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The arity gap of a function of several variables is defined as the minimum decrease in the number of essential variables when essential variables of the function are identified. We present a brief survey on the research done on the arity gap, from the first studies of this notion up to recent developments, and discuss some natural extensions and related problems.

Introduction

Let A and B be arbitrary nonempty sets. A function of several variables from A to B is a map f : A n → B for some integer n ≥ 1 called the arity of f . If A = B, then we speak of operations on A. Operations on the two-element set {0, 1} are called Boolean functions. We denote the set of all finitary functions from A to B by

F AB := n≥1 B A n .
We say that the i-th variable of f :

A n → B (1 ≤ i ≤ n) is essential, if there exist n-tuples (1) 
(a 1 , . . . , a i-1 , a i , a i+1 , . . . , a n ), (a 1 , . . . , a i-1 , a ′ i , a i+1 , . . . , a n ) ∈ A n that only differ in the i-th position, such that f (a 1 , . . . , a i-1 , a i , a i+1 , . . . , a n ) = f (a 1 , . . . , a i-1 , a ′ i , a i+1 , . . . , a n ).

We refer to the pair of n-tuples in (1) as a witness of essentiality of the i-th variable.

If the i-th variable of f is not essential, then we say that it is inessential. The number of essential variables of f is called the essential arity of f and it is denoted by ess f . If ess f = m, then we say that f is essentially m-ary.

For i, j ∈ {1, . . . , n}, i = j, the function f i←j : A n → B given by the rule f i←j (a 1 , . . . , a n ) = f (a 1 , . . . , a i-1 , a j , a i+1 , . . . , a n ), for all a 1 , . . . , a n ∈ A, is called a variable identification minor of f , obtained by identifying the i-th variable with the j-th variable. Note that the i-th variable of f i←j is necessarily inessential. Let f : A n → B be a function with at least two essential variables. The arity gap of f is the quantity gap f := min i =j (ess f -ess f i←j ), where i and j range over the set of indices of essential variables of f . Note that, by definition, 1 ≤ gap f ≤ ess f . We say that f and g are equivalent if each one can be obtained from the other by permutation of variables and addition or deletion of inessential variables. Whenever we consider the arity gap of a function, we can assume that all of its variables are essential. This is not a significant restriction, because every nonconstant function is equivalent to a function with no inessential variables, and equivalent functions have the same arity gap.

Example 1. Let F be an arbitrary field. Consider the polynomial function f : F 3 → F induced by x 1 x 3 -x 2 x 3 . It is clear that all variables of f are essential, i.e., ess f = 3. Let us consider the various variable identification minors of f :

f 1←2 = 0, f 2←1 = 0, f 1←3 = x 2 3 -x 2 x 3 , f 3←1 = x 2 1 -x 1 x 2 , f 2←3 = x 1 x 3 -x 2 3 , f 3←2 = x 1 x 2 -x 2 2 .
We have that ess f 1←2 = ess f 2←1 = 0, ess f 1←3 = ess f 3←1 = ess f 2←3 = ess f 3←2 = 2.

Hence gap f = 1.

Example 2. Let f : {0, 1} n → {0, 1} be the Boolean function induced by the polynomial x 1 + x 2 + • • • + x n over the two-element field. Then for each i = j we have that f i←j is induced by the polynomial ℓ∈{1,...,n}\{i,j} x ℓ .

Thus ess f = n and ess f i←j = n -2 for all i = j; hence gap f = 2.

Example 3. Let A be a finite set with k ≥ 2 elements, say, A = {0, 1, . . . , k -1}. Let f : A n → A, 2 ≤ n ≤ k, be given by the rule f (a 1 , . . . , a n ) := 1 if (a 1 , . . . , a n ) = (0, 1, . . . , n -1), 0 otherwise.

It is easy to see that all variables of f are essential, and for all i = j, the function f i←j is identically 0. Hence gap f = n.

As shown by the examples above, every positive integer is the arity gap of some function of several variables. Are all positive integers possible as the arity gaps of functions of several variables from A to B for a fixed domain A and codomain B? Does the size of the domain or the codomain have any influence on the set of possible arity gaps? Or even, could one hope to classify functions according to their arity gap? These questions have been raised and studied by several authors. In this paper, we survey the research work done on this topic over the years. In the bibliography, we indicate literature relevant to the topics of essential variables (see [START_REF] Čimev | On some properties of functions[END_REF][START_REF] Čimev | Separable Sets of Arguments of Functions[END_REF][START_REF] Davies | Two theorems on essential variables[END_REF][START_REF] Denecke | Essential variables in hypersubstitutions[END_REF][START_REF] Lupanov | On a class of schemes of functional elements[END_REF][START_REF] Salomaa | On essential variables of functions, especially in the algebra of logic[END_REF][START_REF] Solovjev | On the question of the essential dependence of functions of the algebra of logic[END_REF]), variable identification minors and variants (see [START_REF] Bouaziz | Join-irreducible Boolean functions[END_REF][START_REF] Couceiro | On the lattice of equational classes of Boolean functions and its closed intervals[END_REF][START_REF] Couceiro | On a quasi-ordering on Boolean functions[END_REF][START_REF] Ekin | Equational characterizations of Boolean function classes[END_REF][START_REF] Feigelson | The forbidden projections of unate functions[END_REF][START_REF] Lehtonen | Descending chains and antichains of the unary, linear, and monotone subfunction relations[END_REF][START_REF] Lehtonen | Equivalence of operations with respect to discriminator clones[END_REF][START_REF] Pippenger | Galois theory for minors of finite functions[END_REF][START_REF] Wang | Boolean minors[END_REF][START_REF] Zverovich | Characterizations of closed classes of Boolean functions in terms of forbidden subfunctions and Post classes[END_REF]) and arity gap and its variants (see [START_REF] Couceiro | On the effect of variable identification on the essential arity of functions on finite sets[END_REF][START_REF] Couceiro | Generalizations of Świerczkowski's lemma and the arity gap of finite functions[END_REF][START_REF] Couceiro | The arity gap of polynomial functions over bounded distributive lattices[END_REF][START_REF] Couceiro | Decompositions of functions based on arity gap[END_REF][START_REF] Couceiro | The arity gap of order-preserving functions and extensions of pseudo-Boolean functions[END_REF][START_REF] Couceiro | On the arity gap of polynomial functions[END_REF][START_REF] Couceiro | Parametrized arity gap[END_REF][START_REF] Salomaa | On essential variables of functions, especially in the algebra of logic[END_REF][START_REF] Shtrakov | Essential arity gap of Boolean functions[END_REF][START_REF] Shtrakov | On finite functions with non-trivial arity gap[END_REF][START_REF] Willard | Essential arities of term operations in finite algebras[END_REF]).

This survey is organized as follows. We start in Section 2 with basic notions and classifications of special types of functions (namely, Boolean and pseudo-Boolean functions) according to their arity gap; we also give a general description of arity gap, which serves as a basis for the later sections. Section 3 reports on natural decomposition schemes which arise from arity gap and which are then used in Section 4 to enumerate functions with prescribed arity and arity gap. In Section 5, we make the description of arity gap more explicit for some special classes of functions (namely, order-preserving functions and polynomial functions over fields). Then, in Section 6, we briefly discuss the order which naturally arises from variable identification (namely, simple minor relation) and some parametrized variants of the arity gap. We conclude this survey by mentioning some open problems and proposing new directions for future research in Section 7.

From the beginnings to a complete classification

To the best of our knowledge, the first study of arity gap appeared in print in the 1963 paper by Salomaa [START_REF] Salomaa | On essential variables of functions, especially in the algebra of logic[END_REF]. In that paper, he addressed the question how the number of essential variables of a function is affected by substitution of constants for variables or by identification of variables. Concerning identification of variables, his main result was the following.

Theorem 1 (Salomaa [START_REF] Salomaa | On essential variables of functions, especially in the algebra of logic[END_REF]). Let f : {0, 1} n → {0, 1} be a Boolean function with at least two essential variables. Then gap f ≤ 2.

As illustrated by Example 2, this upper bound is attained. On the other hand, Example 1 provides a Boolean function of arity gap 1. Since the arity gap is always at least 1, there are no other possible values for the arity gap of Boolean functions. This calls for a complete classification of Boolean functions into those with arity gap 1 and those with arity gap 2. Such a strengthening of Salomaa's result was obtained in [START_REF] Couceiro | On the effect of variable identification on the essential arity of functions on finite sets[END_REF].

Theorem 2 ([6]). Let f : {0, 1} n → {0, 1} be a Boolean function with at least two essential variables. Then gap f = 2 if and only if f is equivalent to one of the following functions:

(1)

x 1 + x 2 + • • • + x m + c for some m ≥ 2, (2) x 1 x 2 + x 1 + c, (3) x 1 x 2 + x 1 x 3 + x 2 x 3 + c, (4) x 1 x 2 + x 1 x 3 + x 2 x 3 + x 1 + x 2 + c, where c ∈ {0, 1}. Otherwise gap f = 1.
The number of n-ary Boolean functions f with ess f = n and gap f = 2 can be straightforwardly read off from the list of functions given in Theorem 2. Since the number of functions f :

A n → B (|A| = k, |B| = ℓ) with ess f = m (0 ≤ m ≤ n) is (2) n m m i=0 (-1) i m i ℓ k m-i
(see Wernick [START_REF] Wernick | An enumeration of logical functions[END_REF]), the number of n-ary Boolean functions with ess f = n and gap f = 1 can be easily obtained. Theorem 2 was later reproved using different techniques by Shtrakov in [START_REF] Shtrakov | Essential arity gap of Boolean functions[END_REF], where he also addressed the problem of counting the number of Boolean functions with a given arity gap.

We call functions of several variables from {0, 1} to an arbitrary nonempty set B pseudo-Boolean functions. Theorem 2 was extended for pseudo-Boolean functions in [START_REF] Couceiro | Generalizations of Świerczkowski's lemma and the arity gap of finite functions[END_REF].

Theorem 3 ([7]

). Let f : {0, 1} n → B (n ≥ 2) be a pseudo-Boolean function all of whose variables are essential. Then gap f = 2 if and only if f satisfies one of the following conditions:

(1) n = 2 and f is a nonconstant function satisfying f (0, 0) = f (1, 1), (2) f = g • h, where g : {0, 1} → B is injective and h : {0, 1} n → {0, 1} is a Boolean function with gap h = 2, as given by Theorem 2.

Otherwise gap f = 1.

A partial function of several variables from A to B is a map f : S → B where S ⊆ A n for some integer n ≥ 1, called the arity of f . If S = A n , we speak of total functions. Essential variables are defined for partial functions in the same way as for total functions, but the n-tuples of (1) forming a witness of essentiality are required to be in S. In this way, the notions of essential arity and arity gap can be naturally extended to partial functions.

The following notions were introduced by Berman and Kisielewicz [START_REF] Berman | On the number of operations in a clone[END_REF]. Denote by P(A) the power set of A, and define the function oddsupp : n≥1 A n → P(A) by oddsupp(a 1 , . . . , a n ) := a ∈ A : j ∈ {1, . . . , n} : a j = a is odd .

We say that a partial function f : S → B (S ⊆ A n ) is determined by oddsupp if there exists a function f * : P(A) → B such that

f = f * • oddsupp| S .
Willard showed that if f : A n → B, where A is finite, ess f = n > max(|A|, 3) and gap f ≥ 2, then f is determined by oddsupp. It is easy to verify that if f is determined by oddsupp and ess f ≥ 2, then gap f = 2.

Theorem 4 (Willard [START_REF] Willard | Essential arities of term operations in finite algebras[END_REF]). Let A and B be finite nonempty sets, and let k := |A|. Suppose that f : A n → B depends on all of its variables. If n > k, then gap f ≤ 2. Moreover, if n > max(k, 3), then gap f = 2 if and only if f is determined by oddsupp. This theorem deals only with functions over finite domains with sufficiently large essential arities; if A and B are finite, then gap f ≤ 2 for almost all functions. The condition on essential arity was removed in [START_REF] Couceiro | Generalizations of Świerczkowski's lemma and the arity gap of finite functions[END_REF], where a full classification of finite functions according to their arity gap was given in terms of so-called quasi-arity. As pointed out in [START_REF] Couceiro | Decompositions of functions based on arity gap[END_REF], this classification theorem holds more generally -with no change needed in its proof -for functions with arbitrary domains. Thus, the study of arity gap culminated in Theorem 5, which will be presented below, after introducing some terminology.

For n ≥ 2, let

A n = := {(a 1 , . . . , a n ) ∈ A n : a i = a j for some i = j}. Let f : A n → B. Any function g : A n → B satisfying f | A n = = g| A n = is called a support of f .
The quasi-arity of f , denoted qa f , is defined as the minimum of the essential arities of all supports of f , i.e., qa f := min g ess g where g ranges over all supports of f . If qa f = m, then we say that f is quasi-m-ary. Note that if A is finite, then A n = = A n whenever n > |A|. Hence qa f = ess f whenever n > |A|. Moreover, qa f = ess f | A n = whenever n = 2. Theorem 5 ([7, 9]). Let A and B be arbitrary sets with at least two elements. Suppose that f : A n → B, n ≥ 2, depends on all of its variables.

(1) For 3 ≤ p ≤ n, gap f = p if and only if qa f = n -p.

(2)

For n = 3, gap f = 2 if and only if qa f = n-2 or qa f = n and f | A n = is determined by oddsupp. (3) For n = 3, gap f = 2 if

and only if there is a nonconstant unary function

h : A → B and i 1 , i 2 , i 3 ∈ {0, 1} such that f (x 1 , x 0 , x 0 ) = h(x i1 ), f (x 0 , x 1 , x 0 ) = h(x i2 ), f (x 0 , x 0 , x 1 ) = h(x i3 ).
(4) Otherwise gap f = 1.

Theorem 5 gives answers to the questions posed at the end of Section 1. The set of possible arity gaps of functions of several variables from A to B is {n ∈ N \ {0} : n ≤ |A|}. This does not depend on the cardinality of the codomain B, as long as |B| ≥ 2 (otherwise, all functions are constant and hence have no essential variables).

Decompositions of functions based on the arity gap

Theorem 5 provides a complete classification of functions according to their arity gap. Unfortunately, it is not as explicit as Theorems 2 and 3 that deal with Boolean and pseudo-Boolean functions. The main reason for this is the fact that no special structure was assumed on the sets A and B. By assuming that the codomain B has a group structure, more explicit descriptions can be obtained. In this direction, two cases are distinguished.

First, functions f : A n → B with arity gap p ≥ 3 are shown to be decomposable into a sum of a quasi-nullary function and an essentially (n -p)-ary function.

Theorem 6 ([9]

). Assume that (B; +) is a group with neutral element 0. Let f : A n → B, n ≥ 3, and 3 ≤ p ≤ n. Then the following two conditions are equivalent:

(1) ess f = n and gap f = p.

(2) There exist functions g, h :

A n → B such that f = h + g, h| A n = ≡ 0, h ≡ 0, and ess g = n -p.
The decomposition f = h + g given above is unique.

Similar decompositions were presented by Shtrakov and Koppitz [START_REF] Shtrakov | On finite functions with non-trivial arity gap[END_REF], without proving uniqueness.

Second, we deal with functions with arity gap 2. In this case we need to further assume that B is a Boolean group (i.e., a group satisfying x + x = 0 for all x ∈ B). We also need to introduce some notation. Let ϕ : A n-2 → B be a function that is determined by oddsupp, i.e., ϕ = ϕ * • oddsupp | A n-2 , for some function ϕ * : P(A) → B. Let ϕ be the n-ary function defined by

(3) ϕ(x 1 , . . . , x n ) := k<n 2|n-k 1≤i1<•••<i k ≤n ϕ * (oddsupp(x i1 , . . . , x i k )).
Observe that each summand is a variable identification minor of ϕ, namely

ϕ * (oddsupp(x i1 , . . . , x i k )) = ϕ(x i1 , . . . , x i k , y, . . . , y),
where the number of y's is n -2 -k, which is an even number; therefore y is indeed an inessential variable of the function on the right-hand side; moreover, the order of the variables is irrelevant. The function ϕ is obviously totally symmetric, and it can be shown that ϕ| A n = is determined by oddsupp; from these facts it follows that ϕ is determined by oddsupp as well (see [START_REF] Couceiro | Decompositions of functions based on arity gap[END_REF] for details).

Theorem 7 ([9]

). Assume that (B; +) is a Boolean group with neutral element 0. Let f : A n → B, n ≥ 4. Then the following two conditions are equivalent:

(1) ess f = n and gap f = 2.

(2) There exist functions g, h : A n → B such that f = h + g, h| A n = ≡ 0, and either (a) ess g = n -2 and h ≡ 0, or (b) g = ϕ for some nonconstant (n -2)-ary function ϕ that is determined by oddsupp.

The decomposition f = h + g given above is unique.

Theorem 2 shows that for all but finitely many Boolean functions, gap f = 2 implies that f is a sum of unary functions. The following theorem provides an analogous result for functions f : A n → B, where A is a finite set and B is a Boolean group.

Theorem 8 ([12]

). Let A be a finite set, B a Boolean group, and let f : A n → B be a function such that ess f > max(|A|, 3). Then gap f ≤ 2, and if gap f = 2, then f is a sum of functions of essential arity at most |A| -1.

Let f be a polynomial function over GF(q), the q-element finite field, with ess f = n > max(q, 3) and gap f = 2. By the above theorem, if q is even, then f is a sum of functions of arity at most q -1. Since finite fields are functionally complete, we can represent each summand by a polynomial. This implies that f is a sum of monomials, where each monomial involves at most q -1 variables. If q = 2, then we can conclude that every Boolean function f with ess f ≥ 4 and gap f = 2 is linear, in accordance with Theorem 2.

The next example shows that Theorem 7 and Theorem 8 do not hold for arbitrary groups B.

Example 4 ([11]

). Let q be an odd prime power, and let f be the following polynomial function over GF(q):

f (x 1 , . . . , x n ) = n i=1 x q-1 i - 1 2 ,
Here 1 2 stands for the multiplicative inverse of 2 = 1 + 1 (it exists, since GF(q) is of odd characteristic). Let us identify the first two variables of f :

f (x 1 , x 1 , x 3 , . . . , x n ) = x q-1 1 - 1 2 2 • n i=3 x q-1 i - 1 2 = x 2q-2 1 -x q-1 1 + 1 4 • n i=3 x q-1 i - 1 2 = 1 4 • n i=3 x q-1 i - 1 2 ,
since x q 1 = x 1 holds identically in GF(q). We see that x 1 becomes an inessential variable, and this together with the symmetry of f shows that f is determined by oddsupp, hence gap f = 2.

If f were a sum of at most (n -1)-ary functions, then every monomial of f would involve at most n -1 variables. However, this is clearly not the case, as the expansion of f involves the monomial x q-1 1

• • • x q-1
n , which will not be cancelled by any other monomial. Thus f cannot be expressed as a sum of functions of arity smaller than the arity of f . If n > q, then the only support of f is itself, thus a support g satisfying condition 2a) or 2b) of Theorem 7 cannot exist. Theorem 8 and Example 4 ask for a characterization of those groups B for which Theorem 8 still holds. This question was partially answered in [START_REF] Couceiro | Additive decomposability of functions over abelian groups[END_REF], where abelian groups B were classified according to whether every function f : A n → B with gap f = 2 can be decomposed into a sum of functions with a smaller number of essential variables. This result followed from a study of a hierarchy of function classes based on decomposability, which we now describe.

Let (B; +) be an abelian group with neutral element 0. Recall that the order of a group element b ∈ B is the smallest positive integer n such that b

+ • • • + b n times = 0. If such a number
does not exist, the order of b is ∞. If the orders of the elements of B have a finite common upper bound, then the exponent of B is defined as the least upper bound (or, equivalently, the least common multiple) of the orders of its members; otherwise the exponent of B is ∞. For example, the exponent of a Boolean group is 2.

A function f :

A n → B is said to be k-decomposable, if it has an additive decomposition f = f 1 + • • • + f s , where each f i : A n → B (1 ≤ i ≤ s) has essential arity at most k. If f is (n -1)
-decomposable, we simply say that it is decomposable.

The following result provides a characterization of k-decomposable functions. For I ⊆ [n] and a = (a 1 , . . . , a n ) ∈ A n , let x a I denote the n-tuple which is obtained from x = (x 1 , . . . , x n ) ∈ A n by replacing its i-th component by a i , for each i ∈ I.

Proposition 1 ([12]). Let (B; +) be an abelian group, and let c ∈

A. A function f : A n → B is k-decomposable if and only if for all a ∈ A n and I ⊆ [n] with |I| > k, we have J⊆I (-1) |I\J| f (c a J ) = 0,
where c := (c, . . . , c).

Proposition 1 gave rise to the following result which reveals a dichotomy of abelian groups with respect the decomposability of functions determined by oddsupp.

Theorem 9 ([12]

). Let A be an arbitrary set with at least two elements, and let B be an abelian group. Then every function f : A n → B that is determined by oddsupp is decomposable if and only if A is finite and the exponent of B is a power of 2. Moreover, if A is finite and the exponent of B is 2 e , then every function determined by oddsupp is (|A| + e -2)-decomposable.

The following example shows that the bound (|A| + e -2) in Theorem 9 cannot be improved.

Example 5. Let A = {0, 1, . . . , k-1}, and let B be an arbitrary abelian group of exponent 2 e . Fix an element b ∈ B of order 2 e . Let ϕ : P(A) → B be defined by

ϕ(T ) = b, if T ⊇ A \ {0}, 0, otherwise, let n ≥ k + e -2
, and let f : A n → B be given by f (x) = ϕ(oddsupp(x)). Theorem 9 asserts that f is (k +e-2)-decomposable; however, it can be shown that f is not (k +e-3)decomposable (see [START_REF] Couceiro | Additive decomposability of functions over abelian groups[END_REF]).

The number of functions with a given arity gap

The unique decompositions provided by Theorems 6 and 7 enable us to actually count the number of functions f : A n → B with ess f = n ≥ 2 and gap f = p for every 1 ≤ p ≤ n. The problem of determining these numbers for operations on finite sets was raised by Shtrakov and Koppitz in [START_REF] Shtrakov | On finite functions with non-trivial arity gap[END_REF], where upper bounds were provided. An answer to the counting problem with exact numbers was given in [START_REF] Couceiro | Decompositions of functions based on arity gap[END_REF].

Let A and B be finite sets with |A| = k, |B| = ℓ. Let us denote by G kℓ np the number of functions f : A n → B with ess f = n and gap f = p. It is well known (see Wernick [START_REF] Wernick | An enumeration of logical functions[END_REF]) that the number of functions g : A n → B that depend on exactly r variables (0 ≤ r ≤ n) is

U kℓ nr := n r r i=0 (-1) i r i ℓ k r-i . Let (m) i denote the falling factorial (m) i := m(m -1) • • • (m -(i -1)
). The number of functions h :

A n → B such that h| A n = ≡ 0, h ≡ 0 is then given by V kℓ n := ℓ (k)n -1.
Let us denote by O kℓ n the number of functions f :

A n → B such that ess f = n, qa f = n and f | A n
= is determined by oddsupp. It can be shown (see [START_REF] Couceiro | Decompositions of functions based on arity gap[END_REF]) that for k ≥ 2, ℓ ≥ 2, n ≥ 2,

O kℓ n = ℓ 2 k-1 -ℓ, if n > k, ℓ (k)n (ℓ S k n -ℓ), if n ≤ k,
where 

S k n = n 2 -1 i=0 k 2i , if n is even, n-1 2 -1 i=0 k 2i+1 , if n is odd.
G kℓ n2 = O kℓ n = ℓ 2 k-1 -ℓ, G kℓ n1 = U kℓ nn -G kℓ n2 .
(

) If 3 ≤ n ≤ k and 3 ≤ p ≤ n, then G kℓ np = U kℓ n(n-p) V kℓ n . (4) If 4 ≤ n ≤ k, then G kℓ n2 = U kℓ n(n-2) V kℓ n + O kℓ n , G kℓ n1 = U kℓ n(n-1) V kℓ n + U kℓ nn ℓ (k)n -V kℓ n ℓ k n -O kℓ n (5) G kℓ 32 = (8ℓ (k)3 -3)(ℓ k -ℓ), G kℓ 31 = U kℓ 33 -G kℓ 33 -G kℓ 32 . (6) G kℓ 22 = ℓ (k)2+1 -ℓ, G kℓ 21 = U kℓ 22 -G kℓ 22 . 3 

Special classes of functions

Theorems 5, 6 and 7 lack the explicitness that is enjoyed by Theorems 2 and 3 in the sense that in the former ones the arity gap of each function is described in terms of the essential arity of some related function. However, for some special classes of functions, our results become explicit. Examples include pseudo-Boolean functions (see Theorem 3), Lovász extensions (in particular, the so-called Choquet integrals), multilinear polynomial functions and lattice polynomial functions (in particular, the so-called Sugeno integrals). In this section we extend these results to other classes of functions, namely of order-preserving functions (Subsection 5.1) and of polynomial functions over fields (Subsection 5.2), and provide rather explicit descriptions of arity gap within these classes.

5.1. Order-preserving functions. Let (A; ≤ A ) and (B; ≤ B ) be partially ordered sets. A function f : A n → B is said to be order-preserving (with respect to the partial orders ≤ A and ≤ B ) if for all a, b ∈ A n , f (a) ≤ B f (b) whenever a ≤ A b, where a ≤ A b denotes the componentwise ordering of tuples, i.e., a ≤ A b if and only if a i ≤ A b i for all i ∈ {1, . . . , n}. We say that (A; ≤ A ) is bidirected if every pair of elements of A has both an upper bound and a lower bound.

Theorem 11 ([10]). Let (A; ≤ A ) be a bidirected poset, let (B; ≤ B ) be any poset, and let f : A n → B (n ≥ 2) be an order-preserving function such that ess f = n. Then gap f = 2 if and only if n = 3 and there is a nonconstant order-preserving unary function h :

A → B such that f (x 1 , x 0 , x 0 ) = f (x 0 , x 1 , x 0 ) = f (x 0 , x 0 , x 1 ) = h(x 0 ).
Otherwise, gap f = 1.

By imposing stronger assumptions on the underlying posets, we obtain more stringent descriptions of order-preserving functions with arity gap 2. For example, if (A; ≤ A ) and (B; ≤ B ) are lattices and the function h occurring in Theorem 11 is a lattice homomorphism whose image is a distributive sublattice of B, then it can be shown that

f = med h(x 1 ), h(x 2 ), h(x 3 ) ,
where med denotes the ternary median function on Im h, given by med(a, b, c

) := (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) ∧ (b ∨ c).
From this observation and Theorem 11, we obtain the following explicit classification of order-preserving functions defined on chains.

Corollary 1 ([10]

). Let (A; ≤ A ) be a chain and let (B; ≤ B ) be any lattice. Let f : A n → B be an order-preserving function. Then gap f = 2 if and only if n = 3 and f = med h(x 1 ), h(x 2 ), h(x 3 ) for some nonconstant order-preserving unary function h : A → B (here med denotes the median function on Im h). Otherwise gap f = 1.

Polynomial functions over fields.

As in the case of order-preserving functions, Theorem 5 can be refined for polynomial functions over fields. We summarize in this section the results obtained in [START_REF] Couceiro | On the arity gap of polynomial functions[END_REF] in this direction.

Polynomials over infinite fields are in one-to-one correspondence with polynomial functions. It is well known that every function over a finite field is a polynomial function, but the correspondence between polynomials and functions is not injective. This correspondence can be made bijective by assuming that, for a finite field GF(q), we only consider polynomials in which the exponent of each variable in every monomial is at most q -1; we call such polynomials canonical. Every polynomial over an infinite field is canonical.

Given a polynomial function f : F n → F , we denote by P f the unique canonical polynomial which induces f , and given a polynomial p ∈ F [x 1 , . . . , x n ], we denote by p the function f : F n → F induced by p. Note that p + q = p + q for all p, q ∈ F [x 1 , . . . , x n ].

Lemma 1 ([11]

). If f is a polynomial function over a field F , then the functions g and h in the decomposition f = h + g given in Theorem 6 are also polynomial functions.

Lemma 2 ([11]). If h is an n-ary polynomial function over a field F , then h| F n = ≡ 0 if and only if h is induced by a multiple of the polynomial

∆ n = 1≤i<j≤n (x i -x j ) ∈ F [x 1 , . . . , x n ].
With an application of the two lemmas above, Theorem 6 about functions with arity gap at least 3 particularizes for polynomial functions as follows.

Theorem 12 ([11]). Let F be a field and let f : F n → F be a polynomial function of arity at least 4. Then gap f = p ≥ 3 if and only if there exist polynomials P, Q ∈ F [x 1 , . . . , x n ] such that f = P +Q, P is canonical, exactly n-p variables occur in P , and Q is a multiple of the polynomial ∆ n such that Q is not identically 0. Moreover, if f = P ′ + Q ′ , where P ′ is canonical, n -p variables occur in P ′ and Q ′ is a multiple of ∆ n such that Q ′ is not identically 0, then P ′ = P and Q ′ = Q.

Theorem 12 only deals with polynomial functions with arity gap at least 3, which thus asks for the study of the polynomial functions with arity gap at most 2. In particular, we consider polynomial functions determined by oddsupp, and we will see that the characteristic of the underlying field plays a crucial role here. We first introduce some notation that will be needed to state the subsequent results. Let F be an arbitrary field.

• If F is infinite, then N F denotes the set of nonnegative integers, and ⊕ F denotes the usual addition of nonnegative integers. • If F has finite order q, then N F denotes the set {0, 1, . . . , q -1}, and ⊕ F is the operation on N F given by the following rules:

-0 ⊕ F 0 = 0.

-If a = 0 or b = 0, then a⊕ F b = c, where c is the unique number in {1, . . . , q-1} such that c ≡ a + b (mod q -1).

Proposition 2 ([11]

). Let F be a field, and let f : F n → F be a polynomial function with

P f = k=(k1,...,kn)∈N n F c k x k1 1 x k2 2 • • • x kn n .
Then f is determined by oddsupp if and only if (A) f is symmetric, i.e., c (k1,...,kn) = c (l1,...,ln) whenever there exists a permutation π ∈ S n such that k i = l π(i) for all i ∈ [n], and

(B) for all (k, k 3 , . . . , k n ) ∈ N n-1 F with k = 0, (a1,a2)∈N 2 F a1⊕F a2=k
c (a1,a2,k3,...,kn) = 0.

In particular, if the characteristic of F is 2, then f is determined by oddsupp if and only if condition (A) above holds together with (B 2 ) c (k,k,k3,...,kn) = 0 for all (k, k, k 3 , . . . , k n ) ∈ N n F with k = 0. In order to obtain more explicit descriptions of polynomial functions determined by oddsupp, we need to take into account the characteristic of the underlying field. We start with finite fields and fields of characteristic 2.

Proposition 3 ([11]

). Let F be a field, and let f :

F n → F be a polynomial function. If F is finite or the characteristic of F is 2, then f | F n
= is determined by oddsupp if and only if there exist polynomials P, Q ∈ F [x 1 , . . . , x n ] such that f = P + Q, P is determined by oddsupp, and Q is a multiple of the polynomial ∆ n . Theorem 13 ([11]). Let F be a field of characteristic 2, possibly infinite, and let f : F n → F be a polynomial function of arity at least 4 which depends on all of its variables. Then gap f = p ≥ 2 if and only if there exist polynomials

P, Q ∈ F [x 1 , . . . , x n ] such that f = P + Q, P is canonical, Q is a multiple of the polynomial ∆ n ,

and either

(1) exactly n -p variables occur in P and Q = 0, or (2) P is not a constant polynomial and P satisfies conditions (A) and (B 2 ) of Proposition 2. Otherwise gap f = 1.

Corollary 2 ([11]

). Let F = GF(q), where q is a power of 2, and let f : F n → F be a polynomial function of essential arity n > max(q, 3). If gap f = 2, then f can be decomposed into a sum of functions of essential arity at most q -1.

We now consider the case of fields of characteristic 0.

Lemma 3 ([11]

). Let F be a field of characteristic 0, let n ≥ 2, and let f :

F n → F be a polynomial function. If f | F n = is determined by oddsupp, then f | F n = is constant, i.e., qa f = 0.
Theorem 14 ([11]). Let F be a field of characteristic 0, let n ≥ 2, and let P ∈ F [x 1 , . . . , x n ] be a polynomial such that all n variables occur in P . Then gap P = p ≥ 2 if and only if there exist polynomials Q, R ∈ F [x 1 , . . . , x n ] such that P = Q + R, exactly n -p variables occur in Q, and R is a nonzero multiple of the polynomial ∆ n . Otherwise gap P = 1. Moreover, the decomposition P = Q + R, when it exists, is unique.

As the following example illustrates, Proposition 3 and Lemma 3 do not extend to (infinite) fields of odd characteristic. Example 6. Let F be an arbitrary field of characteristic 3, and let f : F 3 → F be the polynomial function induced by ( 4)

2x 3 + 2y 3 + 2z 3 + yz 2 -xy 2 -xz 2 + y 2 z + 2xyz.
It is straightforward to verify that

f (x, x, y) = f (x, y, x) = f (y, x, x) = 2y 3 . Hence f | F 3 = is determined by oddsupp but f | F 3 = is not constant. This shows that Lemma 3 does not hold if F has characteristic 3.
Next we show that Proposition 3 does not hold for infinite fields of characteristic 3. Assume now that F is infinite, and let f be induced by [START_REF] Čimev | Separable Sets of Arguments of Functions[END_REF]. that g : F 3 → F is a polynomial function determined by oddsupp induced by the canonical polynomial

(k1,k2,k3)∈N 3 c (k1,k2,k3) x k1 1 x k2 2 x k3 3 .
Condition (B) of Proposition 2 yields the following equalities:

c (3,0,0) + c (2,1,0) + c (1,2,0) + c (0,3,0) = 0, c (2,0,1) + c (1,1,1) + c (0,2,1) = 0, c (1,0,2) + c (0,1,2) = 0.
Taking into account the total symmetry of g (condition (A)) and the fact that the characteristic of F is not 2, the only solution to this system of equations is c (k1,k2,k3) = 0 for all (k 1 , k 2 , k 3 ) ∈ N 3 such that k 1 + k 2 + k 3 = 3. Thus, the canonical polynomial of g(x, x, x) does not contain any cubic term; therefore it cannot coincide with f (x, x, x) = 2x 3 , and we conclude that f | F 3 = = g| F 3 = .

Further directions

In this section, we briefly discuss two further research directions: the study of an order which naturally arises from variable identification (Subsection 6.1) and the consideration of extensions to the notion of arity gap (Subsection 6.2).

6.1. The simple minor order and its respective covering relation. Let f : A m → B and g : A n → B. We say that f is a simple minor of g and we write f ≤ g, if there exists a function σ : {1, . . . , n} → {1, . . . , m} such that f (a 1 , . . . , a m ) = g(a σ(1) , . . . , a σ(n) ), for all a 1 , . . . , a m ∈ A. Loosely speaking, f is a simple minor of g, if f can be obtained from g by permutation of variables, identification of variables, and addition and deletion of inessential variables.

The simple minor relation ≤ on F AB is both reflexive and transitive, and thus it constitutes a quasiordering of F AB . As for quasiorders, ≤ induces an equivalence relation ≡ on F AB : for f, g ∈ F AB , we set f ≡ g if f ≤ g and g ≤ f , and in this case we say that f and g are equivalent. As observed in the introduction, f and g are equivalent if each of f and g can be obtained from the other by permutation of variables, addition of inessential variables, and deletion of inessential variables. Note that ess f = ess g whenever f ≡ g, and that every nonconstant function is equivalent to a function that depends on all of its variables.

q 1 f 1 5 2 q 2 1 1 1 1 2 2 q 3 q 4 q 5 q 6 0 Figure 1.
The simple minors of the function f given in Example 7.

Remark 1. These and other observations were made for the case A = B = {0, 1} in the paper [START_REF] Couceiro | On a quasi-ordering on Boolean functions[END_REF], in which it was shown that the poset of equivalence classes of functions induced by simple minor order is equimorphic (i.e., equivalent w.r.t. embeddings) to the poset made of finite subsets of positive integers ordered by inclusion. This result was later extended in various ways in [START_REF] Lehtonen | Partial orders induced by quasilinear clones, Contributions to General Algebra[END_REF], in particular to arbitrary sets A and B.

We say that g is a strict minor of f , denoted by g < f , if g ≤ f but f ≡ g. If g < f but there is no h such that g < h < f , then we say that g is a lower cover of f and we denote this fact by g ≺ f . Remark 2. It was shown in [START_REF] Bouaziz | Join-irreducible Boolean functions[END_REF] that the lower covers of any function f : A n → B have the same essential arity when A = B = {0, 1}. The proof of this fact given in [START_REF] Bouaziz | Join-irreducible Boolean functions[END_REF] actually shows that this claim is true whenever |A| = 2 and |B| ≥ 2. However, as the following example shows, this is not the case when |A| > 2.

Example 7. Let A be the 5-element field and consider the polynomial function f : A 6 → A defined by:

f (x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) := (x 1 -x 2 )(x 5 -x 6 ) + 1≤i<j≤6 (i,j) =(5,6) (x i -x j ).
It is easy to verify that ess f = 6, f 1←2 ≡ 0, and that f has, up to equivalence, two lower covers, namely,

f 1←3 = (x 1 -x 2 ) • (x 5 -x 6 ), f 5←6 = 1≤i<j≤4 (x i -x j ) • 1≤i≤4 (x i -x 5 ) 2 .
Figure 1 presents the Hasse diagram of the principal ideal generated by the equivalence class of f in the simple minor poset. The label of each edge g ≺ h is the number ess h-ess g. We use the following notation for simple minors of f :

q 1 = 1≤i<j≤4 (x i -x j ) • 1≤i≤4 (x i -x 5 ) 2 , q 2 = (x 1 -x 2 ) • (x 3 -x 4 ), q 3 = (x 1 -x 2 ) • (x 1 -x 3 ), q 4 = (x 1 -x 2 ) • (x 2 -x 3 ), q 5 = (x 1 -x 2 ) 2 , q 6 = -(x 1 -x 2 ) 2 .
Remark 3. Even though not every identification minor f i←j is a lower cover of f , every lower cover of f is of the form f i←j . Therefore, we can alternatively define the arity gap of f as gap f := min g≺f (ess f -ess g).

We say that f is totally symmetric, if for all permutations π of [n] the identity f (a 1 , . . . , a n ) = f (a π(1) , . . . , a π(n) ) holds for all a 1 , . . . , a n ∈ A. Observe that a totally symmetric function depends either on all of its variables or on none of them.

Fact 1. If f : A n → B is totally symmetric, then for all i, j, i ′ , j ′ ∈ [n] (i = j, i ′ = j ′ ), f i←j ≡ f i ′ ←j ′ . Therefore, if f is nonconstant, then for all distinct i, j ∈ [n],
f i←j is, up to equivalence, the unique lower cover of f . Berman and Kisielewicz [START_REF] Berman | On the number of operations in a clone[END_REF] also introduced the following analogue of oddsupp. Let supp : n≥1 A n → P(A) be the mapping defined by supp(a 1 , . . . , a n ) := {a 1 , . . . , a n }.

A function f : A n → B is determined by supp, if there exists a function ϕ :

P(A) → B such that f = ϕ • supp | A n .
As for oddsupp, every function determined by supp is totally symmetric, and such a function either depends on all of its variables or on none of them.

In [START_REF] Couceiro | Parametrized arity gap[END_REF] it was observed that there exist functions that are determined both by supp and oddsupp. For instance, every constant function and every unary function is determined by both supp and oddsupp. In fact, for each 2 ≤ n ≤ |A| we can construct functions f : A n → B determined by both supp and oddsupp; see [START_REF] Couceiro | Parametrized arity gap[END_REF]. However, such nontrivial examples cannot be found when n > |A|.

Proposition 4 ([13]

). If n > |A|, then f : A n → B is determined by both supp and oddsupp if and only if f is a constant function. Now it is natural to ask how the properties of being determined by supp and oddsupp are affected when taking strict minors. The answer is given by the following result.

Proposition 5 ([13]). Let A and B be finite nonempty sets, let k := |A|, and let f : A n → B be a nonconstant function.

(1) If f is determined by oddsupp, then the simple minors of f form a chain

f = f n ≻ f n-2 ≻ • • • ≻ f n-2t-2 ≻ f n-2t
of length t such that ess f n-2i = n -2i for all i < t; in this case, we either have ess f n-2t = 1 and t = n-1 2 or ess f n-2t = 0 and n-k

2 < t ≤ n 2 .
(2) If f is determined by supp, then the simple minors of f form a chain

f = f n ≻ f n-1 ≻ • • • ≻ f n-t+1 ≻ f n-t
of length t such that ess f n-i = n -i for all i < t; in this case, we either have ess f n-t = 1 and t = n -1, or ess f n-t = 0 and n -k < t < n.

As made apparent by Willard [START_REF] Willard | Essential arities of term operations in finite algebras[END_REF], the notion of arity gap is tightly related to determinability by supp and oddsupp. The following corollary is an immediate consequence of Proposition 5.

Corollary 3.

Let A and B be finite nonempty sets, let k := |A|, and let f : A n → B be a nonconstant function.

(1) If f is determined by oddsupp with n > k, then gap f = 2.

(2) If f is determined by supp with n > k, then gap f = 1.

We now recall a noteworthy result about the arity gap.

Lemma 4 (Willard [START_REF] Willard | Essential arities of term operations in finite algebras[END_REF]). Let A and B be finite nonempty sets, and let k := |A|. Suppose that f : A n → B depends on all of its variables.

( From Proposition 5, Theorem 4 and Lemma 4, we can obtain the following theorem whose importance is made apparent in the next subsection.

) 1 
Theorem 15 ([13]). Let A and B be finite nonempty sets, and let k := |A|. Suppose that f : A n → B depends on all of its variables.

(1) If n ≥ max(k, 3) + 1 and gap f = 2, then for all g < f with ess g > k, it holds that gap g = 2.

(2) If n ≥ max(k, 3) + 2 and gap f = 1, then there exists a g ≺ f such that gap g = 1 and ess g = n -1.

6.2. Parametrized variants of arity gap. So far we have considered the effect that the identification of two essential variables has on the essential arity of functions. Indeed, the arity gap of a function measures the minimum decrease in the essential arity when two essential variables are identified. We shall now discuss the minimum decrease in the essential arity when we identify an arbitrarily large number of essential variables. There are two ways of formalizing such a measure: by sequentially identifying pairs of variables or by simultaneously identifying "blocks" of variables. Despite being related, as we will see these two approaches are rather different.

6.2.1. Sequential identification. One approach to formalizing the minimum decrease in the essential arity when several essential variables are identified is to consider the following parametrized version of arity gap which measures the minimum decrease in the essential arity when we take ℓ ≥ 0 steps downwards in the simple minor quasiorder:

(5) gap(f, ℓ) := min

g∈↓ ℓ f (ess f -ess g),
where

↓ ℓ f := {g ∈ F AB | ∃f 1 , . . . , f ℓ-1 : f ≻ f 1 ≻ • • • ≻ f ℓ-1 ≻ g}.
Note that gap(f, ℓ) is defined only if there exists a chain of length ℓ below f , and in this case ℓ ≤ gap(f, ℓ) ≤ ess f . In fact, it is not difficult to verify that: [START_REF] Couceiro | On the effect of variable identification on the essential arity of functions on finite sets[END_REF] gap(f, ℓ) = min g≺f (ess f -ess g + gap(g, ℓ -1)).

Thus for every function f , we have gap(f, 1) = gap f and gap(f, 0) = 0.

Remark 4. We saw in the previous subsection that taking a strict minor of a function f requires the identification of at least one pair of essential variables of f ; otherwise, the minors we obtain are equivalent to f . This means that gap(f, ℓ) can be computed by sequentially identifying a pair of essential variables ℓ times in all possible ways, starting from f , and then determining the sequence of ℓ identifications which results in the minimum loss of essential variables. It is worth stressing the fact that the identification of variables is performed sequentially, and at each step only one pair of essential variables is identified; otherwise, ambiguities could occur since a priori we do not know which essential variables become inessential after a pair is identified.

We have also observed in Remark 3 that not every identification minor f i←j is a lower cover of f and, by the alternative definition of arity gap, if f i←j is not a lower cover of f , then gap f < ess f -ess f i←j . Moreover, as observed in Remark 2 it can be the case that f has two lower covers f 1 and f 2 such that ess f 1 < ess f 2 , and again we would conclude that gap f < ess f -ess f 1 . Hence, one might be led to thinking that in order to compute gap(f, ℓ) it suffices to choose at each recursion step an identification which results in the minimum loss of essential variables. However, this is not true.

Example 8. Consider function f in Example 7. If we choose as our first identification the pair {5, 6}, then any other identification of essential variables results in the loss of all the remaining essential variables. In other words, any downward path in Figure 1 which starts from f and passes through q 1 has length 2, and along it we first lose 1 and then 5 essential variables. However, the downward paths that start from f and pass through q 2 have length 4, and along them we lose 2, 1, 1, and then 2 essential variables. This shows that, in order to compute gap(f, 1) as in [START_REF] Couceiro | On the lattice of equational classes of Boolean functions and its closed intervals[END_REF], the minimum value is attained at the lower cover q 1 , whereas, for 2 ≤ ℓ ≤ 4, we need to pass through q 2 for computing gap(f, ℓ). Hence, gap(f, 0) = 0, gap(f, 1) = 1, gap(f, 2) = 3, gap(f, 3) = 4, and gap(f, 4) = 6.

The following result can be obtained inductively by making use of equation ( 6) and Theorem 15. Essentially, it asserts that, if ℓ is not too large, then we can walk from f down ℓ steps in the simple minor quasiorder in such a way that in each step we lose only one essential variable (resp. only two essential variables) if gap f = 1 (resp. gap f = 2).

Theorem 16 ([13]). Let A and B be finite nonempty sets, and let k := |A|. Let f : A n → B, ess f = n.

(

) If gap f = 1 and 1 ≤ ℓ ≤ n -max(k, 3), then gap(f, ℓ) = ℓ. (2) If gap f = 2 and 1 ≤ ℓ ≤ n-k 2 , then gap(f, ℓ) = 2ℓ. 1 
Surprisingly, it turns out that for almost every integer sequence 0 = n 0 < n 1 < n 2 < • • • < n r ≤ n, we can construct a function f : A n → B whose parametrized arity gap meets every member of the sequence. This statement is made precise in the following theorem.

Theorem 17 ([13]). Let A be a finite set with k elements and let B be a set with at least two elements. Let 

2 ≤ n ≤ k, 1 ≤ r ≤ n -1, 0 = n 0 < n 1 < n 2 < • • • < n r ≤ n such that n -1 ≤ n r ≤ n and n r-1 = n -1. Then there exists a function f : A n → B such that gap(f, ℓ) = n ℓ for every 0 ≤ ℓ ≤ r.
This parametrized version of arity gap constitutes a tool for tackling yet another natural problem pertaining to the effect of variable identification on the number of essential variables of a function. Given a function f : A n → B and an integer p ≥ 1, what is the smallest number m such that any m successive identifications of essential variables result in the loss of at least p essential variables? Denoting this smallest number by pag(f, p), we can easily see that pag(f, p) is the smallest ℓ for which gap(f, ℓ) ≥ p. 6.2.2. Block identification. Instead of taking successive identifications of pairs of variables, another approach to measuring the minimum decrease in the essential arity when several essential variables are identified is to consider simultaneous identifications of "blocks" of variables. To formalize this measure we follow Willard's [START_REF] Willard | Essential arities of term operations in finite algebras[END_REF] framework and view functions of several variables as maps f : A V → B, where V ⊆ {x i : i ∈ N}. The cardinality of V is called the arity of f . In this framework, a function g : A W → B is a simple minor of f : A V → B, if there exists a map α : V → W such that g(a) = f (a • α) for all a ∈ A W . Let Eq(V ) denote the set of all equivalence relations on V . Given an equivalence relation θ ∈ Eq(V ), denote the canonical surjection by v θ : V → V /θ. For a function f : A V → B, we define the function f θ : A V /θ → B by f θ (a) = f (a • v θ ), and we say that f θ is obtained from f by block identification of variables through θ. We informally identify V /θ with any one of its distinct representatives so that f θ becomes a simple minor of f , and every simple minor of f is then equivalent to f ψ for some ψ ∈ Eq(V ). The number of variables identified through θ is 

Open problems and future work

Looking ahead to possible future research topics related to arity gap, we are naturally drawn to two rather distinct problems. On the one hand, the work mentioned in Section 3 and Subsection 5.2 inevitably brings up the question on whether a general classification of algebras can be attained in terms of decomposability as in the case of abelian groups or fields of prescribed characterictic. On the other hand, the work surveyed in Section 4 naturally asks for similar enumeration results for the parametrized versions of arity gap discussed in Subsection 6.2.

( 1 ) 2 )

 12 With the notation and facts given above, we can now provide the number G kℓ np of functions f : A n → B with ess f = n and gap f = p. Theorem 10 ([9]). Let k ≥ 2, ℓ ≥ 2, n ≥ 2. If n > k and 3 ≤ p ≤ n, then G kℓ np = 0. (If n > k and n ≥ 4, then

Example 9 . 1

 91 Consider the 6-ary function f of Example 7. We can read off of Figure

( 1 . 10 .

 110 |X| -1) = |V | -|V /θ|. Assuming that f depends on all of its variables, i.e., ess f = |V |, we have that ess f θ ≤ |V /θ| = |V | -e(θ) = ess f -e(θ). Now we can define the analogue of the parametrized arity gap for block identification of variables. For a function f : A V → B with ess f = |V | = n and for an integer ℓ such that 0 ≤ ℓ ≤ n -1, we define b-gap(f, ℓ) := min θ∈Eq(V ) e(θ)=ℓ(ess f -ess f θ ).Note that b-gap(f, 0) = 0 and b-gap(f, 1) = gap f for every function f . It is also clearthat ℓ ≤ b-gap(f, ℓ) ≤ n for every 0 ≤ ℓ ≤ n -1, and b-gap(f, ℓ) ≤ gap(f, ℓ) for every ℓ for which gap(f, ℓ) is defined. Let H(f ) := {ess f -ess g : g ≤ f }. It is clear that {b-gap(f, ℓ) : 0 ≤ ℓ ≤ n -1} ⊆ H(f ).Proposition 6 ([13]). Let f : A V → B be a function such that ess f = |V | = n. Then b-gap(f, ℓ) = min{m ∈ H(f ) : m ≥ ℓ}, for all 0 ≤ ℓ ≤ n -Example Consider the 6-ary function f of Example 7. We can read off of Figure 1 that H(f ) = {0, 1, 2, 3, 4, 6} and b-gap(f, 1) = 1, b-gap(f, 2) = 2, b-gap(f, 3) = 3, b-gap(f, 4) = 4, b-gap(f, 5) = 6. Following the same steps as in the sequential approach, we ended up considering the following problem: Given a function f : A V → B that depends on all of its variables and an integer p ≥ 1, what is the smallest number m such that block identification of variables of f through every equivalence relation θ on V with e(θ) = m results in the loss of at least p essential variables? Let us denote this smallest number by b-pag(f, p). It is again clear that b-pag(f, p) is the smallest ℓ for which b-gap(f, ℓ) ≥ p. In other words, b-pag(f, 0) = 0 and b-pag(f, p) = max{m ∈ H(f ) : m < p} + 1 for 1 ≤ p ≤ n. Example 11. Consider the 6-ary function f of Example 7. We can determine from the values of b-gap(f, ℓ) listed in Example 10, or we can easily read off of Figure 1 that b-pag(f, 1) = 1, b-pag(f, 2) = 2, b-pag(f, 3) = 3, b-pag(f, 4) = 4, b-pag(f, 5) = 5, b-pag(f, 6) = 5.

  If n > 2, gap f = 1, f is totally symmetric, and for any distinct i, j ∈ [n], f i←j is equivalent to a totally symmetric function, then f is determined by supp.(2) If f is determined by supp, then f i←j is equivalent to a function determined by supp for any distinct i, j ∈[n]. Moreover, if n > k, then f i←j is nonconstant. (3) If n ≥ max(k, 3) + 2and f is not totally symmetric, then there exist distinct i, j ∈ [n] such that f i←j depends on n -1 variables and is not equivalent to a totally symmetric function.
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