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Abstract

Based on the total Lagrangian kinematical description, a discontinuous Galerkin (DG) discretiza-
tion of the gas dynamics equations is developed for two-dimensional fluid flows on general unstruc-
tured grids. Contrary to the updated Lagrangian formulation, which refers to the current moving
configuration of the flow, the total Lagrangian formulation refers to the fixed reference configura-
tion, which is usually the initial one. In this framework, the Lagrangian and Eulerian descriptions
of the kinematical and the physical variables are related by means of the Piola transformation.
Here, we describe a cell-centered high-order DG discretization of the physical conservation laws.
The geometrical conservation law, which governs the time evolution of the deformation gradient,
is solved by means of a finite element discretization. This approach allows to satisfy exactly the
Piola compatibility condition. Regarding the DG approach, it relies on the use of a polynomial
space approximation which is spanned by a Taylor basis. The main advantage in using this type
of basis relies on its adaptability regardless the shape of the cell. The numerical fluxes at the cell
interfaces are computed employing a node-based solver which can be viewed as an approximate
Riemann solver. We present numerical results to illustrate the robustness and the accuracy up to
third-order of our DG method. First, we show its ability to accurately capture geometrical features
of a flow region employing curvilinear grids. Second, we demonstrate the dramatic improvement in
symmetry preservation for radial flows.

Keywords: Discontinuous Galerkin discretization, total Lagrangian formulation, updated
Lagrangian formulation, cell-centered scheme, Godunov-type method, unstructured moving grid,
curvilinear grid, gas dynamics

PACS: 47.11.Df, 47.10.ab, 47.40.Nm
2000 MSC: 76N15, 65M06

∗Corresponding author
Email addresses: francois_vilar@brown.edu (François Vilar), maire@celia.u-bordeaux1.fr (Pierre-Henri

Maire), remi.abgrall@math.uzh.ch (Rémi Abgrall)
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1. Introduction

We aim at describing a high-order discontinuous Galerkin (DG) method for solving the two-
dimensional total Lagrangian form of the gas dynamics equations on general unstructured grids.
It is well known that fluid dynamics relies on two kinematics descriptions: the Eulerian or spatial
description and the Lagrangian or material description, refer for instance to [25, 22]. In the former,
the conservation laws are written using a fixed reference frame whereas in the latter they are written
through the use of a time dependent reference frame that follows the fluid motion. The Lagrangian
representation is particularly well adapted to describe the time evolution of fluid flows contained in
regions undergoing large shape changes due to strong compressions or expansions. Further, in this
approach, there is no mass flux across the boundary surface of a control volume moving with the
fluid velocity. Thus, Lagrangian representation provides a natural framework to track accurately
material interfaces in multi-material compressible flows. Moreover, such a representation avoids the
apparition of numerical diffusion resulting from the discretization of the convection terms present
in the Eulerian frame.
This paper is primarily concerned with the development of a Lagrangian method for which the
main feature relies on the use of the total Lagrangian formalism. In this approach, the physical
conservation laws are written employing the Lagrangian coordinates which refer to the initial con-
figuration of the fluid flow. Moreover, in these equations the divergence and gradient operators
are expressed by means of the Piola transformation [25], which requires the knowledge of the de-
formation gradient tensor, i.e. the Jacobian matrix associated to the Lagrange-Euler flow map.
The deformation gradient tensor characterizes the time evolving deformation and is governed by
a partial differential equation named the geometric conservation law (GCL). To ensure the con-
sistency between the initial and the current configurations, the deformation gradient tensor has
to satisfy an involutive constraint [45], which implies the Piola compatibility condition. The total
Lagrangian approach is very well known in the solid mechanics community wherein it is extensively
used to model solid dynamics undergoing large deformations [25]. The first application of the total
Lagrangian approach to the gas dynamics equations has been undertaken in [1, 34] by means of
a DG type discretization. However, the use of the aforementioned method is restricted to a rep-
resentation on the initial configuration since it cannot be rigorously re-interpreted on the current
configuration. We also note that the theoretical properties of the gas dynamics equations written
under the total Lagrangian formulation have been thoroughly studied in [16, 42].
In contrast with respect to the total Lagrangian formulation, the updated Lagrangian formulation is
a moving domain method, which is widely employed. In this approach, the gas dynamics equations
are written employing the Eulerian coordinates. They refer to the current configuration of the fluid
flow. The time derivative of the physical variables is taken following the fluid particles paths: this
is the material derivative. The integral formulation of the conservation laws is readily obtained
by employing the Reynolds transport formula over an arbitrary moving control volume. The time
rate of change of a zone volume is governed by a partial differential equation which is the updated
Lagrangian form of the GCL. It is worth mentioning that at the discrete level the zone volume
computed from its vertices coordinates must rigorously coincide with the zone volume deduced
from the numerical solution of the GCL. This critical requirement is the cornerstone on which any
proper multi-dimensional updated Lagrangian scheme should rely.
Two approaches are mainly employed to solve the updated Lagrangian formulation of the gas
dynamics equations. The first one, which is called the staggered grid hydrodynamics, consists
in using a staggered discretization wherein the kinematic variables (vertex position, velocity) are
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located at nodes whereas the thermodynamic variables (density, pressure, internal energy) are
defined at the cell centers. The conversion of kinetic energy into internal energy through shock
waves, consistently with the second law of thermodynamics, is ensured by adding an artificial
viscosity term. The staggered grid schemes employed in most hydro-codes have been remarkably
successful over the past decades in solving complex multi-dimensional compressible fluid flows, refer
for instance to [9, 10]. However, they clearly have some theoretical and practical deficiencies such as
mesh imprinting and symmetry breaking. In addition, the fact that all variables are not conserved
over the same space can lead to serious difficulties in the perspective of an arbitrary Lagrangian-
Eulerian (ALE) extension. The second approach, known as cell-centered hydrodynamics, employs
a cell-centered placement of all hydrodynamic variables including the momentum. This approach
consists of a moving mesh finite volume method wherein the numerical fluxes (multi-valued nodal
pressures and nodal velocity) are computed through the use of node-centered approximate Riemann
solvers. In this framework, momentum and total energy are conserved and an entropy inequality
is satisfied at the semi-discrete level to ensure the thermodynamic consistency of the numerical
method. Moreover, the numerical fluxes are constructed to satisfy the GCL compatibility. The
interested readers may refer to the following papers [11, 37, 12, 38, 3, 8] for a more detailed
description of this approach and its variants. Let us point out that work has been done to investigate
the relationships between the staggered and the cell-centered discretizations, refer to [41, 35].
Up to our knowledge, the interpretation of the staggered schemes of Goad [23] and Wilkins [53]
by means of a finite element method has been initially introduced by Lascaux at the beginning
of the 70’s [32, 33]. This finite element approach has been further developed, producing various
interesting staggered schemes. For instance, a compatible finite element Lagrangian hydrodynamics
algorithm used in a multi-material ALE strategy has been described in [2]. We also note the devel-
opment of a variational multi-scale stabilized approach in finite element computation of Lagrangian
hydrodynamics where a piecewise linear approximation was adopted for the variables [47, 46]. The
case of Q1/P0 finite element is studied in [48] where the kinematic variables are represented using
a piecewise linear continuous approximation while the thermodynamic variables utilize a piecewise
constant representation.
Except the pioneering work of [1, 34], all the aforementioned approaches are characterized by
an accuracy which is at most of second order, for problems with higher than one dimension space.
This accuracy restriction is a natural consequence of the spatial discretization of the Lagrange-Euler
flow map employed. Namely, the gas dynamics equations are discretized on a moving grid made of
polygonal cells whose edges remain straight lines throughout the motion. This amounts to claim
that the Lagrange-Euler flow map admits a linear continuous representation with respect to Eulerian
coordinates over the deforming computational grid. Further, the kinematic velocity field also admits
a linear continuous representation. Therefore, as noticed in [13], this approximation of the grid
motion implies a second-order error in the numerical method. To reach a higher order of accuracy,
one has to take into account a higher order discretization of the kinematics of the flow. This point
has been successfully addressed in [13] in which the authors present a third-order Lagrangian scheme
for solving gas dynamics equations on curvilinear meshes. The physical variables are computed
through the use of a high-order ENO conservative reconstruction, and the determination of the
vertex velocity is obtained by means of the conserved variables. The high-order discretization of
the fluid flow kinematic has also been undertaken with success in a series of papers [17, 18, 19].
In [18], the authors describe a high-order finite element framework for solving the gas dynamics
equations on curvilinear moving grids. Their method relies on the introduction of a continuous
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high-order representation of the flow kinematics. The spatial discretization is obtained by means
of a variational formulation of the gas dynamics equations. The kinematic variables are expanded
over a basis of continuous high-order polynomial functions, whereas the thermodynamic variables
are expanded over a basis of discontinuous high-order polynomial functions. The dissipation of
kinetic energy into internal energy is ensured by the adding of a high-order tensorial artificial
viscosity [30]. This approach, which can be viewed as the high-order extension of the staggered grid
hydrodynamics produces very impressive numerical results. Let us point out that this method is able
to more accurately capture geometrical features of a flow region, to maintain robustness with respect
to mesh motion and to improve the symmetry preservation in symmetric flows. More recently,
an isogeometric analysis of Lagrangian shock hydrodynamics has been proposed in [4]. In this
approach, the Euler equations of compressible hydrodynamics in the weak form are discretized using
NURBS (Non Uniform Rational B-splines) in space. This discretization provides another high-
order extension of the staggered grid hydrodynamics which also requires the adding of an artificial
viscosity. It has the main advantage of being characterized by an exact symmetry preservation.
We also want to mention the work presented in [5] in which the authors design a class of high-order
ALE one-step WENO finite volume schemes, on moving two-dimensional triangular meshes. A
polynomial mapping is used to map the physical space-time element onto a space-time reference
element. The scheme performs on moving triangular meshes with straight-line edges, which is
possible in the ALE frame because the mesh velocity can be different from the local fluid velocity,
contrary to pure Lagrangian computation. Results up to sixth order of accuracy in space and
time are presented in [5]. In [21], the authors high-order unstructured Lagrangian one-step WENO
finite volume schemes has been successfully extended to non-conservative systems and applied to
compressible multi-phase flows.
All these very promising results have motivated us to present another contribution to the new
domain of high-order numerical methods for Lagrangian hydrodynamics. Here, we present a cell-
centered DG high-order discretization of the total Lagrangian formulation of the gas dynamics
equations. The GCL, which governs the time rate of change of the deformation gradient, is dis-
cretized by means of a finite element approximation. This allows to satisfy exactly the Piola
compatibility condition. The knowledge of the deformation gradient permits to represent consis-
tently the curvilinear grid on the actual configuration. The DG discretization employs a cell-based
expansion of the physical variables (including the momentum) over a Taylor basis, i.e. the poly-
nomial terms correspond to those obtained when performing a Taylor expansion at the cell center
of mass. The interest of this type of basis, which has been already used in [36], relies on its adapt-
ability regardless the shape of the cell. The numerical fluxes at the cell interfaces are computed
by means of the node-centered solver which has been introduced in [40]. The numerical algorithm
not only satisfies the GCL compatibility condition but also conserves momentum and total energy.
Further, it satisfies a local entropy inequality at the semi-discrete level. The time discretization
employs the classical third-order TVD (Total Variation Diminishing) Runge-Kutta method [49]. It
is worth pointing out that in the case of a piecewise constant polynomial basis, our DG method
boils down to the classical first-order finite volume cell-centered scheme developed in [40]. Let us
mention, that following the approach of [34], a high-order DG spectral finite element method has
been introduced in [26]. The scheme uses HLLC approximate Riemann solver to compute mesh
velocity and a Hermite WENO reconstruction as limiters. However, this numerical method does
not ensure properly the Piola compatibility condition required to solve the GCL and restricts the
deformation to the first order of accuracy. We would also like to mention the recent works [44, 6].
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In [44], a finite-volume method on curvilinear grids is presented. The approach relies on a finite
element formulation to compute the mesh velocity using an acoustic Riemann solver approximation.
While in [6], a first-order finite volume scheme has been developed on total unstructured meshes
wherein the cell interfaces are parametrized by conicals. This original GCL satisfying approach
relies on a weak formulation to compute the nodal velocity also using an acoustic Riemann solver
approximation.
The remainder of this paper is organized as follows: In Section 2, we recall the identities and
relations constituting the basis of the total Lagrangian frame, and discuss about their main prop-
erties. The details related to the derivation of such equations can be found into Appendix B. In
Section 3, we present not only the DG discretization of the total Lagrangian formulation of the gas
dynamics but also the finite element approximation of the deformation gradient. Finally, Section 4
provides a series of numerical experiments which assess the robustness and the accuracy of our DG
method up to third-order. The numerical results obtained demonstrate the ability of our method
to dramatically improve the symmetry preservation of symmetric flows.

2. Multi-dimensional Lagrangian and Eulerian descriptions for fluid flows

In this section, we recall the multi-dimensional gas dynamics equations written under total La-
grangian form. This system is a bit unusual. We show its connections to the Eulerian form and
more importantly, what are the ingredients to achieve a full equivalence. Let us point out that
a similar work has been done in [45] for the equations of elastic flows. Indeed this is not fully
straightforward because the two systems are obtained from one an other via a change of variable.
Since we expect discontinuous solutions, the main questions is whether or not we recover the same
weak solutions. In this section we conduct the analysis and show a complete equivalence, provided
some geometrical results are satisfied. The results obtained also give some hints on how to conduct
the numerical approximations of the gas dynamics system written under the total Lagrange form.
Notations and required algebraic properties are gathered in Appendix A, while details of calculation
and some further remarks and discussions can be found in Appendix B.

2.1. Kinematics

To describe the main notions of kinematics that will be useful to describe fluid motions, we follow
the presentation given in [25]. Further details and proofs are given in the appendices. Let X be
the position vector of a point of the fluid in its initial configuration. The evolution of the fluid is
then characterized by a time-dependent motion Φ, named the mapping, which defines the location
of the point X at time t > 0, such as

x = Φ(X, t). (1)

At this point, we can introduce the two usual descriptions of the flows, namely the Lagrangian
description and the Eulerian description. The Lagrangian description, otherwise called material
description, consists in observing the fluid by following the motion of fluid particles from their
initial location. The independent variables used for this description are (X, t). On the other hand
the Eulerian description, otherwise called spatial description, consists in observing the fluid at fixed
locations in the space. The independent variables used for this description are (x, t). Similarly, in
the remainder all the quantities expressed using Lagrangian coordinates (X, t) will be defined by
capital letters, while the quantities using the Eulerian coordinates (x, t) will be defined through
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lower case letters. We notice that through the use of the transformation (1) any fluid quantity
f which is expressed in terms of Eulerian variables can also be expressed in terms of Lagrangian
variables, and conversely. To emphasize the used variables and for the sake of conciseness, the same
notation is used to denote the value of the physical quantity regardless the employed description

f = f(x, t) = f(Φ(X, t), t) = f(X, t). (2)

To be more precise, f(X, t) is the value of the physical quantity experienced at time t by the fluid
particle initially located at X, whereas f(x, t) is the value of f experienced by the fluid particle
which is located at position x at time t. Obviously, if the particle located at x at time t was initially
located at X, both definitions of f express the same quantity, refer to equation (2). Now, let f be
a fluid variable with a sufficient smoothness to allow the computation of its first partial derivatives
with respect to both Lagrangian and Eulerian variables. First, we introduce the material derivative
of f which measures the rate of change of f following a fluid particle along its motion as

d

dt
f(x, t) ≡ ∂

∂t
f(X, t). (3)

Note that it corresponds to the partial time derivative in the Lagrangian description. The velocity
of a fluid particle is denoted U and is defined as

U(X, t) =
∂

∂t
Φ(X, t). (4)

As defined, U is a function of the Lagrangian variables. However it is possible to also express it in
terms of the Eulerian variables using definitions (1), (2) and (3). It is thus possible to determine
the fluid flow by solving the system of ordinary differential equations

dx

dt
= U(x, t), x(X, 0) = X, (5)

which corresponds to the trajectory equations of the fluid flow. Considering the physical quantity f
expressed in terms of the Eulerian variables, that is f = f(x, t), we compute its material derivative
employing the chain rule of composite derivative and the trajectory equation (5) to get

d

dt
f(x, t) =

∂

∂t
f(x, t) +U(x, t) · ∇xf(x, t), (6)

where “∇x” denotes the gradient operator with respect to Eulerian coordinates, while “∇X” denotes
the gradient operator with respect to Lagrangian coordinates. This last equation may be interpreted
as expressing the time rate of change of an arbitrary physical quantity f = f(x, t) apparent to an
observer located on the moving particle instantaneously at the position x. By definition, Φ(X, 0) =
X, further for t fixed, equation (1) characterizes the deformation of the fluid at time t. Namely,
through the time-dependent map, neighboring points in the initial configuration X and X + dX
transform through the flow motion into x and x+ dx with

dx = FdX. (7)

The second-order tensor F is called the deformation gradient tensor. It is nothing but the Jacobian
matrix associated to the flow map Φ

F = ∇XΦ. (8)
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Knowing that F(X, 0) = Id, where Id is the identity matrix, we assume that for all t > 0 the
determinant of F satisfies J = detF > 0 so that the flow map is invertible. Let Ω be a region
occupied by the fluid in its initial configuration. Its image by the time-dependent map Φ at time
t is denoted ω. It is such that

ω = {x | x = Φ(X, t), X ∈ Ω} .

We introduce now the relations and identities constituting the essential ingredients required in
the discretization of the gas dynamics based on the initial configuration. We first recall the two
fundamental relationships governing the transformation of area and volume elements from the
initial configuration, respectively dS and dV , to the actual configuration, respectively ds and dv,
and conversely

nds = F
⋆NdS, (9a)

dv = det(F)dV, (9b)

where N and n are unit outward normals of respectively dS and ds, and F⋆ = det(F)F−t is nothing
but the cofactor matrix of tensor F, see Appendix A.2. Equation (9a), otherwise named the Nan-
son’s formula, relates of the Eulerian surface element in terms of the Lagrangian surface element,
while equation (9b) is nothing but the classical formula which expresses the transformation of a
volume element through the flow map. Details of derivation of formulas (9a) and (9b) are given in
Appendix B.1.

In the following, we derive the counterparts of the gradient and divergence operators written in
terms of Lagrangian coordinates. These relations will enable us to write the Lagrangian gas dy-
namics equations with respect to initial coordinates, namely X. The transformation through the
flow map of divergence and gradient operators applied respectively to tensorial, vectorial and scalar
arbitrary smooth functions write

∇x � T =
1

detF
∇X � (TF⋆), (10a)

∇x � V =
1

detF
∇X � (F⋆

t
V ), (10b)

∇xϕ =
1

detF
∇X � (ϕF

⋆), (10c)

where symbol “∇�” denotes the divergence operator, see Appendix A.5. Details of calculation can
be found in Appendix B.3. Immediately, one can see applying relation (10a) to T = Id leads to
specific conditions on the deformation gradient tensor F. These essential relations are the so-called
Piola compatibility conditions for which we introduce their local forms as

∇x � (
1

det(F)
F
t) = 0, (11a)

∇X � F
⋆ = 0. (11b)

Details to obtain these relations are given in Appendix B.2. These fundamental conditions have to
be ensured if one wants to maintain the compatibility between the two configurations, namely the
initial configuration and the actual configuration. This requirement is one of the cornerstones which
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form the scheme presented in this article, and needs to be ensure at the discrete level. Furthermore,
integrating relations (11a) and (11b) respectively over the fluid regions ω and Ω, and making use
of relations (9a), (9b) and of the divergence theorem (A.19a) yield

∫

∂Ω
N dS = 0,

∫

∂ω
n ds = 0, (12)

which have a simple geometric interpretation, namely the summation of the unit normal over a
closed surface is equal to zero. In what follows, we shall derive the gas dynamics equations written
under the Lagrangian form and thus we shall utilize extensively the second Piola identity (11b).
Finally, using these Piola identities we are able to rewrite equation (10c) as

∇xϕ =
1

detF
F
⋆∇Xϕ = F

−t∇Xϕ. (13)

We have now established the main ingredients needed to derive the gas dynamics equations in the
frame of total Lagrangian formalism.

2.2. Geometrical conservation law

We have seen in the previous paragraphs that the expression of differential operators in terms of the
Lagrangian coordinates (10a), (10b) and (10c) requires the knowledge of the deformation gradient
F. Here, we derive the conservation law which governs the time evolution of this tensor. Using the
trajectory equation (4), the deformation gradient tensor definition F = ∇XΦ yields an equation on
the time rate of change of F(X, t)

∂ F

∂t
−∇XU = 0, (14)

supplemented with the initial condition F(X, 0) = Id. It is important to note that the solution of
(14) defines a deformation gradient which derives from a motion Φ provided that F satisfies the
compatibility condition

∇X × F = 0, (15)

where the definition of the curl of a tensor can be found in Appendix A.5. The compatibility
condition (15) is an involutive constraint, i.e. if the compatibility condition is satisfied at time
t = 0 then it is satisfied for all time t > 0, see Appendix B.4 for details of the proof. And ensuring
the involutive constraint (15) furthermore implies the respect of the Piola compatibility condition
(11b), see Appendix B.4.

Now, denoting by J the determinant of the deformation gradient, i.e. J = detF, and knowing that
F satisfies the conservation law (14), we compute the time rate of change of J . Let us point out
that J represents the ratio of the Eulerian volume element to the Lagrangian volume element, i.e.
J = dv

dV . Further, if ϕ is a scalar function expressed in terms of F then the chain rule of composed
derivative reads

∂ ϕ

∂t
=
∂ϕ

∂F
:
∂ F

∂t
. (16)
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See Appendix A.4 for definition and properties of the inner product “:” of second-order tensors.
In (16), ∂ϕ∂F is the second-order tensor whose components read ∂ϕ

∂Fij
, where Fij denotes the generic

component of F. Applying the above chain rule for ϕ(F) = detF leads to

∂ J

∂t
= F

⋆ :
∂ F

∂t
. (17)

Here, we have used the fact that the derivative of the determinant of F with respect to its argument
is equal to the cofactor of F, see [25], that is ∂

∂F(detF) = F⋆. By virtue of (17), taking the inner
product of the conservation law (14) by the cofactor F⋆ yields the time rate of change of the Jacobian

∂ J

∂t
− F

⋆ : ∇XU = 0, (18)

which is written under a non-conservative form. However, thanks to the tensorial identity (A.16a)
and to the Piola identity (11b), equation (18) is rewritten under the conservative form as

∂ J

∂t
−∇X � (F⋆

t
U) = 0. (19)

Integrating the above equation over the Lagrangian region Ω and applying the divergence theorem
leads to

d

dt

∫

Ω
J dV −

∫

∂Ω
U · F⋆N dS = 0.

Introducing ω = Φ(Ω, t) and using formulas (9a) and (9b) allow us to rewrite the above equation
in the current configuration

d

dt

∫

ω
dv −

∫

∂ω
U · n ds = 0. (20)

This last equation is nothing but the time rate of change of the volume of the Eulerian region ω,
that is why it is called the geometric conservation law (GCL). Equation (19) expresses the time
rate of change of the Jacobian expressed in terms of the Lagrangian coordinates. To define the
counterpart equation in the actual configuration, we make use of the material derivative definition
(3) and divergence relation (10b), and finally get

d J

dt
− J ∇x �U = 0, (21)

where all the quantities involved are defined on the actual configuration, using (x, t) as coordinates.

2.3. Conservation of mass

We recall here the formulation of the mass conservation law on both initial and actual configurations.
For any initial fluid region Ω and ω(t) = Φ(Ω, t) its image by the flow map at time t ≥ 0, mass
conservation is expressed by

d

dt

∫

ω(t)
ρ(x, t) dv = 0.
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Since ω(0) = Ω, rewriting this last relation in terms of the Lagrangian coordinates yields

d

dt

∫

Ω
ρ(X, t) J(X, t) dv = 0. (22)

Since Ω and thus ω(t) is arbitrary, and denoting by ρ0 the initial density field, equation (22) leads
to

∂

∂t
(ρ J) = 0, (23a)

ρ(X, t) J(X, t) = ρ0(X), ∀t > 0, (23b)

recalling that accordingly to relation (2), ρ(X, t) (resp. J(X, t)) expresses the density (resp. the
Jacobian) of a particle at time t, initially located at X, i.e. ρ(X, t) = ρ(x(X, t), t). In equations
(23), we have derived two forms of the mass conservation equation written in the total Lagrangian
frame. The use of identities (23b) and equation (19) yields an equation on the time rate of change
of the specific volume, as

ρ0
∂

∂t
(
1

ρ
)−∇X � (F⋆

t
U) = 0. (24)

By means of relation (23b) and of the transformation formulas presented, the counterpart of this
last equation expressed in terms of the Eulerian coordinates naturally writes

ρ
d

dt
(
1

ρ
)−∇x �U = 0. (25)

2.4. Gas dynamic equations written under total Lagrangian form

Since the derivation of the conservation laws of momentum and total energy expressed with respect
to the actual configuration is very classical, and because the derivation of such equations on the
initial configuration depends mainly on the ingredients given previously, we let the interested reader
refer to Appendix B.5 for details. The fluid under consideration being inviscid, the Cauchy stress
tensor reduces to T = −P Id, where P > 0 is the thermodynamic pressure. In that case, the local
form of the physical equations is (recall F⋆ = JF−t)

∂ F

∂t
−∇XU = 0, (26a)

ρ0
∂U

∂t
+∇X � (P F

⋆) = 0, (26b)

ρ0
∂ E

∂t
+∇X � (F⋆,tPU) = 0. (26c)

The thermodynamic closure is given by the equation of state P = P (ρ, ε) where ε = E − 1
2U

2

denotes the specific internal energy. It is worth mentioning that the deformation gradient tensor
equation (26a) implies the specific volume conservation equation (24), using the mass conservation
(23b) and the equation on the Jacobian (19). In the above system, the mass density is obtained by
means of the mass conservation written under total Lagrangian form as ρ detF = ρ0.
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2.5. Entropy consideration

Assuming enough smoothness, we derive the time rate of change of the specific entropy η. We first
recall the Gibbs identity

θdη = dε+ Pd(
1

ρ
),

where θ > 0 is the absolute temperature. Since ε = E − 1
2U

2, and 1
ρ = J

ρ0
, we can express the time

rate of change of the specific entropy as

θ
∂ η

∂t
=
∂ E

∂t
−U · ∂U

∂t
+
P

ρ0
∂ J

∂t
.

Since ∂ J
∂t = F⋆ : ∂ F∂t , we finally get

ρ0 θ
∂ η

∂t
= ρ0

∂ E

∂t
− ρ0U · ∂U

∂t
+ PF⋆ :

∂ F

∂t
. (27)

Replacing the time rate of change of F, U , and E, and using the tensorial identity (A.16a), one
obtains

ρ0 θ
∂ η

∂t
= −∇X � (F⋆

t
PU) +U · (∇X � (F⋆P )) + PF⋆ : ∇XU = 0.

Let us point out that this results has been obtained without recourse to Piola identity. Recalling
that ∂

∂tη(X, t) = d
dtη(x, t), we conclude that for smooth flows the specific entropy is conserved

along the trajectory equation.

2.6. Jump relations at a surface of discontinuity

Though the derivation of the jump relations for systems of conservation law is very classical, the
system (26) is not very common, so we prefer to derive the jump relations from scratch. Moreover,
the results obtained are at the core of the discretization method. Hence we believe it is useful
to know exactly where they come from. In particular, we show that the jump relation obtained
on F as well as those obtained from the Piola compatibility condition (11b) play a central role to
connect the jump relations in Eulerian and Lagrangian coordinates. We can therefore anticipate
that the discretization of theses equations will be also at the center of our method. The system
(26) is in conservation form and may admit discontinuous solutions. We use the notations of
Figure 1, in which Σ(t) is a discontinuity moving in the initial domain Ω, WΣ being its local
velocity (WΣ = WΣ ·NΣ being the normal velocity). As usual, “J·K” represents the jump operator
defined, for any locally smooth term f (scalar, vector or tensor), and any point X ∈ Σ, by

JfK = f+ − f−, where f± = lim
h→0±

f (X + hNΣ) .

The Rankine Hugoniot relations are obtained from a classical analysis, note however that relation
(26a) is a little unusual because being a relation between matrices.
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Ω+Ω−

Σ(t)

NΣ

Figure 1: Notations for the Rankine Hugoniot relations.

2.6.1. Geometrical conservation law: the Hadamard relations

Each sub-domain Ω± being fixed except for the moving boundary Σ(t), the Reynolds transport
formula applied on the deformation gradient tensor F yields

d

dt

∫

Ω±

F dV =

∫

Ω±

∂ F

∂t
dV ∓

∫

∂Ω±∩Σ(t)
WΣ F dS,

where WΣ is the (local) normal velocity of the surface Σ(t). Now, adding together the two terms
corresponding respectively to Ω+ and Ω− leads to

d

dt

∫

Ω
F dV =

∫

Ω

∂ F

∂t
dV −

∫

Σ(t)
WΣ JFKdS. (28)

Then, subtracting from (28) the relation (A.23a) applied to the fluid velocity U , one obtains

d

dt

∫

Ω
F dV −

∫

∂Ω
U ⊗N dS =

∫

Ω

(

∂ F

∂t
−∇XU

)

dV −
∫

Σ
(WΣJFK + JUK ⊗NΣ) dS.

Definition and properties of the dyadic product “⊗” can be found in Appendix A.3. Using equation
(26a) as well as its integral form, we finally obtain the Hadamard relation

WΣJFK + JUK ⊗NΣ = 0. (29)

One can apply this relation to the vectors NΣ and TΣ, which is tangent to Σ (and thus orthogonal
to NΣ). Doing so, one gets

WΣJFKNΣ + JUK = 0, (30a)

WΣJFKTΣ = 0. (30b)

Let us further discuss these relations. In the case where WΣ = 0, from (30a) it is clear that U is

continuous across Σ. Now, if WΣ 6= 0, one naturally finds that JFKNΣ = − JUK
WΣ

. Furthermore, for
any vector T orthogonal to NΣ, the following relation holds

JFKT = 0, (31)
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which means that FT has no jump provided that T is normal to NΣ. Consequently, one can finally
state that

JFKWΣ + JUK = 0, (32)

which is another form of the Hadamard compatibility condition. This last relation can also be
derived from the definition of the discontinuity velocitywσ in the Eulerian frame, where σ is nothing
but the image of the discontinuity Σ through the fluid flow, see Appendix B.6.1 for details. Now,
let us show that relation (30b) has a geometrical interpretation related to the second Piola identity.
Considering T 1 and T 2 such that T 1 × T 2 = NΣ and recalling that F⋆(T 1 × T 2) = FT 1 × FT 2, it
follows that

F
⋆NΣ = FT 1 × FT 2.

Applying the jump operator to this inequality, and denoting by 〈T〉 = 1
2

(

T+ + T−), leads to

JFK⋆NΣ = 〈F〉T 1 × JFKT 2 + JFKT 1 × 〈F〉T 2 = 0,

since JFKT = 0 for any vector orthogonal to NΣ. Hence, in the case of a non-steady discontinuity,
the Hadamard compatibility relation implies the continuity of the normal component of the cofactor
of F. This is also a consequence of the second Piola condition (11b), ∇X � F⋆ = 0. Indeed, using
the same arguments as those used to get (30), one gets

∫

Ω
∇X � F

⋆ dV +

∫

Σ
JF⋆KNΣ dS = 0,

which leads to the following fundamental result

JF⋆KNΣ = 0. (33)

This relation has been obtained without assuming anything more on Σ, and expresses the continuity
of the normal in the Eulerian frame. Finally, according to Nanson formula, we have

nσ ds = 〈F⋆〉NΣ dS. (34)

2.6.2. Conservation laws

Using the relations obtained previously, standard results applied to the physical conservation laws
leads to

MJ
1

ρ
K + JUK · 〈F⋆〉NΣ = 0, (35a)

MJUK − JP K〈F⋆〉NΣ = 0, (35b)

MJEK − JPUK · 〈F⋆〉NΣ = 0, (35c)

where M = ρ±J±WΣ is the mass swept by the discontinuity. Further details and jumps relations
are given and derived in Appendices B.6.1 and B.6.2. The interested reader may also find in these
appendices the Hugoniot relationship which defines the shock wave in the thermodynamic plane.
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We end this section by some well-known statements concerning the jump of velocity across a
discontinuity. First, Dot-multiplying (35b) by 〈F⋆〉NΣ, one gets

MJUK · 〈F⋆〉NΣ − JP K (〈F⋆〉NΣ)
2 = 0. (36)

Knowing that 〈F⋆〉NΣ is nothing but the normal in the actual configuration, this last relation states
that the jump of normal velocity through a discontinuity is proportional to the jump in pressure.
Now, let T be a vector orthogonal to NΣ, and a vector t defined as t = 〈F〉T . The use of the
Nanson formula (34) and of the continuity relations expressed through JFKT = 0 and JF⋆KNΣ = 0,
allows us to write

t · nσ dS = 〈F〉T · 〈F⋆〉NΣ dS = 〈J〉T ·NΣ dS = 0,

which states that t = 〈F〉T is a vector in the actual configuration orthogonal with the normal nσ.
This result also pictures the previous continuity relation JFKT = 0. Finally, dot-multiplying (35b)
by t, it follows that

MJUK · t = 〈J〉JP KT ·NΣ = 0. (37)

This final statement permits us to conclude that the tangential velocity is continuous on a discon-
tinuity. These two last results will be very helpful in the design of the numerical flux responsible
of the motion of the computational grid.

In this section, we have touched on the main considerations inherent of the two type of descriptions
of flows, namely the Lagrangian description and the Eulerian description. Doing so, some crucial
identities have arisen, as the Piola compatibility conditions stated in (11). We have then derived the
geometrical and physical conservation laws governing the time evolution of the different geometrical
and physical quantities involved, in both Lagrangian and Eulerian frameworks. We have seen that
under a fundamental assumption on the Jacobian, i.e. detF > 0, ensuring that the flow map is
invertible, both formulations are perfectly consistent. Finally, this section has been ended by the
establishment of jump relations through a moving discontinuity. All these fundamental results
provide us with a complete framework and with leading constraints which will help us in the
implementation of a numerical scheme approximating the solutions of the gas dynamics equations
written under a total Lagrangian formalism.

3. High-order discontinuous Galerkin cell-centered Lagrangian schemes

Here, we present a general high-order discontinuous Galerkin discretization of the gas dynamics
equations written under the total Lagrangian formulation, while the Lagrangian-Eulerian map is
spanned by a finite element representation. This provides an approximation of the deformation
gradient tensor satisfying the Piola identity. The velocity field having a high-order polynomial
representation with respect to the space variables, the mesh edges in the actual configuration
are parametrized by means of one-dimensional finite element basis functions, consistent with the
mapping representation. The DG discretization of the physical conservation laws for the specific
volume, the momentum and the total energy are performed ensuring the respect of the GCL.
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3.1. Discontinuous Galerkin general framework

We intend to solve the gas dynamics equations written under the total Lagrangian form

∂ F

∂t
−∇XU = 0, (38a)

ρ0
∂

∂t
(
1

ρ
)−∇X � (F⋆

t
U) = 0, (38b)

ρ0
∂U

∂t
+∇X � (P F

⋆) = 0, (38c)

ρ0
∂ E

∂t
+∇X � (F⋆

t
PU) = 0. (38d)

Here, J = detF is the Jacobian, and F⋆ = JF−t is the co-factor matrix of the deformation gradient
tensor F. We have seen previously that the specific volume equation (38b) of a Lagrangian cell
is a consequence of the mass conservation and the geometrical equation (38a), see section 2.3.
Nonetheless, in the development of our numerical scheme these two equations will be treated in
different ways, equation (38a) being considered as purely geometric will be discretized in some
continuous manner, whereas equation (38b) will be treated in a consistent way with the momentum
and total energy equations, by mean of a discontinuous Galerkin approach. Anyhow, we shall
demonstrate later that the discretizations of these two equations are consistent. We also will be
able to design a scheme ensuring a local entropy inequality, and characterized by a high-order
accuracy.
The thermodynamical closure of system (38) is obtained through the use of an equation of state,
which writes P = P (ρ, ε), where ε is the specific internal energy, ε = E− 1

2U
2. These equations are

valid provided that the Lagrangian-Eulerian flow map exists, that is J > 0. In this framework, the
computational grid is fixed, however one has to follow the time evolution of the Jacobian matrix
associated to the Lagrange-Euler flow map. We made the choice of working on the initial configu-
ration of the flow to avoid some difficulties inherent to the moving mesh scheme, as dealing with
curvilinear geometries, in the case of very high-order scheme. Furthermore, in this frame the basis
functions are time independent and defined on the initial mesh. This mesh being perfectly known,
geometrical quantities required by the DG discretization can be computed and stored initially and
used during the whole calculation.

Let {Ωc}c be a partition of the domain Ω into non-overlapping polygonal cells. We also partition
the time domain in intermediate times (tn)n with ∆tn = tn+1 − tn the nth time step. We use a DG
discretization in order to develop on each cells our unknowns onto P

s(Ωc), the set of polynomials
of degree up to s. This space approximation leads to a (s+ 1)th space order accurate scheme. Let
φch be the restriction of φh, the polynomial approximation of a function φ, over the cell Ωc

φch(X, t) =

K
∑

k=0

φck(t)σ
c
k(X), (39)

where the φck are the K + 1 successive components of φh over the polynomial basis, and σck the
polynomial basis functions. Recalling that in the two-dimensional case the dimension of the poly-
nomial space P s(Ωc) is

(s+1)(s+2)
2 , one has to select a set of (s+1)(s+2)

2 = K+1 basis functions. The
establishment of a DG discretization is based on a local variational formulation of the equations.
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For sake of simplicity, we introduce the following generic equation

ρ0
∂ φ

∂t
+∇X � (F⋆

t
f) = 0, (40)

where f is the flux function associated to the unknown φ, where both functions are defined using the
Lagrangian coordinates. Then, we first focus our study on the discretization of such an equation,
using DG method. A local variational formulation of this equation and substituting the function φ
by its piecewise polynomial approximation φch results in

∫

Ωc

ρ0
∂ φch
∂t

σcj dV =

K
∑

k=0

dφck
dt

∫

Ωc

ρ0σcjσ
c
k dV,

=

∫

Ωc

f · F⋆∇Xσ
c
j dV −

∫

∂Ωc

f · σcj F⋆NdS,

(41)

where σcj is a function picked into the chosen basis {σck}k=0...K of PK , and f is the continuous

numerical flux function defined at cell interfaces. Here, we can identify
∫

Ωc
ρ0σcjσ

c
k dV = (σcj · σck)c

as the generic coefficient of the symmetric positive definite mass matrix, where the scalar product
is defined as follow

(φ · ψ)c =
∫

Ωc

ρ0(X)φ(X)ψ(X) dV. (42)

Let us note that this scalar product is weighted by the initial mass density. Consistent with this
scalar product definition, we introduce the mass averaged value as

〈φ〉c =
1

mc

∫

Ωc

ρ0(X)φ(X) dV. (43)

In our work, the choice of using Taylor basis has been made to construct the polynomial approx-
imation of our numerical solutions, (39). These particular basis functions, introduced in [36], are
based on a Taylor expansion at the centroid of the cells. The main interest of this basis lies in
the fact that it does not depend on the shape of the cell. Namely, we shall employ the same basis
for triangular and quadrangular cells. Moreover, with this basis, we will be able to construct a
DG discretization over general polygonal grids. Practically, the Taylor basis used here are slightly
different from the one presented in [36]. Knowing that the mass matrix is weighted by the initial
density, we derive our basis function by a Taylor expansion with respect to the center of mass,
Xc = (Xc, Yc)

t, of the cell c

φ(X) = φ(Xc) +
s

∑

k=1

k
∑

j=0

(X −Xc)
k−j (Y − Yc)

j

j!(k − j)!

∂k φ

∂Xk−j∂Y j
(Xc) + o(‖X −Xc‖s), (44)

where the center of mass is defined by

Xc =
1

mc

∫

Ωc

ρ0(X)X dV, (45)

mc being the constant mass of cell Ωc. Let us point out that in the case of a uniform initial density,

the center of mass and the centroid coincide. In equation (44), we identify the term (X−Xc)
k−j(Y−Yc)j

j!(k−j)!
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to the successive basis functions. To ensure a conservative discretization, we set the first moment
equal to the mass averaged value, φc0 = 〈φ〉c, the first basis function is equal to one, σc0 = 1, and
we impose that 〈σck〉c = 0, ∀k 6= 0. Consequently, the kth-order polynomial components of the
approximated function and the associated basis function read

φck(k+1)
2

+j
= (∆Xc)

k−j(∆Yc)
j ∂k φ

∂Xk−j∂Y j
(Xc), (46)

σck(k+1)
2

+j
=

1

j!(k − j)!

[

(

X −Xc

∆Xc

)k−j(Y − Yc
∆Yc

)j

−
〈

(

X −Xc

∆Xc

)k−j(Y − Yc
∆Yc

)j
〉

c

]

, (47)

where 0 < k ≤ s, j = 0 . . . k, and ∆Xc = Xmax−Xmin

2 and ∆Yc = Ymax−Ymin

2 are scaling factors
where

Xmax /min = max / min
p∈P(c)

{Xp} and Ymax /min = max / min
p∈P(c)

{Yp},

defining P(c) as the vertices set of the cell Ωc. The purpose of these scaling factors is to improve
the condition number of the mass matrix. Thanks to this particular basis function definition, it
easily follows that (σc0 · σck)c = mc δ0k, where δij , the Kronecker symbol, is equal to 1 if i = j and
null otherwise. Recalling that (σcj ·σck)c identifies with the generic coefficient of the mass matrix, the
equations corresponding to mass averaged values does not depend on the other polynomial basis
components equations, and correspond to a first-order finite volume scheme.

Recalling the variational equation (41), one can see the contribution of two different terms, the
interior term

∫

Ωc
f · F⋆∇Xσ

c
j dV , and the boundary term

∫

∂Ωc
f · σcj F⋆NdS. In [14], it has been

demonstrated that to design a (s + 1)th order numerical scheme, a quadrature rule over the faces
being exact for polynomials of degree 2s+1 is needed, as a quadrature rule over the elements being
exact for polynomials of degree 2s. Consequently, to evaluate the interior terms, a two-dimensional
high-order quadrature rule is employed. Nevertheless, a specific treatment of the boundary terms
is required to ensure the compatibility with the geometrical conservation law (GCL), equation (20).
Indeed, substituting φ by 1

ρ and f by −U in equation (41), for j = 0, yields

mc
d

dt
(
1

ρ
)c0 =

∫

Ωc

ρ0
∂

∂t
(
1

ρ
) dV =

d vc
dt

=

∫

∂Ωc

U · F⋆NdS, (48)

where vc is the updated volume of cell ωc and U , the continuous numerical flux, is nothing but the
velocity responsible for the motion of the grid. We have to ensure that the cells volume computed
by means of the moving grid geometric informations are exactly coincident with the cells volume
computed solving the specific volume equation. This shall require a careful treatment of the nu-
merical fluxes attached to cell interfaces.

Let us recall that in the particular case of an uniform flow, the gas dynamics equations collapse to
the simple advection of the density field. Considering (41) in the uniform case, i.e. f is constant,
the left-hand side of the equation has to be equal to zero, assuming a consistent numerical flux f .
This means that the following relationship must hold for all basis functions

∫

Ωc

F
⋆∇Xσ

c
j dV =

∫

∂Ωc

σcj F
⋆NdS, (49)
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which is nothing but a generalization of the weak form of the Piola compatibility condition equation
(11b) as

∫

Ωc

σcj (∇X � F
⋆) dV = 0. (50)

Assuming that the Nanson formula (9a) and gradient relation (13) hold after discretization of the
deformation gradient tensor F, and then rewriting identity (49) in the actual configuration yields a
well-known result, consequence of the Green-Gauss formula, which reads

∫

ωc

∇xσ
c
j dv =

∫

∂ωc

σcj nds. (51)

Observing identity (49), one clearly sees that some consistency is required on the discretization of
the deformation gradient tensor F inside the cell and on its boundaries. Furthermore, one knows
that at the continuous level the consistency between the two configurations lies, among other things,
on two fundamental relations, the Nanson formula (9a) and the Piola compatibility condition (11b).
Consequently, particular considerations on the discretization of F are required to ensure that these
relations hold at the discrete level. Obviously, making use of a standard DG discretization to
approximate the deformation gradient tensor will failed to ensure these essential requirements on
the geometry. These are the reasons that have motivated our choice of discretizing the tensor F by
means of a mapping using finite element basis on triangular cells.

3.2. Semi-discrete equation for the deformation gradient tensor

Let Ωc be a generic polygonal cell in the initial configuration which is paved into non-overlapping
triangles T c

i as Ωc =
⋃ntri
i=1 T c

i , refer to Figure 2.

Ωc

T c
i

Figure 2: Triangular subdivision of a generic polygonal cell Ωc.

Recalling the mapping formulation expressed in (1), we aim at developing a (s+1)th order contin-
uous approximation of this flow map function, in a generic triangle Ti. To this end, we shall use
the following finite element approximation of the mapping s as

Φi
h(X, t) =

∑

q∈Q(i)

Λiq(X) Φq(t). (52)

Here, Λiq is a finite element basis function of degree s and Q(i) is the control points set of triangle
Ti, including its vertices {p−, p, p+}. We identify Φq(t) = Φ(Xq, t) as the position at time t of the
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control point initially located at Xq. The functions Λiq being finite element basis functions, they
identify with the P1 barycentric coordinate basis functions in the case of our second-order scheme,
and with the P2 finite elements basis functions in the third-order case.

Using the continuous polynomial mapping approximation (52) and the trajectory equation ∂
∂tΦq =

U q we obtain our semi-discretization of the deformation gradient tensor

∂

∂t
F
i
h(X, t) =

∑

q∈Q(i)

U q(t)⊗∇XΛ
i
q(X), (53)

where U q is the velocity of the control point q. In [29], to develop their cell-centered Lagrangian
scheme for the hyper-elasticity, the authors make use of a similar discretization of the deformation
gradient tensor. This particular definition of F ensures naturally the Piola compatibility condition.
Knowing that initially F

⋆,i
h (X, 0) = Fih(X, 0) = Id, the Piola condition being satisfied, it is sufficient

to prove that the condition is involutive. This result follows immediately in the two-dimensional
case, the co-factor matrix F⋆ writing

∂

∂t
F
⋆,i
h =

∑

q∈Q(i)

(

Vq∂Y Λ
i
q −Vq∂XΛiq

−Uq∂Y Λiq Uq∂XΛ
i
q

)

, (54)

where U and V are respectively the X and Y components of the velocity U . And taking the
divergence of equation (54), one gets

∂

∂t
(∇X � F

⋆,i
h ) =

∑

q∈Q(i)

(∂XY Λ
i
q − ∂Y XΛ

i
q)

(

−Vq
Uq

)

= 0. (55)

The same conclusion can be easily obtained in the three-dimensional case, the co-factor matrix
being defined as ∂

∂tF
⋆,i
h =

∑

p,qΨpq ⊗
(

∇XΛ
i
p ×∇XΛ

i
q

)

, where the components of vector Ψpq reads

ΨX
pq = VpWq, Ψ

Y
pq =WpUq and ΨZ

pq = UpVq, where W being the Z components of the velocity U .

Using such a discretization (53), it is clear that even if the basis function Λiq are continuous over
the whole domain, the deformation gradient tensor being expressed through the gradient of these
functions, F will be piecewise continuous over the triangular cells. Anyhow, thanks to the mapping
formulation and hence to equation (53), the requirements enlightened previously on the consistency
and continuity of F⋆N on the triangles boundaries will be ensured by construction of the scheme.
Thanks to these properties, we are now able to show the consistency between the two different
discretizations of the geometrical conservation law, (38a) and (38b). Let us define the continuous
flow motion velocity U , using the approximated flow map (52) and the trajectory equation ∂

∂tΦq =
U q, such as

U |Ti (X, t) =
∑

q∈Q(i)

Λiq(X) U q(t), (56)

where U |Ti is the restriction of the continuous velocity U on Ti. This continuous velocity identifies

on the polygonal cell boundaries with the numerical flux velocity introduced in equation (48). This
definition allows us to rewrite (53), as

∂

∂t
F
i
h(X, t) = ∇XU |Ti (X, t). (57)
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Making use of (17) and (57), we can now express the time rate of change of the discrete Jacobian
J ih(X, t) mean value over the triangle Ti as

d

dt

∫

Ti
J dV =

∫

Ti
F
⋆ : ∇XU dV.

In this last equation, we dropped the subscript h and superscript i for the sake of simplicity.
Recalling that the Piola compatibility condition is ensured at the discrete level, everywhere in the
domain, this last expression rewrites

d

dt

∫

Ti
J dV =

∫

Ti
∇X � (F⋆

t
U) dV,

=

∫

∂Ti
U · F⋆tNdS. (58)

Now, making use of equation (48), and thanks to the continuity of F⋆
t
N at the triangle boundaries,

it easily follows that

d vc
dt

=

∫

∂Ωc

U · F⋆tNdS,

=
ntri
∑

i=1

∫

∂Ti
U · F⋆tNdS,

and we finally get the following relationship ensuring the consistency of the two geometric conser-
vation law discretizations such as

d vc
dt

=
ntri
∑

i=1

d

dt

∫

Ti
J dV. (59)

Regarding (41), the last points which remains to be addressed is the definition of the numerical
fluxes and the integration of the boundary terms.

3.3. Entropic analysis

We design the numerical fluxes of our scheme in such a way that a local entropy inequality is
satisfied at the semi-discrete level. This approach, which ensures kinetic energy conversion into
internal energy through shock waves, is similar to the one used in our previous paper [52, 51]. Let
η be the specific entropy and θ > 0 the absolute temperature defined by means of the Gibbs identity
as follows

θdη = dE −U · dU + Pd(
1

ρ
). (60)

We aim at expressing the time rate of change of the specific entropy. Here, for the sake of conciseness
we identify the functions 1

ρ , U , E and P to their polynomial approximations over the considered cell

Ωc, respectively (1ρ)
c
h, U

c
h, E

c
h and P ch. Firstly, multiplying the gas dynamics equations (38b),(38c)

and (38d) by respectively P , U and 1 as test functions and integrating by parts leads to the local
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variational formulations which express the pressure work, the kinetic energy and the total energy.
Secondly, combining these variational formulations according to the Gibbs formula (60) yields

∫

Ωc

ρ0 θ
∂ η

∂t
dV =

∫

∂Ωc

[

P U + P U − PU
]

· F⋆NdS −
∫

Ωc

[P (F⋆ : ∇XU) +U · F⋆∇XP ]dV.

Here, the “overbar” symbols above the variables P , U and PU denote the numerical fluxes which
are continuous across cell interfaces. It remains to simplify the second term in the right-hand side
of the above equation using the Piola compatibility condition, ∇X · (F⋆) = 0, and recalling the
identity

∇X(F
⋆,tPU) = U · ∇X · (F⋆P ) + PF⋆ : ∇XU .

Finally, we obtain the following expression of the time rate of change of the specific entropy
∫

Ωc

ρ0 θ
∂ η

∂t
dV =

∫

∂Ωc

[

P U + P U − PU − P U
]

· F⋆NdS. (61)

At this point, it remains to express the numerical fluxes in such way that an entropy inequality is
satisfied. To this end, we first make the following fundamental assumption

PU = P U . (62)

This assumption allows us to factorize the right-hand side of equation (61)

∫

Ωc

ρ0 θ
∂ η

∂t
dV =

∫

∂Ωc

(P − P )(U −U) · F⋆NdS. (63)

Finally, to enforce a local entropy inequality at the semi-discrete level, we prescribe the following
sufficient condition on the numerical fluxes

P − P = −Z (U −U) · F⋆N

‖F⋆N‖ = −Z (U −U) · n, (64)

where Z is a positive constant which has the physical dimension of a density times a velocity. For the
numerical applications, we use Z = ρ a, a being the thermodynamic sound speed, which corresponds
to the acoustic impedance. In the end, we have derived a particular form of the numerical fluxes
ensuring a local entropy inequality at the semi-discrete level, which is also perfectly consistent with
the jump relation stated in (36). Now, to enforce the respect of the geometric conservation law we
detail the particular treatment of the boundary term in (41).

3.4. Nodal solvers located at the control points

We start this section related to the boundary terms integration by some geometric considerations.
We have seen in section 3.2 how we develop the continuous mapping function onto finite element
basis functions. The continuous polynomial function (52) describes the flow motion of the fluid.
Thus, a straight line edges triangle Ti in the initial configuration will be deformed through the fluid
flow into a triangle τi in the actual configuration, as displayed in Figure 3, in the particular case of
a fourth order scheme.
We state here that the definition of the curvilinear edges of triangle τi in the actual configuration
can be defined by means of the trace over ∂Ti of the finite element basis functions used in (52).
Thus, to parametrize the face fpp+ in the actual configuration, we project the continuous mapping
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Figure 3: Nodes arrangement for a cubic Lagrange finite element mapping.

function Φi
h over fpp+ . It leads to the definition of the curved edge by means of s+1 control points,

which reads

x|
pp+

(ζ) =
∑

q∈Q(pp+)

xqλq(ζ) = xpλp(ζ) +
∑

q∈Q(pp+)\{p,p+}
xqλq(ζ) + xp+λp+(ζ), (65)

where Q(pp+) is the set of the face control points, ζ ∈ [0, 1] being the curvilinear abscissa and λq
the one-dimensional Lagrangian finite element basis functions of degree s. In the second-order case,
s+1 = 2 and thus the triangle edges are defined only using the vertices of the triangle {p−, p, p+},
which is perfectly natural, the edges remaining straight line edges in this case. In the third-order
case, one more control point is required on the face to define the curved edge. The triangle edges
then identify with Bezier curves.

Here, we recall the local variational formulation of the gas dynamics equation type

∫

Ωc

ρ0
∂ φch
∂t

σcj dV = −
∫

Ωc

F
⋆∇Xσ

c
j · f dV +

∑

p∈P(c)

∫ p+

p
f · σcj F⋆NdL, (66)

where P(c) is the vertices set of the cell Ωc. The corner stone of the scheme consists in constructing
the numerical fluxes through some point contributions. To do so we assume the numerical fluxes to
be polynomial functions of the same degree than the piecewise polynomial approximations of the
unknowns, and than the approximated continuous mapping function as well. Such an assumption
allows us to express the numerical flux f on face fpp+ through the use of s+ 1 point contributions
as

f |
pp+

(ζ) = f+
pcλp(ζ) +

∑

q\{p,p+}
f qcλq(ζ) + f−

p+c
λp+(ζ). (67)

It can be noted in this definition of the numerical flux that the control points contribution is local
to the cell, and also to the face as there is left and right contributions at the vertices, see Figure 4.
Using the fact that the Taylor basis functions employed are of the same degree than f , one can
express their trace on face fpp+ by means of their interpolated values at the different face control
points, such as

σcj|
pp+

(ζ) = σcj(Xp)λp(ζ) +
∑

q\{p,p+}
σcj(Xq)λq(ζ) + σcj(Xp+)λp+(ζ). (68)
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Figure 4: Different control points contribution of the numerical flux in the cell Ωc.

And as we know that the discretization of the deformation gradient tensor enforces the relation
F⋆NdL = ndl, one can write

F
⋆N dL|

pp+
(ζ) = n dl|

pp+
=
∂x

∂ζ
dζ|

pp+
× ez =

∑

q∈Q(pp+)

∂λq
∂ζ

(ζ) (xq × ez) . (69)

We have finally expressed the different terms present in the boundary integral as functions of the
curvilinear abscissa ζ. Consequently, we are now able to integrate analytically the boundary term.
This is the general procedure used to derive the semi-discrete scheme. Nevertheless, some further
assumptions are needed before applying this procedure to the specific volume, momentum and total
energy equations. The first one comes from the fact that the numerical flux U is responsible of the
motion of the grid. The different contributions of the numerical flux around a control point are
required to be coincident to maintain the integrity of the grid. Such an assumption writes

U±
pc = Up, ∀c ∈ C(p) and U qL = U qR = U q, (70)

where C(p) represents the set of cells surrounding the vertex p, and ΩL and ΩR the two neighboring
cells sharing the face control point q. The other assumption will allow us to treat the total energy
equation in a consistent manner with the other ones. According to assumption (62), we prescribe

(PU)±pc = P±
pcUp and (PU)qc = PqcU q. (71)

Gathering the different curvilinear definitions and specific assumptions of the numerical fluxes, we
are now ready to integrate analytically the boundary terms present in the local variation formu-
lations of the specific volume, momentum and total energy equations. At the end, performing an
index permutation allows us to get face control points solver, as well as nodes solver containing left
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and right contributions. The semi-discrete scheme finally writes

∫

Ωc

ρ0
∂

∂t
(
1

ρ
)ch σ

c
j dV = −

∫

Ωc

U · F⋆∇Xσ
c
jdV +

∑

p∈P(c)

(Up · ljpcnjpc +
∑

q\{p,p+}
U q · ljqcnjqc), (72)

∫

Ωc

ρ0
∂U c

h

∂t
σcj dV =

∫

Ωc

PF⋆∇Xσ
c
jdV −

∑

p∈P(c)

(F j
pc +

∑

q\{p,p+}
F j
qc), (73)

∫

Ωc

ρ0
∂ Ech
∂t

σcj dV =

∫

Ωc

PU · F⋆∇Xσ
c
jdV −

∑

p∈P(c)

(Up · F j
pc +

∑

q\{p,p+}
U q · F j

qc), (74)

where the jth moment of the subcell forces, F j
pc and F j

qc, reads

F j
pc = P−

pc l
−,j
pc n−,j

pc + P+
pc l

+,j
pc n+,j

pc and F j
qc = Pqc l

j
qcn

j
qc. (75)

The nodal weighted normals are defined as

ljpcn
j
pc = l−,jpc n−,j

pc + l+,jpc n+,j
pc ,

l+,jpc n+,j
pc =

(∫ 1

0
λp|

pp+
(ζ)σj|

pp+
(ζ)

∂x

∂ζ
dζ|

pp+

)

× ez,

l−,jpc n−,j
pc =

(∫ 1

0
λp|

p−p
(ζ)σj|

p−p
(ζ)

∂x

∂ζ
dζ|

p−p

)

× ez,

whereas the face control point weighted normals writes

ljqcn
j
qc =

(∫ 1

0
λq|

pp+
(ζ)σj|

pp+
(ζ)

∂x

∂ζ
dζ|

pp+

)

× ez.

Thanks to this specific treatment of the boundary terms, the semi-discretization of the specific
volume equation (72) ensures the respect of the GCL by construction of the scheme. In the end,
we make use of the conclusion of the previous entropy analysis presented in section 3.3 to express
to control point solvers F j

pc, F
j
qc, and Up, U q. Recalling relation (64)

P − P = −Z (U −U) · n,

leads to define as it follows the subcell forces according to

F j
pc = P ch(Xp, t) l

j
pcn

j
pc −M

j
pc (Up −U c

h(Xp, t)), (76)

F j
qc = P ch(Xq, t) l

j
qcn

j
qc −M

j
qc (U q −U c

h(Xq, t)), (77)

where the matrices are defined as

M
j
pc = Zc

(

l−,jpc n−,j
pc ⊗ n−,0

pc + l+,jpc n+,j
pc ⊗ n+,0

pc

)

, (78)

M
j
qc = Zc l

j
qcn

j
qc ⊗ n0

qc. (79)

One can clearly see in (78) the two edges contribution at a cell node. We know from section 3.1
that the equations related to the averaged values of the unknowns are independent of the successive
derivative ones. This property of the chosen basis permits us to enforce conservation relations just
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focusing on the simple equations related to the first moments. Consequently, an obvious way to
ensure the conservation of momentum and total energy over the domain is to set the following
constraints

∑

c∈C(p)
F 0
pc = 0 and F 0

qL + F 0
qR = 0. (80)

Thanks to (80), we finally have an explicit expression of the nodal velocity Up

MpUp =
∑

c∈C(p)

[

P ch(Xp, t) l
0
pcn

0
pc +M

0
pcU

c
h(Xp, t)

]

, (81)

where Mp =
∑

c∈C(p)M
0
pc is a positive definite matrix. An identical procedure leads the following

definition of the face control point velocity

Mq U q = Mq

(

ZLU
L
h (Xq) + ZRUR

h (Xq)

ZL + ZR

)

− PRh (Xq)− PLh (Xq)

ZL + ZR
l0qLn

0
qL, (82)

where Mq = 1
ZR

M0
qR = 1

ZL
M0
qL = l0qLn

0
qL ⊗ n0

qL is positive semi-definite. Actually, this matrix is
non-invertible. So the only information deriving from this equation is the normal velocity definition

(U q · n0
qL) =

(

ZLU
L
h (Xq) + ZRUR

h (Xq)

ZL + ZR

)

· n0
qL − PRh (Xq)− PLh (Xq)

ZL + ZR
. (83)

This is nothing but the approximate solution of the one-dimensional Riemann problem at the cell
interface located at the face control point q. To define the tangential velocity of the face control
points, we make use of the results of the jump relations presented in section 2.6. It has been stated
in equation (36) that at a discontinuity the gap in normal velocity is proportional to the gap in
pressure. The definition of the normal velocity (83) is consistent with this statement, the first
term identifying with an average value and the second one expressing the gap in pressure. The
Rankine-Hugoniot relations also tell us that the tangential velocity is continuous at a discontinuity,
see equation (37). This is the reason why we define the tangential velocity of the face control point
using the same continuous part that in (83), as

(U q · t0qL) =
(

ZLU
L
h (Xq) + ZRUR

h (Xq)

ZL + ZR

)

· t0qL. (84)

Gathering the above results, the face control point velocity writes

U q =
ZLU

L
h (Xq) + ZRUR

h (Xq)

ZL + ZR
− PRh (Xq)− PLh (Xq)

ZL + ZR
n0
qL. (85)

Regarding the semi-discrete equation of the deformation gradient tensor in the triangles constituting
the polygonal cells, equation (53), we obviously need to define the velocity of the interior points,
refer to Figure 5. Any low order assumption on the definition of these interior points velocity will
lead to a decrease of accuracy. Consequently, we set the velocity of an interior point q of cell Ωc to
the interpolated value at this point of the polynomial approximation of the velocity inside the cell,
i.e., U q = U c

h(Xq), where Xq is the initial position of point q.
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Figure 5: Transformation of Ωc to ωc through the flow. • boundary cell nodes, � boundary cell control points, �
interior cell points.

In this section, we have presented a general way to design high-order cell-centered Lagrangian
semi-discrete schemes, allowing to cope with curvilinear geometries, and ensuring the GCL as well
as the Piola compatibility condition by construction of the scheme. This particular discretization
also enforces a local entropy inequality and global conservation of moment and total energy. Now,
we show that under specific choices and assumptions one can obtain a consistent discretization on
the actual moving configuration.

3.5. Compatibility between discretizations on initial and actual configurations

We recall the Lagrangian gas dynamics equation expressed in terms of Eulerian coordinates derived
in section B.5

ρ
d

dt
(
1

ρ
)−∇x �U = 0, (86a)

ρ
dU

dt
+∇xP = 0, (86b)

ρ
dE

dt
+∇x � (PU) = 0. (86c)

Let us introduce the generic equation

ρ
dφ

dt
+∇x � f = 0, (87)

where f is the flux function associated to the unknown φ, where both functions are defined using
the Eulerian coordinates. The use of DG discretization aims at approximating the function φ by

φch(x, t) =
K
∑

k=0

φck(t) ς
c
k(x, t), (88)

where φch is the restriction on the cell ωc of the polynomial approximation φh of function φ, and
ςck the chosen basis functions defined on the moving grid. A local variational formulation of this
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equation and substituting the function φ by its piecewise polynomial approximation φch results in
∫

ωc

ρ
dφch
dt

ςcj dv =

∫

ωc

f · ∇xς
c
j dv −

∫

∂ωc

f · ςcj nds, (89)

where f is the continuous numerical flux function defined at cell interfaces. We have seen in section
2 that the compatibility of both formulations at the continuous level relies mainly on the Nanson
formula (9a) and the Piola compatibility condition (11b), namely on the deformation gradient tensor
definition. Regarding the semi-discretization presented in this paper, it has been proven that these
two identities are ensured by construction of the scheme. Furthermore, thanks to equation (57)
one can see that, under a correct time integration, the discrete deformation gradient tensor derives
directly from the motion of the grid. Thus, assuming a polynomial fluid flow motion of degree
s, the relations obtained at the continuous level transforming points, surfaces, volumes, as well
as gradient and divergence operators, from the actual configuration to the initial one hold at the
discrete level. In the framework of moving grid schemes, this assumption on the fluid flow is implicit
and is governed by the grid edges parametrization. Finally, the remaining ingredient to ensure an
equivalence between the discretizations is a wise choice of basis functions based on the moving
configuration to ensure that the successive moments φck identify with the ones obtained in our
discretization. Actually, the single situation ensuring such a consistency is the case where the basis

functions are conserved along the trajectories, i.e.
d ςcj
dt = 0. This property is naturally ensured in

the case of point-based finite elements functions, the control points being advected by means of
the fluid velocity. But in the case of the chosen Taylor basis, if we want the functions to follow the
fluid flow we have to define ςcj such as

ςcj (x, t) = σcj(X) = σcj(Φ
−1(x, t)), (90)

where Φ−1 is the invert function of the mapping. It seems that such a choice would not be rel-
evant to develop a scheme on the actual configuration, this method requiring the storing of the
initial position of each points during the whole calculation. Actually, only a finite number of
points is required. It is sufficient to store the initial position of each control points inside and on
the boundaries of the polygonal cells, plus a certain number of quadrature points needed in the
evaluation of the interior terms. Anyhow, concerning this latter point, any high-order DG scheme
on moving mesh would require a particular treatment of the interior term to maintain the accuracy.

In the end, we conclude that it is possible to derive a high-order DG scheme on moving mesh ap-
proximating the solutions of the Lagrangian gas dynamics equations (86), which leads to the same
results than the one obtained using the initial configuration scheme presented in this paper. This
consistency lies on a specific definition of the basis functions in the Eulerian frame, see definition
(90), and is possible only because in the presented scheme the deformation gradient tensor derives
precisely from the motion of the grid. It is worth mentioning that in the whole scheme implemen-
tation presented in this paper, a straight line edges initial grid has been considered. Nevertheless,
one may want to start with curvilinear cells. Next, we present the procedure which allows to take
into account such grids.

3.6. Specific procedure devoted to initial curvilinear grids

Let Ωc be a cell of the initial configuration Ω at time t = 0, and ωc its corresponding cell in the
actual configuration domain ω at time t. We assume that the initial domain is paved using a
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curvilinear grid. In that case, the scheme discretization remain correct, one just has to initialize
correctly the deformation gradient tensor and the mass matrix. Let the straight polygonal cell Ωrc
be the referential cell of Ωc, in the referential domain Ωr, refer to Figure 6.

ΦH(X, t)

ΦT (Xr, t)

Ωc

ωc

Ωr
c

Xr

X

x

Φ0(Xr)

Figure 6: Reference, initial and actual configuration.

X denotes the initial position of the moving point located at time t at the position x. The
mathematical transformation ΦH(X, t) represents the displacement due to the flow motion of the
fluid. Xr is the referential position of the point initially located at X. Φ0(Xr) represents the
initial transformation of the domain and ΦT (Xr, t) corresponds to the total deformation mapping,
refer to Figure 6. Gathering the above notation leads to define ΦT as the composition of ΦH and
Φ0 as follows

ΦT (Xr, t) = ΦH(X, t) ◦Φ0(Xr).

The use of the chain rule of composed derivatives and of the deformation gradient tensor definition
yields

FT = ∇XrΦT (Xr, t),

= ∇XΦH(X, t) ◦ ∇XrΦ0(Xr),

= FH F0,

where F0 = ∇XrΦ0(Xr) and FH = ∇XΦH(X, t). Taking the determinant of the tensors on both
sides of the above equation yields

JT (Xr, t) = JH(X, t) J0(Xr), (91)

where JT = detFT , JH = detFH and J0 = detF0. To recover the Lagrangian equation of continuity,
we recall the mass conservation principle

∫

Ωc

ρ0(X) dΩ =

∫

ωc

ρ(x, t) dω.
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Expressing the integrands in terms of the referential coordinates yields

∫

Ωr
c

ρ0(Φ0(Xr)) J0(Xr) dΩ
r =

∫

Ωr
c

ρ(ΦT (Xr, t), t) JT (Xr, t) dΩ
r.

From this equation, it follows easily that

ρ0 J0 = ρ JT . (92)

This new continuity equation only affects the construction of the mass matrix. Indeed, trying to
calculate

∫

ωc
ρ dψ

dt σ
c
j dω, the time rate of change of the successive moments of the function ψ, one

gets

∫

ωc

ρ
dψ

dt
σcj dω =

∫

Ωr
c

ρ JT
∂ ψ

∂t
σcj dΩ

r,

=

∫

Ωr
c

ρ0 J0
∂ ψ

∂t
σcj dΩ

r.

And substituting the function ψ by its polynomial approximation, ψch(Xr, t) =
∑K

k=0 ψ
c
k(t)σ

c
k(Xr),

it yields

∫

ωc

ρ
dψch
dt

σcj dω =
K
∑

k=0

dψk
dt

∫

Ωr
c

ρ0 J0 σ
c
j σ

c
k dΩ

r. (93)

Finally, in equation (93) we identify
∫

Ωr
c
ρ0 J0 σq σk dΩ

r as the coefficients of the mass matrix. In

the case of a non-deformed initial geometry, J0(Xr) = 1, the former discretization is recovered.

So far, a new high-order cell-centered Lagrangian semi-discrete scheme, allowing to cope with
curvilinear grids, and ensuring the GCL as well as the Piola compatibility condition by construction,
has been presented.

3.7. Limiting procedure based on the characteristic variables

In the case of discontinuous problem, without a specific treatment, high-order numerical schemes
produce solutions containing spurious oscillations. On the other hand, if we apply a limiting
procedure directly to the polynomial approximation of the physical variables (1ρ)h, Uh and Eh,
we cannot enforce totally the monotonicity of the solutions. To correct this flaw, we shall use a
limitation procedure which relies on the characteristic variables following the approach originally
introduced by Cockburn, Lin and Shu in [15]. Let us assume that the fluid variables are sufficiently
smooth to compute their partial derivatives. In section 2.5, it has been demonstrated that in the
case of smooth flows the specific entropy is conserved along the trajectory equation, i.e. d η

dt = 0.
Thanks to this result, one gets the following relation between the pressure and the density material
derivatives

dP

dt
= −ρ2a2 d

dt
(
1

ρ
). (94)
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Gathering this last relation with the Lagrangian gas dynamics equations written in the actual
configuration (86), we obtain the new non-conservative form of the gas dynamics equations

dP

dt
+ ρa2∇x �U = 0, (95a)

dU

dt
+

1

ρ
∇xP = 0, (95b)

d η

dt
= 0. (95c)

Using the material derivative definition (6), and setting W = (P,U, V, η)t where U and V are
respectively the x and y components of U , one can rewrite the above system in the two dimensional
Cartesian frame as

∂W

∂t
+ Ax

∂W

∂x
+ Ay

∂W

∂y
= 0, (96)

where 4× 4 matrices Ax and Ay are given by

Ax =









U ρa2 0 0
1
ρ U 0 0

0 0 U 0
0 0 0 U









and Ay =









V 0 ρ a2 0
0 V 0 0
1
ρ 0 V 0

0 0 0 V









.

If n denotes a unit vector, we define A(n) = Axnx + Ayny

A(n) =









U � n ρ a2 nx ρ a2 ny 0
1
ρ nx U � n 0 0
1
ρ ny 0 U � n 0

0 0 0 U � n









. (97)

This matrix admits four real eigenvalues: λ1 = U ·n− a, λ2 = λ3 = U ·n and λ4 = U ·n+ a. One
knows that the system of equations (96) is hyperbolic if for all n, A(n) admits four real eigenvalues.
Thus, the above system is hyperbolic. Now, we are able to introduce the four differential Riemann
invariants associated to unit direction n as

dαE = dE −U · dU + P d(
1

ρ
), (98)

dα− = dP − ρa dU · n, (99)

dα+ = dP + ρa dU · n, (100)

dα0 = dU · t, (101)

where t = ez ×n. Recalling that for an isentropic flow the differential of the pressure expresses as
dP = −ρ2a2 d(1ρ), the Riemann invariants differentials dα± rewrite

dα± = d(
1

ρ
)± 1

ρa
dU · n, (102)
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Following the same procedure than in the one-dimensional case presented in [52], we define the
polynomial approximation of the Riemann invariants by linearizing the differential definitions (98),
(101) and (102) on each cells around the mean values in the cells

αcE,h =
K
∑

k=0

αcE,kσ
c
k = Ech −U c

0 ·U c
h + P c0 (

1

ρ
)ch, (103)

αc±,h =
K
∑

k=0

αc±,kσ
c
k = (

1

ρ
)ch ±

1

Zc
U c
h · n, (104)

αc0,h =

K
∑

k=0

αc0,kσ
c
k = U c

h · t, (105)

where φih is the polynomial approximation of φ on the cell Ωc, and φc0 its mass averaged value.
The scalar Zc = ac0ρ

c
0 is the acoustic impedance. This procedure is equivalent to linearize the

gas dynamics equations, on each cells, around an averaged state. We can now apply a high-order
limitation procedure on the Riemann invariant polynomial approximations. In our work, the choice
has been made to use the vertex-based slope limiter presented in [31], which allows us to preserve
smooth extrema. In the end, one can obtain the limiting coefficients for the Riemann invariants
polynomials. Hence, using definitions (103), (104) and (105), we recover the limiting coefficients
corresponding to the system of variables polynomial approximations

(
1

ρ
)ck =

1

2
(αc+,k + αc−,k),

U c
k =

1

2
Zc(α

c
+,k − αc−,k)n+ αc0,kt,

Eck = αcE,k +
1

2
Zc(α

c
+,k − αc−,k)U

c
0 · n+ αc0,kU

c
0 · t−

1

2
P c0 (α

c
+,k + αc−,k).

Concerning the unit vector n and t, we could define these projection vectors as the two orthogonal
directions ex and ey. This option in the choice of n and t would not ensure symmetry preservation
in the case of radial flows on polar grids. Finally, we decide to use the velocity mean value direction
over the cell and its orthogonal vector, i.e. n = U c

0\||U c
0|| and t = ez × U c

0\||U c
0||. In the next

section devoted to the numerical results, we shall show that this limiting procedure ensures the
preservation of the cylindrical symmetry. The scheme robustness and accuracy will also be assessed
using several relevant test cases.

4. Numerical results

To demonstrate the accuracy and the robustness of our scheme on the gas dynamics system, we
have run test cases taken from the literature. During the whole calculation we are working on the
fixed initial grid. However, plotting final solutions on the initial mesh, the results are difficult to
analyze. Luckily, knowing the deformation gradient tensor everywhere and at anytime, we are able
to observe the solution on the actual, deformed, mesh. For a better understanding of the results,
all the problem solutions are displayed on the final mesh. Concerning the time discretization, the
choice has been made to use the well-known TVD Runge-Kutta, see [49]. In the remainder, the
two particular cases of second and third order of accuracy are assessed.
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4.1. Second-order scheme

4.1.1. Noh problem.

The Noh problem [43] is a well known test case used to validate Lagrangian schemes in the regime
of infinite strength shock wave. In this test case, a cold gas with unit density is given an initial
inward radial velocity of magnitude 1. The initial pressure is given by P 0 = 10−6 and the polytropic
index is equal to 5

3 . A diverging cylindrical shock wave is generated which propagates at speed
D = 1

3 . The density plateau behind the shock wave reaches the value 16. The initial computational
domain is defined by (X,Y ) = [0, 1] × [0, 1]. The boundary conditions on the X and Y axis are
wall boundary conditions whereas a pressure given by P ⋆ = P 0 is prescribed at X = Y = 1. We
run the Noh problem on a 50 × 50 Cartesian grid. This configuration leads to a severe test case
since the mesh is not aligned with the flow.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

 

 

2

4

6

8

10

12

14

16

(a) Density map.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

solution
2nd order
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Figure 7: Second-order DG scheme with limitation for the Noh problem on a 50× 50 Cartesian grid.

We note that we have a very smooth and cylindrical solution, and that the shock is located at a
circle whose radius is approximately 0.2, refer Figure 7(a). On Figure 7(b), we observe that the
second-order plot is very sharp at the shock wave front and very similar to the one-dimensional
cylindrical solution. Moreover the density at the shock plateau is not far from the analytical value.
This shows the ability of our scheme to preserve the radial symmetry of the flow.

4.1.2. Sedov point blast problem.

We consider the Sedov problem for a point-blast in a uniform medium. An exact solution based on
self-similarity arguments is available, see for instance [27]. The initial conditions are characterized
by (ρ0, P 0,U0) = (1, 10−6,0), and the polytropic index is equal to 7

5 . We set an initial delta-
function energy source at the origin prescribing the pressure in the cell containing the origin as
follows, Por = (γ − 1)ρor

ε0

vor
, where vor denotes the volume of the cell containing the origin and ε0

is the total amount of release energy. By choosing ε0 = 0.244816, as suggested in [27], the solution
consists of a diverging infinite strength shock wave whose front is located at radius r = 1 at t = 1,
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with a peak density reaching 6. First, we run Sedov problem with the second-order DG scheme
with a 30× 30 Cartesian grid on the domain (X,Y ) = [0, 1.2]× [0, 1.2], refer to Figure 8(a). Then,
keeping the same conditions, we make use of a first unstructured grid made of 1110 triangular cells,
refer to Figure 9(a), and a second unstructured grid composed of 775 polygonal cells produced
by a Voronoi tessellation, refer to Figure 9(b). We point out that the triangular grid is made of
completely anisotropic elements.
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(b) Density in all cells versus cell center radius.

Figure 8: Second-order DG scheme with limitation; Numerical results for the Sedov problem on a 30× 30 Cartesian
grid.

In these three cases, the numerical solution is very close to the one-dimensional analytical solution,
refer to Figures 8(b), 10(b) and 11(b). At the end of the computation, the shock wave front is
correctly located and is almost cylindrical, refer to Figures 8(a), 10(a) and 11(a). Further, the
density peak almost reaches 6. These results demonstrate the robustness and the accuracy of our
DG scheme.

4.1.3. Saltzman problem

This test case taken from [20] is a well known difficult problem that allows to evaluate the robustness
of Lagrangian schemes. It consists of a strong piston-driven shock wave calculated using an initially
nonuniform mesh. The computational domain is defined by (X,Y ) ∈ [0, 1] × [0, 0.1]. The skewed
initial mesh, displayed in Figure 12, is obtained transforming a uniform 100 × 10 Cartesian grid
with the mapping

{

Xsk = X + (0.1− Y ) sin(πX),
Ysk = Y.

The initial conditions are (ρ0, ε0,U0) = (1, 10−6,0), and the polytropic index is γ = 5
3 . At X = 0, a

unit inward normal velocity is prescribed, the other boundaries are reflective walls. The analytical
solution is a one-dimensional infinite strength shock wave that moves at speed D = 4

3 in the right
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Figure 9: Unstructured grids for computing the Sedov problem.
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(b) Density in all cells versus cell center radius.

Figure 10: Second-order DG scheme with limitation; Numerical results for the Sedov problem on a triangular grid
made of 1110 cells.

direction. Thus, the shock wave hits the face X = 1 at time t = 0.75. Behind the shock, the
density is equal to 4. We have displayed in Figure 13 the grid at time t = 0.75 which corresponds
to the first bounce of the shock wave. We remark that the one-dimensional solution is very well
preserved. Moreover, the location of the shock wave and the shock plateau are in good agreement
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Figure 11: Second-order DG scheme with limitation; Numerical results for the Sedov problem on a polygonal grid
made of 775 polygonal cells.
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Figure 12: Initial computational domain for the Saltzman problem.

with the analytical solution, refer to Figure 13. In Figure 14, we have plotted the grid and the
density map at time t = 0.9, which corresponds to the time of the second bounce of the shock
wave. Although the mesh is more wavy than before, it still exhibits a good quality. These results,
in which no spurious modes appear, show the robustness of our second-order DG scheme.
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Figure 13: Saltzman problem. Grids and density map at time t = 0.75. Solution obtained with the second-order DG
scheme with limitation.
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Figure 14: Solution of the Saltzman problem at time t = 0.9 obtained with the second-order DG scheme with
limitation.

4.1.4. Taylor-Green vortex problem

To assess the accuracy of our DG scheme we perform a convergence analysis utilizing the smooth
solution of the Taylor-Green vortex test case, initially proposed by [18]. This test case is derived
by considering an analytical solution of the incompressible Navier-Stokes equations. Here, we
use an adapted version to handle the compressible Euler equations. The Taylor-Green vortex
is characterized by the following conditions. The computational domain is defined by (X,Y ) =
[0, 1]×[0, 1]. The initial density is uniform and denoted by ρ0. The initial velocity field is divergence-
free and reads

U0 = U0

(

sin(πx) cos(πy)
− cos(πx) sin(πy)

)

.

Let us point that with these two fields, the volume equation is automatically satisfied. Now, to
satisfy momentum equation, the pressure field, P 0, is obtained by balancing the inertia term

∇xP
0 = −ρ0dU

0

dt
.

Substituting the velocity expression in the above equation leads to

P 0 =
1

4
ρ0(U0)2[cos(2πx) + cos(2πy)] + C0, (106)

where C0 is a constant that allows to define a non-negative pressure. Using these definitions of the
density, velocity and pressure, the volume equation and the momentum equation are automatically
satisfied. However, since we are computing this solution by solving the compressible Euler equations,
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it remains to check whether or not the total energy equation is satisfied. To this end, let us
investigate the time rate of change of the specific internal energy ε

ρ0
d ε0

dt
+ P 0∇x �U

0 =
1

γ − 1
U0 · ∇xP

0,

since ε0 = P 0

(γ−1)ρ0
and ∇x �U

0 = 0. Replacing U0 and P 0 by their analytical expressions, we finally

obtain

ρ0
d ε0

dt
+ P 0∇x �U

0 =
π

4

ρ0(U0)3

γ − 1
[cos(3πx) cos(πy)− cos(3πy) cos(πx)]. (107)

Finally, adding the kinematic energy equation to the previous equation leads to the total energy
equation

ρ0
dE0

dt
+∇x � (P

0U0) =
π

4

ρ0(U0)3

γ − 1
[cos(3πx) cos(πy)− cos(3πy) cos(πx)]. (108)

The numerical simulation of this test case solving the Lagrangian hydrodynamics equations requires
the addition of the above source term in the energy (total or internal) equation. For the numerical
applications, we set ρ0 = 1, C0 = 1, U0 = 1 and γ = 7

5 .

To illustrate the accuracy of the second-order scheme, we first compare the numerical results ob-
tained to the exact solution, at the final time t = 0.75, refer to Figure 15. Secondly, using the
analytical solution we compute the global truncation errors, refer to Table 1. The results displayed
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(a) Second-order scheme without limitation.
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(b) Exact solution.

Figure 15: Taylor-Green vortex deformation of a Cartesian grid made of 10× 10 cells, at time t = 0.75.

in Figure 15 exhibit a satisfying accuracy. One can also observe how the straight line edges assump-
tion restricts the grid motion. Concerning the rates of convergence gathered in Table 1, the results
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L1 L2 L∞
h EhL1

qhL1
EhL2

qhL2
EhL∞

qhL∞
1
10 5.06E-3 1.94 6.16E-3 1.93 2.20E-2 1.84
1
20 1.32E-3 1.98 1.62E-3 1.97 5.91E-3 1.95
1
40 3.33E-4 1.99 4.12E-4 1.99 1.53E-3 1.98
1
80 8.35E-5 2.00 1.04E-4 2.00 3.86E-4 1.99
1

160 2.09E-5 - 2.60E-5 - 9.69E-5 -

Table 1: Rate of convergence computed on the pressure in the case of the Taylor-Green vortex at time t = 0.1, with
the second-order DG scheme without limitation.

confirm the expected second-order rate of convergence. Now, to overcome the grid motion restric-
tion observed in Figure 15, we shall present the numerical results obtained with the third-order
extension of our scheme.

4.2. Third-order scheme

4.2.1. Polar Sod shock tube problem.

We consider the extension of the classical Sod shock tube [50] to the case of the cylindrical geometry.
This problem consists of a cylindrical shock tube of unity radius. The interface is located at r = 0.5.
At the initial time, the states on the left and on the right sides of the interface are constant. The
left state is a high pressure fluid characterized by (ρ0L, P

0
L,U

0
L) = (1, 1,0), the right state is a low

pressure fluid defined by (ρ0R, P
0
R,U

0
R) = (0.125, 0.1,0). The gamma gas law is defined by γ = 7

5 .
The computational domain is defined in polar coordinates by (r, θ) ∈ [0, 1] × [0, π2 ]. We prescribe
symmetry boundary conditions at the boundaries θ = 0 and θ = π

2 , and a wall boundary condition,
i.e. the normal velocity is set to zero, at r = 1. The aim of this test case is to assess the scheme
accuracy and its ability to preserve the radial symmetry. Thanks to Section 3.6, we start the
computation with an initial curvilinear grid such as the ones displayed in Figure 16. In the first
case, the domain defined in polar coordinates by (r, θ) ∈ [0, 1] × [0, π2 ] is made of 100 cells in the
radial direction and 3 non-uniform cells in the angular direction, characterized by an angle of Π

20 ,
7Π
60 and Π

3 , refer to Figure 16(a). This non-uniformity of the grid could cause serious problems
in the preservation of the symmetry. Indeed, the results obtained with the first and second-order
schemes, on the initial mesh displayed in Figure 16(a), clearly exhibit this loss of symmetry, refer
to Figure 17. Nonetheless, running the same problem with the third-order scheme, on the same
initial mesh, one gets excellent results, refer to Figure 18. In Figure 18(b), we have plotted the
density in all cells versus the cell center radius. We observe that the numerical solution is almost
superimposed on the analytical one. This shows the great accuracy of our third-order scheme and
its ability to preserve cylindrical symmetry. In this case, the symmetry preservation is due to the
high accuracy of the scheme. We can thus conclude that dealing with curvilinear grids, a high-order
numerical scheme is required to preserve symmetry, without a specific treatment. Now, we present
the same problem in the case of a polar grid made of 100 cells in the radial direction and only one
cell in the angular direction, refer to Figure 16(b). Obviously, the mesh edges being parametrized
by Bezier curves, the grid is not perfectly circular. Nevertheless, at the end of the computation,
the numerical solution performed by the third-order DG scheme exhibits a very good symmetry
preservation, refer to Figure 19(a). We also note on Figure 19(b) that the numerical solution is
very close to the one-dimensional cylindrical solution. This result proves the strong accuracy and
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(a) 100× 3 non-uniform cells.
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(b) 100× 1 cells.

Figure 16: Initial curvilinear polar grids defined in polar coordinates by (r, θ) ∈ [0, 1]× [0, π
2
].
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(a) First-order scheme.
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(b) Second-order scheme.

Figure 17: Polar Sod shock tube problem. Density maps obtained with the first and second-order DG schemes on
the domain defined in polar coordinates by (r, θ) ∈ [0, 1]× [0, π

2
] made of 100× 3 non-uniform cells.

robustness of the third-order scheme without limitation in this particular case of a grid made of
only one cell in the radial direction.
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Figure 18: Polar Sod shock tube problem. Solution obtained with the third-order DG scheme without limitation on
the domain defined in polar coordinates by (r, θ) ∈ [0, 1]× [0, π

2
] made of 100× 3 non-uniform cells.
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Figure 19: Polar Sod shock tube problem. Solution obtained with the third-order DG scheme without limitation on
the domain defined in polar coordinates by (r, θ) ∈ [0, 1]× [0, π

2
] made of 100× 1 cells.

4.2.2. Variant of the Gresho vortex problem

In this section we propose a variant of the initial vortex problem defined by Gresho in [24]. The
analytical solution is obtained by considering a steady vortex which is solution of the incompressible
Euler equations. This solution is characterized by a balance between inertia and pressure gradient
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into the momentum equation. We recall hereafter the procedure to derive such a solution. Before
proceeding any further we start by recalling the writing of the differential operators using cylindrical
polar coordinates. Let (x, y, z) denote the usual Cartesian coordinates. The polar cylindrical
coordinates are (r, θ, z) where r ≥ 0 and θ ∈ [0, 2π[, and we have the following relationships

x = r cos θ, y = r sin θ.

Let (ex, ey, ez) be the Cartesian orthonormal basis of the three dimensional space R
3. The corre-

sponding basis in cylindrical polar geometry is (er, eθ, ez), where

er = cos θ ex + sin θ ey,

eθ = − sin θ ex + cos θ ey.

For P = P (r, θ, z) and U = ur er + uθ eθ + uz ez, the gradient and the divergence operators are
expressed as follows in cylindrical polar coordinates

∇P =
∂ P

∂r
er +

1

r

∂ P

∂θ
eθ +

∂ P

∂z
ez,

∇ �U =
1

r

∂ (rur)

∂r
+

1

r

∂ uθ
∂θ

+
∂ uz
∂z

.

The curl of the velocity field U is given by

∇×U = (
1

r

∂ uz
∂θ

− ∂ uθ
∂z

)er + (
∂ ur
∂z

− ∂ uz
∂r

)eθ +
1

r
(
∂ (ruθ)

∂r
− ∂ ur

∂θ
)ez. (109)

Let ψ = ψ(r, θ, z, t) be a physical variable attached to the fluid, its material derivative writes as

dψ

dt
=
∂ ψ

∂t
+U · ∇ψ =

∂ ψ

∂t
+ ur

∂ ψ

∂r
+
uθ
r

∂ ψ

∂θ
+ uz

∂ ψ

∂z
.

Being given the velocity vector U , the acceleration reads as

dU

dt
=
∂U

∂t
+

(

ur
∂

∂r
+
uθ
r

∂

∂θ
+ uz

∂

∂z

)

U . (110)

Let us assume that the fluid flow obeys the following properties:

• The velocity field is orthoradial and its orthoradial component depends only on the radius r,
that is,

U = uθ(r)eθ. (111)

• The thermodynamics variables, ρ and P are scalar valued functions with respect to r.

• The thermodynamic closure is provided by a gamma gas law, P = (γ − 1)ρε.

Using the previous assumptions, we readily obtain

∇ρ =
d ρ

dr
er, ∇P =

dP

dr
er, ∇ε = d ε

dr
er. (112)
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We also point out that the flow is incompressible since from (111) we deduce that ∇ � U = 0.
Moreover, the material derivative of a physical variable such that ψ = ψ(r, t) coincides with its
time derivative since the velocity is orthogonal to the gradient of this variable

dψ

dt
=
∂ ψ

∂t
.

These points involve that the internal energy and the mass continuity equations are automatically
satisfied. Replacing the velocity field into (110) leads to the following expression for the acceleration

dU

dt
= −u

2
θ

r
er.

In writing this equation, we have used the fact that d eθ

dθ = −er. Finally the momentum equation
reduces to the ordinary differential equation

dP

dr
= −ρu

2
θ

r
. (113)

The time evolution of the specific kinetic energy, k = 1
2U

2, reads as

ρ
d k

dt
+∇P ·U = 0. (114)

Knowing that k = k(r) and that ∇P and U are orthogonal leads to the conservation of the kinetic
energy. Finally, using (109) and the previous assumptions, the curl of the velocity field reduces to

∇×U = (
uθ
r

+
duθ
dr

)ez. (115)

Being given ρ = ρ(r) and uθ = uθ(r), the pressure field is obtained by solving the differential
equation (113). In what follows, we propose to derive a smooth vortex solution by setting ρ = ρ0
and

uθ(r) =

{

22nU0(
r
rv
)n(1− r

rv
)n if r ∈ [0, rv],

0 if r ∈]rv, 1].
(116)

Here, rv denotes the radius of the vortex and n is a integer such that n > 1. The factor 22n is
a normalization factor chosen such that the maximum of the orthoradial velocity is equal to one.
Choosing the above form for the orthoradial velocity ensures that it is a smooth function with a
compact support over [0, 1]. The integration of the momentum equation (113) gives

P (r) =

{

P (0) + 24nρ0U
2
0h(

r
rv
) if r ∈ [0, rv],

P (0) + 24nρ0U
2
0h(1) if r ∈]rv, 1],

(117)

where P (0) is an arbitrary integration constant and h is the real valued function defined by

h(ξ) =

∫ ξ

0
s2n−1(1− s)2n ds, for ξ ∈ [0, 1]. (118)
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Figure 20: Smooth vortex analytical solution corresponding to n = 6.

The vorticity, ω = |∇ ×U | is determined by

ω =
U0

rv

[

g(ξ)

ξ
+

dg

dξ

]

, (119)

where ξ = r
rv

and g(ξ) = ξn(1− ξ)n if ξ ∈ [0, 1] else g(ξ) = 0. For n = 6, the function h is given by

h(ξ) =
1

24
ξ24 − 12

23
ξ23 + 3ξ22 − 220

21
ξ21 +

99

4
ξ20 − 792

19
ξ19 +

154

3
ξ18

− 792

17
ξ17 +

495

16
ξ16 − 44

3
ξ15 +

33

7
ξ14 − 12

13
ξ13 +

1

12
ξ12.

For numerical applications, we define the analytical solution setting the parameters to the following
values: U0 = 1, ρ0 = 1, P (0) = 5, rv = 0.4 and n = 6. We have displayed the corresponding curves
in Figure 20. This variant of the Gresho problem is an interesting validation test case to assess
the robustness and the accuracy of a Lagrangian scheme. On the one hand, the vorticity leads to
a strong mesh rotation which can cause some problems such as negative Jacobian determinants or
negative densities. On the other hand, if the numerical diffusion is too important the flow motion
stops very early. We run this Gresho problem on a polar grid made of 40× 18 cells with our first,
second, and third-order DG schemes. The computational domain is defined in polar coordinates by
(r, θ) ∈ [0, 1]× [0, 2π]. The solutions are displayed with a zoom in the zone (r, θ) ∈ [0, 0.5]× [0, 2π].
We start with the first-order scheme. In Figure 21(a), we observe that the grid is barely deformed.
This is due to the too important numerical diffusion. Obviously, the grid being slightly deformed,
the mesh does not present any tangled cells, neither than crossed points nor negative Jacobians
in the triangular cells. Now, with the second-order DG scheme, the solution presents another
problem. This time, the computation does not stop before the final time. At the end of the
computation, the grid is strongly deformed, and one can see the vortex structure inherent to this
Gresho problem, refer to Figure 21(b). However, the linear approximation as well as the straight-
line representation do not allow to follow properly the deformation. Indeed, on Figure 21(b) we
note that the final grid is characterized by non-valid cells, wherein some triangles exhibit negative
Jacobian determinant. Finally, we perform this Gresho vortex problem with our third-order DG
scheme on a curved polar grid made of 40× 18 as well. We also display in Figure 22(b) the exact
motion of this mesh to compare it with our numerical solutions. First, we note that as in the
first-order and second-order cases, the third-order scheme preserves symmetry. This scheme is
characterized by a very low level of numerical dissipation and the grid is extremely deformed at
the end of the computation, more than in the second-order case, refer to Figure 22(a). Thanks to
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(b) Second-order scheme without limitation.

Figure 21: Gresho problem variant on a polar grid made of 40 × 18 cells at the final time t = 1. Grid deformations
obtained with the first and second order scheme.
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(a) Third-order scheme without limitation.
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(b) Exact solution.

Figure 22: Gresho problem variant on a polar grid made of 40 × 18 cells at the final time t = 1. Grid deformations
obtained with the third-order scheme without limitation and the analytical solution.

the scheme properties and to the Bezier representation, the solution is very close to the expected
one, refer to Figure 22(b). Furthermore, the grid does not contain any non-valid cells, and the
Jacobian of the triangular cells remain positive. We have also displayed the plots corresponding
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to the pressure, the velocity and the density expressed at the centroid of the cells, in the three
different cases presented, refer to Figure 23. We note on Figure 23(a) and Figure 23(b) that the
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(c) Density profile.

Figure 23: Gresho problem variant on a polar grid made of 40× 18 cells at the final time t = 1: comparison between
the analytical solution and those obtained with the first, second and third-order numerical schemes, plotted at the
centroid of the cells.

numerical solutions corresponding to the first-order schemes are totally smeared. We also observe
the huge gain in accuracy between the second-order and the third-order DG scheme. Despite the
extreme deformation of the grid, the numerical solutions obtained by the third-order scheme are
very close to the exact solutions. This confirm the high accuracy and robustness of the designed
scheme. Now, regarding the incompressibility assumption, this test case deriving from a solution of
the incompressible Euler equations, the density must remain equal to one during the calculation.
We note on Figure 23(c) that the result obtained with the third-order scheme is more accurate
than the ones obtained with the first-order and second-order numerical schemes. At the end of the
computation, even if the mesh is highly deformed, the incompressibility assumption is very well
satisfied, the density lying in the interval [0.9992, 1.0012].
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4.2.3. Kidder isentropic compression

In [28], Kidder has constructed an analytical solution of the self-similar isentropic compression of a
shell filled with perfect gas. Following [7, 39], we recall the main features of this solution in order
to define the set up of the test case. Initially, the shell has the internal (resp. external) radius Ri
(resp. Re). Let Pi, Pe, ρi and ρe be the pressures and densities located at Ri and Re. Since the

compression is isentropic, we define s = Pe

ργe
, and we have ρi = ρe(

Pi

Pe
)
1
γ . Let r(R, t) be the radius

at time t ≥ 0 of a fluid particle initially located at radius R. Looking for a solution of the gas
dynamics equation under the form r(R, t) = h(t)R, using the isentropic feature of the flow and
setting γ = 1 + 2

ν , where ν = 1, 2, 3 indicates planar, cylindrical or spherical symmetry, we finally
get the self-similar analytical solution for t ∈ [0, τ [

ρ(r(R, t), t) = ρ0(R)h(t)
− 2

γ−1 ,

U(r(R, t), t) = R
dh(t)

dt
,

P (r(R, t), t) = P 0(R)h(t)
− 2γ

γ−1 .

Here, τ denotes the focusing time of the shell which is written

τ =

√

γ − 1

2

R2
e −R2

i

a2e − a2i
,

where a2 = sγργ−1 is the square of the isentropic sound speed. The particular form of the polytropic

index enables us to get the analytical expression h(t) =
√

1− ( tτ )
2, which is valid for any t ∈ [0, τ [.

Note that h(t) goes to zero when t goes to τ , hence τ corresponds to the collapse of the shell on
itself. For R ∈ [Ri, Re], the initial density and pressure, ρ0 and P 0, are defined by

ρ0(R) =

(

R2
e −R2

R2
e −R2

i

ργ−1
i +

R2 −R2
i

R2
e −R2

i

ργ−1
e

)
1

γ−1

, P 0(R) = s (ρ0(R))γ .

Note that the initial velocity is equal to zero since the shell is assumed to be initially at rest. The
isentropic compression is obtained imposing the following pressure laws at the internal and external
faces of the shell

P (r(Ri, t), t) = Pi h(t)
− 2γ

γ−1 ,

P (r(Re, t), t) = Pe h(t)
− 2γ

γ−1 .

We point out that the velocity field is a linear function of the radius r which is a typical property
of self-similar isentropic compression. For numerical applications, we consider the cylindrical shell
characterized by Ri = 0.9 and Re = 1. We set Pi = 0.1, Pe = 10 and ρe = 10−2. Due to
the cylindrical symmetry we have ν = 2, hence γ = 2. The previous values lead to ρi = 10−3,
s = 105 and τ ≃ 7.265 10−3. The initial computational domain is defined in polar coordinates by

(r, θ) ∈ [0.9, 1]× [0, π2 ]. Similarly to [11], a final time tf =
√
3
2 τ is chosen in order to obtain a final

compression rate h(t) = 1
2 . We firstly assess the accuracy of the first and second order schemes in

this Kidder isentropic compression case, see Figure 24. One can note that a very coarse mesh has
been used, with only 10 cells in the radial direction and 5 in the angular direction. Actually, using
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(a) First-order scheme.
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(b) Second-order scheme without limitation.
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(c) Shell radii evolution.

Figure 24: Isentropic Kidder compression of polar grids made of 10× 5 cells, at time t = 0 and t = tf .

this kind of polar grid, the minimum number of angular cells, nθ, ensuring a nonnegative density
at any point of the mesh is determined by the condition

nθ >
π

4

1

acos(109

√

71
90)

≃ 4.84,

and thus, polar grids require at least 5 cells in the angular direction. With the results displayed
in Figure 24, we note that both first and second order schemes fail at tracking the internal and
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external radius evolution. This is due to the very low resolution of the grid as well as the lack
of similarity between the used mesh and a circular shell. Furthermore, in the first-order case, the
incapacity of the scheme to correctly approximate the deformation of the inside of the shell is also
due to the overestimate of entropy production. One solution to improve the numerical results lies
in the use of an initial curvilinear mesh. This particular choice would also allow us to use even
less cells in the angular direction. But using first or second order schemes, the loss of symmetry
depicted in the polar Sod shock problem, Section 4.2.1, will cause the deformation of the grid into
non-valid cells. However, due to its high accuracy, the third-order scheme succeeds where the first
and second order schemes have failed, see Figure 25. One can see on Figure 25(a) that, at the
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(a) Meshes at time t = 0 and t = tf .
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Figure 25: Isentropic Kidder compression problem on a curvilinear polar grid made of 10×3 cells, with the third-order
scheme without limitation.

final, the symmetry of the curvilinear grid is preserved. Furthermore, even on the extremely coarse
mesh used made of 10× 3 cells, the numerical results are very close to the analytical solution, see
Figure 25(b). Consequently, the results obtained in this isentropic compression test case also weigh
in favor of the use of very high-order scheme on high-order geometry.

4.2.4. Sedov point blast problem

Once more we consider the Sedov problem which has been already described. We run this prob-
lem, with our third-order DG scheme employing the limitation procedure based on the Riemann
invariants polynomial approximation, described in the Section 3.7. The initial computational do-
main is defined by (X,Y ) = [0, 1.2] × [0, 1.2] and paved by a 30 × 30 Cartesian grid. We note on
Figure 26(b) that the numerical solution is very close to the one-dimensional analytical solution.
Further, we observe that the shock wave front is cylindrical and well located at the end of the com-
putation, refer to Figure 26(a). These results also demonstrate the robustness and the accuracy
of this scheme. Nonetheless, overlapping cells are visible on the grid at the stopping time, refer to
Figure 26(a). Further improvements are certainly needed to cure this weakness of the scheme. This
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Figure 26: Point blast Sedov problem on a Cartesian grid made of 30 × 30 cells with the third-order scheme with
limitation.

cells overlapping phenomenon may result from several reasons. The first one is the local criteria of
our discretization. The scheme has been built such as the normals in the actual configuration are
continuous on cells sharing a common face. But there is no continuity in the normals nor in the
tangents between neighboring edges. The choice of Bezier curves to parametrize the mesh edges
has been done to be consistent with the definition of the mapping using P2 finite elements basis
functions, these curves being the trace of the P2 polynomials functions on the edges. It is clear
that in some cases, this representation is not accurate enough, and thus bring geometric discon-
tinuities. Considering the polar mesh depicted in Figure 16, the Bezier representation does not
allow us to obtain a circular mesh. The normals are discontinuous between edges in the angular
direction. In [6], the authors use conics to parametrize their cell edges. These functions allows a
perfect representation of polar grids, and the normals would be continuous in this case. However,
these functions do not correspond to the trace of the P2 finite elements basis functions on the
edges, another discretization of the mapping and thus of the deformation gradient tensor would
be needed. Nevertheless, we think that this phenomenon may likely derive from the limitation
procedure. The loss of accuracy due to the limitation may downgrade the approximation of the
fluid flow velocity, and therefore the deformation of the edges. Another possible explanation of this
phenomenon may come from the face control point velocity definition. The use of the Hadamard
compatibility condition (29) and helped by the fact that the deformation gradient tensor is dis-
continuous between triangles inside the polygonal cells could bring more diffusion and thus more
stability in the definition of the interior points velocity.

4.2.5. Taylor-Green vortex problem

We make use of the smooth Taylor-Green vortex test case described in the previous second-order
section to assess the accuracy of the third-order scheme. First, we compare the solution obtained
with the third-order discontinuous Galerkin scheme with the exact solution, on a Cartesian grid
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made of 10×10 cells, see Figure 27. The results displayed in Figure 27 clearly show the huge gain in
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(a) Third-order scheme without limitation.
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(b) Exact solution.

Figure 27: Taylor-Green vortex deformation of a Cartesian grid made of 10× 10 cells, at time t = 0.75.

accuracy compared to the second-order scheme, see Figure 15, the numerical solution correspond-
ing to the third-order scheme being very close to the exact solution. Now, knowing the analytical
solution of this Taylor-Green problem, we compute the global truncation error corresponding to
our third-order DG schemes and display it in Table 2. Comparing the results gathered in Tables

L1 L2 L∞
h EhL1

qhL1
EhL2

qhL2
EhL∞

qhL∞
1
10 2.67E-4 2.96 3.36E-7 2.94 1.21E-3 2.86
1
20 3.43E-5 2.97 4.36E-5 2.96 1.66E-4 2.93
1
40 4.37E-6 2.99 5.59E-6 2.98 2.18E-5 2.96
1
80 5.50E-7 2.99 7.06E-7 2.99 2.80E-6 2.99
1

160 6.91E-8 - 8.87E-8 - 3.53E-7 -

Table 2: Rate of convergence computed on the pressure in the case of the Taylor-Green vortex at time t = 0.1, with
the third-order DG scheme without limitation.

1 and 2, we conclude that as expected, the third-order scheme is a lot more accurate than the
second-order scheme. We also notice in Table 2 that the asymptotic regime is reached at 3, which
proves as expected the third-order accuracy.
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4.2.6. Computational efficiency

Finally, we study the efficiency of our numerical method by comparing the first, second and third-
order DG schemes, keeping approximately constant the number of degrees of freedom (DOF) in
the DG discretization, i.e. the number of moments required in the polynomial approximation of
the unknowns. For the first and second order schemes, the case of straight-line edges is firstly
studied, i.e. the mapping function Φ is considered to be linear. To assess the efficiency, we have
displayed the numerical errors and the computational times. The corresponding test case is the
Taylor-Green problem. We see with the results gathered that for approximately 600 degrees of

D.O.F N EhL1
EhL2

EhL∞
time (sec)

600 24× 25 2.67E-2 3.31E-2 8.55E-2 2.01

2400 48× 50 1.36E-2 1.69E-2 4.37E-2 11.0

Table 3: First-order DG scheme and linear mapping, at time t = 0.1.

D.O.F N EhL1
EhL2

EhL∞
time (sec)

630 14× 15 2.76E-3 3.33E-3 1.07E-2 2.77

2436 28× 29 7.52E-4 9.02E-4 2.73E-3 11.3

Table 4: Second-order DG scheme without limitation and linear mapping, at time t = 0.1.

D.O.F N EhL1
EhL2

EhL∞
time (sec)

600 10× 10 2.67E-4 3.36E-4 1.21E-3 4.00

2400 20× 20 3.43E-5 4.36E-5 1.66E-4 30.6

Table 5: Third-order DG scheme without limitation and quadratic mapping, at time t = 0.1.

freedom, the global truncation errors are divided by 10 from the first-order to the second-order, and
again from the second-order to the third-order scheme. We also see that even if the computational
time required by the third-order scheme is greater than for the lower order ones, the evaluated
times remain small. In the case of 2400 DOF, the error is now divided by 20 increasing the order
of accuracy. We also observe that the computational time of the first and second-order schemes
are very close, while the measured time in the third-order case is three times greater. It is worth
mentioning that the scheme is not parallelized and not optimized at all. We can hope with simple
improvements in the code to regain an equivalent computational time to the lower orders. Anyhow,
for a three times greater computational time, the third-order scheme is 20 times more accurate
than the second-order scheme, and 400 times more accurate than the first-order numerical method.

For the scheme presented in this paper, the degree of the geometry matches with the order of
approximation of the physical variables (except for the first-order scheme where a constant mapping
is a nonsense, a linear function is thus considered). Of course, one may want to apply first or second-
order schemes on high-order geometries. Applying an identical computational efficiency analysis
with this time the same high-order geometry discretization for the different schemes yields the
results gathered in Tables 6 and 7.
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D.O.F N EhL1
EhL2

EhL∞
time (sec)

600 24× 25 2.24E-2 2.77E-2 7.38E-2 5.00

2400 48× 50 1.13E-2 1.40E-2 3.73E-2 28.6

Table 6: First-order DG scheme and quadratic mapping, at time t = 0.1.

D.O.F N EhL1
EhL2

EhL∞
time (sec)

630 14× 15 2.50E-3 3.08E-3 1.19E-2 3.95

2436 28× 29 6.52E-4 8.08E-4 3.09E-3 26.1

Table 7: Second-order DG scheme without limitation and quadratic mapping, at time t = 0.1.

One can see that the use of high-order geometry slightly decreases the numerical errors. But we can
also note the computational time dramatically increases, and become now very close to one obtained
with the third-order DG scheme using high-order geometry, Table 5. Most of the computational
effort seems to be required in the discretization of F and in the manipulation of curvilinear grids.

5. Conclusion

We have presented a cell-centered high-order DG discretization devoted to the numerical simula-
tion over general unstructured grids of the compressible Euler equations written under the total
Lagrangian formulation. In this work, the GCL is discretized by means of a finite element approxi-
mation, which fulfills the Piola compatibility condition, whereas the physical conservation laws are
approximated employing a local variational formulation and an expansion of the physical variables
over a Taylor basis. The representation of the flow in the current configuration is performed by
means of a curvilinear grid whose motion is rigorously consistent with the GCL. The numerical
method ensures momentum and total energy conservation and satisfies an entropy inequality at the
semi-discrete level which guarantees its consistency with the Second Law of thermodynamics. The
numerical results display an accuracy up to third-order for smooth solutions. The gain in accuracy
provides a dramatic improvement of the symmetry preservation for symmetric flows.
In the future, we intend to improve the formulation of the characteristic variables based limiting
procedure. We also plan to develop a DG discretization of the gas dynamics equations written
under the Lagrangian updated formulation and to extend its capability to the non-linear elasticity
equations.
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Appendices

A. Definitions and algebraic properties

In this appendix, we aim at recalling notations and formulas related to vectors and tensors which
are required to derive the mathematical modeling of fluid mechanics. In all what follows, we
consider Rd the d-dimensional Euclidean space, where d is a non-negative integer ranging from 1 to
3. Namely, Rd is a d-dimensional vector space equipped with an inner product and an orthonormal
basis (e1, e2, . . . , ed). An arbitrary vector in R

d, x, is defined by its coordinates, (x1, x2, . . . , xd),
as x =

∑d
i=1 xiei.

A.1. Inner product of two vectors

The inner product of two vectors a and b is defined by

a · b =

d
∑

i=1

aibi. (A.1)

The inner product of a with itself is always non-negative and allows us to define the Euclidean
norm on R

d as

‖a‖ =
√
a · a =

√

√

√

√

d
∑

i=1

a2i . (A.2)

A.2. Second-order tensors

Having in mind the notion of vectors, we define a second-order tensor on R
d as the sum of tensor

products of vectors in R
d. This definition involves that the set of second-order tensors defined on

R
d is a d2-dimensional vector space equipped with the basis ei⊗ ej , ∀ i, j = 1, . . . , d, and thus that

an arbitrary tensor, T, can be written as

T =

d
∑

i=1

d
∑

j=1

Tijei ⊗ ej , (A.3)

where Tij are components of the tensor T. The transpose tensor of T, namely Tt, is then defined
by

Ta · b = a · Ttb, (A.4)

for any vectors a and b in R
d. Components of transpose of T are given by T tij = Tji.

The inverse of a tensor T is the tensor denoted by T−1. It is defined provided that det(T) 6= 0, and
satisfies

TT
−1 = T

−1
T = Id,

where Id is the identity matrix.
Finally, let us identify T⋆ as the cofactor matrix of tensor T defined as

T
⋆ = det(T)T−t, (A.5)

where T−t is short hand notation for
(

T−1
)t

=
(

Tt
)−1

. It is interesting to recall that T⋆, the
cofactor of T, satisfies

T
⋆(a× b) = Ta× Tb, (A.6)

for all linearly independent vectors (a, b), see [25].
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A.3. Dyadic product of two vectors

In the definition of second-order tensors, we made use of tensor products, otherwise named dyadic
product, to define the basis functions. Let us define such vectorial operation. Let a and b be two
vectors of Rd. The tensor product of a and b is denoted by a⊗ b and defined as

∀x ∈ R
d , (a⊗ b)x = (b · x)a. (A.7)

This relation defines a linear transformation of Rd which is characterized by a matrix whose com-
ponents are written

(a⊗ b)ij = aibj , ∀ i, j = 1, . . . , d. (A.8)

The dyadic product of two vectors satisfies the following important properties

tr(a⊗ b) =a · b, (A.9a)

(a⊗ b)t =b⊗ a, (A.9b)

T(a⊗ b) =(Ta)⊗ b, (A.9c)

(a⊗ b)T =a⊗ (Ttb), (A.9d)

(x⊗ x′)(a⊗ b) =(x′ · a)x⊗ b, (A.9e)

The demonstration of these properties can be found in [25].

A.4. Inner product of second-order tensors

Let S and T be two second-order tensors. The inner product of S and T is a scalar denoted by S : T
and defined as

S : T = tr(StT). (A.10)

The inner product can also be expressed in terms of the tensor components as

S : T =
∑

i

∑

j

SijTij . (A.11)

A.5. Differential operators applied on vectors and tensors

Let U = U(x) be a vector function of x, its divergence is a scalar denoted by ∇ �U and defined as

∇ �U =
d

∑

i=1

∂Ui
∂xi

, (A.12)

while its gradient is the second-order tensor denoted by ∇U and defined as

∇U =
d

∑

i=1

d
∑

j=1

∂Ui
∂xj

ei ⊗ ej , (A.13)

Let us remark that the divergence of a vector can also be defined as

∇ �U = tr(∇U). (A.14)

54



This alternative definition is more intrinsic since it does not require the use of the components of
U provided that the tensor gradient of U is well defined.

Let T be a second-order tensor, its divergence is a vector denoted by ∇ � T whose components are
expressed in terms of the tensor components as follows

(∇ � T)i =
∑

j

∂Tij
∂xj

. (A.15)

Having in mind the previous notation and definitions it is straightforward to demonstrate the
following important identities

∇ � (TU) = ∇ � (Tt) ·U + T
t : ∇U , (A.16a)

∇ � (U ⊗ V ) = (∇U)V +U∇ � V , (A.16b)

∇(ρU) = ρ∇U +U ⊗∇ρ, (A.16c)

∇ � (ρT) = ρ∇ � T+ T∇ρ, (A.16d)

where ρ, U , V and T are respectively arbitrary scalar, vectors and second-order tensor.
Let us remark that tensor identity (A.16a) allows to propose the following intrinsic definition of the
divergence of a tensor. Let T be a second-order tensor, the divergence of T is the vector denoted
∇ � T such as for any constant vector U the following relation holds

(∇ � T) ·U = ∇ � (TtU). (A.17)

We also introduce here the curl of a tensor. The curl of T, denoted by ∇× T, is the second-order
tensor such as, for any constant vector A, the following relations holds

(∇X × T)A = ∇X × (TtA). (A.18)

A.6. Integral transformation formulas

The Green formula, otherwise named divergence formula, states that the volume integral of the
divergence of a function is equal to the total flux of this function through the surface enclosing the
volume. We recall its formulations for vectors and second-order tensors. All the real, vector and
tensor valued functions are assumed to be continuously differentiable with respect to the spatial
variables. Let Ω be a domain of the d-dimensional space enclosed by a surface ∂Ω, then for arbitrary
second-order tensor T and vector U

∫

Ω
∇ � T dV =

∫

∂Ω
TN dS, (A.19a)

∫

Ω
∇ �U dV =

∫

∂Ω
U ·N dS, (A.19b)

where N denotes the unit outward normal to the enclose surface ∂Ω. Let f denotes a scalar valued
function, then using the previous results it is straightforward to demonstrate the following useful
formulas

∫

Ω
∇U dV =

∫

∂Ω
U ⊗N dS, (A.20a)

∫

Ω
∇f dV =

∫

∂Ω
fN dS. (A.20b)
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A.7. Jump relations across a discontinuity

We conclude this section designed to introduce required definitions and algebraic formulas by
extending the divergence theorem to the case of piecewise continuously differentiable functions. To
this end, we assume that Ω is divided into two non-overlapping volumes Ω− and Ω+ over which
U and T are continuously differentiable. Let Σ be the intersection surface of Ω− and Ω+, i.e.
Σ = Ω− ∩ Ω+, refer to Figure 1. This is the surface of discontinuity for functions U and T. Let
XΣ be the position vector of a point located on this surface and NΣ the unit normal to Σ located
at XΣ and pointing in the direction of Ω+. As usual, J·K represents the jump operator defined, for
any locally smooth term f (scalar, vector or tensor), and any point X ∈ Σ, by

JfK = f+ − f−, where f± = lim
h→0±

f (X + hNΣ) .

For an arbitrary vector U being continuously differentiable separately over Ω− and Ω+, application
of divergence formula (A.19b) yields

∫

Ω−

∇X �U dV =

∫

∂Ω−\Σ
U ·N dS +

∫

Σ
U− ·NΣ dS,

∫

Ω+

∇X �U dV =

∫

∂Ω+\Σ
U ·N dS −

∫

Σ
U+ ·NΣ dS.

The sum of the two previous equations leads to

∫

Ω
∇X �U dV +

∫

Σ
JUK ·NΣ dS =

∫

∂Ω
U ·N dS. (A.21)

This equation consists of a generalization of divergence formula (A.19b) to piecewise continuously
differentiable vector function. The second term in the left-hand side corresponds to the flux through
Σ resulting from the jump across this surface. We notice that this term cancels when JUK → 0.
Proceeding with the tensor valued function as before yields

∫

Ω
∇X � T dV +

∫

Σ
JTKNΣ dS =

∫

∂Ω
TN dS. (A.22)

Applying the same reasoning formulas (A.20a) and (A.20b) transform into

∫

Ω
∇XU dV +

∫

Σ
JUK ⊗NΣ dS =

∫

∂Ω
U ⊗N dS, (A.23a)

∫

Ω
∇Xf dV +

∫

Σ
JfKNΣ dS =

∫

∂Ω
f N dS. (A.23b)
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B. Proofs and details of calculation

In this appendix, some proofs and details of calculation are given for a better understanding of the
body of this article.

B.1. Nanson formula and volume transformation

Let dX1 and dX2 be two linearly independent line elements in Ω. We define the area element dS
as

dS = dX1 × dX2. (B.1)

If N denotes the unit outward normal to the surface element, we have NdS = dX1 × dX2, where
dS is the algebraic measure of dS, i.e. dS = |dS|. Let dx1 and dx2 be the images of line elements
dX1 and dX2 by the flow map, they are defined by dxi = FdXi, for i = 1, 2. Since J > 0,
the Eulerian line elements are linearly independent and we can define the corresponding surface
element as

nds = dx1 × dx2.

Substituting dxi = FdXi in the above equation leads to

nds = FdX1 × FdX2.

Employing the result stated in equation (A.6), the Eulerian surface element rewrites

nds = F
⋆(dX1 × dX2).

Finally, using (B.1), we express the Eulerian surface element in terms of the Lagrangian surface
element through the Nanson’s formula

nds = F
⋆NdS.

Now, let us consider a third line element dX3 such that the set {dX1, dX2, dX3} is a basis with
a positive orientation. We define the Lagrangian volume element as

dV = (dX1 × dX2) · dX3.

Introducing dx3 = FdX3 leads to the following definition of the Eulerian volume element dv =
(dx1 × dx2) · dx3. Expressing the Eulerian line element in terms of their Lagrangian counterparts
yields

dv =(FdX1 × FdX2) · FdX3,

=F
t
F
⋆(dX1 × dX2) · dX3,

=det(F)(dX1 × dX2) · dX3.

Hence, we obtain the classical formula which expresses the transformation of a volume element
through the flow map

dv = det(F)dV.
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B.2. Piola identities

In this paragraph, we briefly recall the derivation of the fundamental Piola identities. Let Ω be a
fluid region in the initial configuration and ω = Φ(Ω, t) its image by the flow map at time t > 0.
Applying the divergence theorem (A.19a) to ∇X � Id = 0 and ∇x � Id = 0 yields

∫

∂Ω
N dS = 0,

∫

∂ω
n ds = 0. (B.2)

These formulas correspond to the integral form of the Piola identities which have a simple geometric
interpretation. Namely, the summation of the unit normal over a closed surface is equal to zero.
Substituting the Nanson’s formula (9a), i.e. nds = F⋆NdS, into (B.2) yields

∫

∂ω
(F⋆)−1n ds = 0,

∫

∂Ω
F
⋆N dS = 0.

Then, applying the divergence theorem, we get

∫

ω
∇x � (

1

det(F)
F
t) dv = 0,

∫

Ω
∇X � F

⋆ dV = 0.

Knowing that these formula hold for any arbitrary fluid regions, we finally obtain the Piola identities
written under local form

∇x � (
1

det(F)
F
t) = 0, ∇X � F

⋆ = 0.

B.3. Transformation formulas for the divergence and gradient operators

Let T be an arbitrary second-order tensor being a smooth function with respect to the Lagrangian
coordinates (and hence to the Eulerian ones via the mapping Φ). We shall express the divergence
of this tensor with respect to the Eulerian coordinates in terms of the divergence to the Lagrangian
coordinates. To this end, we first recall the divergence theorem (A.19a) over the Eulerian region ω

∫

ω
∇x � T dv =

∫

∂ω
Tn ds.

Transforming the right hand-side by means of the Nanson’s formula (9a) leads to

∫

ω
∇x � T dv =

∫

∂Ω
TF

⋆N dS.

Then, applying the divergence theorem to the right hand-side, we get

∫

ω
∇x � T dv =

∫

Ω
∇X � (TF⋆) dV.

Rewriting the left hand-side in terms of the Lagrangian coordinates and using (9b) yield

∫

Ω
∇x � T det(F) dV =

∫

Ω
∇X � (TF⋆) dV.
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Since the above equation holds for any arbitrary region Ω, we finally obtain the formula expressing
the transformation of the divergence operator through the flow map

∇x � T =
1

detF
∇X � (TF⋆). (B.3)

Using the identity (A.16b) and substituting in equation (B.3) the tensor T = A ⊗ V , where A is
a fixed vector, yield

A(∇x � V ) =
1

detF
∇X � ((A⊗ V )F⋆),

=
1

detF
∇X � (A⊗ (F⋆

t
V )),

=
1

detF
A(∇X � (F⋆

t
V )).

And since this relation holds for any constant vector A, it follows that

∇x � V =
1

detF
∇X � (F⋆

t
V ), (B.4)

which expresses the relation between the divergence of a vector function written using both La-
grangian and Eulerian coordinates. Finally, substituting T = ϕ Id in (B.3), where ϕ is a smooth
scalar function with respect to both Lagrangian and Eulerian coordinates, and using tensorial iden-
tity (A.16d), one easily obtains the following formula relating to the transformation of the gradient
operator

∇xϕ =
1

detF
∇X � (ϕF

⋆). (B.5)

B.4. Involutive constraint

To show that ∇X × F = 0 is an involutive constraint, we compute the time rate of change of the
curl of F knowing that the deformation gradient tensor satisfies the conservation law (14), as

∂

∂t
(∇X × F) = ∇X × ∂ F

∂t
= ∇X ×∇XU .

By definition of the curl operator (A.18) and knowing that (∇XU)tA = ∇X(A · U), we readily
obtain that

∇X ×
(

(∇XU)tA
)

= ∇X × (∇X(A ·U)) = 0.

Hence, ∂
∂t(∇X × F) = 0, which writes equivalently

(∇X × F)(X, t) = (∇X × F)(X, 0), for all t > 0. (B.6)

Now, we show that if the involutive constraint (15) is satisfied then the Piola identity (11b) holds.
To this end, let A and B be two arbitrary constant vectors. Making use of (A.6) and knowing that

(A×B) · (∇X � F
⋆) = ∇X �

(

F
⋆t(A×B)

)

,
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we readily obtain

(A×B) · (∇X � F
⋆) =∇X � (FtA× F

tB),

=
(

F
tB

)

·
(

∇X × (FtA)
)

−
(

F
tA

)

·
(

∇X × (FtB)
)

,

=
(

F
tB

)

· ((∇X × F)A)−
(

F
tA

)

· ((∇X × F)B) .

Hence, if F is such that ∇X ×F = 0, then for all A and B, (A×B) · ∇X �F⋆ = 0, thus ∇X �F⋆ = 0

and the Piola identity (11b) is satisfied.

B.5. Physical conservation laws

Here, we recall the formulation of the conservation laws of momentum and total energy expressed
with respect to the initial and the actual configurations. For any initial configuration Ω, ω(t) =
Φ(Ω, t) is its image by the flow map at time t > 0.

B.5.1. Conservation of momentum

If t represents a force defined per unit area acting on the boundary surface ∂ω(t), one knows that
t = Tn, where n is the local unit outward normal and T the second-order tensor named the Cauchy
stress tensor, see [22] for more details. Hence, the Newton’s law applied to ω(t), in the absence of
volumic forces, writes

d

dt

∫

ω(t)
ρU dv =

∫

∂ω(t)
Tn ds.

This can be transformed into volume integral as

d

dt

∫

ω(t)
ρU dv =

∫

ω(t)
∇x � T dv.

Using Reynolds transport theorem [25], a change of variables as well as relation (23b), we get

d

dt

∫

ω(t)
ρU dv =

∫

ω(t)
ρ
dU

dt
dv =

∫

Ω
ρ
∂U

∂t
J dV =

∫

Ω
ρ0
∂U

∂t
dV.

Finally, using (10a), we obtain
∫

Ω
ρ0
∂U

∂t
dV −

∫

Ω
∇X � (TF⋆) dV = 0.

Since this relation is valid for any volume Ω, we obtain the momentum equation

ρ0
∂U

∂t
−∇X � (TF⋆) = 0. (B.7)

Its integral version in the reference element is

d

dt

∫

Ω
ρ0U dV −

∫

∂Ω
TF

⋆N dV = 0.

Using the same technique employed for the geometric conservation law, the momentum equation
(B.7) written using Eulerian coordinates (x, t) reads

ρ
dU

dt
−∇x � T = 0. (B.8)
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B.5.2. Conservation of total energy

We consider a fluid which does not conduct heat and without volumic source of heat. Considering
a symmetric stress tensor T, the conservation of total energy E, i.e. the sum of the specific internal
energy ε and the specific kinetic energy 1

2U
2, writes

d

dt

∫

ω(t)
ρE dv =

∫

∂ω(t)
t ·U ds =

∫

∂ω(t)
(TU) · n ds =

∫

ω(t)
∇x � (TU) dv.

The symmetry of matrix T is a classical consequence of the conservation of the angular momentum,
refer to [25]. Using (10b) and the same arguments as for the momentum, we arrive at

∫

Ω
ρ0
∂ E

∂t
dV −

∫

Ω
∇X �

(

F
⋆t
TU

)

dV = 0.

Finally, the local form of the total energy equation in the reference configuration writes

ρ0
∂ E

∂t
−∇X �

(

F
⋆t
TU

)

= 0, (B.9)

while its integral form is

d

dt

∫

Ω
ρ0E dV −

∫

∂Ω
TU · F⋆N dV = 0.

Total energy equation (B.9) expressed in terms of Eulerian coordinates writes

ρ
dE

dt
−∇x � (TU) = 0. (B.10)

B.6. Jump relations at a surface of discontinuity

B.6.1. Geometric conservation laws

Let us show that the Hadamard compatibility condition (32) can also be derived from the definition
of the discontinuity velocity wσ in the Eulerian frame. Let XΣ(t) be the vector position of a point
attached to the discontinuity surface Σ during its motion in the Lagrangian frame. Let xσ(t) be
the image of XΣ(t) through the flow map Φ, i.e. xσ = Φ(XΣ(t), t). Knowing that the Eulerian
discontinuity σ is itself the image of the Lagrangian discontinuity Σ in the flow map yields xσ ∈ σ.
Bearing this in mind, the respective speeds of the Lagrangian and Eulerian discontinuities read as

WΣ =
dXΣ

dt
, wσ =

dxσ
dt

. (B.11)

Now, recalling that xσ = Φ(XΣ(t), t) and employing the chain rule leads to the two following
relations, respectively in Ω+ and Ω−

dxσ
dt

= ∇XΦ
±dXΣ

dt
+
∂Φ±

∂t
,

which, by means of the flow velocity and deformation gradient tensor definitions, immediately yields
the following relations on the discontinuity Eulerian and Lagrangian velocities

wσ = F
±WΣ +U±. (B.12)
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One can see these last relations are perfectly consistent with the previous result stated in (32).

Now, standard results applied to the geometric conservation law (19) reduces to

WΣJJK + JF⋆
t
UK ·NΣ = 0.

Thanks to (33), this relation is equivalent to

WΣJJK + JUK · 〈F⋆〉NΣ = 0. (B.13)

This can be recovered from the Hadamard relation. Noticing that F⋆
t
F = J Id, we dot multiply

(30a) by 〈F⋆〉NΣ, and get

WΣ (〈F⋆〉NΣ) · (JFKNΣ) + (〈F⋆〉NΣ) · JUK = 0.

Since JF⋆KNΣ = 0, the first term is indeed WΣJF⋆
t
FK and thus we recover (B.13).

B.6.2. Physical conservation laws

Similar procedure applied to the mass conservation (23a) leads to

WΣJρJK = 0. (B.14)

The mass swept by the discontinuity is

M = ρ±J±WΣ.

The relation (B.14) is of course strictly equivalent to the jump relation on mass in Eulerian coor-
dinates. Indeed, defining m = ρ±(U± −wσ) · nσ as the Eulerian mass flux, where nσ is the unit
normal to the discontinuity surface σ in the actual configuration, the following relation holds

M dS = −mds. (B.15)

This relation states that the mass crossing the discontinuity surface is identical regardless the
configuration employed. The minus sign in the above equation is due to the fact that m stands for
the mass flux crossing the discontinuity in the Eulerian frame whereas M stands for the mass flux
swept by the moving discontinuity in the Lagrangian frame. This relation (B.15) can also be seen
as a consequence of Hadamard’s relation. Indeed, by means of relation (B.12), it yields

ρ±(U± −wσ) · nσds = −ρ±F±WΣ · nσds. (B.16)

According to Nanson formula, we have

nσ ds = 〈F⋆〉NΣ dS. (B.17)

And recalling that the normal in the Eulerian frame is continuous, as JF⋆KNΣ = 0, two new
relations arise respectively on both sides of the discontinuity

F
±tnσ ds = J±NΣ dS.

62



Substituting this last result in equation (B.16) leads to

ρ±(U± −wσ) · nσds = −ρ±J±WΣdS. (B.18)

Thus, by means of Hadamard’s relation and Nanson formula, we recover the previous relation
(B.15). For the momentum and total energy conservation equations, the jump relationships write

JρJUK − JP K〈F⋆〉NΣ = 0, (B.19a)

JρJEK − JPUK · 〈F⋆〉NΣ = 0. (B.19b)

We also recall the jump relation for the Jacobian

JJKWΣ + JUK · 〈F⋆〉NΣ = 0.

Using (B.14), the above equations become

MJ
1

ρ
K + JUK · 〈F⋆〉NΣ = 0, (B.20a)

MJUK − JP K〈F⋆〉NΣ = 0, (B.20b)

MJEK − JPUK · 〈F⋆〉NΣ = 0. (B.20c)

Dot-multiplying (B.20b) by 〈F⋆〉NΣ, one gets

MJUK · 〈F⋆〉NΣ − JP K (〈F⋆〉NΣ)
2 = 0, (B.21)

and thus, employing (B.20a) multiplied by M leads to

M2 = −JP K

J1ρK
(〈F⋆〉NΣ)

2 . (B.22)

Since E = ε+ 1
2U

2, one gets

JEK = JεK + JUK · 〈U〉,

and by means of this last expression as well as relations (B.20a) and (B.20c), it follows that

−MJεK −M〈P 〉J1
ρ
K = 0.

Assuming that the discontinuity is a shock wave, M 6= 0, we finally conclude that

JεK + JP KJ
1

ρ
K = 0. (B.23)

This is the Hugoniot relationship which defines the shock wave in the thermodynamic plane.
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