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A survey on intersections of maximal partial clones of Boolean partial functions

We survey known results and present some new ones about intersections of maximal partial clones on a 2-element set.

I. PRELIMINARIES

Let A be a finite non-singleton set. Without loss of generality we assume that A = k := {0, . . . , k-1}. For a positive integer n, an n-ary partial function on k is a map f : dom (f ) → k where dom (f ) is a subset of k n called the domain of f . Let Par (n) (k) denote the set of all n-ary partial functions on k and let Par(k) := n≥1 Par (n) (k). An n-ary partial function g is said to be a total function if dom (g) = k n . Let Op(k) be the set of all total functions on k.

For n, m ≥ 1, f ∈ Par (n) (k) and g 1 , . . . , g n ∈ Par (m) (k), the composition of f and g 1 , . . . , g n , denoted by f [g 1 , . . . , g n ] ∈ Par (m) (k), is defined by

dom (f [g 1 , . . . , g n ]) := { a ∈ k m | a ∈ m i=1
dom (g i ), (g 1 ( a), . . . , g m ( a)) ∈ dom (f )}, and f [g 1 , . . . , g n ]( a) := f (g 1 ( a), . . . , g n ( a)), for all a ∈ dom (f [g 1 , . . . , g n ]).

For every positive integer n and each 1 ≤ i ≤ n, let e n i denote the n-ary i-th projection function defined by e n i (a 1 , . . . , a n ) = a i for all (a 1 , . . . , a n ) ∈ k n . Furthermore, let J k := {e n i : 1 ≤ i ≤ n} be the set of all (total) projections. Definition 1. A partial clone on k is a composition closed subset of Par(k) containing J k . If a partial clone is contained in the set of all total functions Op(k), then it is called a clone on k.

Remark 1. There are two other equivalent definitions for partial clones. One definition uses Mal'tsev's formalism and the other uses the concept of one point extension. These definitions can be found in chapter 20 of [START_REF] Lau | Function Algebras on Finite Sets, a basic course on Multiple-Valued Logic and Clone Theory[END_REF].

The partial clones on k (clones on k), ordered by inclusion, form a lattice L P k (L O k , respectively) in which the infinimum is the set-theoretical intersection. That means that the intersection of an arbitrary family of partial clones (clones) on k is also a partial clone on k (clone on k, respectively). A maximal partial clone on k is a coatom of the lattice

L P k . Therefore a partial clone M is maximal if there is no partial clone C over k such that M ⊂ C ⊂ Par(k). Similarly a clone M is called a maximal clone if there is no clone C on k such that M ⊂ C ⊂ Op(k). We say that a partial clone C 0 on A is covered by a partial clone C 1 on A if there is no partial clone C such that C 0 ⊂ C ⊂ C 1 . Therefore a maximal partial clone is a partial clone covered by Par(k). Example 2. Let Ω k := n≥1 {f ∈ Par (n) (k) | dom (f ) = ∅ =⇒ dom (f ) = k n } = n≥1 {f ∈ Par (n) (k) | dom (f ) = ∅ =⇒ f ∈ Op(k)}.
Then Ω k is a maximal partial clone on k.

An interesting and somehow difficult problem in clone theory is to study intersections of maximal clones and maximal partial clones. The lattice L O2 is known and was completely described by E. Post in [START_REF] Post | The two-valued iterative systems of mathematical logic[END_REF]. In chapter 14 of [START_REF] Lau | Function Algebras on Finite Sets, a basic course on Multiple-Valued Logic and Clone Theory[END_REF] are listed all submaximal elements of L O3 , i.e., all clones on 3 covered by the maximal elements of L O3 . Several results dealing with intersection of maximal clones can be found in the literature, we refer the reader to the list of reference in [START_REF] Lau | Function Algebras on Finite Sets, a basic course on Multiple-Valued Logic and Clone Theory[END_REF] for details.

In this paper we focus on L P2 , the lattice of partial clones of Boolean functions. We survey the known results and present some new results concerning the intersections of the maximal elements of L P2 .

With one exception, every maximal partial clone is the polymorphism of a relation. We have: Definition 3. For h ≥ 1, let ρ be an h-ary relation on k and f be an n-ary partial function on k. We say that f preserves ρ if for every h × n matrix M = [M ij ] whose columns M * j ∈ ρ, (j = 1, . . . n) and whose rows

M i * ∈ dom (f ) (i = 1, . . . , h), the h-tuple (f (M 1 * ), . . . , f (M h * )) ∈ ρ. Define pPol ρ := {f ∈ Par(k) | f preserves ρ}.
It is well known that pPol ρ is a partial clone called the partial clone determined by the relation ρ.

Note that if there is no h × n matrix M = [M ij ] whose columns M * j ∈ ρ and whose rows M i * ∈ dom (f ), then f ∈ pPol ρ.

Example 4. Let 2 := {0, 1}, let {(0, 0), (0, 1), (1, 1)} be the natural order on 2 and consider the binary relation {(0, 1), (1, 0)} on 2.

Then pPol {(0, 0), (0, 1), (1, 1)} is the set of all monotone partial functions and pPol {(0, 1), (1, 0)} is the set of all selfdual partial functions on 2. For simplicity we will write pPol (≤) and pPol ( =) for pPol ({(0, 0), (0, 1), (1, 1)}) and pPol ({(0, 1), (1, 0)}), respectively.

It is easy to see that if ρ is an h-ary relation on 2, then pPol ρ = pPol (ρ ⊗ 2). This fact motivates the concept of irredundant relation.

Let h ≥ 1 and let ρ be an h-ary relation on k. We say that ρ is repetition-free if for all 1 ≤ i < j ≤ h, there exists (a 1 , . . . , a h ) ∈ ρ with a i = a j . Moreover, ρ is said to be irredundant if it is repetition-free and has no fictitious components, i.e., there is no i ∈ {1, . . . , h} such that

(a 1 , . . . , a h ) ∈ ρ implies (a 1 , . . . , a i-1 , x, a i+1 , . . . , a h ) ∈ ρ for all x ∈ k.
can be shown that if µ is a nonempty relation, then we can find an irredundant relation ρ such that pPol µ = pPol ρ (see, e. g. [START_REF] Haddad | Completeness theory for finite partial algebras[END_REF]) for details).

The following result, known as the Definability Lemma, was first established by B. Romov in [START_REF] Romov | The algebras of partial functions and their invariants[END_REF] (see Lemma 20.3.4 in [START_REF] Lau | Function Algebras on Finite Sets, a basic course on Multiple-Valued Logic and Clone Theory[END_REF]) and has been widely used to handle maximal partial clones via the relational approach.

Lemma 5. (The Definability Lemma) Let h 1 , . . . , h n , t ≥ 1 be integers, ρ i be an h i -ary relation on k, i = 1, . . . , n, and β be a t-ary irredundant relation on k. Then 1≤i≤n pPol ρ i ⊆ pPol β if and only if there exists a family of h i -ary auxiliary relations { 1 , . . . , n } whose vertex sets is {1, . . . , t}, and such that

β = {(x 1 , . . . , x t ) ∈ k t | (i j 1 , . . . , i j hj ) ∈ j ⇒ (x i j 1 , . . . , x i j h j ) ∈ ρ j , for j = 1, . . . , n}.
Example 6. Let ρ 1 be a binary and ρ 2 be a ternary relation on k. Let β be the 4-ary relation defined by

β := {(x 1 , . . . , x 4 ) ∈ k 4 | (x 1 , x 2 ) ∈ ρ 1 , (x 3 , x 2 ) ∈ ρ 1 , and (x 1 , x 4 , x 3 ) ∈ ρ 2 }. Then pPol ρ 1 ∩ pPol ρ 2 ⊆ pPol β. (Here n = 2, 1 = {(1, 2), (3, 2)} and 2 = {(1, 4, 3)}.)
As mentioned earlier, Freivald showed that there are exactly eight maximal partial clones on 2. The following two relations determine maximal partial clones. Set

R 1 := {(x, x, y, y) | x, y ∈ 2} ∪ {(x, y, y, x) | x, y ∈ 2} and R 2 := R 1 ∪ {(x, y, x, y) | x, y ∈ 2}.
Theorem 7. ( [START_REF] Freivald | Completness criteria for functions of the algebra of logic and many-valued logics[END_REF]) There are exactly 8 maximal partial clones on 2, namely: pPol {0}, pPol {1}, pPol {(0, 1)}), pPol (≤), pPol ( =), pPol (R 1 ), pPol (R 2 ) and Ω 2 .

The three maximal partial clones pPol R 1 , pPol R 2 and Ω 2 contain the unary functions Op (1) (2) (i.e., maps) on 2. Such partial clones are called Słupecki type partial clones in [START_REF] Haddad | Pairwise intersections of Słupecki type maximal partial clones[END_REF], [START_REF] Romov | Maximal subalgebras of algebras of partial multivalued logic functions[END_REF]. They are the only three maximal partial clones of Słupecki type on 2.

It is known that pPol R 2 ∩ Op(2) is the maximal clone of all (total) linear functions over 2 (see, e.g., section 5.2.4 of [START_REF] Lau | Function Algebras on Finite Sets, a basic course on Multiple-Valued Logic and Clone Theory[END_REF]). Alekzeev and Voronenko studied the classes of partial clones of Boolean functions that contain pPol R 2 ∩ Op(2) on 2. From the main result of [START_REF] Alekzeev | Some closed classes in the partial two-valued logic (Russian)[END_REF] we have:

Theorem 8. The interval of partial clones [pPol R 2 ∩ Op(2), Par(2)] is of continuum cardinality on 2.
The proof of this result is quite complicated and is given in ( [START_REF] Alekzeev | Some closed classes in the partial two-valued logic (Russian)[END_REF]) (see also Theorem 20.8.1 of [START_REF] Lau | Function Algebras on Finite Sets, a basic course on Multiple-Valued Logic and Clone Theory[END_REF]). We refer the reader to Theorem 19 of [START_REF] Haddad | Pairwise intersections of Słupecki type maximal partial clones[END_REF] and Theorem 20.7.13 of [START_REF] Lau | Function Algebras on Finite Sets, a basic course on Multiple-Valued Logic and Clone Theory[END_REF] for the generalization of Theorem 8 to partial clones on k with k ≥ 3. A consequence of Theorem 8 is that the interval of partial clones

[pPol (R 2 ) ∩ Ω 2 , Par(2)] is of continuum cardinality on 2.
On the other hand it is shown in [START_REF] Haddad | On the depth of the intersection of two maximal partial clones[END_REF] that pPol R 1 ∩ Op(k) is the clone over k generated by Op (1) (k) for every k ≥ 2. We present a result similar to Theorem 8 that is established for pPol R 1 in [START_REF] Haddad | On the depth of the intersection of two maximal partial clones[END_REF].

For n ≥ 3 define the 2n-ary relation τ 2n on 2 by setting: (x 1 , . . . , x 2n ) ∈ τ n if and only if either x 1 = • • • = x 2n , or each of 0 and 1 appears exactly n times in (x 1 , . . . , x 2n ).

It is shown in [START_REF] Haddad | On the depth of the intersection of two maximal partial clones[END_REF] that Op (1) (2) ⊆ pPol τ 2n for all n ≥ 3. Since

R 1 = {(x 1 , x 2 , x 3 , x 4 ) ∈ 2 4 | (x 1 , . . . , x 1 , x 2 , x 3 , . . . , x 3 , x 4 ) ∈ τ 2n }
holds for all n ≥ 3, it follows from Lemma 5 that pPol τ 2n ⊆ pPol R 1 for all n ≥ 3.

Let P := {3, 5, 7, . . . } be the set of all odd prime numbers and P(P) be its power set. It is shown in [START_REF] Haddad | On the depth of the intersection of two maximal partial clones[END_REF] that the map

χ : P(P) → [pPol R 1 ∩ Ω 2 , pPol R 1 ]
defined by X -→ χ(X) := t∈P\X pPol τ 2t is one-to-one. Hence we have the following result:

Theorem 9. The interval of partial clones [pPol (R 1 ) ∩ Ω 2 , Par(2)] is of continuum cardinality on 2.
Together with D. Lau, the second author studied several intersections of Słupecki type partial clones on a non-singleton finite set. The following result comes from [START_REF] Haddad | Pairwise intersections of Słupecki type maximal partial clones[END_REF]:

Theorem 10. The partial clone pPol R 1 ∩ pPol R 2 is covered by the maximal partial clone pPol R 2 .
The dual of the above result does not hold for pPol R 1 . It is shown in [START_REF] Haddad | Pairwise intersections of Słupecki type maximal partial clones[END_REF] that there is at least one partial clone that strictly lies between pPol R 1 ∩ pPol R 2 and pPol R 1 . Indeed, let

λ := {(x 1 , . . . , x 7 ) ∈ 2 7 | (x 1 , x 2 , x 5 , x 6 ) ∈ R 1 , (x 2 , x 4 , x 6 , x 7 ) ∈ R 1 , and (x 1 , x 2 , x 3 , x 4 ) ∈ R 2 }.
Then it is shown in [START_REF] Haddad | Pairwise intersections of Słupecki type maximal partial clones[END_REF] that pPol R 1 ∩ pPol R 2 pPol λ pPol R 1 . Therefore the partial clone pPol R 1 ∩ pPol R 2 is not covered by the maximal partial clone pPol R 1 . To our knowledge, little seems to be known about the interval of partial clones

[pPol R 1 ∩ pPol R 2 , pPol R 1 ].
Intersections of maximal partial clones that are not of Słupecki type have been studied as well. Intersections of the form pPol ρ ∩ pPol θ where ρ, θ ∈ {{0}, {1}, {(0, 1)}, =, ≤}, with the exception of {ρ, θ} = {≤, =}, have been studied in [START_REF] Haddad | Intersections of Maximal partial clones I[END_REF], [START_REF] Haddad | Intersections of Maximal partial clones II[END_REF]. Almost all proofs given in [START_REF] Haddad | Intersections of Maximal partial clones I[END_REF], [START_REF] Haddad | Intersections of Maximal partial clones II[END_REF] are based on the composition of partial functions. In the same direction, deeper results were established in [START_REF] Haddad | Intervals of Boolean Partial Clones[END_REF] and [START_REF] Haddad | On Intervals of Partial Clones of Boolean Partial Functions[END_REF] where partial clones are handled via relations, and all proofs are based on the Lemma 5. Let

C M := pPol {0} ∩ pPol {1} ∩ pPol {(0, 1)} ∩ pPol (≤) and C D := pPol {0} ∩ pPol {1} ∩ pPol {(0, 1)} ∩ pPol ( =).
Then C M (respectively C D ) is the set of all idempotent monotonic partial functions on 2 (idempotent self-dual partial functions on 2). We have: 2)] are completely described in [START_REF] Haddad | Intervals of Boolean Partial Clones[END_REF] (see also [START_REF] Haddad | On Intervals of Partial Clones of Boolean Partial Functions[END_REF]). D. Lau informed the second author that some of the results in [START_REF] Haddad | Intervals of Boolean Partial Clones[END_REF] exist in the unpublished manuscript [START_REF] Strauch | On partial classes containing all monotone and zeropreserving total Boolean functions[END_REF] by B. Strauch. In view of results from [START_REF] Alekzeev | Some closed classes in the partial two-valued logic (Russian)[END_REF], [START_REF] Haddad | On the depth of the intersection of two maximal partial clones[END_REF], [START_REF] Haddad | Intervals of Boolean Partial Clones[END_REF], [START_REF] Strauch | On partial classes containing all monotone and zeropreserving total Boolean functions[END_REF], [START_REF] Strauch | The classes which contain all monotone and idempotent total Boolean functions[END_REF], it was thought that if 2 ≤ i ≤ 5 and M 1 , . . . , M i are non-Słupecki maximal partial clones on 2, then the interval

[M 1 ∩ • • • ∩ M i , Par (2) 
] is either finite or countably infinite. It is shown in [START_REF] Haddad | Partial clones containing all self-dual monotonic Boolean partial functions[END_REF] that the interval of partial clones [pPol (≤) ∩ pPol ( =), Par(2)] is infinite. This result is mentioned in Theorem 20.8 of [START_REF] Lau | Function Algebras on Finite Sets, a basic course on Multiple-Valued Logic and Clone Theory[END_REF] (with an independent proof given in [START_REF] Lau | A Classification of Partial Boolean Clones[END_REF]) and in chapter 8 of the PhD thesis [START_REF] Schölzel | Clones of Partial Functions on Finite Sets[END_REF]. However, it remained an open problem to determine whether [pPol (≤) ∩ pPol ( =), Par(2)] is countably or uncountably infinite.

The following relations, introduced in [START_REF] Couceiro | Partial clones containing all Boolean monotone self-dual partial functions[END_REF], are needed to settle this question. For n ≥ 5 and n > k ≥ 1 we denote by σ n k ⊆ 2 2n the (2n)-ary relation defined by

σ n k := {(x 1 , . . . , x n , y 1 , . . . , y n ) ∈ 2 2n | ∀ i = 1, . . . , n, x i = y i , and ∀ k = 1, . . . , n, y i+k ≤ x i },
where the subscripts i + j in the above definition are taken modulo n. Now for n ≥ 5 and n > k ≥ 1, we denote by ρ n k ⊆ 2 4n the (4n)-ary relation defined by ρ n k := {(x 1 , . . . , x 2n , y 1 , . . . , y 2n ) ∈ 2 4n | (x 1 , . . . , x n , y 1 , . . . , y n ) ∈ σ n 1 , and (x n+1 , . . . , x 2n , y n+1 , . . . , y 2n ) ∈ σ n k }. By Lemma 5 we have that for all n ≥ 5 and n

> k ≥ 1 pPol (≤) ∩ pPol ( =) ⊆ pPol σ n k ∩ pPol σ n 1 ⊆ pPol ρ n k .
Denote by E ≥4 := {4, 6, 8, . . . } the set of all even integers greater or equal to 4 and denote by P(E ≥4 ) the power set of E ≥4 . Furthermore, for every even integer k ≥ 4, let n(k) := k(k +1)+1. Since pPol (≤)∩pPol ( =) ⊆ pPol (ρ n k ) for every n ≥ 5 and every n > k ≥ 1, we have that

pPol (≤) ∩ pPol ( =) ⊆ t∈E ≥4 \X pPol ρ n(t)
for every subset X of E ≥4 . It was shown in [START_REF] Couceiro | Partial clones containing all Boolean monotone self-dual partial functions[END_REF] that the map We need the following notation. For v ∼ = (v 1 , . . . , v t ) ∈ 2 t , we define ker(v ∼ ) := {(i, j) ∈ {1, . . . , t} 2 | v i = v j }. Note that ker(v ∼ ) is a binary equivalence relation on the set {1, . . . , t} with at most two blocks.

χ : P(E ≥4 ) → [pPol (≤) ∩ pPol ( =), Par(2)] defined by X -→ χ(X) := t∈E ≥4 \X pPol ρ n(t)
Proof of Theorem 13. Let θ ∈ {R 1 , R 2 }. We consider three cases: a) pPol {(0, 1)} ∩ pPol θ is covered by pPol θ. Let t ≥ 1 and λ be a t-ary irredundant relation such that pPol {(0, 1)} ∩ pPol θ ⊆ pPol λ. By Lemma 5, there is a binary relation 1 and a 4-ary relation 2 , with { 1 , 2 } covering the set {1, . . . , t} and such that λ = {(x 1 , . . . , x t ) ∈ 2 t | ∀ (j 1 , j 2 ) ∈ 1 , (x j1 , x j2 ) ∈ {(0, 1)}, and ∀ (i 1 , . . . , i 4 ) ∈ 2 , (x i1 , . . . , x i4 ) ∈ θ}.

Note that if 1 = ∅, then λ can be defined from θ and by Lemma 5 pPol θ ⊆ pPol λ, thus pPol θ = pPol λ by the maximality of pPol θ. So assume 1 = ∅. Without loss of generality, let (1, 2) ∈ 1 , i.e., (x 1 , x 2 ) = (0, 1) for every tuple

(x 1 , . . . , x t ) ∈ λ. Fix v ∼ = (0, 1, v 3 , . . . , v t ) ∈ λ and set µ := {(x 1 , x 2 ) ∈ 2 2 | (x 1 , x 2 , x i3 , . . . , x it ) ∈ λ}
where, for j = 3, . . . , t, i j = 1 if (1, i j ) ∈ ker (v ∼ ) and i j = 2 if (2, i j ) ∈ ker (v ∼ ). Then we have that pPol λ ⊆ pPol µ by Lemma 5. As v ∼ = (0, 1, v 3 , . . . , v t ) ∈ λ we have (0, 1) ∈ µ and since every (x 1 , . . . , x t ) ∈ λ satisfies x 1 = 0, x 2 = 1, we have that µ = {(0, 1)}. By Fact 14, pPol {(0, 1)} ∩ pPol θ is covered by pPol θ. The proof of the claim that pPol {0} ∩ pPol θ and pPol {1} ∩ pPol θ are covered by pPol θ follows similarly. b) pPol { =} ∩ pPol θ is covered by pPol θ. We proceed as in case a), and choose v ∼ = (v 1 , v 2 , . . . , v t ) ∈ λ. Then either (v 1 , v 2 ) = (0, 1) or (v 1 , v 2 ) = (1, 0). Suppose that (v 1 , v 2 ) = (0, 1) and consider the map ¬(0) = 1, ¬(1) = 0. Since ¬ ∈ pPol ( =) ∩ pPol θ, we have ¬ ∈ pPol λ and so ¬(v ∼ ) := (¬(v 1 ), . . . , ¬(v t )) ∈ λ. Again consider the relation µ defined in a). It is easy to see that µ is the binary relation = and the rest of the proof is as above. The case (v 1 , v 2 ) = (1, 0) follows similarly. c) pPol ≤ ∩ pPol θ is covered by pPol θ. Again proceed as in case a) with the assumption that (1, 2) ∈ 1 . Note that in this case we have (0, . . . , 0), (1, . . . , 1) ∈ λ. Moreover since λ is irredundant, there is v ∼ = (v 1 , v 2 , . . . , v t ) ∈ λ such that v 1 = v 2 . As v 1 ≤ v 2 we get (v 1 , v 2 ) = (0, 1). Again consider the relation µ as defined in case a). From v ∼ ∈ λ we obtain (0, 1) ∈ µ and as (i, . . . , i) ∈ λ we have (i, i) ∈ µ, for i = 0, 1. Note that (1, 0) ∈ µ since for every (x 1 , x 2 , . . . , x t ) ∈ λ, x 1 ≤ x 2 . So µ is the binary relation ≤. The rest of the proof is as in case a).

Theorem 11 .

 11 The interval [C M , Par(2)] contains exactly 25 partial clones and the interval [C D , Par(2)] contains exactly 33 partial clones on 2. The intervals of partial clones [C M , Par(2)] and [C D , Par(
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 1314 is one-to-one.Hence we have the following result:Theorem 12. The interval of partial clones [pPol (≤) ∩ pPol ( =), Par(2)] is of continuum cardinality on 2.We conclude this survey with the following new result, which provides several examples of finite intervals of the form above. Let ρ ∈ {{0}, {1}, {(0, 1)}, =, ≤} and θ ∈ {R 1 , R 2 }. Then the partial clone pPol ρ∩pPol θ is covered by the maximal partial clone pPol θ over 2. In particular, each interval of partial clones of the form [pPol ρ ∩ pPol θ, Par(2)] has size 2.The proof is based on the following fact established after Lemma 3 in[START_REF] Haddad | Pairwise intersections of Słupecki type maximal partial clones[END_REF]. Let pPol ρ and pPol θ be two distinct maximal partial clones on k. Suppose that[pPol ρ ∩ pPol θ ⊆ pPol λ] =⇒ [pPol λ ⊆ pPol ρ or pPol λ = pPol θ]holds for every irredundant relation λ. Then the partial clone pPol ρ∩pPol θ is covered by the maximal partial clone pPol θ on k.
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