigenvalue. In the fully discrete case, a solution of form un+1
j = z(s∆t) un

j = z(s̃ |A|∆t
∆x

) un
j

has been assumed. The corresponding sufficient condition of stability would be the fully

discrete scheme is stable only if one cannot find an eigenvalue z lying outside the unit circle,

i.e. |z| > 1, nor any generalized eigenvalue. Obviously, if z(µ) is the exponential function,

the semidiscrete and fully discrete stabilities are perfectly equivalent. But it is clear that

the fully discrete case is just an approximation of the semidiscrete time continuous case,

and for explicit Runge-Kutta time advancements z(µ) is nothing but a Taylor expansion of

the exponential. Actually, the fully discrete scheme will be stable if the stability domain of

the semidiscrete scheme lies in the one of the time discretization. This is the reason that

it is possible for a scheme to be stable in its semidiscrete form but not stable after time

discretization.

Practically, to demonstrate the stability of the considered schemes we substitute in the

time discretization resolvent equation of z, equation (34), the eigenvalues s̃ found previously

in the semidiscrete G-K-S analysis. Then, one has to verify that there is no eigensolution of

the quarter-plane problem. We note that z depends on s̃ and |A|∆t
∆x

. We introduce here the

CFL condition

λcfl =
|A|∆t

∆x
, (35)

where λcfl > 0 is a scalar.

The fully discrete stability analysis is done at first with the same CFL condition as that

for the periodic boundary case, i.e. condition ensuring that the inner scheme is Cauchy
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stable (in the RK3-CCST6 case, λcfl = 0.961 is the maximum CFL condition ensuring the

stability of the inner scheme). If the fully discrete scheme is not stable under this condition

(∃ z, |z| > 1 or a generalized eigenvalue), we use a decreasing sequence of CFL condition,

re-performing at each step the stability analysis. The decreasing sequence stops as soon as

the scheme has proved to be stable, or when λcfl goes to zero.

Finally, using such a procedure we have proved that outflow extrapolation boundary as

well as inverse Lax-Wendroff treatment of the inflow boundary maintain stability in the fully

discrete case of central compact schemes provided with third-order TVD Runge-Kutta, for

any order of accuracy and any position of the boundary, and under the same CFL condition

as that for the periodic boundary case. For the simplified inverse Lax-Wendroff procedure,

the stability depends as before on the number of leading terms used. We give here the

same example as in the semidiscrete analysis. In the different figures displayed, see Figures

4 and 5, the C0-axis is now located at |z| = 1. In this configuration, consistent with the

semidiscrete case, existence of eigenvalue above the C0-axis proves instability.
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Figure 4: Maximum of the absolute value of the eigenvalues as function of C0 for the RK3-
CCST6 scheme with the SILW boundary condition with one leading term and λcfl = 0.961.

In Figure 4, the case of one leading term is considered. One can see that, consistent with

the semidiscrete case, if the boundary is too close to the first grid point the fully discrete
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scheme is not stable. For value of C0 close to 0.5, the quarter-plane problem does not exhibit

solution. Nevertheless, if C0 ∈ [0.742, 1] the fully discrete stability analysis shows instability

even though the semidiscrete scheme was stable. These results motivate the stability analysis

of the fully discrete scheme. We perform the same analysis in the two cases of two and three

terms, see Figures 5-(a) and (b).
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(a) Two leading terms.
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(b) Three leading terms.

Figure 5: Maximum of the absolute value of the eigenvalues as function of C0 for the RK3-
CCST6 scheme with the SILW boundary condition with two and three leading terms, and
λcfl = 0.961.

We recover similar results as for the semidiscrete case. In the end, the stability analysis

shows that CCS-T6 scheme with third-order Runge-Kutta requires at least three leading

terms in the simplified inverse Lax-Wendroff boundary condition to preserve stability. An

important result which came out of this stability study is that central compact schemes with

third-order Runge-Kutta provided with the SILW procedure for the inflow boundary will

be stable under the same CFL as that for the periodic boundary case or will not be stable

for any CFL, depending on the number of leading terms used. This would not be the case

of finite difference schemes of odd order of accuracy. In this last case, one can find that

using the minimum number of leading terms required by SILW inflow boundary to maintain

the stability decreases the CFL condition. Adding one more term in the procedure and

one recovers the periodic boundary case CFL condition. For example, for the fifth order

finite difference scheme with third-order TVD Runge-Kutta, two leading terms is enough in
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the SILW boundary to maintain stability. However, doing so the maximum CFL number

decreases from 1.43 to 1.02. Using three leading terms allows us to use 1.43, the same

maximum CFL condition as for the periodic case.

The stability analysis presented here has been performed, first in the semidiscrete case

and then in the fully discrete one, on different central compact schemes. The starting point of

this procedure is the use of normal mode analysis and G-K-S theory. This powerful technique

allows us to analytically prove stability of schemes on a finite-domain, independently of the

mesh resolution. The stability is then broken into the summation of three simpler problems.

However, this technique has some disadvantages. The theory used is rather complex. And the

algebra involved can be extremely heavy and not practical for very high orders of accuracy,

even using a mathematical software. These drawbacks have motivated us to study stability

in a different manner, visualizing the eigenvalue spectrum of the discretized operator. It

would not be this time an analytical demonstration of stability, but it gives an apprehension

of the behavior of the studied methods. Knowing that no instability comes from the outflow

extrapolation boundary condition, we will see that the results obtained by the spectrum

analysis are perfectly consistent with the ones obtained in the study of the inflow quarter-

plane problem presented in this section.

4.2 Eigenvalue spectrum visualization

To confirm and extend to very high order of accuracy the stability analysis done in the

previous sections, an eigenspectrum study is done hereon. The analysis begins by considering

the one-dimensional linear initial boundary value problem





∂ u

∂t
+ A

∂ u

∂x
= 0, x ∈ [xA, xB], t ≥ 0,

u(xA, t) = g(t), t ≥ 0,
u(x, 0) = u0(x), x ∈ [xA, xB],

(36)

where A > 0 is assumed. The left boundary is then an inflow boundary and the right

an outflow boundary. The prescribed condition g(t) can again be set to zero without loss

of generality. The domain is then discretized into n equal intervals of size ∆x, such as
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xA ≤ x0 < x1 < · · · < xn ≤ xB. Notice that both x0 and xn are not necessarily located on

the boundaries. Practically, we have

xA = x0 − CA∆x and xA = xn + CB∆x,

where CA and CB are defined respectively in (0, 1] and in [0, 1).

Remark 1 In the particular case where CA = 0, the number of unknowns is decreased by

one, node x0 corresponding to the boundary xA. And for Cb = 1, the number of unknowns is

increased by one, ghost point xn+1 corresponding to the boundary xB.

In order to discretize the considered problem (36), central compact schemes are used

for the inner points. The ghost points located beyond the outflow boundary are evaluated

by an extrapolation procedure, and the ones located to the left of the inflow boundary

are determined either by the ILW procedure or its simplified version SILW. Finally, the

semidiscrete scheme yields a linear system of equations expressed in a matrix-vector form as

P
dU

dt
= −

A

∆x
QU , (37)

where the matrix P is invertible, and U is the vector representing the values of the solution

at the nodes, U = (u0, u1, . . . , un)
t. This system contains the chosen inner scheme as well

as the two boundary treatments. As before, we first study the considered problem in its

semidiscrete form.

4.2.1 Semidiscrete case

The normal mode analysis is applied to the matrix-vector system of equations to get the

eigenvalue problem. Assuming a solution of the form u(x, t) = e s t u0(x), the semidiscrete

scheme yields

s̃PU = −sgn(A)QU , (38)

with s̃ = s ∆x
|A| being the considered eigenvalue. The next step is to compute the eigenvalues

of the matrix −sgn(A)P−1Q. In the practical application, the choice made on the velocity
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has been A = 1, for the sake of simplicity. As before, the semidiscretization provided with

the considered boundary conditions, on the studied mesh, is stable if the whole eigenvalue

spectrum lies in the left half-plane (Re(s̃) ≤ 0), as in Figure 6.
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Figure 6: The eigenvalue spectra of semi-discrete central compact schemes, closed with an
inverse Lax-Wendroff procedure for the inflow boundary, and extrapolation for the outflow
boundary, with 40 cells, CA = 0.4 and CB = 0.2.

The results displayed in Figure 6 correspond to the case of outflow extrapolation and

inflow inverse Lax-Wendroff boundaries, on a grid made of 40 cells. It is clear that for all

central compact schemes derived from the general formula (6), these particular boundary

25



treatments maintain stability, due to the fact that the spectra lie in the left half-plan. Similar

results are obtained with different grid resolutions. This result is perfectly consistent with

the one obtained using the G-K-S theory because it has been proved previously that these

two boundary conditions are stable separately. However, we know that the SILW procedure

stability depends on the position of the boundary and on the number of leading terms used.

The same example of the CCS-T6 scheme is used to exhibit our results.
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Figure 7: The eigenvalue spectra of the CCS-T6, provided with SILW procedure with one
term for the inflow boundary, and extrapolation for the outflow boundary.

In Figure 7, the spectra are displayed for different grids, from 20 to 320 cells. One can see
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that for some positions of the boundary, see Figure 7-(a) and (c), some particular eigenvalues

are fixed and independent of the mesh resolution. These specific eigenvalues are the ones

responsible of instability in cases where their real part is greater than zero. This is why our

study will be focused on these fixed eigenvalues. The remainder of the spectra is similar to

the ones found with ILW boundary and corresponds to a stable scheme. It appears that

these particular eigenvalues can be identified as the ones found with the G-K-S theory for

the inflow boundary. That is why, in cases where no function were found to be solution of

the characteristic equation and of the boundary schemes, we observe that no such particular

eigenvalues are present in the spectra, see Figure 7-(b). To ensure that both stability studies

lead to the same results, we locate these particular eigenvalues in the spectra, and then plot

their real part depending upon the inflow boundary position CA, see Figure 8-(b).
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(a) G-K-S analysis.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−6

−5

−4

−3

−2

−1

0

1

Ca

R
e

(s
)

Particular eigenvalue real part of CCST6−SILW1

(b) Eigenspectrum analysis.

Figure 8: Real part of the CCS-T6 scheme particular eigenvalues, provided with extrapola-
tion and SILW with one term boundary conditions.

It is clear in Figure 8 these two different stability analysis lead to exactly the same results.

Needless to say that eigenspectrum analysis gives not an analytical proof of stability, being

dependent on the mesh resolution. But considering the fact that instability comes from

particular eigenvalues independent of the grid, we obtain equivalent results. Performing

the same comparison in the cases of two and three leading terms in the SILW boundary

treatment leads to the same consistency in the results, see Figure 9. Going to four terms,
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one would observe that these particular eigenvalues vanish, and thus one recovers a stable

spectrum similar to the ILW case. Let us now look at the fully discrete case.
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Figure 9: Real part of CCS-T6 scheme particular eigenvalues, provided with extrapolation
and SILW with two and three terms boundary conditions.

4.2.2 Fully discrete case

Here, we recall the semi-discrete system (37) obtained previously

P
dU

dt
= −

A

∆x
QU .

We apply now to this ODE the third-order TVD Runge-Kutta method. Doing so, the

fully discretize problem can be written as

U
n+1 = GU

n, (39)
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where U
n and U

n+1 are the solution vectors respectively at time tn and tn+1. In equation

(39), the fully discrete operator G is defined as

G = Id − sgn(A)
|A|∆t

∆x
P−1Q+

(
|A|∆t

∆x

)2(
P−1Q

)2
− sgn(A)

(
|A|∆t

∆x

)3(
P−1Q

)3
, (40)

where Id is the identity matrix.

Making use again of the normal mode analysis to derive the eigenvalue problem, we

assume a solution of the form un = zn u0. Substituting this solution in (39), one gets

zUn = G

(
|A|∆t

∆x

)
U

n. (41)

To ensure stability of the fully discrete problem we compute the complex eigenvalues of

the operator G, which depends on |A|∆t
∆x

. We make use here of the same CFL definition as

before, λcfl =
|A|∆t
∆x

. Consistent with the G-K-S analysis performed previously, the eigen-

spectrum computation is done at first using the same CFL condition as that for the periodic

boundary case, and then using a decreasing sequence, re-performing at each step the stability

analysis. In the end, the scheme will be stable if the whole eigenvalue spectrum lies in the

unit circle, i.e. |z| ≤ 1, as in Figure 10.

In Figure 10, the results correspond to the case of outflow extrapolation and inflow inverse

Lax-Wendroff boundaries, on a grid made of 80 cells. It shows that for all central compact

schemes, these particular boundary treatments maintain stability due to the fact that the

spectra lie in the unit circle. Similar results are obtained with different grid resolutions. Let

us look at the stability behavior of the simplified inverse Lax-Wendroff procedure, in the

same case of the CCS-T6 scheme.

In a similar way as before, we observe in Figure 11-(a) and (c) the presence of particular

eigenvalues independent of the number of cells, for some boundary positions. Again, because

these are the ones responsible for the instabilities, we focus our study on these by locating

them and plotting their absolute values depending on the inflow boundary position CA, see

Figure 12.
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Figure 10: The eigenvalue spectra of the RK3-CCS, closed with an inverse Lax-Wendroff
procedure for the inflow boundary, and extrapolation for the outflow boundary with 80 cells,
CA = 0.3 and CB = 0.3, and the maximum CFL condition ensuring inner schemes stability.

In the end, this eigenvalue spectrum analysis leads to the same results as before. The

outflow extrapolation and inflow inverse Lax-Wendroff boundary treatments maintain the

stability, under the same CFL condition as that for the periodic boundary case, for any
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Figure 11: The eigenvalue spectra of the RK3-CCST6, provided with SILW procedure with
one term for the inflow boundary, and extrapolation for the outflow boundary, and λcfl =
0.961.

central compact schemes presented and for any position of the boundary. The simplified

inverse Lax-Wendroff boundary stability depends on the number of leading terms kd used

in the procedure. Nevertheless, SILW maintains stability of central compact schemes under

the same CFL as the periodic case if enough terms are used, or is not stable for any CFL
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Figure 12: Absolute value of the particular eigenvalues of RK3-CCST6 scheme provided with
extrapolation and SILW with one term boundary conditions, and λcfl = 0.961.

condition.

Finally, in Table 1, we gather the results of the stability analysis, giving the minimum

number of leading terms required in the SILW inflow boundary treatment for the central

compact schemes to remain stable, using the third-order TVD Runge-Kutta as time dis-

cretization, under the CFL conditions gathered in Table 2 ensuring the inner scheme to be

Cauchy stable.

Scheme Required leading terms

CCS-E4 3
CCS-E6 4
CCS-E8 5
CCS-E10 5

Scheme Required leading terms

CCS-T4 3
CCS-T6 3
CCS-T8 5
CCS-T10 8
CCS-T12 9

Scheme Required leading terms

CCS-P6 4
CCS-P8 5
CCS-P10 7
CCS-P12 9
CCS-P14 9

Table 1: Minimum number of leading terms required by the different RK3-CCS schemes to
remain stable under the same CFL as that for periodic boundary conditions.
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(c) G-K-S analysis.
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Figure 13: Absolute value of the particular eigenvalues of RK3-CCST6 scheme provided with
extrapolation and SILW with two and three terms boundary conditions, and λcfl = 0.961.

To attest the relevance of the stability analysis presented, we give a numerical example.

We consider the linear advection case (36) with A = 1, on the domain [0, 1]. The initial

solution writes u0(x) = 0.25 + 0.5 sin(π x), while the inflow boundary condition is given by

u(−1, t) = 0.25−0.5 sin(π (1+t)). The spatial discretization comes from the use of the sixth

order tridiagonal central compact scheme (CCS-T6) with third-order TVD Runge-Kutta time

discretization. Regarding the boundary treatments the ghost point values are evaluated with

an extrapolation at the outflow boundary, and through the use of the simplified inverse Lax-

Wendroff procedure at the inflow boundary. We consider the case where CA = 0.001 and
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Scheme Maximum CFL

CCS-E4 1.26
CCS-E6 1.09
CCS-E8 1.00
CCS-E10 0.942

Scheme Maximum CFL

CCS-T4 1.44
CCS-T6 0.961
CCS-T8 0.859
CCS-T10 0.807
CCS-T12 0.774

Scheme Maximum CFL

CCS-P6 1.36
CCS-P8 0.911
CCS-P10 0.813
CCS-P12 0.761
CCS-P14 0.732

Table 2: Maximum CFL, max(λcfl), ensuring inner RK3-CCS schemes to be Cauchy stable.

CB = 0.7, and thus the first and last grid points are located as

x0 = 0.001∆x and xn = 1− 0.7∆x.

A 40 cells uniform grid is used. We clearly see on Figure 14 that the outflow boundary xB = 1

and the last grid point xn do not coincide. On the other hand, at xA = 0 it is impossible to

distinguish the two points, the boundary and the first grid point x0 being extremely close.
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(b) Three leading terms, t = 10000.

Figure 14: Numerical results obtained with RK3-CCST6 scheme provided with extrapolation
and SILW boundaries in the linear advection case (A = 1) on x ∈ [−1, 1], with the initial
and boundary condition u0(x) = 0.25 + 0.5 sin(π x) and u(−1, t) = 0.25− 0.5 sin(π (1 + t)),
with 40 cells, CA = 0.001 and λcfl = 0.961.
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Thanks to the stability analysis presented, one knows that using the CCS-T6 scheme

and in the case where the first grid point is too close to the boundary, two leading terms

in the SILW boundary treatment is not enough to maintain stability. On Figure 14-(a), we

clearly observe this unstable behavior. The stability analysis tells us that three terms in the

SILW procedure can enforce stability for any position of the boundary. The results displayed

in Figure 14-(b) confirm this statement. Furthermore, after a very long computation time

t = 10000, no dissipation or dispersion errors can be visually observed. This result also

confirms the high accuracy of the presented central compact schemes provided with the high

order boundary treatments studied.

At last, to ensure the studied boundary treatments preserve the high accuracy of the

schemes, we compute the rate of convergence of the RK3-CCST6 scheme provided with

extrapolation and SILW with three leading terms boundary treatments, in the same linear

advection case than before, for two different inflow boundary positions, CA = 0.001 and

CA = 1, see Tables 3-(a) and 4-(a). We also perform this analysis in the Burgers case,

ut + (1
2
u2)x = 0, with the same smooth initial data than for the linear case, see Tables 3-(b)

and 4-(b). In this nonlinear case, we do not give explicitly the prescribed boundary condition

and its successive derivatives due to the complexity of the formula. To ensure that the error

of the time discretization will not dominate, we adjust the time step to ∆t = ∆xd/3, where

d is the order of accuracy of the spatial discretization.

L2 L∞

h Eh
L2

qhL2
Eh

L∞
qhL∞

1
20

8.79E-5 5.98 1.04E-4 5.99
1
40

1.55E-6 5.99 1.81E-6 5.98
1
80

2.56E-8 6.00 3.03E-8 5.99
1

160
4.10E-10 6.00 4.88E-10 6.00

1
320

6.48E-12 - 7.74E-12 -

L2 L∞

h Eh
L2

qhL2
Eh

L∞
qhL∞

1
20

2.26E-5 5.23 5.06E-5 4.50
1
40

6.20E-7 6.27 2.41E-6 5.85
1
80

8.51E-9 6.51 4.41E-8 6.33
1

160
9.58E-11 6.28 5.63E-10 6.33

1
320

1.25E-12 - 7.09E-12 -

Table 3: Rate of convergence of the RK3-CCST6 scheme provided with outflow extrapolation
and inflow SILW with three leading terms in the two cases of linear advection and Burgers
equation, with CA = 0.001 and CB = 0.7.
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L2 L∞

h Eh
L2

qhL2
Eh

L∞
qhL∞

1
20

5.92E-5 6.00 7.74E-5 5.96
1
40

1.18E-6 6.00 1.57E-6 5.98
1
80

2.08E-8 6.00 2.81E-8 5.99
1

160
3.45E-10 6.00 4.70E-10 6.00

1
320

5.56E-12 - 7.60E-16 -

L2 L∞

h Eh
L2

qhL2
Eh

L∞
qhL∞

1
20

1.89E-5 5.24 4.26E-5 4.60
1
40

6.516E-7 5.34 2.12E-6 5.87
1
80

8.65E-9 6.60 4.08E-8 6.33
1

160
9.56E-11 6.35 5.41E-10 6.33

1
320

1.20E-12 - 6.95E-12 -

Table 4: Rate of convergence of the RK3-CCST6 scheme provided with outflow extrapolation
and inflow SILW with three leading terms in the two cases of linear advection and Burgers
equation, with CA = 1 and CB = 0.7.

The results displayed clearly exhibit that the expected accuracy is obtained numerically.

To end this stability study, a brief discussion on energy stability is addressed.

4.3 Energy stability

In the previous section 4.1, the G-K-S theory has demonstrated its high capability and wide

application to general initial boundary value problems. However, its high complexity has

also been highlighted. Another approach to study stability is the energy method, which has a

simple structure and is convenient to use when it works. This method consists in constructing

a norm which does not grow from one time level to the next, if the boundary data g(t) is set

to zero. The drawback is that if one fails to construct such a norm, it is not clear whether or

not the studied scheme is stable or not. Indeed, the energy method only provides a sufficient

condition of stability, while G-K-S theory provides necessary and sufficient conditions for

stability. Due to its simple structure and also to compete with Galerkin finite element

methods and their natural energy property, the issue of energy formulation for difference

schemes has been a central problem under study for decades, and has played a crucial

role in the characterization of well-posedness in PDEs and stability in numerical schemes.

Consequently, the energy stability issue as well as the establishment of a summation-by-part

have been tackled in numerous seminal papers and will not be detailed here. The interested

reader may refer to [10, 11, 21, 19, 8, 7, 2, 16, 17]. In the remainder, only the main points
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related to an energy formulation are given.

Let us consider the scalar linear hyperbolic equation

∂ u

∂t
+ A

∂ u

∂x
= 0, 0 ≤ x ≤ 1, t > 0. (42)

The solution of (42) is approximated using compact schemes in the following form

P
dU

dt
= −

A

∆x
QU , (43)

where U = (u0, u1, . . . , un)
t is the solution vector and {xj}j=0,...,n are the equally spaced grid

points with x0 = 0 and xn = 1. In (43), the operators P and Q contain both boundary

treatments at x0 and xn, which remain unspecified for now. Let us introduce the discrete

scalar product and norm for real grid vectors U ,V ∈ R
n+1 by

(U ,V )h = (U ,HPV ) = ∆x

n∑

i,j=0

(HP )ij uivj, (44)

‖U‖2h = (U ,U )h, (45)

where the matrix H = (Hij)ij, named here the norm matrix, is defined such that the matrix

HP = (
∑

k HikPkj)ij is symmetric positive definite.

Definition 2 The difference operator P−1Q is semibounded if for all V ∈ R
n+1 the inequality

−
A

∆x
(V ,P−1QV )h ≤ α‖V ‖2h (46)

holds, where α is a constant independent of V and ∆x.

Using the scalar product and norm defined in (44) and (45), the following relationship

can be easily obtained

d

dt
‖U‖2h = 2(U ,

dU

dt
)h = −

2A

∆x
(V ,P−1QV )h. (47)

Thanks to this relationship, if P−1Q is semibounded then it follows that

d

dt
‖U‖2h ≤ 2α‖U‖2h,
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which leads to

‖Un+1‖h ≤ eα∆t‖Un‖h, (48)

U
n and U

n+1 being the solution vectors respectively at time tn and tn+1. This results is

stated in the following theorem.

Theorem 1 If the difference operator P−1Q is semibounded, then the problem (43) is energy

stable, as in (48).

One can see that in this definition of energy stability a growth in time is allowed. To

ensure stability for any t ∈ ]0,+∞), the scheme is required to be time energy stable.

Theorem 2 If the difference operator P−1Q is semibounded and satisfies

−
A

∆x
(V ,P−1QV )h ≤ 0, (49)

for any V ∈ R
n+1, then the approximation (43) is time energy stable.

It is clear that in this case the scheme satisfies

‖Un+1‖h ≤ ‖Un‖h.

A classical and commonly used class of schemes ensuring energy stability is the summation

by parts (SBP) difference operators. Furthermore, these discretizations mimic the continuous

level regarding the variation of energy. Indeed, defining the continuous energy as E(t) =
∫ 1

0
u(x, t)2dx, it easily follows that

d E

dt
= −A(u(1, t)2 − u(0, t)2). (50)

The SBP operators assume a norm matrix H such that

• the matrix HP is symmetric positive definite,

• the matrix HQ is nearly skew-symmetric such that G = HQ + HQ
t admits only two

elements: G00 < 0 and Gnn > 0.
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Doing so, the problem (43) admits a summation-by-part formula and the scheme is then

energy stable. Defining the discrete energy as E(t) = (U ,U )h, one easily gets

dE

dt
= −

2A

∆x
(U ,HQU ) = −A(Gnnu

2
n +G00u

2
0), (51)

which obviously proves the energy stability of the scheme, the difference operator being

semibounded. One can also see in (51) that the discretization mimic the continuous energy

behavior (50). However, the time stability issue remains. Considering the case where x0 is

an inflow boundary and xn is an outflow boundary (A > 0), and introducing the prescribed

boundary condition u(0, t) = g(t), which can be set to zero for the purpose of stability, the

continuous energy rewrites

d E

dt
= −Au(1, t)2 ≤ 0. (52)

We see that in (51), nothing ensures the time rate of change of the discrete energy to be

less than zero. A solution to overcome this problem is the use of a simultaneous approxima-

tion term (SAT), see [1]. In this case, a penalty term is used to take into account the inflow

boundary contribution and ensure time stability. For instance, a SBP-SAT discretization of

the considered problem would write

P
dU

dt
= −

A

∆x
(QU − τG00 (u0 − g(t))S) , (53)

where S = H−1(1, 0, . . . , 0)t. For the time stability analysis, we take as before g(t) = 0.

Using the difference operator (53), the time rate of change of the discrete energy now writes

dE

dt
= −A(Gnn u

2
n − 2G00 (τ −

1

2
) u2

0). (54)

We can immediately state that the SBP-SAT discretization (53) is both stable and time-

stable if τ ≥ 1
2
.

We have seen here that to ensure time energy stability, taking into account the inflow

boundary condition, specific modifications of the difference scheme is required, see [19, 7,

1]. Actually, all these constraints vanish using the inverse Lax-Wendroff inflow boundary
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treatment. This noteworthy advantage results from the fact that using ILW, all the ghost

points can be identified as prescribed boundary conditions. As we have seen in section 4.1,

in the case where g(t) = 0, the ghost points contribution is naturally null. Thus, the inner

scheme remains unchanged near the inflow boundary. The SBP discretization using ILW for

the inflow boundary will perfectly corresponds to the SBP operator obtained in the case of

the outflow quarter plan problem with a finite number of grid points. In this case, a norm

matrix H ensuring the following assumptions is considered

• the matrix HP is symmetric positive definite,

• the matrix HQ is nearly skew-symmetric such that G = HQ + HQ
t admits only one

element, Gnn > 0.

As mentioned before, the scheme remains unchanged near the inflow boundary. Using such

a scheme yields the following time rate of change of the discrete energy

dE

dt
= −AGnn u

2
n ≤ 0, (55)

which ensure time stability of the scheme, and is furthermore consistent with the continuous

level result (52). This relationship holds even if the first grid point is not aligned with

the inflow boundary. This result exhibits the high ability of the ILW boundary treatment to

mimic naturally the behavior of the continuous solution, considering ghost points as physical

boundaries. If we consider the simplified inverse Lax-Wendroff boundary treatment, things

will be different. One may still be able to find the appropriate norm ensuring energy stability

when the simplified inverse Lax-Wendroff boundary treatment is used. However it may be

expected that the moments to be extrapolated would need to be extrapolated in a specific

way, using a wider stencil, than what has been used in the previous sections. Since the energy

method provides only a sufficient condition for stability, it may not be able to determine

the minimum number of leading terms required in the procedure to ensure stability. For

this reason we have tackled stability in this paper for the simplified inverse Lax-Wendroff

boundary treatment using the G-K-S theory only.
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5 Conclusion

In this paper, we have assessed the stability of the central compact schemes introduced

recently in [14], provided with particular boundary conditions. For the outflow boundary, the

case of classical Lagrangian extrapolation has been studied. Regarding the inflow boundary,

the case of the inverse Lax-Wendroff boundary treatment, see [23], and a simplified version of

it as used in [24] have been addressed. Finally, the outflow extrapolation and inflow inverse

Lax-Wendroff boundary treatments have both proved to maintain stability and the order

of accuracy, under the same CFL condition as that for the periodic boundary case, for any

central compact schemes presented and for any position of the boundary. For the simplified

inverse Lax-Wendroff boundary treatment, stability depends on the number of leading terms

kd used in the procedure. Nevertheless, SILW maintains stability of central compact schemes

under the same CFL as that the periodic boundary in the case when enough terms are used,

otherwise the scheme is not stable for any CFL condition. The minimum number of leading

terms required in the SILW inflow boundary condition by different central compact schemes

to remain stable, using the third-order TVD Runge-Kutta as time discretization, has been

summarized in Table 1. Finally, the natural suitability of the inverse Lax-Wendroff inflow

boundary to the energy stability considerations has been enlightened.

An important result which came out is the perfect consistency in the results obtained

by the two different analysis, G-K-S and eigenspectrum visualization. On the one hand,

in the G-K-S theory the stability analysis is broken into three simpler problems, the inner

problem and the two quarter-plane problems corresponding to the two type of boundaries,

inflow and outflow. On the other hand, the matrix operator we compute the eigenvalues of,

in the spectrum analysis, contains both boundary conditions. But due to the fact that it

has been proven that no instability comes from the outflow extrapolation procedure, if one

observes in the spectra some unstable eigenvalues it is clear that they come from the inflow

contribution, and thus correspond to the ones found with G-K-S theory and normal mode

analysis.
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In the future, we plan to investigate furthermore the stability analysis of the considered

schemes using the energy method in the case of SILW inflow boundary. As said previously,

such method has a simple structure and is convenient to use. The drawback is that if one

fails to construct such a norm, it is not clear whether or not the scheme is stable. In the

case of very high order compact schemes, building such a norm is not an easy task. An-

other interesting issue could be to adapt central compact schemes and inverse Lax-Wendroff

boundary treatment to SBP-SAT operators. The summation by parts (SBP) operators pro-

vide inherently a norm ensuring stability. By adding a simultaneous approximation term

(SAT), the boundary condition is naturally taken into account. Applications of the studied

schemes and boundary treatments to more practical problems, as for example the Euler or

Navier-Stokes system of equations, are also planned.
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